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Forecasting M1 with a Vector Autoregressive Model:
Some Preliminary Results
1. Introduction

Forecasting economic variables today usually involves a complicated,
and often expensive, combination of output from large simultanecus equation
econometric models, prejections of univariate time-series approaches, and
significant allowance for judgmental adjustment.

Sims [1977] has recently suggested as an alternative forecasting
strategy the use of vector autoregressions. In these specifications, each
element of a vector of economic variables of interest is projected on its own
lagged values and the lagged values of every other variable in the system. The
resulting models can lead to improved policy through improvements in forecasting
accuracy. They are nct, however, tools for finding either an optimal rule or
determining the impact of a given change in a pelicy instrument. Policy
variables such as the funds rate or M1 may appear, but not as exogenous variables
that can be manipulated at the users' convenience. Rather, they appear as
endogenocus variables whose past history helps to determine the forecasting
characteristics of the models, and whose prcjected time paths can be interpreted
as the policymakers' most likely course of action given no change in the policy
rule.

The wvector autoregressive specification is 1inexpensive and quite
general, It is capable of modeling arbitrarily well any covariance statiocnary
stochastic process. Indeed, the main weakness of this specification, and the
reason it has not often been used for forecasting, is, in a sense, its over-
generality. The number of free parameters in a system increases quadratically

with the number of variables, and for even moderately-sized systems the model



becomes highly overparameterized. Estimation of such models leads to a very good
fit of the data, but als¢o to ex-post forecasts with large mean square errors.

The problem of overgenerality can be solved by imposing restrictions,
In fact, it is possible to view several types of macroeconcomic models commonly
used for forecasting as special cases of the vector autoregression model derived
by applying particular claases of restrictions. The reduced forms of traditional
simultanecus equation econometric models are essentially very large vector auto-
regressions specified with huge numbers of exclusionary restrictions implied by
economic theory and the categorization of variables into exogenous and
endogenocus. The equilibrium solutions of rational expectations models are
another special case. Here the assumption of optimizing behavior of agents in
the economy generally leads to a complicated set of eross-equation restrictions.

In contrast to these approaches, where the restrictions are often
derived from economic theory and always applied with certainty, Litterman [1979]
has developed a set of techniques, based on the use of Bayesian priors, to apply
instrumental restrietionslj in the form of probability distributions. They are
applied not for the purpose of identifying a specified economic structure, but
expressly to minimize the mean square prediction error of the model. In this
last sense, they are similar to the method of ridge regression.

In work reported in Litterman [1979], these techniques were employed
to develop and test several quarterly, macroeconomic, vector autoregressive
models. The post sample forecasting performances dominated those of the same
models in unrestricted form. Further, they dominated the performance of models
composed of univariate autoregressive equations.

The work reported in this paper was undertaken to see if the same kind

of success could be achieved with a monthly model, in particular, with a monthly

l/By instrumental, we mean restrictions that are not derived from a
particular economic model or theory.



-3 -

"money market" model in which M1 and, possibly, other aggregates would appear.
We were motivated by the possibility of providing an inexpensive yet goocd
(possibly better) forecasting tool in an area of high policy significance. We
were also prompted by the availability of several recent studies of the M1
forecasting record of the Beard staff, studies that could be used, we believed,
to judge the success of our own efforts.

In Section 2 we briefly describe our method of using priors with vector
autoregressions for forecasting. Section 3 presents the particular models used
to forecast M1 and their forecasting performance. Section 4 suggests several
reasons for caution in comparing these results with those of real-time

forecasters.

2. A Bayesian Approach to Restricting Vector Autoregressions

Autoregressive specifications often lead to multicollinearity problems
and large sampling errors in estimation. This is particularly true in vector
specifications which leave relatively few degrees of freedom. Several classical
procedures in the form of matrix-weighted averages, such as ridge regression and
3tein rule estimators, have been devised to overcome this type of problem in
contexts not including lagged dependent variables. These procedures are
Justified on the grounds that they can generate estimators which, though biased,
have smaller mean square error than OLS estimates. The same estimators have a
Bayesian infterpretation, which amounts to specifying the implieit prior
distribution for which the partiecular estimator is the posterior mean.

Estimators of a similar form may be adapted to the vector auto-
regressive gpecification. While these estimators require a Bayesian justifica~
tion, they are motivated, at least in part, by the above mentioned classical
results which suggest that the instrumental restrictions incorporated into the
priors will decrease the mean square errors of forecasts generated by these

models. The experiments we report support that conclusion.
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The first prior which we have used treats all equations symmetrically
and specifies stochastically independent lag ccefficients which, except for the
first lag of the dependent variable, each have mean zero and standard errors
which decrease with the length of the lag. The lag distributions are, thus,
given the prior restriction that they fade away gradually. The ccefficient on
the first lag of the dependent variable in each equation is given a prior mean of
one so that, in the 1limit, a tight prior, that is one in which the standard
errors approach zero, corresponds to a random-walk process for the indeter-
ministic component of each variable in the system. Each equation includes a
constant, for which there is no prior.

The symmetric prior also allows for specification of less weight on
other vs. own lagged variables in the sense of imposing smaller standard errors
around the zerc means of the coefficients on other variables.

Two parameters determine the exact form of the prior. Standard errors
of lag coefficients decrease in a harmonic manner according to a given value, T1.
The pricr standard error of the kth lag of each variable is k;Y1 times the prior
standard error of the first lag. The second parameter, Y2, scales the standard
errors of the other variables' lags relative to those of the dependent variable.

The prior standard errors of other variables' lag coefficients are
also scaled according to the relative size of their variable's innovations as
measured by the sample standard error of their OLS regression. Let the standard
error of the first lag of the dependent variable be A. The prior standard error

th th th

of the i coefficient, which is the j iag on the m variable, is Gi, where

57Y1 if the m™® is the dependent variable
8§ °
j-Y'lc—

om 2 otherwise,

g is the standard error of innovations in the dependent variable and o, the

th

standard error of innovations in the m other variable.
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Qur procedure has been to act as if we were given, in 1872-1, the task
of defining a mechanical procedure which would be used for the next five years to
make monthly forecasts of the growth of seasonally adjusted M1 over two-month
intervals at annual rates. We chose this task for this pericd sc that we weould be
able to compare our results with judgemental forecasts of M1 growth made by the
Federal Reserve Board as compiled by Porter, Farr, and Perea [1978]. 1In fact, as
discussed in Section 4, we have found this a difficult comparison to make.

We have constructed a small {(four variable) and a large {eight
variable) vector autcregressive model, along with univariate specifications for
comparative purposes. The parameters of the models, such as lag lengths, choice
of variables, and, to some extent, prior parameters were picked con the basis of
forecasting performance on the data up to 1972.

Given the chosen specifications, each model was used to make forecasts
of the levels of M1 and the other variables in the systems each month of the
projection period, 1972-1 threough 1977-11. The growth rates associated with
these forecasts were calculated and error statistics generated. The models were
reestimated each month of the projection period so that the forecasts were based
only on information available at the time the forecasts were made. One
qualification needed here is that the data used were the final seasonally
ad justed numbers currently available at the time this study was made (February
1979). In fact, because of the two-sided nature of the seascnal adjustment
procedure, these numbers incorporate information not available to forecasters
operating in real time.

The estimators in a given equation may be written as

b = (X'X+k(R'R))"1(x'Y+kR'r),
where the prior is given by RB = r+v with WPN(O,lzl} where k:=62/X2, 62 being the

estimated variance of the regression residuals in the OLS regression without a
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prior. To put the prior in this form, we set R = diag[1/ai] and r = [0...010..0]
where the one corresponds to the first lag of the dependent variable. Here Y
represents the vector of observations on the dependent variable and X the matrix
of observations on all lags of all variables in the system.g/

Given the coefficient estimates of the autoregressive representation,
projections are made according to Wold's "chain rule of forecasting." In January
1972, for example, the current and lagged values of the variables in the system
are used to forecast levels for February. These values are then used to forecast
March, and so on.

The one-step forecast of the two-month growth rate of M1 then refers to
the quantity [ﬁ(t+1)-M(t-1)]600/M(t—1) where M(t-1) is the value of M1 for
December 1971 and M(t+1) is the forecast for February 1972. Similarly, the two
step forecast is [M(t+2)-M{£)]600/M(t).

As the size of the vector autoregressive system increases, it becomes
inereasingly implausible that the procedure of treating all variables in the
prior symmefrically is optimal. In an N variable system, one must, at least
implicitly, specify N-1 parameters in each equation which determine relative
weights of other vs. own variables. Treatment of each parameter separately seems
arbitrary, while the symmetric approach which reduces the specification to a
single parameter seems overly restrictive.

We have used the symmetric approach in the four variable system, but in
the eight wvariable system have used a cirecle-star fype prior, described in
Litterman {[1979]. Variables in a central star are those which are assumed to

have a strong, but equal impact on all other variables in the system. The other

g/Our estimation technique of treating each equation separately is not
fully efficient. In unrestricted vector autoregressions, separate estimation is
justified because the right-hand side variables are the same in all equations.
This result is no longer &true when prior restrictions are added; however, we
believe the loss in efficiency in our estimation is small because the covariance
matrixes of the residuals for these models are nearly diagonal.
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variables are arranged in a circular ordering with related variables placed close
together in the ordering. Relative tightness of the prior on coefficients of
variables in an equation is then made a function of the relative positions of the
variables. Details of the priors for the particular models are given in the

following section.

3. Particular Models and Their Performance

The techniques just deseribed were employed to develop two monthly
money market models--one a small (and inexpensive) four variable model, and The
second an expanded version with eight variables--that could serve as forecasting
tools for M1 and other aggregates. In both models, estimation was done with and
without the application of priors in order to demonstrate the value of prior
restrictions. Univariate autcregressive models were estimated and employed to
generate forecasts that could serve as a basis of comparison. The data begin in
1953-1.

The four variables of the small model are M1, perscnal income, the rate
on Y- to-6-month commercial paper, and the consumer price index. Income and the
commercial paper rate were chosen because of the frequency with which they serve
as key arguments in studies of the demand for nominal money balances. The
consumer index appears in level form; at a later stage we plan to substitute the
rate of change of the index for its level as a measure of the commodity
opportunity cost of holding money.

The parameters of the prior in the four variable system were Yl=.5,
72=.5, and )\ =.5. Thus, the cocefficient on the first lag of the dependent
variable in each equation has a mean of 1 and a standrd error of X=.5. The
coefficient on the second lag has a mean of zero and a standard error of Ak~Y =
.5(2)—'5 = .3536. The coefficient on the first lag of the mth other variable is

Ayz(%a) = .25(%%). Table 1 shows the prior on the M1 equation in the four



Table 1
M1 Equation in the 4 Variable Model

Prior Estimation
Coefficient (Lag) Mean Standard Error OoLS Restricted
Constant - - 4,84423 5.08283
M1 (1) 1. .5000 1.05925 1.03916
M1 (2) 0. .3536 -. 14065 -.11526
M1 (3) 0. .2887 .31659 .27803
M1 (4) 0. .2500 -.4549Y -.37066
M1 (5) 0. .2236 .30059 .22980
M1 (6) 0. .20u1 -.07045 -.05063
Income (1) 0. L0474 .02911 .02426
Income (2) 0. .0336 -.02870 -.02094
Income (3) 0. .0274 -.00319 -.00674
Income () 0. .0237 -.01413 -.00720
Income (5) 0. .0212 .04215 -.02703
Income (6) 0. .0194 -.01722 -.00801
Paper Rate (1) 0. .6229 -. 48636 -.4guLo
Paper Rate (2) 0. L4405 .03236 .09655
Paper Rate (3) 0. .3597 . 44900 24374
Paper Rate (4) Os .3114 -.42979 -.19723
Paper Rate (5) 0. .2785 .07504 -.01970
Paper Rate (6) 0. .2542 . 13497 .13338
Prices (1) 0. L6434 -.23289 -.15940
Prices (2) 0. L4550 46715 + 32752
Prices (3) 0. 3715 -.10268 -.0u4816
Prices () s 8 3217 -.07283 -.10614
Prices 5. 0. 2877 -.34708 -.20324
Prices (6) 0. .2626 .19081 .08791
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variable system along with the unrestricted (OLS) and the restricted (posterior
mean) estimates of the coefficients.

The eight variable model includes the four listed above and adds to
them other time and savings deposits (which can be used with M1 to find M2}, the
currency component of M1, nonborrowed reserves, and the ratio of the commercial
paper rate to the Q ceiling rate on savings deposits at commercial banks. Non-
borrowed reserves was selected to represent supply-side reserve factors, and the
ratio of market to ceiling rates included to capture the effects of disinter-
mediation.

The prior on the eight variable system differs in two impertant ways
from that on the smaller system. First, the prior is considerably tighter, that
is, has smaller standard errors. Also, it includes structure in the sense that
standard errors are adjusted on other variables' coefficients not only according
to the size of their innovations, but also with respect to their position in the
circle-star prior.

The parameters of the prior are Y1=.5, Y2=.05, and A=.2. The central
variables are the four variables in the smaller system. Table 2 shows the prior,
unrestricted and restricted estimates of the coefficients in the M1 equation in
this system. The tighter prior in this specification is required by the larger
number of parameters in each equation relative to the number of degrees of
freedom. The value of .05 for Y2 was chosen on the basis of a comparison of
forecasting performance of several models with different values of "E on the
period 1968-T1.

Forecast errors for all models were computed by taking the one- and
two-step forecasts of two-month growth rates and subtracting the actual growth
rates as determined from the data file. These errors were summarized in terms of
root mean square errors (RMSE) and Theil U statisties (TU). It should be noted

that the TU's were computed according to the formula



Table 2
M1 Equation in the 8 Variable Model

Prior Estimates
Coefficient (Lag) Mean Standard Error OL3 Resiricted
Censtant - - - 4,18932 1.54905
M1 {1) 1. 2000 1.11031 1.11072
M1 (2) 0. L1814 -. 17583 -. 14242
M1 (3) 0. L1155 .35059 .16628
M1 (4) 0. . 1000 -~+30750 -.21223
M1 (5) Q. 0894 .21068 11437
M1 (6) 0. L0816 -. 07115 -.02125
Income {1 0. .0018 .02718 .00042
Income (2) 0. .0013 -.022145 -.00010
Incone (3) 0. .0010 -.00521 .00002
Income () 0. L0009 -.01252 .00016
Income (5) 0. .0008 .03626 .00035
Incone (6) Q. .0007 -.02539 .00017
Paper Rate (1) 0. L0248 -.75560 -.06726
Paper Rate (2} 0. L0175 .41837 -.02117
Paper Rate (3) 0. L0143 L40391 -.00755
Paper Rate (4) 0. 0124 -.22772 -.00402
Paper Rate (5) 0. L0111 =-.51101 -.00009
Paper Rate (6) 0. L0101 69717 .00291
Prices (1) Q. .0259 -.36161 -.02551
Prices (2) 0. .0183 64408 -.00695
Prices (3) 0. L0149 -.18161 -.00515
Prices (4) 0. 0129 -.03977 -.00397
Prices (5) 0. L0116 -43853 -,00235
Prices (6) 0. .0106 32377 .00002
Reserves (1) 0. . 0055 -. 48387 .00083
Reserves (2) 0. .0039 .36840 .00069
Reserves (3) 0. .0032 .08682 L00057
Reserves (%) 0. .0028 .31065 .00043
Reserves (5) 0. .0025 -.38671 .00027
Reserves (6) c. .0023 .02339 .00018
Currency (1) o. 0116 -.96217 -.00360
Currency (2} 0. .0082 -.04182 -.00130
Currency (3) 0. L0067 .78621 -.00040
Currency €] 0. .0058 -.683006 -.00053
Currency (5} 0. .0o52 1.25497 -.00004
Currency (6) 0. L0047 -.43878 -.00005
Other Time {1) 0. .0021 . 16788 .00253
Other Time (2) 0. .0015 -.23366 .00096
Other Time (3) 0. L0012 .23715 .00061
Other Time (4) 0. L0011 -.32410 .00044
Other Time (5) 0. .0010 .06423 .00036
Other Time (6) 0. .0009 . 11812 00033
r/Q (1) 0. ,0139 1.8260 -.0095%6
r/Q (2) 0. .0098 -2.0798 -.00356
r/Q (3) 0. L0080 5267 =.00151
r/Q (4) 0. ,0070 -1.0630 -.00088
r/Q (5) 0. .0063 2.0622 -.00024

r/Q (6) 0. 0057 ~1.7302 .00014
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m > 1/2
2P -a)
TU = é———————-—-
NC 2
(P-4 )
1
where
P = predicted two-month growth rate;
PNC = no change prediction (the two-month growth rate obtained by extra-
polating the actual growth rate of the preceding two months);
A = actual two-month growth rate; and
m = number cof forecasts.

A TU statistie of zerc indicates perfect forecasts; a value of one
indicates that the forecaster has done as well as a simple extrapelation
procedure; and a value greater than one shows that a simple extrapolaticen
procedure would have done better. For the forecast period 1972-77, both RMSE's
and TU's were compiled.

On the basis of the RMSE measure of forecast accuracy the eight
variable system with prior restrictions performed best overail. Table 3 shows
the one- and two-step RMSE's and TU statisties for each variable in each of the
medels in whieh it appears.i/ Relative to the univariate autoregressions, the
eight variable system without a prior generated one-step forecast error RMSE's,
which were in all cases worse, and on average were 15.1 percent worse. The
addition of the prior, however, reduced the errors te the extent that for seven
of the eight variables, the RMSE's were smaller than the univariate specifica-
tion. On average, there was a reduction of 1.2 percent in the RMSE's.

In general, the four variable systems did not forecast quite as well as
the univariate systems. The average increase of RMSE's in the unrestricted

system was 4.7 percent, while the average increase with prior restrictions was

i-/The RMSEs and TUs for the commercial paper rate and the ratio of the

paper rate to the Q ceiling on passbock savings are based on levels rather than
growth rates.



Model

Univariate
one-step
two-step

4 variable - no prior

one-step
two-step

4 variable - prior

one-step
two-step

8 variable - no prior

one-step
two-step

8 variable - prior

one-step
two-step

Model

Univariate
one-step
two-step

4 Variable - no prior

one-step
two-step

4 Variable - prior

one-step
two-step

8 Variable - no prior

one-step
two-step

8 Variable - prior

one-step
two-step

2.284
3.474

2.276
3.469

2.244
3.404

2.480
3.960

2.245
3.328

.694
<753

.692
732

.682
.738

754
.858

.683
Ry 7.

Table 3

Error Statistics for the Period 1972.1 - 1977.11

Root Mean Square Errors

Income Paper Rate Prices
3.074 512 1.749
4.199 .928 2.709
3.226 .526 1.944
4.312 .936 2.946
3.126 w312 1.882
4.224 »923 2.890
3.508 s I2F 1.951
4.560 .960 2.819
3.002 497 1.737
4.074 .886 2.713
Theil U Statistics

Income Paper Rate Prices
745 «929 .856
.761 .996 945
.782 . 956 <951
.781 1.004 1.028
T «929 «221
.765 .990 1.009
.850 <957 .954
.826 1.030 984
127 .903 .850
.738 .950 947

Reserves Currency Other Time
7.978 1.747 1.521
12.525 2.318 2.857
9.753 2.104 1.843
15.436 2.792 3.638
7.909 1.731 1.531
12.512 2.283 2.905
Reserves Currency Other Time
.853 779 .716
.905 794 .865
1.043 .939 .868
1.116 .956 1.109
. 846 772 21
.904 .782 .885

r/Q

.099
.169

.118
.209

.097
.164

r/Q

917
945

1.100
1.165

.906
913
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1.9 percent. It should be noted, however, that the wvalue of Y5 in the prior
specification was chosen specifically with M1 in mind, and for M1 alone the
forecast errors of the four variable systems do show improvement over the
univariate projections.

The results we have reported are, of course, conditioned on the
particular prior we used. There are undoubtedly other sets of prior restrictions
which would generate smaller forecast errors on our projection period than the
pricr we have chosen. We did not search for these prior restrictions. Such a
task might be useful for other purposes, but as a basis of comparison of
forecasting performance, it amounts to data mining. What we have attempted to do
is to choose our prior without using the data from the pr¢jection period and then
test its performance on that period. Degpite the particular selection of
variables, projection period and prior restrictions we have used, we suggest that
the results of that test support the follewing conclusions:

A. There exists a ¢lass of relatively inexpensive estimators, generated as
posterior means of priors incorporating instrumental types of
resfrictions, which greatly improve the forecasting performance of
vector autoregressive models relative to unrestricted OLS estimators.

B. The forecasting errors of unrestricted vector autoregressions tend to
inerease as the size of the system grows relative to the number of
degrees of freedom, This phenomenon is nof true of the restricted
models we have used.

Unfortunately, our results do not seem to shed much light on the
question of whether the restricted vector autoregressions represent a possible
improvement of forecasting over univariate autoregressions or judgmental
forecasts. The latter question will be considered in Section 4. As to the
former, cur four variable system tends te faver the univariate, while the eight

variable system favors the vector specification.



We emphasize that these results are strongly conditioned on our
particular priors. In retrospect, we suspect that a tighter prior on the smaller
system may have led to smaller forecast errors. Our experiments with different
priors on the 1968-1971 projection period showed that in moving from the
univariate to a vector specification, that is, letting Y2 increase from 0 toward
1, there was a region of improvement followed by worsening. This phenomenon is
also found in a different system described in Litterman [1979]. In the four
variable system the improvement region for the earlier projection period seemed
quite broad for the measure which we looked at, namely the RMSE on projections of
M1. These results led us to the loose prior represented by the choice of Y2=-5
and A=.5., The eight variable system, on the other hand, showed a much smaller
region of improvement, leading to our choice of Y2=.05, and A=z.2,

The question of whether there are restricted vector specifications
which deominate univariate autoregressions in terms of forecasting performance,
seems to us to rest on whether one can generate restrictions which can be
expected to consistently lead to a region of improvement. The results of this
test suggest to us that such regions of improvement probably do exist. On the
other hand, in this system they appear not to have been as large, as consistent,
or as easily exploitable as we had hoped.

In addition to our projections on the 1372-1977 period, we have
generated forecasts for the months from then to the present. In Figure 1 we
present the graphs of the errors generated by our restricted four variable models
along with the forecast errors made by the Federal Reserve Board at the time that
most closely corresponds to our forecasts, that is during the week for which
estimates of the level of M1 for the previous month first became available. The
board forecast errcrs and those of the vector auteregression are very similar
through most of 1978. More recently both do very poorly, with the autoregression

making especially large errors.



Figure 1

Shown here are the recent forecast errors of the Board and the
restricted four-variable vector autoregression (VAR).
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4, Real~Time Forecasting and Seasonal Adjustmentﬂl

We had hoped in this paper tc present a comparison of the forecasts of
growth rates of M1 generated by the mechanical vector autoregressive models with
the judgmental forecasts produced by the Beard and reported by Porter, Farr, and
Perea. There are several problems with such a comparison. First, forecasts made
in real time, necessarily involve only past data and therefore, as we discuss
below, require the use of a one-sided seasonal adjustment procedure. This is not
true of the seasonally adjusted data series we have used. In this section we
estimate this difference and suggest a correction to adjust for it. The Board,
however, has not computed its forecast errors from the final two-sided seasonally
ad justed numbers, but rather from the one-sided numbers as they became available.
We have tried to recreate these numbers with the use of the one-sided seascnal
ad justment procedure defined below, but we have not been able to regenerate the
growth rate series which the Beoard attempted to forecast. The possible
differences which remain include benchmark revisions of the data based on
nonmember bank reports, other definitional changes in the M1 series, and
differences in the seasonal adjustment procedures. As we show here, the series
forecast by the Board shows more variation than the series we have forecast.
Thus, the smaller forecast errors which we have generated do not necessarily
represent an improvement over those of the Board.

Consider now the problem of seascnal adjustment. The standard
procedure for obtaining a "final" seasonally adjusted M! series requires the
application of a two-sided filter to the raw data. Letting the two-sided
seasonally adjusted data be M1S, the unadjusted data be M1N, then a two-sided

filter is represented by

M1S(t) z F[M1N(t-k),M1N(t-k+1),...,M?N(t),...,M1N(t+k)].

E/The results in this section were generated using the Regression

Analysis of Time Series, RATS, computer program written by Thomas A. Doan at the
Federal Reserve Bank of Minneapolis.
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Thus, future, as well as past, values of the unadjusted M1  series are required

N
for some length, k, depending on the filter.

The results presented in Section 3 are based on data current as of late
February 1979; for purposes of this discussion they can be considered final. A
forecaster operating in real time, however, faces a more difficult problem than
we have posed for ourselves. At the time of the forecast, t, the forecaster does
not know the final seasonally adjusted numbers for the last k periods, and he
must first estimate M1s(t-s), s=0, 1, ..., k, based on M1N(t-s), s=0, 1, ..., and
then project future values of M1s' We refer to the estimation of M1S(t—s), s=0,
1, ..., k, on the basis of M1N(t-s), 5:0, 1, ..., as one-sided seasonal
ad justment, and let M1z(t-s), 5=0, 1, «.., be the estimates. Notice that for s >
Kk, M1;(t-s) = MTS(t-s). Several methods have been suggested to accomplish this
one-sided seasonal adjustment. We use the procedure suggested by Geweke [1978]
because it has the property of minimizing expected subsequent revision in the
seascnal factors.

In theory we could face the problem of real-time forecasting by
starting with unadjusted data and incorporating a one-sided seasonal adjustment
procedure explicitly intc the estimation process at each point in time during the
projection period. We have not done this because of the large computing expense
which would be involved. Not only would there be the cost of seasonal adjustment
each period, but more importantly, because the data series themselves change, use
of the Kalman filter updating algorithm would no longer be possible and a set of
matrix inversions would, thus, have to be performed each period to form the
desired projections.i/

Instead of using this costly procedure throughout, we have feollowed it

once in a univariate system as an experiment in order to estimate the magnitude

5-’/The Kalman filter is a recursive algorithm which, given current

coefficient estimates and a set of additional observations, generates the new
coefficients for the enlarged data set.
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of the difference between using two-sided and one-sided seasonally adjusted
data.
The two-sided seasonal adjustment procedure we used consisted of the

following. Given the entire M1 series, the seascnally adjusted series, M1S, is

N
formed using a simplified version of the multipliecative, ratio-to-moving average
method used in the Census X-11 program as described in Shiskin, Young, and
Musgrave [1967]. The first step is calculation of a centered 23-term moving

average of M1 3-I {seasonal-irregular) ratios are formed by dividing M1N by

N°
the moving average. Seasconal factors are generated as a (3x5) moving average of
the S-I ratios individually for each month. The seasonally adjusted series M1S
is M1N divided by the seasconal factors. This procedure requires values of the
unad justed series 47 steps ahead and previcus to each period in order to
calculate the seasonally adjusted value.

This mechanical procedure generates a series which closely
approximates the published seascnally adjusted M1 series, M1-SA. A comparison of
the two during our projection period, along with the unadjusted data, is given in
Figure 2. The series labeled "Filtered M1-NSA" is generated using the above
method and is based on unadjusted data available through 1978-11 and projections

of M1_ beyond that date. Shown are deviations from constant and trend of the

N
logarithms of each of the three series.

The following is our one~-sided seascnal adjustment procedure. Given
M1N(t-s), s=0, 1, ..., a forecast of M?N(t+s), 5=1, 2, ..., k is generated. The
forecast is made in the manner suggested by Geweke, that is, using data up to
time t the regression of M1N(t) on M1N(t-1), M1N(t—12), and M1N(t-13) is
computed. The residuals are then regressed on themselves in a sixth order

autoregression. They are projected k steps ahead using the chain rule. These

forecasts of residuals can then be plugged into the first regression allowing



Figure 2

This graph compares the seasonalty adjusted M, series generated by
the two-sided seasonal filter defined in the text (Filtered M1-NSA)
with the published seasonally adjusted series (M1-SA) and not
seasonally adjusted series (M1-NSA). All three are shown as devia-
tions from constant and trend of logarithms of the data.
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calculaticn of M1N(t+s), s=1, 2, ..., k. Using these values for M1N the above
two-sided adjustment procedure iz applied to generate M1;(t-s), 520, 1, ceas

The above techniques allow us to generate two series of growth rates of
seasonally adjusted M1 as follows:

1-8 NSA(t) = 600[M1;(t)-M1g(t-2)]/M1z(t-2) that is, the two-month growth
rates of seasonally adjusted M1 which become available month by month
through the use of the one-sided seasonal adjustment procedure; and
2-3 NSA{t) = 600[M1S(t)—M1S(t-2)]/M1S(t-2), the two-month growth rates of
M1S, the series generated by the two-sided seasonal adjustment procedure
applied to the entire not seascnally adjusted M1 series,
In Figure 3 we have plotted these two series along with "3SA," the growth rates
implied by the final published seasonally adjusted M1 data which we used in
Section 3. The series "1-3 NSAM" closely approximates both M"2-S NSA" and "3a."

We now define "real-time forecasting" as the technique of forecasting
future values of M1S based on M1;, that is, of reestimating. M1z(t—s), s=0, 1,
«+vy On the basis of M1N(t—s), s=0, 1, ..., each period and using those estimates
to project M1s(t+1), M?S(t+2), cene We have calculated error statistics
comparing the forecasts of growth rates of M1S generated by this method with
those generated by projecting M1s on itself.

Qur experiments show that there is only a rather small advantage gained
by using the final seasonally adjusted numbers throughout rather than the real-
time forecasting method. Recall from Section 3 that the one-step projections by
a univariate sixth order autoregression of two-month growth rates of "“3A"
generate a root mean square error of 2.28 on our projection period. The
corresponding error statistie using M1S is 2.34. The root mean square error of
forecasts using the real-time forecasting method is 2.43, Thus, we have

demonstrated a procedure of real-time forecasting which, in the univariate case,



Figure 3

A comparison of the growth rates of three seasonally adjusted M,
series shows that applying the one-sided and two-sided adjustment
procedures defined in the text to not seasonally adjusted data gener-
ates series with growth rates very ciose to those of the pubiished
seasonally adjusted data.

00 50

——GH
—¢— -5 NSH
—o—Z2-5 N5AR

b il

llll(lllllllll!IlllllllllTllllllll[ll1|’l!Tll|llTllTYllllT?[TIIITTTIIII

/72 /3 74 /5 4= 7




- 16 =

generates errors only slightly larger than our original method of projecting
final seasonally adjusted data. These results show that our root mean square
error statistics on final seasonally adjusted series should be adjusted upward by
approximately .09 (2.43-2.34) in order to account for errors which would have
been made in real-time forecasting over this period using our one-sided seasonal
adjustment procedure.

On the other hand, the Board does not attempt to forecast growth rates
which correspond to our final seascnally adjusted data. Their procedure
cerresponds to using current one-sided seasonal numbers to project the next
period's one-sided seascnal growth rate. Following Porter, Farr, and Perea
[1978], we call the realized one-sided seasonally adjusted growth rates,
"actuals." We could not directly attempt to forecast this series because we do
not have its values prior to 1972-2. 1Instead, we performed the corresponding
experiment, that is, forecast future values of "1-3 N3A"™ based on current M1; with
a univariate system, and obtained one-step forecast errors with a BMSE of 2.10.
This would indicate a substantial improvement over the Board results, which are
summarized below.

However, as shown in Figure U4, our "1-S NSA" is not a particularly
close approximation to the "actual" series used by the Board. One difference
between the two 1is attributable to the revisions in the data after the "actual"
number is generated. To this extent the "actual" series represents a noisy
measurement of the "1-3 NSA" series. Some of the difference is alsc caused by
the Board's use of a one-sided seasonal adjustment procedure which does not
minimize subsequent revision. In any case, it is clear that the "actual" series
has more variation than the series we have used. We have quantified the
increased variation by computing the standard errors of the different series

about their means, and by computing the standard errors of the residuals in



Figure 4

The series “actual,” which forms the basis of the real-time forecast

errors of the Board, shows more variation than the growth rates of

1-S NSA, the series being forecast in this study which most closely
approximates it.
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third-order autoregressions with constants for the 72-5 to 77-11 period. The

results are shown in Table 4.

Table 4

Variation of Four M1 Growth Series

Actuals SA 1-3 NSA 2=-3 NSA

Standard Deviation

of Series 3.915 3.182 3.062 3.431
Standard Deviation

of Residuals of

3rd Order Auto-

regression 3.369 2.668 2.299 2.739

In the study by Porter, Farr, and Perea, Board forecast errors are
reported as a function of the number of weeks after the FOMC meeting the fore-
casts were made. Since the timing of the FOMC meeting varies to some extent from
month to month, none of their error statistics can exactly represent forecasts
made with informaticn sets which match those implicit in our procedure.

We suggest that the information available two weeks after FOMC is the
best approximation to the information used in our one-step forecasts. The RMSE
of those forecasts is 2.62. The other error RMSE's, ranging from one week prior
to FOMC to three weeks after, were 3.49, 3.18, 2.92, 2.62, and 2.18 respectively,

Relative to these numbers, the RM3SE's generated by both the univariate
and vector specifications we have tested appear rather small. Unfortunately, the

considerations which we raise above forece us to conclude that such a comparison

must be viewed with extreme caution.

5. Conclusions
This paper presents the results of an experiment in which we have tried
to test the forecasting performances of mechanical procedures and compare them

with the compiled errors of the judgmental forecasts of the Board. In general,
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our forecasting results by the mechanical procedures have appeared encouraging
relative to judgmental results. However, we have found many difficulties in
making such a comparison.

We feel more useful comparisons can be made amoung different
mechanical forecasting procedures using the techniques we have described. Our
tests on univariate, small and larger vector autoregressive specifications
suggest that instrumental restrictions in the form of Bayesian priors can gen-

erate significant improvements in forecast performance over unrestricted models.
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