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ABSTRACT

In the data, a sizable fraction of price changes are temporary price reductions referred to as sales.
Existing models include no role for sales. Hence, when confronted with data in which a large fraction
of price changes are sales related, the models must either exclude sales from the data or leave them
in and implicitly treat sales like any other price change. When sales are included, prices change
frequently and standard sticky price models with this high frequency of price changes predict small
effects from money shocks. If sales are excluded, prices change much less frequently and a standard
sticky price model with this low frequency of price changes predict much larger effects of money
shocks. This paper adds a motive for sales in a parsimonious extension of existing sticky price
models. We show that the model can account for most of the patterns of sales in the data. Using
our model as the data generating process, we evaluate the existing approaches and find that neither
well approximates the real effects of money in our economy in which sales are explicitly modeled.
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At the heart of monetary policy analysis is the question, How large are the real e¤ects

of monetary shocks? The answer to this question has important implications for the optimal

conduct of monetary policy, the linking of �uctuations in monetary aggregates to those in

real activity, and debates regarding the relative potency of �scal and monetary policy.

Recently there has been a vast surge in work to study this question. The most popular

class of models used to quantify the real e¤ects of money assume that goods prices are sticky.

In these models, �rms typically leave their prices unchanged for a number of periods and,

hence, monetary shocks have real e¤ects. A key ingredient in these models that determines

the size of the real e¤ects of money is the frequency of price changes: if �rms change prices

frequently, then monetary shocks have small real e¤ects; if they change them infrequently,

monetary shocks have large real e¤ects.

How frequently do prices change in the data? The answer to this question crucially

depends on how sales are treated in the data. Bils and Klenow (2004) treat sales just like

any other price change and �nd that prices change frequently: the median consumer good

experiences a price change about every 4.3 months. This number suggests that prices change

about three times as frequently as was previously believed. For example, in a survey of

the empirical literature on the frequency of price changes, Taylor (1999) argues that the

average frequency of price changes is about one year. Bils and Klenow (2004) and others

have interpreted this high frequency of price changes as casting doubt on the relevance of

price stickiness in accounting for business cycle �uctuations.

A recent study by Nakamura and Steinsson (2007) shows that Bils and Klenow�s

conclusion that prices are fairly �exible is due in large part to the fact that a large number

of price changes in the data are sales. When Nakamura and Steinsson exclude sales from the



de�nition of price changes, they �nd frequencies close to those cited by Taylor, namely that

the median frequency of price changes is about every 8 to 11 months.

In summary, then, if sales are included in the data, prices are fairly �exible; if they are

excluded, prices are fairly sticky. To date, there are two approaches to deal with sales. The

most popular approach is to exclude sales from the data, write down a model without sales,

and then match the frequency of price changes to the data with sales excluded. We refer to

this approach as the take-sales-out approach.

An alternative approach is to include sales in the data, write down a model without

sales, and then match the frequency of price changes to the data with sales included. We

refer to this approach as the leave-sales-in approach. The leave-sales-in approach obviously

generates much smaller e¤ects from monetary shocks than the take-sales-out approach. The

leave-sales-in approach implicitly assumes that, in terms of evaluating the real e¤ects of a

money shock, a sale is just like any other price change. The take-sales-out approach, in

contrast, implicitly assumes that, in terms of evaluating monetary shocks, a sale is similar to

no price change. To date there seems to be little guidance from theory as to which approach

is preferable.

This paper takes up the issue of how to deal with sales in the price data. In the data

we use, sales are de�ned by a simple AC Nielsen algorithm that looks at the pattern of price

changes and classi�es price reductions as sales if they are reversed su¢ ciently quickly and

classi�es the rest as regular price changes.

Our approach di¤ers from existing ones in that we explicitly include a motive for

temporary price reductions in a simple sticky price model and then directly study how large

are the real e¤ects of monetary policy shocks. We then treat the model as the data-generating
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process and apply the two common approaches to data generated from our model. We �nd

neither of the existing approaches provides a good approximation to the key question of

interest: the take-sales-out approach leads to much larger e¤ects of monetary shocks than

are in the model with sales, and the leave-sales-in approach leads to much smaller e¤ects of

monetary shocks than in the model with sales.

We then show that a simple rule of thumb approach of using a model without sales

but choosing parameters, not to match the frequency of price changes, but rather to match

the fraction of time a price stays at its annual model gives a much better approximation than

either of the existing approaches. We end with two proposals to advance the sticky price

literature: either explicitly include sales in the model or follow a version of our rule of thumb.

We argue that either will represent progress relative to the existing approaches.

Our model is purposefully chosen to be an exceptionally simple and parsimonious

extension of the existing sticky price literature: we add one parameter to existing menu cost

models, the cost of having a one-period markdown. We show that even though the model is

simple, it can capture many of the features in the data concerning sales.

In the model a key state variable of each �rm is its regular price (or reference price)

inherited from the previous period. This price is the price it can charge in the current period

with no extra costs. If it wants to charge a di¤erent price in the current period, it has two

options: change its regular price or have a one-period markdown (a �sale�). To change its

regular price, the �rm pays a �xed cost which gives it the right to charge this price both

today and in all future periods with no extra costs. We think of this option as akin to buying

a permanent price change. To have a one-period markdown, the �rm pays a smaller �xed

cost which gives it the right to charge a price lower than the existing regular price for the
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current period only and keep its regular price unchanged.

The costs of various actions in the future depend on the actions taken in the current

period. If in the current period the �rm chooses to change its regular price, then in the

next period it inherits this new regular price and decides whether to charge this regular price

again at no cost, pay a �xed cost and change this regular price, or pay the smaller �xed

cost and have a one-period markdown. If in the current period the �rm chooses to have a

one-period markdown, then in the next period it inherits the unchanged regular price and

decides whether to charge this existing regular price at no cost, pay a �xed cost and change

its regular price, or pay the smaller �xed cost and again have a one-period markdown. The

problem of the �rm then proceeds recursively.

In terms of our data analysis, we use data from two sources. We primarily focus

on scanner price data from grocery stores. An appealing feature of this data is that it is

weekly data and there is independent evidence that pricing decisions are made at a weekly

level. Hence, we are comfortable modeling these grocery stores as making weekly decisions

on prices. We also do some experiments with the data used by Bils and Klenow (2004) and

Steinsson and Nakamura (2007). That data is much more comprehensive than the grocery

store data, but it is only collected as point-in-time data at the monthly frequency. Hence,

it gives no direct evidence about what happens within a month, and one needs to make a

variety of assumptions to come up with the frequency of price changes.

We focus on seven features of prices and sales in our grocery store data. First, prices

change frequently. Second, during the year prices spend most of their time at their modal

value. Third, prices are much more likely to be below their annual mode than above it.

Fourth, most price changes are associated with sales. Fifth, after a sale, the price tends to
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return to the pre-sale price. Sixth, sales are very transitory. Finally, price changes tend to

be clustered in time for a given product.

We show that our simple model does a remarkably good job of generating these fea-

tures. We then use our model to evaluate existing approaches to dealing with sales. To do

so, we treat our model as the data-generating process. We can ask, Which of two alternative

practices more closely reproduces the real e¤ects of monetary policy in our model: leaving

the sales out of the data or leaving the sales in the data?

We begin by comparing our model to two menu costs models without markdowns.

In one version of the model, the leave-sales-in version, we set the parameters of the model

to match statistics in the data in which sales are included. In the other, the take-sales-out

version, we set parameters to match statistics in data in which sales are excluded. We �nd

that the leave-sales-in version signi�cantly understates the real e¤ects of monetary policy

relative to these e¤ects in the model with markdowns and that the take-sales-out version

somewhat overstates the real e¤ects of monetary policy.

We then perform a similar comparison using the more popular Calvo model of pricing,

which is the benchmark model in the sticky price literature. These Calvo models are typically

viewed as approximations to the underlying menu cost models. We consider a leave-sales-in

version and a take-sales-out version of a Calvo model and �nd the same qualitative results as

in our previous comparison: the leave-sales-in version understates the real e¤ects of money,

while the take-sales-out version overstates it. At a quantitative level, the approximation error

with these models is large. In the leave-sales-in version, the real e¤ects of money, as measured

by the standard deviation of consumption, is less than one-�fth of the level in the menu cost

model with markdowns. In the take-sales-out version, the real e¤ects of money are about
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twice the level in the menu cost model with markdowns.

We then propose an alternative procedure to set the parameters of a model without

markdowns in order to approximate the real e¤ects of money in a model with markdowns.

In this procedure we leave sales in the data, but instead of choosing parameters to match the

frequency of price changes (along with other statistics), we choose parameters to match the

fraction of prices at the annual mode (along with the same other statistics). We show that

for either a menu cost model without markdowns or the Calvo model, this procedure implies

real e¤ects of money similar to those in the menu cost model with markdowns.

1. Some Facts about Prices

We begin by documenting seven facts about price changes in the data that we will use

both to calibrate and evaluate our model.

The source of our data is a by-product of a randomized pricing experiment conducted

by the Dominick�s Finer Foods retail chain in cooperation with the Chicago GSB. The data

consists of nine years (1989 to 1997) of weekly store-level data from 86 stores in the Chicago

area on the prices of more than 4,500 individual products which are organized into 29 product

categories. The products available in this database range from non-perishable foodstu¤s

(some of which are represented by the categories frozen and canned food, cookies, crackers,

juices, sodas, beer), to various household supplies (some of which are represented by the

categories, detergents, softeners, and bathroom tissue), as well as pharmaceutical and hygienic

products. In addition to price data, the database maintained by the Chicago GSB provides

information about the number of units of the good sold each period, the average acquisition

cost of the goods in each store�s inventory, as well as an indicator variable that records sales.
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Because data are recorded by scanners, price series are frequently interrupted by gaps

(periods when information about the price is missing, either because no consumers have

purchased that good in that period or because the store has stocked out). To partly address

this issue, we study, for each product (identi�ed by its UPC code), the time series of prices

of the store at which the product was most frequently available. Given that Dominick�s sets

prices on a chain-wide basis, price changes across stores are highly correlated, especially those

in one of Dominick�s three pricing zones (high, low, medium), and little information is lost

by restricting our analysis to the price of a single store for each good.1 Further, we restrict

our attention to those goods for which at least 50 weekly price observations are available out

of the total maximum of 400 weeks of the sample.

We use an algorithm to identify sales that is a minor extension of the algorithm

described in the AC NIELSEN-ERIM database.2 Here we discuss the algorithm presuming

that no data are missing and discuss the general case in the appendix.

Sales are de�ned relative to an arti�cial series called a regular price series, denoted

fPRt g; which is used mainly to de�ne which periods are sales periods. A period is a sales

period if in that period the original price Pt is lower than the regular price PRt . The regular

price series is constructed from the original price series according to the following recursive

algorithm. For each price cut, de�ned as a period t in which Pt < Pt�1; check if the price rises

above the lower price within 5 weeks; that is, check if Pt+j > Pt for j 6 5: If it does, then let

�j be the �rst time the price rises above the lower price Pt and replace Pt; Pt+1;::;Pt+�j�1 with

Pt�1. If the price never rises above Pt in the next 5 weeks, then leave Pt unchanged. Using

the new series, repeat this algorithm 4 more times. The resulting series is the regular price

series.
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The rationale for repeating the algorithm several times is to allow sales periods to

include a whole variety of patterns in which, in the middle of the sale, the price cut is

partially reversed or even drops more during a sale. For a �rst example, suppose the original

data are 200, 100, 101, 102, 103, 104, 105, 106. In the �rst round of the algorithm, the

candidate for the regular price series is 200, 200, 101, 102, 103, 104, 105, 106; in the second

round it is 200, 200, 200, 102, 103, 104, 105, 106, and so on. The regular price is de�ned to be

the result of this algorithm after 5 such rounds and is given by 200, 200, 200, 200, 200, 200,

200, 106. Comparing the original series to this regular price series, we see that all periods

but the �rst and the last are considered sales periods.

We emphasize that in our de�nition of sales, we do not require that the price drop by

at least some minimum amount or that prices return to at least the pre-sale price. Notice

also that we restrict our attention to temporary price cuts and thus exclude clearance sales

(price decreases that are never at least partially reversed). As Nakamura and Steinsson (2007)

report, clearance sales are uncommon in the processed food industry and constitute a sizable

fraction of sales only for apparel products, which are absent in the Dominick�s sample. Finally,

in addition to using a 5-week duration for sales, we experimented with other durations and

report statistics for a 3-week duration as well.

For illustration purposes, in Figure 1 we graph an example of a price series, namely the

cost of a six-pack of Diet A&W Cream Soda. The dashed lines are the original transaction

prices while the solid line gives the regular price series constructed with the AC Nielsen

algorithm. For this series all periods in which the dashed line does not equal the solid line

are de�ned to be sales. The �gure makes clear that excluding sales (by using the regular

price series rather than the original series) excludes most of the price changes in the original
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series. We also see that price changes are large and the price changes tend to spend a lot of

time at only a couple of values. As we shall see, these features are common for the prices in

our data set.

To that end consider Table 1 in which we report a variety of facts about prices. For

each of the 29 product categories we �rst compute category-level statistics by weighting each

good by its sales share in each category. In Table 1 we report a weighted average of these

category-level statistics, where the weights are each category�s share in total sales. (See the

data appendix for details.) In discussing the facts about sales, we focus on those computed

using the 5-week de�nition. Those computed using the 3-week de�nition are broadly similar.

Several features of the data stand out.

Fact 1. Prices change frequently.

In Table 1 we see that 33% of prices tend to change every week. (As the second column

shows, if sales-related price changes are excluded this number drops to 5.6%.)

Fact 2. Price changes are large and dispersed.

Table 1 shows that mean size of price changes is 17%. The smallest 25% of price

changes are less than 4% and the largest 25% of price changes are over 19%. (As the second

column shows, if sales-related price changes are excluded the mean size of price changes drops

to 10%. Likewise, with sales-related changes excluded price changes are still dispersed, but

somewhat less so: with sales-related changes excluded, the smallest 25% of price changes are

less than 3% and the largest 25% of price changes are over 12%.)

Fact 3. During a year, prices spend most of their time at their modal value.

Table 1 also shows that, on average during a 50-week period, prices tend to be at their

modal value 58% of the time. Prices tend to be at their two most widely used prices 76%
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of the time and at one of their three most widely used values 84% of the time. Even in a

100-week interval, prices tend to be at one of their three most widely used values 78% of the

time.

Fact 4. Prices are much more likely to be below their annual mode than above it.

Table 1 shows that prices are below their annual modal value 30% of the time and

above it only 13% of the time. Thus, prices are about 2.5 times as likely to be below the

annual mode than above it.

Fact 5. Most price changes are associated with sales.

From the lower panel in Table 1 we see that over 83% of price changes occur during a

sales period. Thus, if we delete sales periods, then only 5:6% (which is 17% of 33%) of prices

change every week, rather than 33% if we do not. Without sales, then, the implied duration

of regular prices is about 4 1/2 months, which is much higher than the implied duration of 3

weeks using the prices including the original data with sales included.

Fact 6. After a sale, the price tends to return to the pre-sale price.

Table 1 also shows that over 87% of the time, the price after a sale tends to return to

the pre-sale price.

Fact 7. Sales are very transitory.

Table 1 shows that the probability that a sales ends next week conditional on there

being a sale this week is 46%: The implied duration of sales is about 2 weeks.

Fact 8. Price changes are clustered.

In Figure 2 we compute the hazard of price changes de�ned as the probability that

prices change at t+k given that the last price change occurred in period t:We computed this

hazard as follows. For each of our goods we computed a good-speci�c hazard. We then took
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a weighted average of each of these hazards using the good�s share of total sales as the weight.

Note that this procedure attempts to account for ex ante heterogeneity in the frequency of

price changes across goods. In this �gure we see that the hazard at one week is 53%. That

is, conditional on a store changing the price of a given good last week, the store changes that

price this week 53% of the time. More generally, we see that the hazard is sharply declining

in the number of weeks since a price change. Notice that Figure 2 implies that price changes

tend to come in clusters, so that there tend to be periods with many price changes followed

by prolonged periods with no price changes.

2. A Model of Sales

Here we consider a parsimonious extension of a standard menu cost model and show

that it can generate temporary price reductions of the kind classi�ed as sales by the AC

Nielsen algorithm. More generally, we show that this simple model can account well for the

seven facts documented about the pattern of prices.

In our model, as in the standard menu cost model, �rms can pay a �xed cost and

change their regular price permanently. Our simple innovation is to allow �rms the option in

any period of paying di¤erent and smaller �xed cost and lowering their price for one period

but leaving their regular (or reference price unchanged). At an intuitive level, we think of

the standard model of requiring that the only way a price can change is that the �rm buys

a permanent price change. We think of our model as adding an option of renting a price

change for one period.

Formally, our model represents a monetary economy populated by a large number of

identical, in�nitely lived consumers. In each period t, the economy experiences one of �nitely
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many events st: We denote by st = (s0; : : : ; st) the history of events up through and including

period t. The probability, as of period zero, of any particular history st is �(st). The initial

realization s0 is given. The only aggregate uncertainty is money growth, which is assumed to

follow an autoregressive process of the form

(1) �(st) = (1� ��)��+ ���(s
t�1) + "(st);

where "(st) is a normally distributed i.i.d. random variable with mean 0 and standard devi-

ation ��:

Technology

In each period t the commodities in this economy are labor, money, and a continuum

of consumption goods indexed by i 2 [0; 1]. Good i is produced using the technology

yi(s
t) = ai(s

t)li(s
t);

where yi(st) is the output of good i, li(st) is the labor input, and ai(st) is the good-speci�c

productivity that evolves according to

log ai(s
t) = (1� �a)�a+ �a log ai(s

t�1) + �i(s
t);

where �i(st) is a random variable.

Consumers

In this economy, the markets for state-contingent money claims are complete. We

represent the asset structure by having complete, contingent, one-period nominal bonds.
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We let B(st+1) denote the consumers�holdings of such a bond purchased in period t and

state st with payo¤s contingent on some particular state st+1 at t + 1. One unit of this

bond pays one unit of currency in period t + 1 if the particular state st+1 occurs and 0

otherwise. Let Q(st+1jst) denote the price of this bond in period t and state st. Clearly

Q(st+1jst) = Q(st+1)=Q(st).

Consumers have a utility function of the form

X
t

X
st

�t�(st)U(c(st); l(st));

where 0 < � < 1 is the discount factor, l(st) is labor, and c(st) is aggregate consumption

good, which is a composite of a continuum of goods ci(st) given by

(2) c(st) =

�Z 1

0

ci(s
t)

��1
� di

� �
��1

;

where � is the elasticity of substitution across the di¤erent goods. The purchases of goods

must satisfy a sequence of cash-in-advance constraints

(3) P (st)c(st) �M(st);

where P (st) is an aggregate price index given by

(4) P (st) =

�Z 1

0

Pi(s
t)1��di

� 1
1��

;

and Pi(st) is the price of consumption good i:
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Consumers face the following sequence of budget constraints in which the holdings of

real debt B(st)=P (st) are bounded above and below by some arbitrarily large constants:

M(st) +
X
st+1

Q
�
st+1jst

�
B(st+1)(5)

= R(st�1)W (st�1)l(st�1) +B(st) +
�
M(st�1)� P (st�1)c(st�1)

�
+ T (st);

where 1=R(st) =
P

st+1
Q (st+1jst), M(st) is nominal money balances, W (st) is the nomi-

nal wage rate, l(st) is labor, and T (st) is lump-sum transfers. The left side of the budget

constraint is the nominal value of assets held at the end of securities market trading. The

terms on the right side of the budget constraint are the value of nominal debt bought in the

preceding period, the shopper�s unspent cash, as well as the transfers of currency and the

returns to last period�s labor market activity.

Notice that in (5) we are assuming that �rms pay consumersW (st�1)l(st�1) at the end

of period t�1 and that the government transfers to consumers [R(st�1)�1]W (st�1)l(st�1) and

pays for those transfers with lump-sum taxes implicit in T (st): Having the government make

such transfers is a simple device that eliminates the standard distortion in the labor-leisure

choice that arises in cash-in-advance models because consumers get paid in cash at the end

of one period and must save that cash at zero interest until the next period. In particular,

notice that the �rst-order conditions for this problem imply that the labor-leisure decision is

undistorted and given by

�Ul(s
t)

Uc(st)
=
W (st)

P (st)
:
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To derive the consumer�s demand for individual goods, we solve the consumption

problem implicit in the de�nition of the price index (4) given by

min

Z 1

0

Pi(s
t)ci(s

t)di

subject to (2) and the constraint
R
Pi(s

t)ci(s
t) = P (st)c(st), which gives the demand function

for good i; namely

(6) ci(s
t) =

�
Pi(s

t)

P (st)

���
c(st);

where P (st) is given by (4).

Firms

Consider now the problem of a �rm. The �rm has menu costs, measured in units of

labor, of changing its prices. Let PR(st�1) denote the �rm�s regular price from the previous

period that is a state variable for the �rm at the subsequent st: The �rm has three options

for the price it sets after the history st : pay nothing and charge the regular price PR(st�1);

pay a �xed cost � and change the regular price to PR(st); or pay a �xed cost � and have a

temporary price reduction in the current period, which, for the sake of brevity we refer to

as a sale. Having a sale at st entitles a �rm for that one period to charge a price below the

inherited regular price, that is, to charge P (st) � PR(s
t�1): If the �rm wants to continue that

sale in the next period, it must again pay �: In the period after the sale ends, the �rm inherits

the regular price that prevailed before the sale began, namely, PR(st�1): (Note that when we

evaluate our model�s predictions relative to data, we will use the AC Nielsen algorithm to
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de�ne sales in both the model�s data and the actual data. What we referred to above as sales

for the sake of brevity would more precisely be termed a temporary price reduction de�ned by

the paying of the cost �: In the data generated by our model, such temporary price reductions

will be correlated with AC Nielsen�identi�ed sales, but the identi�cation between the two

will not be one-to-one.)

In our simple model, the only role of sales is to economize on the costs of changing

prices, especially temporary price reductions. In our model, one way of temporarily lowering

a price is to have a sale and to pay � in each period of the sale. Another way is to pay the

�xed cost to lower the regular price and then shortly thereafter pay a �xed cost again to raise

it back up. As we will see in our quantitative model, the parameters will be such that �rms

often choose to temporarily lower the price by having a sale.

To write the �rm�s problem formally, �rst note that the �rm�s period nominal pro�ts

excluding �xed costs at price Pi(st);

R(Pi(s
t); st) =

�
Pi(s

t)�W
�
st
���Pi(st)

P (st)

���
c(st);

where we have used the demand function (6). The present discounted value of pro�ts of the

�rm, expressed in units of date 0 dollars, is given by

(7)
X
t

X
st

Q(st)
�
Ri(Pi(s

t); st)�W (st)(��R;i(s
t) + ��S;i(s

t))
�
:
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In equation (7) the term

W (st)(��R;i(s
t) + ��S;i(s

t))

is the labor cost of changing prices. The variable �R;i(st) is an indicator variable that equals

one when the �rm changes its regular price and zero otherwise, which �S;i(st) is an indicator

variable that equals one when a �rm has a sale and is zero otherwise. The constraints are

that Pi(st) = PR(s
t�1) if there is neither a sale nor a regular price change in that �R;i(st) =

�S;i(s
t) = 0; Pi(s

t) � PR(s
t�1) if there is a sale �S;i(st) = 1; Pi(s

t) = PR(s
t) if there is a

regular price change �R;i(st) = 1; and that �S;i(st)�R;i(st) = 0 so that �rms never have a

regular price change and a sale in the same period.

Equilibrium

Consider now the market-clearing conditions and the de�nition of equilibrium. The

market-clearing condition on labor,

l(st) =

Z
i

�
li(s

t) + ��R;i(s
t) + ��S;i(s

t)
�
di;

requires that the labor used in production as well as the labor costs of making regular price

changes and having sales adds up to total labor. The market-clearing condition on bonds is

B(st) = 0:

An equilibrium for this economy is a collection of allocations for consumers fci(st)gi,

M(st), B(st+1) and l(st), allocations and prices for �rms fPi(st); yi(st)gi;; aggregate prices

W (st); P (st); andQ(st+1jst) that satisfy the following conditions: (i) the consumer allocations
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solve the consumers�problem; (ii) the prices and allocations of �rms solve their maximization

problem; (iii) the market-clearing conditions hold; (iv) the money supply processes and

transfers satisfy the speci�cations above.

Computing the Equilibrium

It will be convenient to write the problem recursively. At the beginning of st; after

the realization of the current money and productivity shocks, the state of an individual

�rm i is characterized by its regular price in the last period, PRi(st�1) and its idiosyncratic

productivity level ai(st): It is convenient to normalize all of the nominal prices and wages by

the current money supply. We let pR�1;i(st) = PRi(s
t�1)=M(st), w(st) = W (st)=M(st) and

use similar notation for other prices. With this normalization we can write the state of an

individual �rm i at st as (pR�1;i(st); a(st)):

Let �(st) denote the measure over �rms of these state variables. Since the only ag-

gregate uncertainty is money growth and the process for money growth is autoregressive, it

follows that the aggregate state variables are (�(st); �(st)): Dropping explicit dependence of

st and on i; we write the state variables of a �rm as x = (pR;�1; a) and the aggregate state

variables as S = (�; �): Let

(8) R(pi; S) =

�
pi �

w (S)

a

��
pi
p(S)

���
c(S);

where w(S); p(S); and c(S) are all known functions of the aggregate state. The function is

the static gross pro�t function, normalized by the current money stock M: Let �0 = �(�; S)

denote the transition law on the measure over the �rm�s state variables.

The value of a �rm that does not adjust its price and instead uses its existing regular

18



price is

V N(pR;�1; a;�; �) =
Uc(S)

p(S)
R(pR;�1; S) + �E [V (pR;�1; a

0;�0; �0)ja; �] ;

where �0 = �(�; S) and Uc(S) and p(S) are known functions of the aggregate state. (Notice

that here we have expressed the value function in units of utility at date t: If we multiply

these value functions at st by the constant �t�(stjs0)P (s0)=Uc(s0); we convert them to units

of dollars at s0:)

The value of a �rm that has a markdown is

(9) V M(pR;�1; a;�; �) = max
pM�pR;�1

Uc(S)

p(S)
[R(pM ; S)� �w(S)] + �E [V (pR;�1; a

0;�0; �0)ja; �] ;

while that of a �rm that adjusts its regular price is

(10) V R(pR;�1; a;�; �) = max
pR

Uc(S)

p(S)
[R(pR; S)� �w(S)] + �E [V (pR; a

0;�0; �0)ja; �] :

An intuitive way to think about the di¤erence between a markdown and a regular

price change is as follows. A markdown corresponds to renting a new price for today for one

period, while a regular price change corresponds to buying a new price that can be used for

a number of periods in the future, and hence the new regular price has a capital-like feature.

As the state variables drift away from the current state, the investment in a new regular price

depreciates in value.

Inspection of (9) makes it clear that, conditional on having a markdown, the optimal

pricing decision for pM is static and that optimal price sets the marginal gross pro�tRp(p; S) =
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0: Note from the form of R in (8) that the optimal markdown is

(11) pM =
�

� � 1
1

a
w(S):

Note that this price is a simple markup over the nominal unit cost of production and that,

given this unit cost, does not depend on other features of the company such as the stochastic

processes for shocks, the discount factor, the utility function, and so on. Indeed, this price is

exactly what a �exible price �rm would charge when faced with such a unit cost. In contrast,

conditional on changing the regular price, the optimal pricing decision for the new regular

price, pR; is dynamic and depends on all of these properties (and, in particular, pR will not

typically equal pM).

As (11) makes clear, conditional on having a markdown, the inherited regular price

pR;�1 is irrelevant so that we can write pM(a; S): Likewise, as inspection of (10) makes clear,

conditional on having regular price change, the inherited regular price pR;�1 is also irrelevant

so that we can write pR(a; S):

3. Parameterization and Results

In this section we describe how we choose functional forms and benchmark parameter values.

We then examine if our parsimonious model can account for the key features of prices that

we have documented.
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A. Parameterization

We consider a utility function of the form

(12) U(c; l) = log(c)�  l:

This speci�cation follows Hansen (1985) by assuming indivisible labor decisions implemented

with lotteries. We set the length of the period to one week, and therefore choose a discount

factor � = (:96)1=52 : We choose  to ensure that in the absence of aggregate shocks, house-

holds supply one-third of their time to the labor markets. We choose � = 3, a number in the

range of estimates of demand elasticities available in the retail industry. (See, for example,

Nevo (2001), Barsky et al. (2000), and Chevalier, Kashyap, and Rossi (2003).)

Our model is weekly so that the process for money growth (1) in our numerical exper-

iments is weekly as well. Given that the highest frequency at which M1 data are available is

monthly, we pin down the serial correlation �� and volatility �
2
� of weekly money growth in

the model by requiring the model to generate a monthly growth rate of money that has the

same serial correlation and volatility as the US M1 monthly growth rate during 1989�1997,

the years for which the micro-price data used to calibrate the model are available.

The rest of the parameters are calibrated: �, the cost the �rm incurs when changing

its regular price, �, the cost of having a temporary sale, the persistence of the productivity

process, �a; as well as the distribution of innovations to the �rm�s productivity process, "i(s
t):

Midrigan (2006) shows when "i(st) is normally distributed, the model generates counterfac-

tually low dispersion in the size of price changes and argues that a fat-tailed distribution is

necessary for the model to account for the distribution of the size of price changes in the
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data. A parsimonious and �exible approach to increasing the degree of kurtosis is to assume,

as Gertler and Leahy (2006) do, that productivity shocks arrive with Poisson probability �

and are, conditional on arrival, uniformly distributed on [���; ��]: This is the approach we take

in our numerical experiments:

"i(s
t) =

8>><>>:
�i(s

t) with probability �

0 with probability 1� �;

where �i(st) is distributed uniformly on the interval [�; ��].

One reason to pay particular attention to the distribution of productivity shocks is that

this distribution plays an important role in determining the real e¤ects of money. For example,

Golosov and Lucas (2006) show that money is approximately neutral when productivity

shocks are normally distributed. But, as Midrigan (2006) shows with a fat-tailed distribution

of productivity shocks, money has much larger real e¤ects. The reason is that as the kurtosis

of the distribution of productivity shocks increases, the measure of marginal �rms whose

decision to adjust prices changes depending on the size of the money shocks is reduced, and

changes in the identity of adjusting �rms are thus muted.

B. Results

We show that our parsimonious model accounts well for the eight facts about prices

and sales. We then give some intuition for how the model works.

Accounting for Our Eight Facts

We ask, Can the other �ve parameters, f�; �; �a; �; ��g; be jointly chosen to mimic well

the patterns of prices and sales in the data. In setting these parameters we target 13 moments
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in the data indicated in Table 2. These moments include 2 on the frequency of price changes

(including and excluding sales), 6 on the size and dispersion of price changes (including and

excluding sales). These moments also include the fractions of prices at the annual mode,

the fractions of annual prices below the model, the fraction of sales-related price change, the

fraction of sales that return exactly to the pre-sale price, as well as the probability that a

sale ends next week, conditional on there being a sale today.

In Table 2 we see that our parsimonious model does a remarkably good job at repro-

ducing these facts. The frequency of price changes is high: :33 in both the data and the

model with all prices (and much lower both in the data, .056, and the model, .062, when

they are excluded.) The mean size of all price change is high in both the data (.17) and the

model (.13) and the dispersion is high in both as well. The proportion of price changes that

are the annual mode is also high: :58 in both the data and the model. When prices are not

at their annual model, they tend to spend more time below the annual model than above it.

Speci�cally, in the data prices spend 30% of their time below the annual mode and in the

model about 27%. Most price changes are sale-related: 83% are in the data and 80% are in

the model. Most sales tend to return to their pre-sale price: 87% do in the data and 89% do

in the model. We also see that sales are very transitory: in the data the fraction of weeks

with sales that are followed by weeks without sales is 46% in the data and 61% in the model.

Probably the most evident discrepancy between the model and the data is that the

model generates somewhat smaller and less dispersed price changes than in the data, a result

driven by our assumption that the process for idiosyncratic productivity shocks is symmetric

and of the trade-o¤between generating a su¢ ciently large number of sales in the model (which

requires making �rms reluctant to temporarily increase prices) and generating su¢ ciently
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sizable price changes. Moreover, the model lacks a mechanism to generate the large number

of small price changes in the data, and this further reduces its ability to generate dispersed

but su¢ ciently large price changes. Midrigan (2006) argues that a multi-product extension

of a menu-cost model in which the cost of changing prices is shared among several products

is capable of accounting for the large number of small price changes observed in the data.

We chose not to pursue this route here in order to keep the model as simple as possible and

highlight the special nature of sale-related price changes.

We also investigate our model�s implications for some other moments. Consider, then,

the eight fact from the data� namely, that price changes are clustered in the sense that the

hazard of price changes is sharply decreasing in the �rst few weeks after a price change.

Figure 3 shows that our model generates a sharply declining hazard in the �rst few weeks, as

in the data. After the �rst few weeks, the hazard in the data continues to decline somewhat,

while in our model the hazard is essentially �at. In Table 2 we also consider various statistics

about what fraction of time over a given period that prices tend to remain at one of their

most common prices over that period. We see that for most of these, the model produces

numbers similar to those in the data.

Table 3 lists the parameter values that we choose to mimic the moments in the data

problem. The menu cost of changing regular prices is fairly high� 2.8% of a �rm�s steady-

state labor bill. In contrast, the cost of temporarily marking down the price is 1.2% of a �rm�s

steady-state labor bill, or about 40% of the cost of changing the regular price. Productivity

shocks arrive with probability � = 0:28 and have an upper bound of �� = 0:23. Moreover,

the productivity process is highly transitory, �a = 0:3: Given that sales last on average only

2 weeks, marginal cost shocks must be highly transitory for �rms to be willing to return to
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their regular price su¢ ciently fast.

The Workings of the Model

Consider the �rm�s optimal policy rules. These rules are a function of the individual

states, the normalized regular price pR�1 = PR;�1=M and the current productivity shock a; as

well as the aggregate state, the money growth rate. (Recall that in our approximation to the

policy rules, we treat the distribution of � as a constant.) We illustrate the optimal policy

rules for the �rm that has the option of a temporary markdown in Figure 4. In particular,

Figure 4 shows the regular price the �rm chooses conditional on adjusting it, as well as the

regions of the state space in which the �rm optimally chooses to have a regular price change,

a markdown, or do nothing.

Recall that the �rm-speci�c state variables is its normalized regular price pR�1 =

PR;�1=M and its productivity level a: Figure 4 illustrates features of the optimal decision

rule. The axes are the (logs of the) individual state variables. Movements in the horizontal

direction come from movements in the exogenous productivity level. Movements in the ver-

tical direction come from three sources. The �rst two come from either changing the regular

price or having a markdown. The last can be roughly thought of as coming from a change in

the money supplyM , for a �xed level of the regular price PR;�1: (To be precise, one way a �rm

could move horizontally on the graph from periods t�1 to t is for the money supply to change

and for that �rm not to change its regular price so that its normalized price pR�1 changes.)

An increase in the money supply corresponds to a decrease in pR�1 = PR;�1=M: (Through-

out, we suppress explicit dependence on the aggregate state variables, S.) The shaded regions

show where the �rm �nds it optimal to change its regular price (R), have a markdown (M ),
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and leave its price unchanged (N ). The function pM(a), the solution to (9), is the price the

�rm would choose conditional on having a markdown. The function pR(a); the solution to

(10), is the price the �rm would choose conditional on it changing its regular price.

As we have noted above when discussing (9) and (10), the price pM(a) is a constant

markup over marginal cost given by (11) and it does not equal the price pR(a): The markdown

pM(a) in log space falls one-for-one with a for all values of a because the log of marginal costs

fall one-for-one with a: In contrast, pR(a) is very �at in a when a is near its mean (of log a = 0)

but is steeper as a di¤ers more from its mean. The reason for this di¤erence in slopes re�ects

the dynamic considerations underlying the choice of pR. For small deviations of a from its

mean, the likelihood that the �rm will adjust again next period is low. Given that a is rapidly

mean-reverting, the �rm chooses not to respond to small changes in a, as its current choice

of pR will last for a number of future periods. Hence, pR is �at for small deviations in a: In

contrast, when a is further away from its mean, the �rm �nds it optimal to respond more

aggressively to this marginal cost disturbance today.

To understand why, consider two strategies for the �rm. First, it could respond ag-

gressively today, get higher static pro�ts today, and then, with high probability, pay a second

menu cost next period to adjust its regular price back toward its original level when a reverts

closer to the mean. Alternatively, it could respond less aggressively today and then tomorrow

plan to leave its price unchanged with high probability. In the second strategy it loses more

in static pro�ts in both periods but saves on paying the second �xed cost. When deviations

in a are large, the �rst strategy is more pro�table than the second, as the losses in pro�ts

outweigh the �xed cost and it responds aggressively.

The �gure also illustrates the regions of the state space for which the �rm �nds optimal
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to have a markdown, a regular price change, or sell at its previous period�s regular price.

Consider �rst the lower-left shaded region in which prices are much lower than pR(a): In this

region, marked with an R; the �rm would like to raise its price so its relevant choices are to

leave its price unchanged or to change its regular price� as having a markdown is dominated

by leaving its price unchanged. In this shaded region the �rm�s current regular price pR;�1

is su¢ ciently low relative to pR(a) that the �rm�s bene�t from increasing its regular price

change outweighs the �xed cost. Roughly speaking, when the �rm�s current price pR;�1 is

below pR(a), the relevant �gap�in determining whether or not a �rm adjusts is the distance

between the current regular price pR;�1 and pR(a):

When the �rm�s current price pR;�1 is above both pR(a) and pM(a), all three of its

options are relevant. When the current price is su¢ ciently high, the �rm either has a tem-

porary markdown or it changes its regular price. As the �gure shows, when a is su¢ ciently

far away from its steady-state level (the regions denoted with M ), the �rm �nds it optimal

to have a markdown. Since the stochastic process for a is not very persistent, when a is far

from its mean it expects a large change in a in the next few periods as a reverts to its mean.

For intuition�s sake, consider two strategies for a �rm in such a circumstance. First, it

could change its regular price today and then keep changing its regular price as the a reverts

to its mean and stop changing it when it gets su¢ ciently close. Second, it could have a

markdown today and each subsequent period until a gets close enough to its mean. For our

parameter values in the regions marked M , the second strategy beats the �rst: it substitutes

paying the smaller cost to have several markdowns for the larger cost of having several regular

price changes.

Finally, consider the shaded region marked R above the pR(a) and pM(a) lines. In
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that region, the productivity shock a is close to its mean and expected to stay there. Hence,

the current price pR;�1 is expected to be suboptimally high for a long period of time. In such

a circumstance, having a markdown is not very attractive because the �rm would expect to

conduct on every period in the near future, and instead the �rm �nds it optimal to pay for

a permanent price change to pR(a):

We can summarize the intuition on the choices by the �rm using our earlier analogy

on renting or buying a price. When the productivity level a is far from its mean and the

current price pR;�1 is too high, the �rm prefers to rent a lower price today and expects to rent

a series of them in the future as it waits for a to revert to its mean. In this region, it does

not pay for the �rm to invest in the high cost of buying a regular price because the value of

that investment is expected to quickly deteriorate. When the productivity level a is far from

its mean and the current price pR;�1 is too low, the only price it can rent is one that is even

lower and that is not optimal, so instead it buys a regular price change.

To be concrete, consider �rst the transition path of a �rm that starts at steady state,

the point labelled 0 in Figure 6A, and experiences a rise in productivity (of 20%) that moves

its state at the beginning of period 1 to the point 1. This �rm chooses a markdown in that

period and lowers its price to be consistent with the point 10: Absent any new shocks, at the

beginning of the next period productivity has fallen (to 6%) and since the �rm�s regular price

is unchanged it starts that period at the point 2. It chooses to have a second markdown and

hence charges a price consistent with the point labelled 20: Absent future shocks, the �rm�s

productivity continues to revert to its mean and the �rm stays in the inaction region and

moves to points 3, 4, and so on.

Consider next the transition path of a �rm that, starting from the steady state, expe-
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riences a fall in productivity (of 20%) that moves it to point 1 at the beginning of period 1. In

that period the �rm chooses to raise its regular price and move to point 10: By the beginning

of period 2, productivity has somewhat reverted to the mean (so that it is now only 6% below

the steady state). The �rm chooses to have a markdown and charges a price consistent with

point 20 in that period. Absent future shocks, the �rm�s productivity continues to revert to

its mean and the �rm stays in the inaction region and moves to points 3, 4, and so on as it

drifts back to the steady state.

Notice that two markdowns in the �rst transition path in Figure 6A would be classi�ed

as sales by the AC Nielsen �lter but that the markdown in the second transition path in Figure

6B would not. As we shall see the �rst transition is much more likely than the second. More

generally, most of the markdowns in our model are classi�ed as sales by the AC Nielsen �lter,

and hence we can roughly associate markdowns in the model with sales in the data when

giving intuition.

We now turn to giving some intuition for how our model can generate our facts about

prices and sales. To help us do so, consider Figure 6 in which we illustrate the nature of the

ergodic distribution. To do so, we partition the state space into a large number of equally

sized cells and then shade each cell according to the ergodic probability that a realization of

a state lies in that cell. The dark cells are most frequently visited cells that together account

for 50% of the realizations. Likewise, the dark cells plus the medium dark cells account for

75%; the dark, medium dark, and the medium cells account for 95%; and all the shaded

regions together account for 99%.

Consider now how our model can generate our facts. Let us start with Facts 1, 2, 3,

and 4. Clearly our model generates frequent price changes because there is a substantial mass
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outside of the inaction region N: It also generates large price changes because the average

distance between most of the mass in theM and R regions to pM(a) and pR(a) is large. Next,

prices spend most of their time within a year at the modal value because the mass inside

the inaction region and the markdown region is large. Price changes are more likely to be

below their annual mode than above it because there is more mass in theM regions (in which

the �rm has a temporary markdown below its annual mode) than in the R region below the

inaction region (in which the �rm typically raises its price above the annual mode).

Consider now how our model can generate the last four facts. In the model, most price

changes are associated with sales because the mass in the M regions is much larger than the

mass in the R regions. In the model, prices tend to return to the pre-sale price after sales

because the transition path with the same features as those in Figure 6A is fairly typical.

Sales are transitory in the model again because the process for productivity is transitory and

�rms that start in the M region with high productivity shocks, similar to point � or � in

Figure 6A, tend to have a small number of markdowns in a row. The transitory nature of

productivity shocks also helps explain why price changes are often clustered. If a �rm starts

with either high productivity shocks, as in Figure 6A, or low productivity shocks, as in Figure

6B, it tends to have a couple of changes in a row as the productivity reverts to the mean.

Next, consider next the impulse response of economic aggregates to an innovation in

money growth. In Figure 7A we plot the response of the money supply and the response of

prices. Since money growth is serially correlated, an innovation in money growth leads the

level of the money supply to slowly increase to a new level. Since the relation

PtCt =Mt
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holds in the model, the less this increase in money shows up in prices, the more it shows up in

real consumption. From Figure 7A we see that as the money supply increases, the aggregate

price level increases less and the gap between money and prices starts small, then widens,

then narrows, giving the real e¤ects on consumption in Figure 7B. Finally, in Figure 7C we

also see that although the money shock decreases the fraction of �rms with markdowns, the

e¤ects are rather minor.

Our summary measure of the real e¤ects of money is the standard deviation of con-

sumption, which from Table 5 is .44%. In this model if money has no real e¤ect, this standard

deviation would be zero, and the larger are the real e¤ects, the larger is the standard de-

viation. Since we have made no attempt to incorporate into the model the sorts of �real

rigidities� popular in the literature, we �nd this number useful as setting the benchmark

against which to compare the relative sizes of the real e¤ects of money in alternative versions

of the model rather than interesting in its own right.

4. Experiments

The key question asked in the sticky price models is, How large are the real e¤ects

of monetary policy? We contrast the answer to this question in our model with markdowns

to that of simpler models without them. Our analysis serves a dual role. First, it helps in

giving intuition for how our model works. In particular, it helps illustrate why the e¤ects

of monetary policy di¤er after price changes that are the result of markdowns relative to

price changes that are the result of regular price changes. Second, if we treat our model

as the data-generating process, we can ask which of two alternative practices more closely

reproduces the real e¤ects of monetary policy in our model: leaving the sales out of the data
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or leaving the sales in the data.

We begin by comparing our model to two menu cost models without markdowns. In

one version of the model, the leave-sales-in version, we set the parameters of the model

to match statistics in the data in which sales are included. In the other, the take-sales-

out version, we set parameters to match statistics in the data in which sales are excluded.

We �nd that the leave-sales-in version signi�cantly understates the real e¤ects of monetary

policy relative to these e¤ects in the model with markdowns and that the take-sales-out

version somewhat overstates the real e¤ects of monetary policy.

We then perform a similar comparison using the more popular Calvo model of pricing,

which is the benchmark model in the sticky price literature. These Calvo models are viewed

as approximations to the underlying menu cost models. We also consider a leave-sales-in

version and a take-sales-out version of a Calvo model. We �nd the same qualitative results as

in our previous comparison: the leave-sales-in version understates the real e¤ects of money,

while the take-sales-out version overstates it. At a quantitative level, the approximation error

with these models is large. In the leave-sales-in version, the real e¤ects of money, as measured

by the standard deviation of consumption, is less than one-�fth the level in the menu cost

model with markdowns. In the take-sales-out version, the real e¤ects of money are about

twice the level in the menu cost model with markdowns.

We then propose an alternative procedure to set the parameters of a model without

markdowns in order to approximate the real e¤ects of money in a model with markdowns.

In this procedure, we leave sales in the data but instead of choosing parameters to match the

frequency of price changes (along with other statistics), we choose parameters to match the

fraction of prices at the annual mode (along with the same other statistics). We show that

32



for either a menu cost model without markdowns or the Calvo model, this procedure implies

real e¤ects of money similar to those in the menu cost model with markdowns.

A. Comparison to Fixed Cost Models without Markdowns

Here we conduct the following experiment. We generate data from our model with

markdowns and then �t two models without markdowns to this data. These models are

special cases of our model with markdowns in which we disallow temporary markdowns: We

then ask, How well do the two models without markdowns do in reproducing the real e¤ects

of money in the generated data? We measure the real e¤ects of money by the standard

deviation of consumption.

We then consider �t a third model without markdowns to the generated data: one in

which we give up on matching the frequency of price changes and instead match the fraction

of prices that are at the annual mode.

The Leave-Sales-In and the Take-Sales-Out Versions

In the leave-sales-in version, we choose parameters to match four statistics of price

changes in this generated data in which we make no attempt to take out �sales�. The

parameters are �, the �xed cost of price adjustment, the arrival probability of productivity

shocks, �; and the upper bound on productivity shocks, ��. The statistics, listed in Table 2,

are the fraction of price changes per week (.31) and three moments of the distribution of the

absolute value of price changes: its mean, the 25th percentile, and the 75th percentile (.13,

.08, and .17). The resulting parameters are listed in Table 3.

In the take-sales-out version, we remove sales from the generated data by applying

the same AC Nielsen�type �lter to the generated data that we have used in our analysis of
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Dominick�s data. We then choose the same parameters, �; �; and ��, to match the same four

statistics computed for the �ltered data. For the statistics see Table 2 under the column

Model with markdowns, exclude sales and for the resulting parameters see Table 3.

We can shed some light on the di¤erence in parameters in the two versions as follows.

From Table 2 we see that when we leave sales in the data generated by our markdown model,

price changes are much more frequent (about once every three weeks) than when we exclude

them (about once every 16 weeks). A model without markdowns can generate such frequent

price changes in two ways: small menu costs and more volatile shocks. Relative to the model

calibrated to the generated data with sales removed, the model calibrated to the data with

sales included has both lower �xed costs and more volatile shocks. Speci�cally, in the take-

sales-out version, the cost of a regular price change is 1:25% of the steady-state labor bill and

the productivity shocks arrive with 3:8% probability. In the leave-sales-in version, the costs

are lower, only :30%; and the shocks arrive more frequently, with 18:5% probability.

Consider now the regions of adjustment and inaction and the policy rules in the two

models. Figure 8 plots these regions together with the policy rules for �rms resetting the

regular price pR(a), where again we suppress dependence on the aggregate state S: Figure 9

plots the analogous regions and policy for the take-sales-out version. In both of these �gures,

the policies for price adjustment are much simpler than in the model with markdowns. In

both, if the regular price is su¢ ciently high, it is optimal to pay the �xed cost and adjust

it down, while if it is su¢ ciently low, it is optimal to pay the �xed cost and adjust it up.

Comparing the two �gures, note that, as one might expect, the inaction region in the take-

sales-out version is somewhat wider than in the leave-sales-in version.

More informative are Figures 10 and 11, which illustrate the nature of the ergodic
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distribution in the two versions. As before, the dark cells account for 50% of the realizations;

the dark cell plus the medium dark cells account for 75%; the dark, medium dark, and the

medium cells account for 95%; and all the shaded regions together account for 99%. In Figure

10 the mass in the adjustment regions marked is 34%, while in Figure 11 this mass is only

5.7%. Most of the reason for this di¤erence in mass is in the variance of shocks. Recall from

Table 2 that in the leave-sales-in version, shocks arrive nearly �ve times as frequently as in

the take-sales-out version. The rest of the di¤erence is that the inaction region in the leave-

sales-in version is wider than that of the take-sales-out version, so that for the same shocks

a �rm sometimes adjusts in the leave-sales-in version when it would not in the take-sales-out

version.

Let us turn now to the main question of this section. How do the real e¤ects of mon-

etary policy di¤er in the models without markdowns relative to the model with markdowns?

We measure the real e¤ects of monetary policy by the volatility of consumption. In Table 4

we see that leaving sales in the data leads us to underestimate the e¤ects of monetary policy,

while taking sales out of the data leads us to overestimate the e¤ects of monetary policy. The

real e¤ects in the version that leaves sales in are 22% (.10/.45) of what they are in the model

with markdowns, while the real e¤ects in the model that takes sales out is 131% (.59/.45) of

what they are in the model with markdowns.

To get some intuition for why the benchmark model generates larger real e¤ects than

the leave-sales-in version even though prices in both change equally frequently, consider the

following heuristic example. Consider a �rm that starts at time t in the deterministic steady

state and then at time t + 1 experiences a 10% increase in productivity and a 5% decrease

in the money supply. For simplicity, suppose that from period t+ 2 on, productivity returns
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to the steady state and that the money supply stays permanently lower by 5%: If there were

no costs of changing prices, this �rm at t+ 1 would lower its prices 15% and then at period

t+ 2 would increase its prices by 10% and leave them unchanged thereafter. Such a path of

prices would lead to there being no real e¤ects from money in any period.

Now consider the behavior of a �rm that faces this same sequence of shocks in the

benchmark model. We heuristically describe this behavior with points marked 0, 1, 2, and 3

on Figure 12 and with these same points on the graphs in lower panels of Figure 13. (Note that

we are associating a 5% drop in money with a 5% shift in the state variable pR;�1 =
PR;�1
M

:)

In the benchmark model, this �rm in period 1 has a markdown and lowers its prices by 15%,

thus o¤setting fully the real e¤ects of money in that period. From period 2 on the �rm, faced

with just the permanently lower level of money, �nds it unpro�table to pay the �xed cost to

change its regular price. Hence, the �rm is stuck forever with its old regular price, which is

5% higher than the frictionless price, and this sequence of shocks leads to real e¤ects from

period 2 on.

Next, consider the behavior of a �rm that faces this same sequence of shocks in the

leave-sales-in version in Figure 15 and see also the dashed line in Figure 16). In period 1 this

�rm lowers its regular price by approximately 15%, approximately o¤setting the money shock

in that period. By period 2 the productivity shock has disappeared so that the �rm is at the

beginning of the period the �rm is at point 2. It then raises its regular price approximately

10% and leaves it there from then on. This �rm�s behavior then well approximates that of

a �rm in a frictionless environment and, at least for this �rm, there are no real e¤ects from

money.

Notice that in this simple example, even though the �rm in the benchmark model and
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the �rm in the leave-sales-in version both had two price changes, the real e¤ects were quite

di¤erent. The reason is the nature of the price changes. In the benchmark model the changes

were a temporary markdown and then a reversal of that markdown back to the original price.

The fact that the second price change restored the original price meant that it restored the

real e¤ects of money to be what they would have been from periods 2 on to what they would

have been if it had not changed prices at all. In the leave-sales-in version, the changes were

both regular price changes. Both of these changes o¤set the change in the money supply,

thus leading to no real e¤ects at all from this �rm.

Finally, consider a heuristic description of a similar experiment in the take-sales-out

version. In this version the productivity shocks arrive about one-�fth as frequently as in either

the benchmark model or the leave-sales-in version. In Figures 16 and 17 we mimic this by

supposing that no productivity shock occurs while money again decreases 5% permanently.

Here the �rm never changes its regular price so the money has a real e¤ect in every period.

Here money has a larger real e¤ect in the benchmark model because in that model the

temporary markdown o¤set the real e¤ects in period 1.

We can summarize the key message of our heuristic example as follows. In assessing

the real e¤ects of money, the nature of price changes matters as well as their frequency. In

particular, temporary markdowns are a very di¤erent type of price change than a change in

a regular price: markdowns, unlike regular price changes, typically return to their original

price and hence do not let �rms permanently respond to changes in money.
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A Version Matching the Fraction at the Annual Mode

Finally, we consider an alternative procedure for setting the parameters in models in

which markdowns are not explicitly modeled. We choose to match the fraction of prices at

the annual mode. In Table 2 we report on the statistics we attempt to match again treating

the benchmark model with markdowns as the data-generating process. The statistics are

the mean size of price changes, the 25 and the 75 percentile of price changes and, most

importantly, the fraction of prices at the annual mode. In Table 3 we report on the parameter

values we choose and in Table 4 the results. From Table 4 we see that, again using the

standard deviation of consumption as the measure of the real e¤ects of money, we see that

this procedure works much better than either of the two approaches that we have discussed.

B. Comparison to Calvo Models

Here we perform a similar experiment to those above with two versions of a Calvo

model. Speci�cally, we again generate data from our benchmark model and then �t two

Calvo models to this data: a leave-sales-in version in which the frequency of price changes is

set to match the generated data with sales left in, and a take-sales-out version in which this

frequency is set to match the generated data after the AC Nielsen �lter is applied to it. We

then ask, How well do these two Calvo models do in reproducing the real e¤ects of money in

the generated data?

The Calvo models are very similar to the benchmark model described above except

that it has time-dependent sticky prices and no temporary markdowns. The consumers in

the model are identical to those in the benchmark model. Firms are allowed to adjust their

prices in an exogenous, costless, and random fashion as in Calvo (1983). Speci�cally, in a
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given period with probability � a �rm is allowed to adjust, and with probability 1 � � the

�rm is not allowed to adjust. We refer to � as the frequency of price adjustment.

The problem of a �rm that is allowed to adjust at st is

max
pi(st))

1X
r=t

X
sr

(1� �)r�tQ(srjst)R(Pi(st); sr)
�
P (st)cHi(s

r)� W (sr)

a(sr)
cHi(s

r)

�
;

where

R(Pi(s
t); sr) =

�
Pi(s

t)�W (sr)
��Pi(st)

P (sr)

���
c(sr):

Since there are no costs to price adjustment, the resource constraint is simply

l(st) =

Z
i

li(s
t) di:

The parameters of technology, preferences, and stochastic processes are set to be equal to

those in our benchmark model. The additional parameter that needs to be set is �: We con-

sider two parameterizations corresponding to the two alternative practices discussed above.

In the leave-sales-in version, we set � = :34 so that �rms get an opportunity to change

their prices 34% of the time, and in the take-sales-out version we set � = :057 so that

�rms get an opportunity to change their prices 5:7% of the time. As the appendix shows,

the implications of a log-linear approximation to this model do not depend on moments

of the distribution of the idiosyncratic shock process other than the mean. In particular,

the implications depend neither on the arrival rate nor on the variance of the idiosyncratic

productivity shocks.
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In Table 4 we see that, as with our earlier model, leaving sales in the data leads us to

underestimate the e¤ects of monetary policy, while taking sales out of the data leads us to

overestimate the e¤ects of monetary policy. The real e¤ects in the Calvo version that leaves

sales in are less than one-�fth (.08/.44) of what they are in the benchmark model, while the

real e¤ects in the version that takes sales out are almost double (.82/.44) of what they are in

the benchmark model.

Finally, we see from Table 4, if instead of matching the frequency of price changes,

we choose � to match the fraction of prices at the annual model we do much better than the

other two procedures.

5. Conclusion

In the data a sizable fraction of price changes are sales-related. Existing sticky price

models abstract from explicitly modeling these changes. We have added one parameter to

the standard sticky price model and have shown that the parsimoniously-extended model can

well account for many of the patterns of prices and sales in the data.

We have evaluated existing approaches by explicitly including a motive for temporary

price reductions in a simple sticky price model and then directly study how large are the real

e¤ects of monetary policy shocks. We then treat the model as the data-generating process

and apply the two common approaches to data generated from our model. We �nd neither

of the existing approaches provides a good approximation to the key question of interest: the

take-sales-out approach leads to much larger e¤ects of monetary shocks than are in the model

with sales, and the leave-sales-in approach leads to much smaller e¤ects of monetary shocks

than in the model with sales.
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We then show that a simple rule of thumb approach of using a model without sales

but choosing parameters, not to match the frequency of price changes, but rather to match

the fraction of time a price stays at its annual model gives a much better approximation than

either of the existing approaches. We end with two proposals to advance the sticky price

literature: either explicitly include sales in the model or follow a version of our rule of thumb.

We argue that either will represent progress relative to the existing approaches.
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Notes

1See Hoch and Purk (1994), Peltzman (2000), and Chevalier et. al (2003) for a discus-

sion of Dominick�s experiment, pricing strategy and of the data.

2We prefer to use this algorithm to identify temporary price cuts in the data rather

than �ags in the data base that supposedly indicate sales because the Dominick�s sales �ag

is inconsistently coded and fails to record all sales.
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6. Appendix: Sales Filter

Step 1: return above or to the same level.

For each price cut (de�ned as a period in which pt < pt�1 & pt; pt�1 are non-missing);

check if pt+j > pt�1 for j 6 3 (5): Let �j be the minimum j for which this condition is satis�ed

(if at all). Replace pt; pt+1;::; pt+�j�1 etc. with pt�1 for those js between pt and pt+�j for which

the original price is available: The �gure below plots the output (new vs. old price series).

Notice in the �rst sale that we impose no restrictions on what the old price does prior to

the period it returns to a level equal to or above the pre-sale price. It can fall gradually,

stay �xed, gradually increase, etc. Also notice (slightly prior to week 260) 2 price cuts in the

data, of which only one (the second) is called a �sale�at this point. The �rst one is excluded

because the price rises to a level below the pre-sale price.

There is no need to iterate this �lter more than once, as it leaves no �sales� in the

newly created regular price series by construction (i.e., after running the sales �lter once, there

are no other price cuts left in the new �regular�price series that will revert to something >

the original in 6 3 weeks). The next step needs to be iterated more than once, however, if

gradual price increases, or price decreases following the original price cut, are to be allowed

for.

Step 2: return below the original level.

For each price cut (de�ned as a period in which pt < pt�1 & pt; pt�1 are non-missing);

check if pt+j > pt for j 6 3 (5): Let �j be the minimum j for which this condition is satis�ed

(if at all). Replace pt; pt+1;::; pt+�j�1 etc. with pt�1 for those js between pt and pt+�j for which

there are no gaps in the original price series:
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We apply this second procedure 3 (5) times in order to �lter out sales periods associated

with price changes following the original price cut.
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                       Table 1: Frequency and size of price changes

All price changes Exclude sale-related price changes

Frequency of price changes 0.33 0.056

Mean size of price changes 0.17 0.10
25 percentile size of price changes 0.04 0.03
75 percentile size of price changes 0.19 0.12

Fraction of annual prices at mode 0.58
Fraction of 50-week prices at top 2 prices 0.76
Fraction of 50-week prices at top 3 prices 0.84
Fraction of 100-week prices at mode 0.50
Fraction of 100-week prices at top 2 prices 0.69
Fraction of 100-week prices at top 3 prices 0.78

Fraction of annual prices below mode 0.30

Fraction of sale-related price changes 0.83

Proportion of returns to pre-sale p 0.87

Probability a sale ends 0.46



Table 2: Calibration targets

Include sales Exclude sales Include sales Exclude sales including sales excluding sales prices at annual 
Moments 

Used for calibration

Frequency of price changes 0.33 0.056 0.31 0.062 0.32 0.061 0.087

Mean size of price changes 0.17 0.10 0.13 0.14 0.13 0.14 0.13
25 percentile size of price changes 0.04 0.03 0.08 0.06 0.07 0.05 0.06
75 percentile size of price changes 0.19 0.12 0.17 0.20 0.17 0.21 0.18

Fraction of annual prices at mode 0.58 0.58 0.30 0.66 0.59
Fraction of annual prices below mode 0.30 0.27

Fraction of sale-related price changes 0.83 0.80
Proportion of returns to pre-sale p 0.87 0.89
Probability a sale ends 0.46 0.61

Other moments

Fraction of 50-week prices at top 2 prices 0.76 0.75
Fraction of 50-week prices at top 3 prices 0.84 0.81
Fraction of 100-week prices at mode 0.50 0.40
Fraction of 100-week prices at top 2 prices 0.69 0.63
Fraction of 100-week prices at top 3 prices 0.78 0.74

Data Model with markdowns Model w/o markdowns



Table 3: Parameter values

Markdowns

Cost of changing regular price, % of SS labor bill 2.80 0.30 1.25 0.85
Cost of temporary markdown, relative to menu cost 0.18 x x x

Arrival rate of technology shock 0.28 0.185 0.038 0.052
Upper bound on technology shock 0.23 0.26 0.27 0.25
Persistence of technology 0.30 0.30 0.30 0.30

Arrival rate of preference shock x x x x
Upper bound on measure of high-elasticity customers x x x x

Substitution elasticity of type-1 consumers 3 3.00 3.00 3.00

Discount factor 0.961/52 0.961/52 0.961/52 0.961/52

Autocorr. of growth rate of money supply 0.90 0.90 0.90 0.90
Std. dev. of shocks to growth rate of money supply 8.31x10-4 8.31x10-4 8.31x10-4 8.31x10-4

No markdowns
Match data 

including sales
Match data 

excluding sales
Match fraction of 
prices at annual 

mode



Table 4: Results

Markdowns

Model with menu-costs

Std. dev. of HP-detrended monthly consumption 0.45 0.10 0.59 0.44

Autocorr. of HP-detrended monthly consumption 0.88 0.65 0.86 0.79

Pass-through of monthly ΔM into ΔP 0.83 0.96 0.78 0.80

Model with Calvo pricing

Std. dev. of HP-detrended monthly consumption 0.08 0.82 0.57

Autocorr. of HP-detrended monthly consumption 0.77 0.93 0.92

Pass-through of monthly ΔM into ΔP 0.97 0.63 0.74

No markdowns
Match fraction of 
prices at annual 

mode

Match data 
excluding sales

Match data 
including sales
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