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Rodney Jacobs has implemented an estimator of Cagan's portfolio
balance schedule that is statistically consistent wnder the condition
that the money supply is econometrically exogenous in the portfolio
balange equation---a condition under which Cagan's estimator is not
in general consistent. Jacobs' estimator gives very different results
from Cagan's, and recovers estimates of the "stabillity parameter'
close to and sometimes exceeding the critical value of unity.

In this note, T evaluate the statistical properties of_Jacobs'
estimator under cirvcumstances where money fails to be econometyically
exogenous in the portfolio balance schedule. fFor concreteness and
simplicity, I assume that Cagan's adaptive expectations scheme 1s
equivalent with yational expectations---which delivers a parsimonious
model in which money fails to be exovgenous with respect to inflarion.
The calculations imply that Lf this wmodel is correct, Jacobs' (binsed)
estimator of the srability parameter will be distributed about its
population value of uvnity---a finding which rationalizes Jacobs'
estimates for five of the six hyperinflations he studied. In addition
to this substantive rvesult, the note aims to illustvate some computa-
tional techniques that are useful for calculating probability limits
of distributed lag estimators. I{ the reader doesu't like the model
of the money-price process that T assume, he can use these techniques
with his own preferred moéel to evaluate Jaccobs' estimator (and Cagan's
estimator too). Related techniques were applied to Cagan's estimatox

in Sargent [ 7.



Phillip Cagan's model of portfolio balance during hyperinflation

consists of the two equatioms

(1) mt - pt= o(rrt+ th o < 0
1 -3 -1
(2} T ® T ?‘kL(l - L)pt ‘}E <1

where ™ is the natural log of the money supply, Py is the log
of the price level, 7, 1s the rate of inflation now expected by
the public to prevail over some horizon, 1. is the lag operator
(1. x_ = x —n) , and u is a random disturbance. Cagan implemented
his model by substituting (2) into (1) to derive the estimable eguarion
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Cagan estimaced (3) by neonlinear least squares. That method leads
to conslstent parameter estimates in (3) provided that u, is ortho-

gonal to current and past (p,_ -~ pt_l)‘s , thar is, provided that

t

(4)  Eu,- (pt-j TPeoe1

)y =0 for all ¢ and for all 3 = 0O

Suppose we make the assumption that m, is strictly econometrically

exogenous in (3), which is the condition

(5) AR usj = 0 for all ¢ , s

Condition (3) states that the money supply at all leads and lags is

orthogonal to the disturbance uw in portfolio balance. Under the



condition (5) that m 1is exogenous in (3}, the orthogonaliﬁy con-
dition (4) fequired for the consistency of Cagan's estimates will in
géneral fail. For under (5}, wmovements in the u's on average leave
m unaltered and lead to equilibrating changes in p . Tor example,
a high value of u causes the demand for real balances to be high,
which because m does nét respond, causes & fall in the price level
in order to increase real balances. This sets up a correlation be-

tween P and uL s rhus vieolating (&4).

L
Rodney Jacobs has pointed out that where m is exogencus in (3),

the appropriate thing to do is to "invert" {3) and solve for a rela-

tionship in which m is the regressor. Solving (3) for p as a-

function of wm's aod u's gives
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On the hypothesis that m 1is exogenous with respect to u , Equarion
{6) has a diSturbance‘ ut' that i{s orthogonal to the regressors at
all fags, and so is consistently estimated by nonlinear least squares.
This is the procedure used by Jaccbs.

Jacobs found that .estimating (6) gave very different estimartes of
o, A and the "stability parameter" § than Cagan obtained. 1In par-
ticular, for five of the six hyperinflations studied by Jatcohs, he
found 5_‘to be distribyted arcund the borderline-unstable value of
unity, three being somewhat above unity, two being somewhat below.l
According to Cagan's analysis, § had to be below unity in order Ffor
one to conclude that the hyperinflations were responses to excessive
monetary growth and were not self-sustaining explosive processes.
Cagan's estimates had on the whole been consistent with & being
below unity, so that Jacobs' procedurc does lead to substantially
differént conclusions than Cagan's,

As emphasized above, the raison d'etre of Jacohs' procedure is
the hypothesis that money is exogenous with respect'to disturbances
to portfolio balance. Empirical work by Wallace and me raises stroﬁg
doubts about that hypothesis. Using Sims's econometric exogeneity
test,'we found thact in the hyperinflation data there is usually
s;rong evidence for rejecting the hypothesis thact m is exogenous
with respect te p. This implies that the data are not compatible
with there being a structural one-sided distributed lag of p on m

f

with a disturbance orthogonal to past, present, and future m's,

which is’ the Fform of regression estimated by Jacobs.



On a more casual level, it has been widely remarked that the
German monetary authority was operating'under a "real bills" regime
during the hyperiuflation, a regimé which is bourd to set up feedback
from inflation to money creation, thereby rendering invalid the
assumption that mw 1is exogenous in the porrfolio balance equation,

Given this evidence, it seems useful to ask whether one can
~account for the pattemmn of Jacobs' estimates as resulting from a
failure of his exogeneity assumption, Here T calculate rhe theoret-
ical values that one would obtain estimating Jacobs equaticn (6) in
a world described by the bivariate inflation-money creation model
which must prevail For Cagan's adaptive expectations scheme to be
compatible with rational expectations.2 There are three reasons for
using this medel in the present exercise. First, the model is com-
patrible with the broad outlines of the feedback structure batween
inflation and money creation indicated by Granger-Sims causality
tests (inflation Granger-causes money creation with no reverse caus-
ality; see Sargent and Wallace ). Second, the model is parsimonious
in terms of its parameterization, which is useful for calculations
like thosg to be performed heve. Third, the assumption of rational
expec;ations provides an economlc rationale for using Caganﬂs-model
in the first place.

Wallace and I showed that Cagan's'model is compatible with
rational expectations where the inflation-money creation process

is governed by

(7 xp= 6L - AL G, - M)
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and where Me .and g, are each serially independent random variables
. , . 2
with mean zereo and finite variances and Tooo, rospectively.,
: - 3

T assume that E = 0 and that E(gtnt) = Tem -

e-1t © Fee1Me
" Under (7) and (&), the first differencecof inflation, x,_ , and
L
the first difference of percentage money creation, Mt , a4re station-

ary, correlated first-order moving average processes. The covaringram

of M 1is defined as
c(7) = E[M(e)M(t - )]

It is straightforward to calculate

<) = (8L~ 175,06l 4L - ?\.)ZC'ﬂZ
- 2a(l = 1) ¢ 180 - oy,

(L) =c(-1) = - f8(l = 1)+ 13s,°

e(r) = 0 REEY I

The cross-covariogram of x and M i1s defined as

r(T) = E[Xth-¢3 .



It is straighrtforward to calculate

£(0) = [E(H(L - * A ¢zt e -
200 - 0y ¢ dla(l - ) ¢ )7
S [ -yt ada(l - ) )J-:-E_q
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We will write the covariance generating functien of }M or
z-transform of c¢(7) as

1 )
c(z) = ¥ elmz
~1

T=

the coefficlent on =z  being the covariance c(+)}. The cross-
covariance generating function is defined as
1
r(z} = ¥ r()z" .

1=~1
It is useful to factor c(z) as

c(z) = e()zt 4 c(0) + (D)2

: -1,
= (bg * by2)(by + by ) .

Expanding and equating powers of =z , we find that bO and b1

are determined from



So we have the Tactorization

-1
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or -
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c(z) = b 2(1 + 1 zy (L + L 2‘1)
0 b0 bo

c(z) = b(z)(l s bz (L + bz h)
wheve h = bl/bO
C L prs 3
Using the classic Wiener-Kolwmogorov formula™, we can calculate
the z-transform (or lag-generating function} of the populaticn re-

gression of X, ©On current and past 1 's as ' .

X_ = B(L)Mt + re51dua1t

T
where
b -2 -1
8(z) =~ 0 Lr(l)z T+ (M) + r(l)z,
1+ bz - -1 J+
1+ bz
where [ 1, means "ignove all negative powers of =z''. Expanding

the geometric series ],/1+bz—IL , we have, assuming !bi <1,

boﬂz ~1 = j -j
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. bo;g
(9 6(z) = 757 ((x(0) - c(D)b) + r(1)=z,

Using (9) it is easy to calculate the regression of Mt - xt'against

current and past Mt’s as

W - = W - ] =B
nt X, h(L)dt + 1e51dualt

= (1 - e(L})Mt + residual

which implies that the lag generating function h{z) obeys

hiz) = 1 - 9{(=)
~2
1 + bz 1+ bz-[(r(o) = r{1Yb)y ~ 1"(1)2:} '

[ - bg“z(r(o>-r(1>b)] + (b - bo‘zr(l))z
h(z) = e _
1 + hez

The lag generating function h(z) can be written more compactly as

h, + h,z~

0 1
h(z) = 1 - hzz
where
W= 1= b 2(r(0)-r (1))
0 Q :
{10) h, = b - r(1}b 2
1 0
h2 = =-b
in summary, where the model {7) - (8) is correct, the population

‘regression of M, - x, against current and past M's will be

hD + hlL
Mt - KT I—:~E;£~ Mt + rQSLdualt
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It follows that the regression of moo- Py against current and
Vo sa o " '
lagged wm's is given by

ho + hlL
moo- p_ =

t t (l—hL

Jm o+ residual
2 t L

It is easily deduced that the pepulation regression againsk current

and lagged'values of the change in m 1is given by

h. + h, L

.0 1
(1) me - Py (1 -th)(l -L)(l L)mt + residual

Now (11) is the population regression of m - p against current
and lagged m's where the distributed lag coefficients are not con-
strained in any way. Recall from (&), however, that Jacobs estimated

the constrained versicn of (I1)

W
0
1 - _e— - + -_s'
(12) m_ - P, 1= VoL {1 L)mt re idualt )
where he interpreted v as estimating ol =00 and v as’
0 e L s (L - ) '1

as estimating the stability parameter &

If the rational expectations model (7) and (8) is correct, the
constrained parameterlization (12} is a binding restriction. Where the
true regression on current and past (L - L) wm's 1is given by (11},
least sguares estimation of Jacob's parameterization (12} will mini-
mize the approximation criterion (see Sims )

\ Yo (ho - hlediw) 2

e sam(w)dw
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where ng(w) is the spectral density of (1 - L)m ., The integrand

can be rearranged to be

\ 1 N*’O(1 B e_lw) (hO " hle-lw)

HC ——) (. — - ——) | s, (W)

‘ 1 - e ™Y 1 - Ve W L - hoe WoLoam

Y.(1 = e_lw) h.o- he ™V
= 0 _ .0 1 S
~iw -iw - m(w)
1 - Yle 1 - h,e
1 2
where § (w) = - S . Here S (w) 1is the spectral deusity
m 1 - ootwl Tam m

of the level of the (log of the) money suﬁply.S Thus, least squares

applied to (12) wminimizes the approximation criterion

. -1 -iw, 2
'Ygfl - e 1w) (ho _ h]e 1w>!_
(13) [ |—~—~—~—--~ R 5 (w)ydw .
' -1w h -1 m
'TTI 1 - ‘\iflc 1 - 2(3 | '
Now it is an implication of the model (7) - (8) that the spectral

density Sm(w) of the logarithm of the money supply is unbounded at

w =0 (the process m, is not stationary, so that strictly speaking
the spectrum Sn£w) is not defined, though it is effectively defined

by a certain limiting process). Consequently, the approximation
criterion (13) will be dominated by its behavior at (and very close to)
w= 0, We therefore minimize (13) by minimizing the integrand at w = 0.

By inspection, it is directly verified that at w= 0 the Integrand is driven

to zero by

i
—

Yl -
(14)
h, - h

Yo© TR,



If the model summarized by (7) and {6) 1s ceorrect, the population
values of Jacobs' regression (12) will obey (14), where the h's
appearing in (14) are connected to the parameters of (7) and (8) by
the relations given in (l0). 1t is evident that the population re-
gression parameters-yl and M do not recover the theoretical

structural parameters that Jacobs took them to be estimating (remember

(1 -
ag estimating all = 2)

' . A AT T
that Jacobs' procedure interpreted T+ &l -

/
o
and interpreted ¥y as estimating the “stability parameter™

L At CJ(]. - }) - - ! .
& = I (Ll = 3) Y. If the model (7) {8) is correct, the least

squares estimales of g and Yy ére thus not statistically con-

sistent estimates of the parameters Jacobs was trying to estimate.
Least squares estimates of Jacobs' ecquation (12) will recover

consistent estimates of the parameters in (14). Our calculations thus

imply thart in sufficicntly large samples, Jacobs' estlimate of

Yq (= #) will be distributed about unity. That prediction is

borne cut in Five of the six hyperinflations studied by Jacobs.
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Footnotes
In Jacobs' notation, my & = e‘k . Jacobs' estimates were
as follows:

Country k 8= o X
Austria L4 .87
Germany -.131 1.14
Greece ' -.262 1.30
Hungary -.199 1.22
Poland .139 .87
Russia .857 43

The model is analyzed in detail and tested in Sargent 7 1.

JSee Whittle [, p. 66-67, pp. 41-431.

There is a delicate point here, In geing from the preceding

equation in the text to the following one, we are in effect operating

. . . -1
twice on Mt and X, with the summation operator (1 - L) =

1+ L+ L2 t ... . That is, we are using the fact that

9 .
(1 -~ 1) PL= %,

to work back Erom X, to p But, for example, the process

t

. 2
(L + L+ L + ...)xt

is not a well defined stationary random process, so that the pre-
jection theory underlying our calculations 1s styictly speaking not

applicable. However, if we regard p, as being dafined by



where (1 - pL)—l = (1L + pL* p2L2 + ...) and where g 1ig arbi-

tyarily close to unity from below, then P, is 2 well defined
stationary process. I will think of m, and P, as being defined

as the limit points of such stationary processes.

5
We have that the spectrum of m is glven by

iw

c(0) + ¢(1) )

1 2 1 2 +1iw
-iw) ( iw) (e(L)e *

S (w) = ¢
m 1 - e 1 - e

This ig unbounded at w = C , so that it is not really well defined.
However, we can regard Sm{w) as the limit of spectral densities

defined by

S (W) = ( e (De™ 4 c(@) ¢ (1))
I F\‘ 1 - De 1 _ Delq

as ¢ approaches unity from below. Sm(w)O is well defined and is

the spectrum of a stationary process for all |nf < 1



