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I. The Model

Household preferences are given by

(1) B (8")'uC,Ly
twl}
where Cp denotes consumption of the market produced good and L. denotes hours

worked supplied to firms (0 < L; < 1). Later, we will work with the following

parametric form for U:
(1) ¥
(2 wC,Ly = [ca-Ly|n,

where 0 < v < 1, 7 < 1, (l—g)¥ < 1 are required for u to have positive
derivatives in C and (1-L). The last two conditions are required for u to be
concave In C for fixed L and concave in (1-L) for fixed C, respectively.

Firms operate the following production technology

(3)  £7(Kg,zHy) = KU (zeH) O™+ (1-6")K,.

Here, K, denotes the beginning—of-period t stock of capital, H; denotes hours of
work (0 s Hy < 1) hired by the firm. Also, &% denotes the rate of depreclation

on a unit of capital. Finally, 2, is the state of technology:
(&)  zy = exp(utHd,).

Here, ¢ is the growth rate of z, and ¢, is a stationary stochastic process with
mean §.

The household is composed of four members who meet at the beginning of each
period and pool their resources at that time. The four members are: a worker,
a shopper, a firm, and a financial intermediary. The shopper faces the following

cash—-in—advance constraint:

(5) M, — N, = P.C,
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where M, denotes the household’s beginning—of-perlod-t momey holdings and N,
denotes money sent by the household to the £inancial intermediary at the
beginning of period t. Finally, P, denotes the peried t price level. The
decision about the magnitude of N,—hence, the division of M; between the shopper
and the intermediary—must be made by the household prior to observing the
current period’'s realization of #, and X,. The variable X; is defined next.

The firm faces the following cash—in-advance constraint:

(6) Ny + Xy = Py(Kpgq — (L1-6")Ky) + W.H,.

Here, N, + X, denotes cash loaned to the firm by the intermediary. The
intermediary cobtains N, from the household and X, by a "helicopter drop" from the
government. Also, W, denotes the money wage.

The economy-wide resource constraint is given by

7 Cy + Kiyg = f*(Kt.:zt.Ht.)-

Condition (7) is the goods market clearing condition. In equilibrium, (7) must

be satisfied. Another equilibrium condition is

(8) Ly = H,.

Equation (8) is the labor market clearing condition.

Cash balances that the household begins peried t + 1 with are determined

by

(9) My = My + Xy + WLy + P (Ky,zeHe) — WHy — PyReyy — PiCe.

The money market clearing conditlon is that M, = M, the per capita money stock.



IT. Removing Technology Growth
The first step in analysis is to convert this to a nongrowing economy.

Accordingly, define the following transformed wvariables

¢, - C,exp(-ut), k., = K, exp(-ud), M, =M, exp(-ab),

(10 _ - -
N, = N, exp(-n), W, = W _exp(-gt), X, = X, exp(-pt).

In this notation, (1) is proportional to

(11) };a'u(ct,L,)

where 8 = g% exp[ (1—y)yr], and the function u(e,#) is defined in (2). Also, the

production function is

(12)  fk,H,8) - exp(~amwkexp(@H]" ™ + (1-d)k,
where

(13) & =1 — (1-6") exp(—uw).

The cash—in—advance constraints are now

Z1

-

(14) M, - N, = Pc

17t

(15) N, + X, 2 Pfk,, - (1-9k) + WH,.

The resource constraint is

(16) cy + kyyy = £k, H,0,).

Finally, the household’s money accumulation equation is given by

(17) 1\71“1 exp(p) =~ I;I: * }_{1 + th: + Plf(kl’ eXp(el)H:) - ﬁtHl - Ptku! = Plc

-



ITI. A Scaled Version of the Model

Recall M denotes the per—capita stock of money at the beginning of time

t. Also, let ﬁ; = exp(—pt) X M. We scale by FI: as follows

(18) m, - M/MD, 1, - N/ME, x, - XM, p, - B/ME,  w, - WAL

With this change of variable, (17) becones

m o+ X+ WLy + Pt.f(kb: eXP(et)Ht) - wiHy - Pekir - Puey
{T+xy) -

(19) Mg =

Similarly, the cash—-in—advance constraints become

v

(20) my — 1y 2 Py

(21) nt + Xt > pb(kt+1 -_— (l“'&)kt) + Wth.

The utility functlon and resource constraint are still given by (11) and (16),

respectively.

IV. Household First Order Conditions with Binding Cash Constraints

We suppose that (20)-(21l) are met as a strict equality. Whether this
restriction is binding can be checked ex post. In addition, we discretize the
exogenous shocks as follows

g, € {82,...,0™
(22)

x, € {x1,...,x™}.
Let s, denote the date t realization of #; and x,. Then s; can take on precisely

N =ng - n, values. We adopt the following convention




s~1l - (8,,%x) ~ (8%,x%)
(81,%x2)

s=2 - (§;,%)

(23) S-nx_’ (st’xt,) - (aiaxnx)

s=n+1 ~ (4,,%) - (62,x%)
s=N -+ (Et,xg) - (gn‘:xn!)'
Let #4(s;) denote the walue of 4, associated with s =1 for 1 =1, ..., N.

Similarly, x(s;) denotes the value of x; assoclated with s = 1. We assume that

g is a realization from a Markov chain with
(24) Wij = PrOb[Sb - jlst"’l - i].

At the beginning of the period, the household observes k and s—the
beginning—-of-period capital stock and the realization of the previous period’'s
exogenous shocks. The current perlod realization of the technology shock and
monetary injection are ohserved after n is chosen, but before the other variables
are selected, Let x denote the aggregate per capita capital stock and, with one
exception, let primes (') denote next period’s wvalue of a wvariable. The
exceptional case, s’, denotes the current period’'s realization of s, The
household takes p(«x,s,s') and w(x,s,s’) as given and solves the following problem
(25) J(m,s,k,x) - n&%ﬁn) zs;rr“,{nﬁiic u(c,L) + gJ(w’,s’ ,k’,.«:’)}

subject to
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; _ m+ x(s’) +wL + pf(k,H,s’) - wH - pk/ - pc

m
1+ x(s)

(26) c-2-1
P

q .- BY x(s’) - p(k/ - (1-8)k)
w

Here, the binding cash—-in-advance constraints have been used to eliminate ¢ and
H as decision wvarlables.

The first order condition for n is

K xfy Bis,s,s’) fgCk H,s")
wi(k,s,8') 1+ x(s’)

CE N 3T T L ) R W e P
Py P P
where

(28) fg(k,H,s’) - _;H £(k,H,s’).

In words, equation (27) says the following. Increase n by a unit and this
reduces current consumption by the random amount, 1/p(x,s,s’'), depending on the
realization of s’. The cost of this, in utility terms, as of the beginning of
the period, is Z g, u (mrn/p, L}/p. By increasing n, funds are redirected to
the firm (via the financlial intermediary), which uses them to hire 1/w units of
labor (see the third constraint in (26)). This produces a cash inflow to the
firm in the amount (p/w)}fy during the period. This rvesults in (p/w)fy/(L4x)
units of cash being available to the household at the beginning of next period.
The marginal utility wvalue of a dollar mnext period 1s J;(m*,s'.k’,x’'). This
explains the other terms in (27).

Next, consider the first order condition for labor supply, L:

(29)  w(e,L) + AT (' ,s/ K/ ,n/) %S}_:;T) -0
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This condition just says that the marginal utility cost of an Increase in work
effort {(—u;{c,L)) has to equal the marginal benefit of the extra cash generated.

Finally, consider the first order condition for k'

B (m’ s’ K &)
(30)

- BI (w’,s’ k' k") [p(k,s,8" ) ]%Ex(k,H,8") /[ (1 + x(s'))w(x,s,8")] = 0.

This says that the marginal benefit of extra k'(8J;) must be equated to the cost,
The cost is determined as follows. Given the third constraint in (26), the extra
k' is financed by a decrease in H in the amount p/w. This produces a fall in
cash revenues in the current period of (pfy)p/w. Cash available at the beginning
of next perilod then falls by [(pfyip/w]/(1+x). Finally, the current utility
value of one dollar next period is g8J,.

The follcowing envelope results are easily established

] sk: - 4 m—n, L 1
(31 Jy(m,s %) ‘S’_:ﬂ'ssuc[ 7 ] P(K-,S,S’)

(32) Ja(m,s,k,k) = Y om, BT (w1 & )pis,s,8" YE (k,H,8') /(1 + x(s')).

Subgtitute (32) Into (30) to get

0= E’rs's”ﬁ‘:rl(m” ’klf ,.'c”)'p(n:’ ,s" ,S”)fk(k’ ,H’ ,S“)/(l + X(S”))
(33) ¢
- Jy (', s’ Kk ) [ple,s,8) ]2 55(k,H,s") /[ (1 + x(s'))w(x,s,8)].

The first order conditicms for the household problem are given by (27),

(29), and (33) with J; being defined in (31).




V. General Equilibrium

In equilibrium, households maximize (gatisfy the first order conditions
derived In the previous section) and labor, commodity, capital, and money markets
clear, i.e., L=H, k=%, ¢ + k' = f(k,H,8'), m = m' = 1. We use the latter
conditions to develop expressions for p and w and to reduce the number of
unknowns in our first order conditions, (27), (29), and (33). First, imposing

the strict equality in (20) and clearing in the commodity and money markets

implies
1 -n(k,s)
34 (k,s,s’) - 2 .
( ) P ) f[k,L(k,S,S’),a(S’)] —k’(kvs:si)
Here, we express n as a function of k, s. From the point of view of the

household it is acrually a function of k, &, m, s. However, here and below we
make use of the money and capital market equilibrium by setting m = 1 and & = k.
Using the third constraint in (26), imposing labor market equilibrium and

rewriting yields

(35) w(k,s,s’) - 2k:8) + x(s') - p(k,s,s) (K (k,s.8T) - (1-6)k)
Y L{k,s,s’)

The notation makes clear that equilibrium k' and L depend on k, s, s'.

It iz convenient to define the following functions:

(36) y(k,s,s’) = £(k,L(k,s,5'),8(s')) = k*[exp(4(s'))L(k,s,s" )]V + (1-6)k
(37) fa(k,s,s") = f5(k,L(k,s,s’),0(s"))
(38) fx(k,s,s") = £;(k,L(k,s,s8"),0(s'))

(39) C(k,s,s') = }’(ksS,S') -k’ (k,S,S')

(40) Ju(k,8) - ¥omguy(elk,s,s’),Lik,s,8’)) — i s
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(41) uc(k,s,s') =u1(c(k,s,s’),L(k,s,s'))

(42) u(k,s,s') = u,(e(k,s,s’'),L(k,s,s8")}).

Then, the household's first order conditions, after imposing all market

clearing conditions, are the following. For fixed k, s:

p(k,s,s’) falk,s,s’)
w(k,s,8’) 1+ x(s’)

u.(k,s,s’)

- ¢ J k" k / 4
(Q3) 0 g"rsg W +ﬁ m( ( 1'5!8 ),S )

f + ! ! / W(k,s,s’) -
(46) u(k,s,s’") + I (k'(k,s,s"),s") Toxehy o,

' 1y oy Iplk,s,s’)]1? 1 /
Jm(k (k,S,S ),S ) 1 +X(5’) W(k,S,S’) fﬂ(k:svs )
(45)

o7 plkf(k,s,s’),s’ s/ 15[k (k,s,s"),s’,8'/]
’ T+ x(s’")

=V e8I [ (k,s,87),8] ,
pr
g8’ =1, ..., N. In (45) s'' denote next period's realization of s.

It is convenlent to substitute out for BJ/(1+x) in (45) from (44).
Recall, AJ,(k’'(k,s,s8'),s’)/(l + x(s’)) is the wvalue of obtaining an extra unit
of cash in the current period, after s' iIs realized. That 1Is, one extra unit of
cash in the current period gives xise to 1/(1 + x(3')) extra units of cash at the
beginning of the next period, and the marginal value of cash at the beginning of
the next period is valued at BJI (k'(k,s,s'),8'). According to (44), this value
equals ~up(k,s,s’')/w(k,s,s') in equilibrium. Using this, our previous first

order condition, (45), reduces to
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0 - ‘V_ui'(k’s’sl) [P(k,S,S':’]z fﬂ(k,s,s,)
[ wik,s,s") || w(k,s,s)

(46) I,
_ _U‘L[kl(kisys,)islsaff]
;ﬂl"ﬂel_ W[k’ (k,S,S,) ,S" ,SFJ’}

]p[k’(k,s,s’),s’,s”]fi[k’(k,s,s’),s’,s”].

It is useful to express (46) in words. An increase in k' by one unit can be
financed by decreasing hours worked by p/w, which causes cash revenues to drop
by p%fy/w. The first object in square brackets In (46) translates this cash
reduction into utility terms. The term after the minus sign in (46) reflects the
benefit assoclated with the increase In k'. The term, pf,, glives the iIncreased
cash flow resulting from the extra capital, while the term In large square
brackets translates this into utility terms. Thus, (46) says that investment
will be undertaken at a level where the marginal costs equal the expected

marginal benefits of a further Iincrease in investment,

VI. Solving the Model Using Judd’s Collocation Method

It is convenient to simplify (43) by substltuting for AT, from (44):

u.(k,s,s’) ulk,s,s’)p(k,s,s’ ) fy(k,s,s’)
47 0 - ;
“n Y| oty [w(k,s,s7) 12

We seek functions, n(k,s), k'(k,s,s’'), and L(k’,s,s’) which satisfy (44),
(46), and (47). Gilven these three functions, other functlons of interest can be
found using (34)-(42}.

We cannot hope to obtain L(k,s,s’'), n(k,s), and k’(k,s,s’) exactly since
in general they are infinite—dimensional objects. Thus, we confine curselves to

a space of functions, n(k,s;¥,.), k'(k,s,s";¥%), and L(k,s,s’;¥;), where ¥,, ¥,
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and ¥, are finite dimensional parameter wvectors. The decision rule parameters

to be selected are ¥, where

i9

It
(48) T - |¥y].
vy

In the following, we describe one of the solution strategles outlined in
Judd (1990). In particular, we select ¥ so that (44), (46), and (47) are
satisfied exactly for several k, s. 8Since the exact solution satisfies (44),
(46), and (47) for all possible (k,s), we hope this method of selecting ¥
produces decision rules with acceptable accuracy properties.

To see this solution strategy, first define the following functions:

(49) yk,s,s';%) = k*[exp(f(s’))L(k,s,s' ;¥ ) ]9 ™ + (1-8)k
(50) fulk,s,s';9¥) = Lplk,L(k,s,s';4),8(s")]

(51) f£i(k,s,s";¢¥) = £1[k,L{k,s,s';9y.),0(s")]

1 -nlk,s;¥,)

(52) p(k,s,s;0) -
flk, Lik,s,8' ;9),0(s")| - & (k, 5,8 3%)

nk,s;¥,) + x(s’) - plk,s,s ;0 (k,s, 8" 19) - (1-6)K)

53 k,s,s’;¥) =
(3) wlk,s,s75%) L(k,s,s’;¥)

(54) c(k,s,s';¥) = y(k,s,s" ;%) — k'(k,s,s’ ;%)
(55) us(k,s,s8';¥) = wlelk,s,s8';¥),Lik,s,s";¥))
(56) uy(k,s,s" ;%) = uz(e(k,s,s’;8),L(k,s,s';¥)),
for s' =1, ..., N, and

u(k, 5,8 ;)
J ; - ; .
R 2T
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Next, define the function g(k,s;¥) which maps ¥ into RZ*1;

wik,s,s’ -1;¥)

(58) g (k,s;¥) = u(k,s,s’ -i;¥) + BI (K (k,s,s’'=1;¥,),s'-1i)
T+ x(s -1)

for i =1, ..., N, Also,

gN-pi(k:S;w) -

u (k,s,s’=1;¥) [[p(k,s,s'-1;¥)]12 £a(k, 5,8 =1;9)
w(k,s,s’ =i;¥) l wik,s,s' =i;¥)

(59)

Ll I- k/ (k,s,s'=1),8'-1,8'" ;¥
- E 'ﬂ'si-i,‘”ﬂ L‘L[ 7 7 ) 7 rZi ]
e Lw[k (k,s,s’-1)s’ =1,8'/ ;%]

x plk/ (k,s,s’~1;¥),s’-1,8" ;¥ [k (k,s,s’=1;¥),s’ =i ,8/";¥],

i =1, ..., N.

uclk,.s,8,F)  ulk,s.8;Fplk, 8,8 ¥ £k 8,8,;7F)
k,8;F) - = L 2 ’
Faner (K, 87 F) ,Z_;E",{P(k,s,s’;‘i’) * [wik,s,8;F)]?

Let
gl(k‘v 5 ;II,I')
(60) g(k,s;¥) - : .
2ne1(k,83¥)

Now, if there were some value of ¥, say T*, such that the resulting
decigsion rules were exact, then g(k,s;¥*) = 0 for each s € {1,...,N} and for all
k > 0. 1In general there will be no such value for ¥ since T contains a finite
number of parameters, while g(k,s;¥) for k > 0 and s € {1,...,N} represents an
uncountable number of equations. One strategy for selecting a value for ¥ is to

set g(k,s;¥) = 0 for s =1, ..., N, and for a finite collection of values of Lk,

ey, ... ,knk}. Define
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8(ky,s=1;1) |
glk,,s=2;7)

gk, ,8=N;¥)
gk, 8=1;0) |
g(ky,8=-2;1)

(61) g(¥) ~

50k, s-N; ¥)

Note that (61) is N = nMN(2N+1l) equations. Judd's ccllocation method works with

¥ vectors which contain N elements. Thus, g maps RY into R¥. Our computation

strategy 1s to find ¥ such that
(62) g(¥) - 0.

A standard FORTRAN program for solving nonlinear equations can be used to find
¥.
The function g is completely defined once we describe a method for

selecting k,, ..., kn,, and a set of parametric Ffunections, k'(k,s,s’;¥),

L{k,s,s';¥.). We follow Judd in making n, k', and L Chebyshev polynomial
functions of k for fixed s, s'. In particular, let T;(z) be the i'® Chebyshev
polynomial in z, for £ = 0, 1, 2, .... (See Numerical Recipes in €, p. 158, for
a definition of T;.} These polynomials map the interval [-1,1] Iinto itself.
Thus, let z(k) be a map from k € {k,,... ,knk} to [-1,1]. Such a map is defined in
equation 5.6.10 on p. 160 of Numerical Recipes in €.

Consider k' (k,s,s’;¥,) first. Then, for each fixed s, s’, define

(63) K (k,s,s' ;%) = 1z';a:"’oxrk)wi.lcz(k)>.
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We assume there are N2 x n, elements in ¥, exactly the same as the number of

coafficients, af“: i=-1, ..., ny, 8, 8" =1, ..., N. For each i, 8, s’,

af*"(¥,) selects an element of Uy.

The wvector ¥, alsc contains N? X n, elements and L(k,s,s’;¥;) is defined

analogous to (63). In particular,

(64) L(k,s,s’;¥;) = ib;"’(wL)Ti_l(z(k)) for s, s/ =1, ..., N.

The function n(k,s;¥,) is defined In the obvious way, given (63)—(64).
Finally, we select k; = k; 5 ... = kﬁk as follows. First, compute

z, = cos(m(2-%)/n) for k = 1, ..., m,. Then, k; = z7%(z;), i =1, ..., np. The

boundaries, k; and k,, of this set should satisfy

(65) max k (k,s,s’;¥) sk, .
8, sel,... 1 .
kele,, ...k}

(66) min ¥ (k,s,s8/;9) = k,.
s, 8'%€ll, N

18" Ikﬂk)

Ensuring that (65) and (66) are satisfied may requlre some experimentation.

This computatiocnal strategy ls presented to provide a basis for discussion
only. It may actually be toc computationally burdensome to implement. For
example, suppose there are three values for each of the exogenous shocks, so that
N = 9. Then, suppose n, = 10. In this case N = 1,710, and (62) represents a
problem of solving 1,710 equations in 1,710 unknowns! Some alternatives are
probably necessary.

One way to reduce the dimension of the problem dramatically would be to
assume that s Is iid. I think that in this case, k' and L are functions of k and
g' only and n is a function of k. In this case, the dimension of the problem

drops to m(2N+l), or 190 in our example. This is manageable using Judd's
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collocation method. However, the iid case iz not very interesting. Empirically,
it is strongly counterfactual. From a theoretlical standpoint it iIs also not very
interesting since there is a strong presumption that results are not robust to
adding serial correlation, For example, a persistent monetary shock may——by
driving up next period’s price level a lot—have wvery 1little impact on
employment.

An alternative possibility would be to eliminate ¥, from the parameter
vector and let n(k,s) be determined implicitly by (47), given k'(k,s,s';¥) and
L{k,s,s';¥). This would reduce the dimension of the problem, (62). It is
Important to note, though, that evaluating the appropriately modified version of
{60) would require seolving (47) not just £for n(k,s), but also for
nlk’(k,s,s’;¥),s'], s' =1, ..., N. The latter are required for AJ; in (58) and
next period’s w in (59).

Two alternative computational strategies include the Bizer—Judd-Coleman (B—
J-C) strategy, which is described in the next sectlon, and the linear quadratic

approximation method.

VIXY. The Bizer-Judd-Coleman Algorithm

A problem with solving a set of equations like (62) using standard
algorithms is that the computational burden rises roughly with the square of the
number of equations. The Bilzer—Judd—Coleman algorithm can alsc be used to solve
(62), but 1its computational burden only rises linearly in the number of
equations., Given the large number of eguations in our problem it makes sense to
consider B~J-C.

The B-J-C algorithm computes ¥ in (62) as the limit of a sequence, ¥°, ¥,

¥2, ..., where ¥° is an initial guess. The method generates ¥, r = 1, 2, ...,
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recursively by using (44), (46), and (47) to define a mapping, G, from R™MFZ+D

into itself:
(67) BT = G(T 1y, r=-1, 2, 3,

Then, ¥ - lim_,¥*.

The mapping G is defined as follows. Let ¥ ! be given, and fix k, s, Let
L(k,s,s’';PEY), nlk,s;95Y), and k'(k,s,s’;PE?) determine hours worked, money
supplied to financial intermediaries and investment in periods after the present
period in (&44), (46), and (47). Then, (44) and (46) for s’ = 1, ..., N, and (47)
define 2N + 1 equations in the 2N + 1 unknowns: n(k,s) and L(k,s,s’}, k'(k,s,s’)
for g' =1, ..., N. Because of restriction (47), these equations must be solved
jointly using a nonlinear, multi-equation solver. This can be done for each
kelk,... ,knk} and 8 = {1,...,N}. Thus, values for k'(k,s,s’), n(k,s), and
L(k,s,s’) are obtained at each of the n, X N? discrete points (k,s,s'). It is
then trivial to fit n, — 1*® order Chebychev polynomials to these points in order
to get U,

This method for finding ¥ in (62) replaces an algorithm which is order
[mN(2N+1)]% (Judd’s) by one that is order N2. This does not mean that B-J-C
will dominate the collocation method for a given finite N, only that this must
be so for N sufficiently large.

Ag Judd and others have pointed out, the B—J-C algorithm can be quite slow.

One way to speed it up replaces the operator G by &:

(68) ¥F = G(UF) = wTt 4+ [I - G/ (UT L) ]G(E L) - ]
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Here, G’ (¥ 1) is the matrix of derivatives of G with respect to ¥, evaluated at
¥ = ¥, In practice the matrix inverse in (68) can be hard to compute, since
the number of operations Increase with the square of the dimension of G.
However, the truncated inverse, I + G'(¥™ 1) + [¢' (¥ 1)]12 + ... + [G' (" 1) ]P may
be relatively straightforward to compute for small values of p, say p = 10 oxr 20.
A potential problem with (68) is that the computational cost of matrix inversion
may Iincrease with the square of the matrix's dimension. Applylng this to the

B-J-C algorithm may defeat its advantage relative toc Judd’'s collocation method.

IX. L-Q Approximate Decision Rules

Both Judd’s collocation method and the BJC algorithm require an initial
guess for the decision rule parameters, ¥. A good way to get this is to compute
decigion rules which solve linearized versions of the problem’s Euler equations,
(443, (46), and (47). The linearization procedure takes a Taylor series
expansion about the nonstochastic, steady—state wvalues of the variables. We
first discuss this algorithm conditional on having steady states. We then turn

to the steady state formulas.

A. The L-Q Approximatlion

It is convenient to revert to the time subscript notation. Thus,

1-n _
(69) P~ Ty - P ke m T 0)

- - (1-
(70) W, = Iy + Ry pt.(kﬁ:l ( E)kt) - W(kt!kt,,lsnt,’l-tigtixt)-

The Euler equation (47), can be written

(71) E[‘l(kr.,kt.ﬂaLt,:ntsst)|St—1akt.] =0
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where

wff (e, L, 0y) ~ Kpaq,Le] | wffCl, Ly, 80) - Kepq, Ly

:k +*1 ] ) - + )

72) qiky, Ky, Ly, 8) pllky, ke, 1omp, Ly, 0,) [w(kb'ktd-l’nt'l't.’gt,rxt,)]z
x p(khrktqlintaltlgt)fL(kt_:I‘trat,)'

The variable s;.; enters the conditioning set in (71), reflecting the possibility

that the distribution of s, may depend on the realization of s,_;.

Write equations (44), after substituting for J, from (40), as follows

(73) E[Q(kblkt.+1:kt.+2lLt.)Lt+lsnt,:nt.+1,stsSb-!-l)lkt,:st.—lsst.] - 0

where

Qllky,kyyq,Keya: Ly, Lyyy oy, 0y g, 8, 8,9) = ut.[f(kbrl‘bet.) - kt+1'Lt]

" ﬁ U\‘.[f(kb*lil‘t+1!9t.+l) - kbfZ’Lt.i-l] e W(kt'kt+1’nb’11l’gt’xt)
PRy, 1, Rey2o My gy Livas Peg ) (L+x) ’

(74)

Finally, write equation (46) as follows

(75) E[W(ky,keer, Kesz, Lo, Loy o 0pa Npv, S, Spap) [ Ky  Sp-1,8:.] = O

where

Wiky,Kyar Kewzo Lo Lew1 s T s D1, 852 Sea1)

'k +1# ) 3 ¢
[w flf"‘k’tkt:. !1n:b1:=tﬁt. 3t;zt.) :[Z £k, Ly, 8e)

-8 ul.[f(kt+1’ Li,iy fea1) ~Keeas Lt+1]

Wik, g, Kooz, 0,0, L p1, feer s Xeaa)

(76) = U‘I.[f(kbrl‘tsgt) - kb«n-l:Lt.]

Pkeog, Kepzs ey Loags Op0n) B(ly g, Ly ygs Orag) -

The variable s.., enters the conditioning set in (73) and (75) reflecting that
n, is selected after k., s;., is observed, so that given k,, sy, determines n,.

We seek linear decision rules

(77)  kper ~ k® = kK1(ke—k®) + k2(5p—s) + Lk3(sy-s)
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(78) L, — L = L}(k,~k*) + L2(Sy-;~8) + L3(s;~8)

(79) n, - n® = n'(k,~k*) + n®(84-1-s)

which solve a linearized version of (71), (73), and (75). Here, k*, L*, n%, and

s denote the nonstochastic steady-state values of k, L, n,, and s,. Also, k!,

11, nl! are scalars, while k2, k®, L2, 13, n?, are each 1 X 2 vectors.

We assume s, has the following representation
8 = 7 + Asb..l + €t ,

so that the nonstochastic steady-state value of s, is 8 = (I-A)"ly. Here, ¢, is

white nolse, uncorrelated with s, ;. We now think of s, as
(80) s - [fib]
Let the linearized versions of q, Q, and W be
(81)  qlky,kpen,Lyomy,sp) = Gy (lg-k®) + da(ky,y-k*) + §3(Le-L%) + Gu(n,—n*) + &5(8,-8),

where §;, 1 = 1, 2, 3 are scalars and 4; is a 1 x 2 vector. Also,

Q(kt'kt+l'kt+2’1t=Lt.+1'nt’nt+1’st'st+1) - Ql(kr.‘k')
(82) + O(ky,,-k®) + O5(Ky,g-K®) + O, (L,-L®) + Q5(L.;-L*)

+ Qs(nt-n’) + Qr(nmrn') + Qa(sy-s) + Qg(s,,1-8).

Here, §;, i -1, ..., 7 are scalars and §Q,, Q; are 1 x 2 vectors. Finally,

w<kt.=kt+1:kt+2'1‘b’Lt,+1:nt’nt.+1=St.'st.+1) - Wl(kt_k’) + Wy, ~k®) + Wa(ky,p-k*)
(83)
+ W (Ly-L®) + Ws(Ly,1=L®) + We(ny-n®) + Wy(ny,,-n%) + Wa(sy-8) + Wy(sy,1-8).
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Here, Gﬂ are scalars for i =1, ..., 7, and 1 X 2 vectoxrs for 1 = 8, 9, @Given
a set of model parameter values, the steady-state quantities and §;, 1 =1, ...,
5, (Qi,ﬁl), i=1, ..., 9 are stralghtforward to compute. Formulas are given in
the Appendix.

We will use a method of undetermined coefficients to find the 13 decision
rule parameters, ki, k2, k%, L!, 12, 1%, n!, n?® (k%,k%,612,12,n% each contain two
parameters.) Applying the expectation in (71), making use of (77)-(79), and
replacing q by G,

B (ke Kyens La o800 [ 841, = 320 k%) + il (k%) + K3 (s, 3-8) + K3A(sp.1-9)]

+ L1(k-k*) + L2(sy y-5) + L%A(8y_;-8)] + adn’(k-k®) + ni(s,.,-s)]
(84) + JA(8, 4-8)
= [8;+8k+g Lt g nt] (k,-k*)

« [d2(k24K38) + 5(L3+LA) + q,n? + gsa](s,1-8) = 0.

Doing the same for (82), we get

EO (K, Keos s Kozo Ly Lears e Do, g S50n) Fg Seg, 8] = Gy (k)
+ Ofki(k, k) + k2(sy_y-8) + k¥ (sy-s)]
& 3y (k1) 2(k,—k®) + k2 (s, ;-5) + (klkI+kP+kA) (sy-5)]
+ QL (k=) + L2(8,-8) + L3(s,-s)]
+ QLUK (K, -k®) + LUcE(s, ;-8) + (LKP+L24L7A) (s,-8)]

+ st1l(kt-k’) + n?(st_l—s)]
(85)
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+ Gnlk(k,-k®) + n'k3(s,;-8) + (n'k3+n?) (8,-8)] + Qalse-5) + GoAls,-s)
- o, +0k 140, (k?) 2+Q, L1+ GsL 3k +Qen? 3y kY] (k)
+ [25K2+ Gk k24, L2+ 341 k24 8gn 2+ 8 k2| (5, -5)
ek ¢ Qe (kMRPR24k38) + QLI + Qy(LII+LILIA)

+ G;(n'k3+n2) + Gq + QQA](st-s) - 0.

E{W(kt’kt+l s Kpezs Lps D1 D s Ny, Sty Spey) Ikt. »8¢-1- Sa]

Ry ¢ U ¢ TkD2 ¢ RLY ¢ QLU « Bend « Tonkd] (k)
(86)
+ [Wk? + W kK2 + W,L2 + W,L'k? + Wen? + T n'k? (s, ,-8)

+ [Wok? + @, (kKk3+k2+k*A) + WL + W (LIk3+L2+L3A)

+ Wy (n*k3+n?} + Wy + Wa](8,-8) = 0.

The requirement that (84)—(86) be zero provides us with 13 equations in the 13

unknowns ;

(87) &y + Gpk? + QL' + n* - 0

(88)  &,(k2+k%4) + §5(L2+L3A) + g,n? + §A - (0,0)

(89) @, + Gk + Qy(x1)? « QL + QLk! + Ggnl + §ynlik? - 0

(90) Q.k? + Qpkk? + §,L2 + QL2 + Qgn? + §nk? = (0,0)

(91) Gk + Qp(k¥KI+kZ+kA) + QL3 + Gu(Lk3+L2+L3A) + §,(n'k®+n?) + §; + QA - (0,0)
(92) Wy + Wk + Wy(kh)* + WL + W Lik?! + Wen? + Wyn'k! - 0

(93)  Wk? + Wk k2 + @12 + ALK + ¥gn? + §ynlk? - (0,0)

(94) Wk? + W, (kK +k2+k3A) + W,L3 + (L3 +L2+L34) + W,(nk3+n?) + W, + WA = (0,0).

Here, (0,0) represents a 1 X 2 vector of zeros.
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Equations (87)-(94) may be solved recursively. First, note that only k!,
11, and n! appear in (87), (89), and (92). Thus, there is a hope that these
parameters can be computed using these equations. To do this, first substitute
out for n! in (89) and (92) using (87). Then substitute out for L! in (92) using
(89). The resulting version of (92) is a single nonlinear equation in the single
unknown, k*. Seclve this for 0 s k' < 8712 uging numerical methods. (It would
be interesting to check whether (k'g)™! solves this equation if k! does.)

We proceed now to find k2, L2, n?, k3, L?!. We treat k¥, n!, L! as known

numbers from here on. Solve (90} for n*:

(95) n? = Q' [Qp+Qakt+QsL +Qynt 1k? - §57Q,L2.

Substitute this into (93) and solve that for L2

(96) L7 = (W52, —0,) (I, oWk LeflsL+Wn?) - Wat (G +Q5kM+Q5L1 G, 1) 2 = DX,
say, where D is a scalar. Substitute (96) into (95) to get

(97) =n? - Bk?

where

(98) B = -§;'[G,+Q;k+3,L+Gm!] - §5iG,D,
a scalar.

Substitute (96) and (97} into (88) to get
(99)  §,(k>+k%A) + g,(Dk2+L3A) + q,Bk? + ;A = 0.
Solve this for k% to get
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where

By = -[§,+4,D+q,B] 1 qsA
(101) B, = -[g2+3,D+3,B1 'A%,

B, = -[gz+8,D+8,B] 1Ag,.

Here, By is a 1 x 2 vector, while B;, B; are 2 X 2 matrices,
The remalning equations are (%1) and (%4), and these can be used to

determine k® and L®. Substitute (96), (97), and (100) into (91) to get,

(102) Ay + k%a; + L3, = (0,0)

where

(103) Ay - (Q,+Q;D+3;B)B, + Qg+Q8

(104) Ay = (Qp+Qek1+QsL1+Qyn!) Ty + (Q3+QsD+;B) By + QA

(105) A, = (Qy+QsD+;B)B; + QA + 4,15,

and I, is the 2 X 2 ldentity matrix. Here 4, is a 1 X 2 vector and A,, A, are

2 x 2 matrices.

Substitute (96), (97), and (1l00) into (94) to get

(106) z5 + k%z; + L3z, = (0,0)

where

(L07) zgy = (Wy+WsD+W,B)By + Wy + Wea

(108) z; = (W+W k +WLi+W,n1)I, + (W3+WsD+W,B)B, + WA

(109) z, - (Wy+ 5D+W7B)B2 + WA + WQIZ,

where z; Is a 1 x 2 vector and z;, Z; are 2 X 2 matrices.
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Solving (102) for I3 get

(110) L3 = -(A,+k®A;)AZ%.

Substituting this into (106) and solving for kI, get
(111) k3 = (Z4-8,4572,) (A8572,-2,) .

We now have all the objects sought. First, get kl, L!, n' as discussed
after equation (94). Then, get k*, L3, k%, n?, L2 recursively using (111), (110},

(100), (97), and (96).

B. Steady States

Congider labor demand. Suppose the household increases the amount of labor
hired and finances this by shifting funds from consumption. The cost of this is
u.(Cs, L} /Py. (Here, we work with untransformed variables.) The benefit is as

follows. The extra cash can be used to hire 1/W, workers, who generate
(P./Wy) £f (K¢, 2z, L) extra money recelpts. (Here, we use the equilibrium condition,

L = H.) This money can be spent in the next period, producing S*u.(Cisy,Lis1)/Pisy

units of utility. Thus, the first order condition is
(112) 6(Gy L)/, = [B'10,(Crun, Las) /Put B £ (R, 21
In steady state, G, = exp(ut)c® (see (10)), so that

u, (C.. L) expipll - (1-y)yd}
113 g otl e - SXpi ¥ = (1+1),
( ) Bru (Cpiys Ly B~
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where the utility function is given in (2). Expression (113) defines the steady—
state real rate of Interest, which we denote by 1 + r. The variable p, settles

to a constant p*, so that in steady state,

(114) P, = (1+x)* exp(-pt)p*.

(See equation (18) for the definition of p;.) Similarly, w, settles to w* in

steady state, so that (10) and (18) imply
(115) W, = (1+x)*w*,
in steady state. Finally, note that

(116) fi{Kt"tht) - fL(k‘,L',B) Bxp(ilt):

in steady state. (See (3) and (12) for definition of f* and f.)
Substitute (113)-(116) into (112) and scale both sides by exp(—ut) to get
_W* 1a+x . w*
(117) fL F -é"‘xp—(u—)— (1"’:) p’ {1+R)
where

(118) £ = exp(-ap)(1-a) (K*/L%)* exp[(l-a)d].

The expression to the right of w®/p® in (1l17) is the standard Fisherian formula
for the nominal rate of interest, since (1l+x) exp(—u) is the rate of inflation.
Note that f; > w*/p® for X large enough. That is, firms operate at a point where
the (scaled) marginal product of labor exceeds the (similarly scaled) real wage.
This reflects that their receipts have to be held in the form of cash for a
while, during which time they lose wvalue. Under these circumstances, firms'

revenues must be high enough to compensate them not just for the usual labor and
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capital costs, but also for their losses due to inflation. Equation (117) is
firms’ labor demand equation.
Now congider households' labor supply decision. The household could decide
to increment work effort a bit, at a cost, —u(C,;,L.). The benefit is that it
earns a wage, W,, which it can spend on W,/P..; goods in period t + 1, for a

utility benefit S%[{u.(Ci41,Lis1)/Pe+1]We. Equating costs and benefits,

-u (G, Ly) - ﬁ*[uc R Lt.i-l)/l)t.ol]wt;’

ox,
-u, {C,,L,) W

119) —R k!’ - Br—5,

¢ ) U (Ciag s Liuy) Peaa

Now, in steady-state,

—uL(ct’ L!:) - -UL(C., L‘)

Tl L)~ wo(or,Lm SR ewlpll- Qoy) vl

(120)

Substituting (114), (115), and (120) into (119) and scaling both sides by

exp(—pt),

_uL(cS'LI) W‘ 1
u.(c*, L*) p® 1 +R’°

(121)

According to (121), when households equate the (scaled) marginal rate of
substitution between leisure and consumption to the (scaled) return to working,
they recognize that when x is large enough (so that R is large), the real wage
overstates the return to working. This is because they have to hold the cash
receipts from working, during which time they lose value. Combining (117) and

(121), one gets
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Now comnsider the typlical household’s capital investment decigion. Suppose
the household employs less of the labor imput at date t and uses the proceeds to

buy one unit of extra capital, Kiy;. This requires reducing employment by B,/W,
units and results In a reduction of current pericd revenues of [PE/WL] fl .. This
in turn results in reduced consumption in period £t + 1, so the total cost to the

household is [B*Uc(Ceuy.Ly,q) /P.a] [PR/W,IEL .. On the benefit side, the extra unit

of capital in t + 1 generates Py;1fg..,, extra units of revenue, which can be

applied to extra consumption in t + 2. Balance of these costs and benefits

implies

(123) IEBtuc(cbfliLtnl) -Pl—][Pf/Wt]ff,t. ~ Pt+1f£,h¢1(ﬁ‘)zuc(ct.+2’Lt+2)/Pt.+2’

t+l

or,

Cppps L P, P, .. P
Ue (Cougr Lgnn) £ & fr(Ky,ZeLy) = =52 Fp(K,,z,L.) .

124
¢ ) Bru, (ct+2'Lt42) Pria W Piea

Substituting (113)-(116) into (124), we get that, in steady state:

(125) explpll B,{l"’”’]} Blg,-fg

where

(126) fx = a[exp(O+p)IL5/k®] (=} + 1-3*,
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Substituting for w*/p* from (117) inteo (125),

(127) (1+r) (1+R) - fx.

Note from (122) and (127) that steady-state allocative efficiency (i.e.,
-—uL/uc - fL and f; = U, (C‘b , Iot,) /ﬁ*uc (Ct.+1 ) Lt+l) ) is achieved by fOllOWing the

"Friedman rule” and setting R = 0. This requires setting x = " exp[u(l—y)] - 1
We find k* and L® by solving (122) and (127). Write these out using our

functional forms,

(128) 1o —S5< - (Fg) @ exwi-a)8 - apl te/LH*,

(129) (1+1) (1+R) - afexp(O+p)L*/k%]* % + 1 -8°,

To find L* and k*, first use (129) to solve for v = k*/L*, Then, use (128} to
find L® given v. In (128), replace c® by L¥{exp[(l—x)}8 — aule® — §v).

Using k*® and n®*, we can compute p*, w®, and n® as follows. First, according
to (69),
(130) p* - L-n%

cs

According to (70),
(131) p-(aks s+ W2 L'] -n®+x.
p!

Substitute (117) and (130) iInto (131) and rearrange, to get

B =1 = -
(132) n* - {1 L SkS fr:T;‘/(1+R)} {ﬁk + £,.0%/ {1+R) _x}_

cE c*
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It is important to verify the conditions w* =2 ¢, p* 2 0, ¢* 20, 0 s n* <1, 0 <

F=<1, k¥*>0.

X. Perturbations on Fuerst’s Model

In this section, we consider two perturbations on the model. We describe
suitably modified linearization procedures for obtaining approximate solutions
to these models. 1In the first perturbation, ky4; is selected prior to observing
8,. The second perturbation modifies Fuerst’s model by allowing n, to be set

based on observing s;.

A. Fuerst’s Model with Investment Insensitive to Monetary Shock

The linearized decision rule in this case is
(133) Kkgyq — k* = K1(k~k®) + k*(s4-1-8).

Also, the capital first order condition must be modified to reflect that s, is

not in the information set at the time that k.4, is selected. Thus, (75) becomes

(134) E[W(ky,Kuer, Kerzs LpoLugg, De s Net1, S5 Saq) | Ky o 8g-11 = 0.

Working through the loglc in Section IX.A., we find that to determine the
11 unknowns, k!, k%, L', 12, L3, n!, n?, we must solve (87)-(92) with k® = 0. 1In
addition, the sum of the expression to the left of the equality in (93) and the
product of expression to the left of the equality in (94) with A must equal
(0,0). That is, instead of (93) and (94), we require

Wk? + Wok'k? + W,L2 + W,Lk2? + Wgn? + Wonlk?

(135)
o [fyk? + W13 4 (124138 + Wyn? o Uy + Weala - (0,0).
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1Lt simply execute the same calculations described

To determine k!, n
after equation (94). This leaves k%, L2, 1L?, and n® to be determined by equaticns
(88), (90), (91), and (135). This is a problem of solving 8 equations in 8

unknowns. The easiest way to solve these is to get them up in matrix algebra

form. In particular, let
(136) B = (K?,12,13,n%).

Here, # is a 1 % 8 vector. Also, let

@,T (G +Qak1+QsLl+Gn)I Gy (W, + 0k + WL +Wnl) T + 4]
QEI Q#I QsI W4I + WSA
(137) X =
qsd 0 QI + G:A (W, I+WA)A
441 QeI 4,1 (WL +W,A)
and

(138) Y = [45A,01 2, Gy +Qett, (Hy+Wea)A).
In (137), X is an 8 x 8 matrix, I denotes the 2 X 2 identity matrix, and 0

denotes the 2 x 2 matrix of zeros. In (138), Y iz & 1L x 8 wector and .0.1,2

denotes a 1 X 2 vector of zeros. Then, (88), (90), (91), and {(135), in matrix

notation is

(139) X + ¥ -9 g,
which is trivial to solve for 8. In (139), 91,3 denctes a 1 x 8 wvector of

Zeros.
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B. Fuerst’s Model with Full Contemporaneous Information
In this wversion of the model, we seek declsion rules which feed back on

8, — s only:

(140) Kypy — Kk* = kl(k,~k®) + k3(s,~s)
(141) L, — L* = L1(k—Kk®) + L3(s,—s)

(142) n, — n* = n?(k,~k*} + n¥(s,—s).

The first order conditions are:
(143) E[q(ky,ke41,Ly,my,8¢) [y, 8] = O
(144) E[Q(kt..kt.+1;kt,+z,Lt.,Lt+1,nb,nt.+1,St.,st.ﬂ)[kt:st.] = 0

(145) E[W(ky,kes1,Kean, Ly Ly, Ty 0 Mpar ) Se, See) [ R, 861 = O

Applying a suitably modified version of the calculations in (84), get

B[ (K Keons Lo ) 15y K] = 8 Ckemk®) + Gl (k) + 163 (spms)]
(146) + QL (k-k*) + L3 (s,-8)] + dufn (ky=k®) +n®(s,-8)] + d5(s,-5)

- {Q1+qzkl+Q3Ll+qt.nl](kt.'ks) + [sza*“Q:aLa"‘q.ans*qs] (s,-8) = 0.
Doing the same for (85), we get

B30k, kg3 Koz Lo Lyt B a8t 8e.1) [, 85 = @ (k) + Gk (koK) + 13 (5, -8)]
v Qg (k12 (ky=k®) + (kP +KA) (5,-5) ] + QL (ky-k®) +13(s,-s))
- + QLK (I, k=) + (LI +1A) (5,-8) ] + Qgfn? (k=) +n3(s,-3)]
(e + Gynlk (I -k*) + (n1k?+n?A) (s,-8)] + Bp(sy-8) + BpA(s,-5)
- [B, + Qg + Gy (k2)2 + L7 + QLK™ + Ggn? + Gyntic?| (key k)

+ [Ggk® » G (K3 +A) + G L3 + Qs (LIk? +L2A) +Bgn® + §y (n3k3+n%A) + Qg + Qgh|(5p-5) = 0.
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Thus, the relevant equations for determining k!, k3, n!, n®, L!, and L? are:

(148) §; + gok? + GL! + gen' - 0

(149) gyk?* + q,L° + §,n® + &5 - (0,0)

(150) Q; + Qok? + Qu(k1)2 + QL' + QG,L%* + Ggn! + G’k = 0

(151) Qpk? + Qy(kK3+k3A) + QL? + Qu(LMK3+L3A) + Ggn?® + §7(n'P+n%A) + §5 + Qea - (0,0)
(152) W + Wk? + Wy (k12 + W,L! + F,LUK! + Fenl + Tynlk! - 0

(153) Wyk3 + Wy(kk¥+k34) + W,L3 + W(Lk2+L3A) + Wgn® + W, (n k¥ +n%) + W, + Fga = (0,0).

Note that only k!, L!, and n® appear in (148), (150), and (152). Moreover, these
are precisely the same equations that were used to solve for k!, L!, and nl! in
Fuerst’s model, and so the algorithm described after (87)—-(94) can be used here
too. The remaining unknowns are k®, L?, and n®, which can be solved using (149),
(151), and (153)}. We express these equations in matrix notation. Let £ be the

1 X 6 vector of unknowns:

(154) B - (¥3L3n3).

Let X be the following 6 X 6 matrix:
.1 (O +Quk?+QsL1+Gn1) T + Gua (W + Wkl + WL +W,n2)T + Waa
(155) X = (85I QI + QA I+ WA ,
g,1 (QeI +Qy4) Wl + WA

where, as before, I denotes the 2 X 2 identity matrix. Also, Y denotes the 1 x 6

element vector:

(156) Y = [ds Qg + Qe Wy + Wga].

Then, # is the solution to

(157) BX + Y = O.
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XI. Some Numerical Results

Qur three varilants of Fuerst’s model were solved using the linearization
procedure discussed in Sections IX and X. In each case, we set, after rounding,
p=0.004, A;; = 0.95, Ay = Ay =0, 8 =1,03025 g =1, x = 0.07/4, v~ 2.99,
a = 0.34. We think of the time period in the model as one quarter. We are
particularly interested in the employment response to a monetary shock and

computed the following elasticity:
Li
(158) n = -

Here, 13 = (L} L3) and 13 is defined in (78). In words, n is the contemporaneous

percent change in employment associated with a one percentage point change in the
growth rate of money. In (158), 5 is the elasticity in a neighborhood of
nonstochastic steady-state.

We also computed the contemporaneous impact of a change in the money growth

rate on the nominal interest rate. To do this, we used the following relations:

1 -
(159) Py = Pk, ko, Ly, 00) = Tk, Ly Bt,r)lb ~ ke

ny + % - Pefke. - (1-6)k)
L,

(161) k., -%k* = kl(k,-k*®) + k¥(s, ;-s) + k¥(5,-8)

(160) wy = wiky,Keo1,m, L, 0y,%e, Py ) =

(162) L,-L* =~ L1(k,-k®) + L2(s,_,-8) + L%(s,-s)

(163) n, -n®* = nl(k, -k*) + n®(s,_;-8) + n¥(s,-8).

Equations (159), (160) are just (69) and (70). Also, it is convenient to write

k3, 12, and n® in (161)-(1l63) as follows:
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k® - (k) &)
(164) L3 - (L] L))

3 3
n? - (n} n3).

Below, we call the "Fuerst model" the one that is emphasized in
Sections I-IX of the paper. In that model, n® = 0. The "sluggish capital model"
is the one described in Section X.A. In that model, ¥® = n® = 0. Finally, the

"cash-in-advance model" is the one described in Section X.B. In that model, k* =

n? ~ 12 = 0. It Is convenient to write kj, L}, and n} as follows:

k- kg
(165) L, - L]

3
N, = Ny.

Here, k., L,, and n, describe the contemporaneous impact on Iinvestment, hours
worked, and cash loans to financial intermediaries, respectively, of a unit
perturbation in X in nonstochastic steady-—state.

The final relation which we use to compute the contemporaneous nominal

interest Impact of a money growth shock is

(166) R, = £ (ky,L;,0.)p/ws»

which holds in equilibrium. To see why R, is a gross money rate of return, note
that the denominator in (166) measures an input of dollars, while the numerator
measures the consequent marginal output of dollars.

The total Impact of a perturbation in x, on R, is the sum of the direct and
indirect effects in equations (159)—(164) and (166). Evaluating the total

derivative, dR./dx,, in steady state, we get

dR _ D fLap _ B dw
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where
(168) S - Pkl + Pane + BLLy

(169) S =kl + wyny + w1, ¢ g,

and formulas for py., Pn, P, Wi's Wa, Wy, Wy, and W, are given in the Appendix.
Also, L., ki, and n, are defined in (164).

Results £for the three wariants of the model and for alternative

parameterlzations are given in Table 1.
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Table 1:

Computational Results¥®

Model
Parameter Values Fuexst Sluggish Capital Cash—in~
Advance
14 Az 5 " R 1 Rx 7 Ry
— —_
0 0 1 “_.424 -.938 1.88 ~4.16 0 0
0 .81 1 -.602 -.726 734 -2.89 -1.25 714
0 0 .02 -.032 ~.013 1.42 —2.99 0 0
-1.3 0 1 .189 -.929 1.92 —4.198 0 0
-4 0 1 -.172 -.927 2.023 —4.29 0 0
0 .81 .02 -2.19 .193 —-.988 -2.28 -.214 .298
0 5 .02 .198 .111 L8677 -2.77 -.701 .163
1.3 .81 .02 -2.36 621 ~1.27 -2.17 =3.40 .192
-1.3 .81 .02 -2.22 ~.016 -.882 -2.33 -1.67 .331
-4 .81 .02 -2.41 -2.80 -.784 -2.39 -1.25 .357

*A,, is the autocorrelation of the money growth rate, x,

§ is the rate of

depreciation on capital, defined In (13), and ¢ is a curvature parameter in the

utility function, see (2).

computations, see the text.

For the remaining parameter values underlying the
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Appendix

The Coefficlents of the Linearized Euler Equations
Our utility and production functions are:

u(e,L) = [e(1-L)7]¥/p

£(k,L,8) = exp(—ap)k*[exp(§)L]I™® 4+ (1-§)k.

In Section IX we discussed how to compute n®*, k*, and 1*, the steady—state values

of ny, k,, and L,. Then, we need the following objects:

f = & exp(—ap) [exp(M))LE/K* 1™ + 1 — &
fi = (1-a) exp(—ap) exp[(l-a)f] (k*/L%)*
fg = (l-a) exp(-ap)k*[exp(F)Ls]H™

fre = (I-a) £y,

fro = a(l—a) exp(-au)exp(§)L*/ks] 1™

£y = afy/k®

frxe = —=(l—o)a exp(—ap) (k*)*2[exp(§)L*] ™

fLL = —afL/L‘ .
Also,

e® = exp(—ap) (k*)*[exp(9)L2] T — gk*
Uo = (L) (c®) =¥ 11 (1L2y ™

u, = ~y(c*) U'TW(]__LS) (-1}

Uee = [(1-7)¥ — Lllug/e®

ugp = —y¥u/(1-L%)

ugp = —(r$-1)u/(1-12).
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Finally, the steady—state prices and their derivatives are given by

1-n*
PT e
py = -pfL/c*
p - _(1—n.)fk
e {c®)2
1-n¥*
Px (c*)2
1
Pn ~ _?
oy - (1m0 £
o (c*)?
n® + x - pdk*
w - s L
6k®
YT T IE
WL -~ _% + prL

0
Wy = — * WPy
W _k’lipa
W, = % + WyPn
W, - }% -

Here, it has been convenient to think of w, in (70) as a functiom, w(ky,kiss,

nt.sLt,,xtipt.)
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u £ u u, £ 2u U,
ce~k _ o Py + [_Lc_k - WSL Wk]pr + ?g [Pufy + Pyl

—-1u u U 24, Uy,
- B B
u..f;, +u u, Upefp + 1, 21 b

oo Lp cL _ E_% Dy + [ Lo ;2 - W:‘ WL]pr- + w—i [pfy + pofLl
-u, 21,

Y
Pa = —3° WaPfy + 2 Pofy

UVeafa u, U.fy  2uy Uy -2uy,
{_S‘ Tpr et [T"’ T MefPEn t g eefe ¥ Bl R wiphyp

D p? + X P l+x
_pl Vee 1, w
5 v g e T
u W,

Uefy +uy + B2 TR
Buccfr."'u’cl__.il_p w

D p? i1+ x
u, Wy
B3 Tox
'_Buc w
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