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Naive Business Cycle Theory

Deterministic {nonrandom) difference operations of low order
can generate "cycles," but not of the kind ordinarily thought to charac-
terize economiq variables. For example, we have seen that second order
difference equations can generate cycles of constant periodicity that
are damped, explosive,ror, in the very special case where the amplitude
r = 1, of constant—amplitude. But the "cycles" in economic variables
seem neither damped nor explosive, and they don't have a constant period
from one cycle to the other; e.g., some recessions last one year, some
last for one and a half years. The "business cycle" is the tendency of
certain economic variables to possess persistent cycles of approximately
constant amplitude and somewhat irregular periodicity from ome "ecycle"
to the other. The National Bureau of Economic Researcﬁ has inspected
masses of data indicating the presence of a business cycle of average
length of about three years from peak to peak in many important economic
aggregates for the U.S.

Figure 1 graphs the 91 day Treasury Bill rate and the unemploy-
‘ment rate over the postwar period for quarterly data. The "business
cycle" shows up in both series, interest rates tending to be high and

" and interest rates tending to be low and

unemployment low in ''booms,
unemployment.high in recessions. Clearly the "eycles” are irregular in
length and don't "look like" those generated by our low order difference
equations.

While low order deterministic difference equations don't

provide an adequate model for explaining the cycles in economic data,

1ow order stochastic or random difference equations do. .If the initial



condition of a deterministic difference equation is subjected to repeated
random shocks of a certain kind, there emerges the possibility of
persistent cycles of the kind seemingly infesting economic data. This
is an important idea in macroeconomics, and owes its origin to Slutsky
and Frisch. ﬁhese notes sketch the elements of that idea.

A basic building block is the serially uncorrelated random

process £, which satisfies

la E(et) = Q all t
2 2
1b E(E:t ) UE all t
le cov (et,et_s) = E(etet_s) =0 all t and all s # O

wheré E is the mathematical expectations operator. According to (L,
the mean of €, > which is zero for all t, and the variance of Ep» which
is OEZ for all t, both are independent of time, According to (lc), Et
is uncorrelated (i.e., has zero covariance) with itself lagged s = + 1,
+ 2,... times and is said to be "serially uncorrelated." The variate Et
is also said to be a "white noise.’ The schedule of covariances
E(EtEt_s) for s =0, + 1, + 2, ... is a function only of s, and not of t,
a characteristic called "covariance stationarity." The schedule of
covariances E(Etet_s) is called the ''covariogram'" of the £ process.
Notice that the covariogram, viewed as a function of s, is symmetric
about zero since E(EtEt_S) = E(EtEt+S), an implication of E(Etat_s)
depending only on s and not on t.

Now consider the random process Ve defined by

(a) y=Z_ b, €
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o (=]
where B(L) = j bjLJ, and where we assume ) b.2 <

§=0 3=0 J ’
a requirement needed to assure that the variance of y is finite. We
assume that the € process is 'white' and thus satisfies properties (1).
Equation (2) says that the y process is a one-sided moviné sum of a
white noise process, €.
We seek the covariogram of the y process, i.e., we seek the
values of cy(k) = E(ytyt_k) for all k. It will be convenient to obtain

the "covariance generating function" gy(z) which is defined by

, © .
(3) g,(2) ) c, ()2

o2 a0

The coefficient on zk in (3) is the k" lagged covariance, cy(k).

First notice that taking mathematical expectations on both

sides of (2) gives

o
E(y,) =} bJE(Et_.)
j=0 ’
= 0 for all t.

1t therefore follows that
cy(k) = E{(Yt-Eyt)(yt_k—Eyt_k)}
= Eyt'yt_k for all k.

Notice Ve - s

Ve *
Lo [e0]

vy, ., =} b.e_.) be .

e’ t-k j=OJtJb=0htkh
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crossproduct terms whose expectations are zero.

Thus

(4) cy(k) = EY ¥ 4 = §=0b3b3+k'

The covariance generating function is then

[=+]
k
g (z) =} z c_(k)
¥ - o b4
kCO
2 Z z )} b.b,
= +
O k:..m j::OJJk
(243
22 ¥ k
=T
£ k= j=0 beJ+k
[=+] aa
2 )y 7 k
gy(z) GE J=0 k= bjbj+kz .

Let h = j + k, so that k= h - j. Writing the above line in terms of

the index h then gives

oo o .
g (z) = 052 y . b.b 2
y ; j'h
=0 h=Q

oo o0
2y -3 h
g b,z z b,z .
£ ja0 ] h=0 °

The last equation gives the convenient expression
' 2. -1
(5) g (z) =0_"B(z )B(2)

(=]
where B(z ) = X b z , B{z) = Z b.zt.
j=0 4 j=0

Equation (5) gives the covariance generating function gy(z) in terms of

the bj’s of (2) and the variance UEZ of the white noise g.
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To take an example that illustrates the usefulness of (3},

consider the first order process

! . i
O A v Al <1
1=

. . . , 2
where, as always, £ is a white nolse process with variance GE . We have

1
B(L) =17t >

B(z) = i—:lx; =1+ Az + 1222 + ...

- 1
B(z 1) =3
1 - Az

=1+ lz_l + Azz-z + ...,

(Thus, B(z) is found by replacing L in B(L) by z.) So applying (5), we

have

(7 g,(z) = 092( ) _l— Az'l] (1 2 7\2)

From our experience with difference equations we know that the expression

(7) can be written as a sum

k. 0% K. o 277k
(8 g (2) = Tois +
y 1- rA ]_-—-)\z—l

where kl and k2 are certain constants. To find out what the constants

must be, notice that (8) implies
2 2 2
sy(Z) 0, k) (1+Az+r "2 +...)

+ ogzkz(z_l+)\z_2+lzz—3+. ),

so that ¢ (0) = k, O 2 and ¢ (1) = ¢ 2Ak =g zk
v £ ¥y £ 1 £

1 z'
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By direct computation using (6) we note that

2
o i2 o
2 2
Eyt = X A EEt = £ 3
i=0 1 -3
. .1 v -1 . ii-12
Ey v 1 = Ez AE s Z AR Ez AAT el 4
i=0 i=} i=1
2
© . g
== 0‘62 Az A(l—l)’z = —_E.._._...é.. .
i=] 1 -2

So for (8) to be correct, we require that

L2 (1 1A
€ l_kz + 1—A2
1-iz l—Az-l
I S WY e & Vil I Vi G
e 12 (1-Az) (1-Az~ 1)
2 1
= 0‘ y

€ (1-hz) (1-az" 1)

so that (8) and (7) are equivalent.
Expression (8) i1s the more convenient of the two expressions
since it yields quite directly,

-1
2 1 1 A
g (2) = 0 " —= | - ==
1-X -3z 1=}z
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2 1

2 _1 z2+...} + {)z +122_2+A3z_3+...} ].

(9) = 0 —= [{1+az+)
€ l‘lz

Thus, we have thét for the "geometric" process (6),
a2 [k

c (k) = —— A k=0,+1,42, ...
y 13

The covariance declines geometrically with increases in |k|. We require
A]<1 in order that the y process have a finite variance.:
To get this result more directly multiply Yo by Yei? k>0, to

obtain

= o+ .
Ye¥eck = Wee1Yek T EF ek

Taking expected values on both sides and noting that Egtyt_k = 0 gives

E(ytyt_k) ='AE(yt_lyt_k)

or
= k-1 k>0
cy(k) lcy( )
which implies
e (k) = A () k> 0
y ¥

As a second example, consider the second-order process

1 1
(10) Ve = (1—A1L)(1—A2L)€t’ [Atagl < 1

. . 2
where et is white noise with variance Oe

For (10) we have

1 1
B(L) = (1—le) (l—AZL}



1 1
B(z) = ( 1-X,2 ] 12,2 ]

B(z—l) .= ( 1 _1 )( 1 —]_ J'
l~llz l-lzz

Applying formula (5), we have that the covariance generating function is

2 1 1 1 1

(1) g (z) = 0 ° 7 ” - =
y ¢ {1 Klz) (1 lzz) (l-AlZ l) (l—lzz l)
Notice that (10) can be written
A A
1 1 2 1
Ve =7 oo (1o ee - (75 G50 =
LI 1 AlL ) t A Ay 1 )‘21' t
A 00 . A .
1 i 2 i
(12) Y, =770 Ay €y T T Ay Ey_g
t XAy fap P EL MTA fep T2 THR
For Yook k > 0, we have
py o A oo
1 i-k 2 i-k
(13) Yo o = = z A £ P S I A £ -1
t-k Al XZ {=k 1 t—-i Al AZ o 2 -1

Multiplying (12) and (13) together and taking expectations gives
2

, X § i A2 E R
CE(yy. ) =0 % {—2— A, A 4 — A A
T ek £ 2 1 M 3 2 "2
(A% =0 O A% 1=0
Ara ° i MM Y kb i
- 2 Al Az - 2 ) Ay J‘1}
(A=A =0 (A% =0
24k 24k
172 (12D (2-13) 12

k > 0.

So (14) and the symmetry of gy(z) suggests that the appropriate factorization

of (11) is



2 -1
2 A AqA A4Z
1 2 1 1h2 1 1
(15) g (z) = [(+= o5 - &) G55 )
v ["1 "2] 2 ((1-;&) SRS G ME 1t
2 -1
+ [-)\22 - iiizx ) 1—}\ + s 7)) -

1-2, 12 2% 1-},2

According to (14) and (15) the covarioéram of a y process
governed by the second-order process (10) consists of a weighted sum of
two geometric decay processes, the decay parameters being Al and Az, the
inverse roots of the polynomial (l—hlL)(l-lzL). Expression (14) implies
that the covariogram displays damped oscillations if the roots Al and

-1iw

A, are complex conjugates. This can be shown by substituting Al = re

2

and Az = re’” into (14), and proceeding to analyze (14) as we above
analyzed the solution of the deterministic {nonrandom) second order
difference equation. An alternative way to reach the same conclusion 1is

as follows. Mulfiply both sides of (10) by (1—A1L?(1—A2L) to get
(16) Ve Tt B2 &
where tl = (l1+A2) and t2 = —llkz. Multdiply (16) by Yok for k > 0 to
get
YeYeor = F1¥e-1Veke bt Vi t S ek

Since E Ety = 0, we have

t-k
E(Y, Yo = tlE(ytqut_k) + ey oV ) k>0

which shows that cy(k) obeys the difference equation

(17 cy(k) = tlcy(k—l) + tzcy(k—Z).



- 10 -

So the covariogram of a second (nth) order process obeys the solution to
the deterministic second (nth) order difference equation examined above.

In particular, corresponding to (17} we consider the polymomial

2

(18) 1- tlk -tk =0,

2
which has roots llkl and 1/A2. (We know that lhtlk—tzk equals
(l—klk)(l—lzk), with roots l/ll and l/lz.) Alternatively, multiply (18)

by ku to obtain

1

{(19) x° - t,x —t, =0 wherex =k .

Notice that the roots of (19) are the reciprocals of the roots of (18),
80 11 and Xz are the roots of (19).
The solution to the deterministic difference equation (17) is,

as we have seen,

k

k
1 z0 + lzz k>0

(20) e () = A X >

where zy and z, are certain constants chosen to make cy(O) and cy(l)
equal the proper guantities. If the roots ll and 12 are complex, we
know from our work with deterministic difference equations that (20)

becomes
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k k
= _r r
(21} cy(k) 20 oo w sin wk + 2| sin w cos wk
iw -iw .
where Al = re and AZ = re . Accordingly to (21), the covariogram

displays damped (we require v < 1) oscillations with angular frequency
w. A complete cycle occurs as wk goes from zero (k=0) to 2T (k=2T/w, if
that is possible). So the cycles in the covariogram occur with period
from peak to peak of 2m/w periods. The restrictions on tl and ty

needed to deliver complex roots and so an oscillatory covariogram can be
read directly from Figure 1 of "Notes on Difference Equations."

Figure 1 displays some realizations of second order processes
for various values of t1 and t2, values for which the roots are complex.
Notice the tendency of these series to cycle, but with a periodieity
that is somewhat variable from cycle to cycle.

The foregoing suggests one definition of the business cycle:

a series may be said to possess a "cycle" if its covariogram is charac-
terized by oscillations. The typical "length" of the cycle can be
measured by the number of perieds it takes for the covariogram to experi-
ence one full cycle. To be labelled a business cycle the cycle should
exceed a year in length. (Cycles of one year in length are termed

"seasonals.')
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The Spectrum

An alternative to the preceding definition of the business
cycle is based on the spectrum of the y process. ‘Recall the covariance
generating function of y defined in (3),

k
(3) 8, (2) =Z c (K)z .
k=w 7

For the process Y, = B(L)Et we have seen that

gy(z)_= B(z)B(z_l) 082 .

If we evaluate (3) at the value z = e-lw, we have

L)

(22) g (e =7 cy(k)e_iWk T w <.

y 0
Viewed as a function of angular frequency w, gy(e_lw) is called the

spectrum of y.

The spectrum gy(é_lw) is itself a covariance generating
function, which is hardly surprising. Given an expression for gy(eiw),

it is easy to recover the covariances cy(k). To see this, we multiply

(22) by e]'wrh and integrate with respect to w from -m to :

T
-iw iwh Z iw(h-k)
(23) {w g (e e I N O dw
o ™,
= Y c_{k) f elw(h_k)dw
k=-so T ~T
Now for h = k we have
™ L
I eiw(h_k)dw = J ldw = 2 7.

il =
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For h # k we have,

m _ T ™
f e1w(h k)dw = [ cos w (h-k)dw + 1 f sin w (h-k) dw
-7 - =
™ ul
= ~gsin w(h-k)] + i cos w (h-k)]
- -7

= 0,
Therefore (23) becomes
m ~1w, ivh
{ g (e ™e™¥aw = 2mc_(h).
I y

Thus multiplying the spectrum by eiwh and integrating from -7 to T gives
the hth lagged covariance times 27. In particular, notice that for

h = 0, we have

m -1iw

f g (e Ydw = 2Tc¢_(Q),

- ¥ y

m

so that the area under the spectrum from -7 to 7 equals 27 times the
variance of y. This fact motivates the interpretation of the spectrum
as a device for decomposing the variance of a series by frequency. The
portion of the variance of the series occurring between any two frequencies

is given by the area under the spectrum between those two frequencies.

Notice that from (22) we have

Yo=iw T -iwk
g (e ) = Em ey (k)
{34) = ¢ (0) + Z c (k)(eiWk+e_iWR)
y =1 Y

= cy(O) + 2 z;lcy(k) cos wk.
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Accordiﬁg to (34) the spectrum is real valued at each frequency, and is
obtained by multiplying the covariogram of y by a cosine function of the
frequency in question. Notice alsc that since cos X = COS -X, it follows

from (34) that

iw -iw
gy(e) gy(e )

so that the spectrum is symmetric about w=0.

Notice also that since cos (w+2wk) = cos (w), k=0, +1,
+2, ..., it follows that the spectrum is a periodic function of w with
period 2. Therefore we can confine our attention to the interval
[-m,m], or even [0,T] by virtue of the symmetry of thé spectrum about
w=0.

The fact that the spectrum can be viewed as decomposing the
variance of a series by frequency motivates our second definition of the
business cycle. A series is said to display a cycle of a given periodicity
if its spectrum possessés a peak at that periodicity. A series displays
a "business cycle" if that periodicity is of about three years. If a
peak occurs in a spectrum at a certain frequency, it indicates that a
relatively large amount of the variance of the series occurs (can be
explained by cosine functions) at that frequency. The sharper is the
peak in the spectrum, the more regular are the cycles gccurring in the
series.

To motivate further the interpretation of the spectrum as a
decomposition of variance by frequency, suppose that we have T observa-
tions on Yo t=0, 1, ..., T-1. Suppose that T is an even number. We
congider computing the following regression of y, on sine and cosine

*

T
functions of angular frequency wj = 2‘E:Lwhere j=0, 1, ..., T/2:
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T/2 T/2-1 2
(25) Yo = E;o o (wk) cos w, t + £=1 B (wk) sin w t, W = =5 -

There are T observations and T independent variables in (25). The

independent variables of (25) are mutually orthogonal. For we know that

cos wkt cos wjt + sin wkt sin wjt = oS (wk—wj)t

cos wkt cos wjt - sin wkt sin wjt = cos (wkﬁj)t .

Summing both equations and adding we have for ] #k

T-1 T-1 T-1
(26) 2 Z cos W, t cos w.t = z cos (wk-w.)t + Z cos (wk+w.)t
t=0 J t=0 1 =0 ]
= 0’
2r{(j+kot
since the angles (Wkiyj)t = T , t=0, 1, ..., T-1 are spaced evenly

about the circle in the fashion depicted in Figure . The angles
appear in pairs, w', w' + 7, so that for each cosine in the sum of angle
w', there is another offsetting cosine associated with the angle w'+ m,
From (26) it follows that

T-1

Y cos w, t cos wjt = 0, k # ]

t=0
- so that cos wkt and cos wjt are orthogonal. In a similar fashiomn, it

can be shown that

f-l %—l
sin w, t cos w_ .t = sin w, t sin w.t = 0 for j # k,
t=0 k . t=0 k ]

so that the independent variables are mutually orthogonal.

Where the independent variables are orthogonal, the (multi-
variate)‘least squares estimator of the regression coefficients is
jdentical with the vector of simple least squares estimates. These are

given by
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co W
¥y, cos t

2>

(w) =73 ; k=0,1,...T/2
cos w, t
t=0 k
(27)

yt sin w, t
t=0 k=1,2,...T/2-1
T-1 '

w2

(w) =
2

sin wkt

t=0

Notice that

-1 2 T-1
Z cos  w.t = E 1=7T
=0 t=0

T-1 -1 2
cos w = X cos (Tt) =T .
/2 (a0

and for k = 1, 2, -.., T/2 -1

T-1 2 T-1 2
wkt = X (cos 2 wkt+sin wkt) = Z sin wkt
t=0 _ t=0 t=0

T-1 2
= E {1-sin wkt)
t=0

which implies that
T-1 2 T-1 2
sin” w,t =) cos” w t=T/2 for k=1, 2, ..., T/2 - 1.
k k
t=0 t=0

Thus, (27) becomes

%-1
§ oy,

o (wo) = t=g

n 1 T-1 .
(28) & (wpyp) =L V(D)
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~ 2 T_l .

a () =51 vy, coswt K=1, 2, ..., T/2 -1
t=0

A 2 T-1

B (wk) = T-Z Ve sin W, t k=1, 2, ..., T/2 - 1.
t=0

Since (25) represents a regression of T observations on y against T
orthogonal independent variables (which guarantees tﬁat the X'X matrix

of the linear statistical model is of full rank), we know that the
regression fits the data exactly, i.e., it gives a perfect fit. So what
we have achieved is a decomposition of Ye {t=0, ..., T-1} into a weighted
sum of sine and cosine terms of angular frequencies W = E%E, k = 0,

..+, T/2. The least squares regression coefficients & (wk) and @ (wk)
give a measure of how important the various frequencies are in composing

the series y, . To make this more precise, notice that from (25), the

sample variance of the y's can be written

%—1
-1 yt 2 T-1
lz ( _.t_=_9_) _LZ (y. -a 2
y = y, - 0w}
TLo ot T T Lot 0
T/2-1 T-1 T/2-1 T-1
1 ~ 2 2 2 2
=={7 a(w, )° ) cos” (w,t) + ¥ B(w,)° )} sin“(w t)
T k=1 K =0 k k=1 k' oo k
T-1
~ 2 2
+ a(WTlﬁ) §=D cos (WT/Zt)},

which follows by virtue of the orthogonality of sires and cosines of

T-1
different frequencies. From our earlier calculations of Z cos2 W t
£=0 k
T-1 2
and E sin W b the above equation becomes
t=0
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T-1 T/2-1
1 e 21 A2 2
5 £=o o, - —5 ) =F 2 £=1 a“Cw) + BTw) ]
~ le-l ~ A A
+ T uz(Wle)} =-% - [az(wk) + Bz(wk) 1+ 2 uz(lez)}.

t=1
Thus, the term 1/2 [az(wk) + §2(wk)] measures the contribution of sime and
cogine terms of frequency LW to the sample variance of y.
To look at the coefficients a(wk) and g(wk) from a slightly

different perspective, consider the quantities

1Y e 1t 1 o1
(29) A(wk) =3 z y.e k =T Z ¥y, cos Wt +1iz X y,sin w, E
t=0 t=0 t=0
_ . vk, .
= a(wk) + 1b(wk) W T k=0, 1, ..., T-1
T-1 -1
where a(w,) -1 z y cos w t, b(w) -1 E y, sin w t
k T t-0 ¢ k™ k T i t k-’

The list of A(Wk)'s for k=0, 1, ..., T-1 is known as the Fourier
transform of the serles Y. {t=0, ..., T-1}.

Now consider the quantity

T-1
(30) JoAGw) - e "
k=0

-1
= Ecg (a(wk) + ib(wk))(cos wkt - 1 sin wkt)'

2 (T-k) _ 5

T T o~ = 2T — W, .

2Tk
T K

Notice that wT—k =

Since sin (x+27m) = sin (x) and cos (x+27) = cos x, it follows that
A(wk) = A(wk+2W). Furthermore, since -sin x = sin (-x) and cos (%)

= cos (=x), it follows that
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A(WT—k) = A(Zﬂ—wk) = A(—wk)

= a(-wk) + ib(—wk)

= a(wk) - ib(wk) = A(wk)

where A(Wk) is the complex conjugate of A(wk). Consequently, (30} can
be written as
T-1

-iw, t . ,
1230 A(wk)e k =(a(wT/2) + 1b(wT/2))(cos wTIZt - 1 sin WT/?.t)

- (a(wo) + ib(wo))(cos wot - i sin wot)

T/2-1
+ E (a(wk)+ib (wk)) {cos Wkt—-i sin wkt)
=0

T/2-1
+ E (a(wk)—ib (wk)) (cos wkt+i sin wkt‘)
=()

which, since sin Vi) = 0, equals

{31) - a(wo) + a(lez) cos (lezt)
T/2-1 T/2-1
+ 2 a(w,) cos w, t + 2 b(w,) sin w, t.
Lo k k %:FD k k

Comparing a(wk) and b(wk) with our earlier least squares estimates a(wk)

and g(wk) we notice that

: 1%’1 ~
a(w,) = = y, = aw,)
0 T L7t 0
W) = = o) k=1, 2 /2 - 1
a(wy 5 Vi s 2y aens

(32) ~
a(lez) = 0 (WT/Z)

bGw) =5 B () k

1, 2, ..., T/2 - L.
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Consequently (31) equals the least squares regression

EIZ . T/2-1
alw ) cos w t +§ G(w,) sin w t
k=0 K = k k

which we know equals Y. by virtue of the perfect fit of (25). We have
therefore prbved that

T-1

E A(wk)e-iwkt =y,
=) t

which is a theorem due to Fourier. The real and imaginary parts of
A(wk) = a(wk) + i b(wk) are (apart from a scaler for k =1, ..., T/2-1)
the regression coefficients in (25), as is summarized in (32).

A "natural" measure of the importance of the cosine and sine
of the frequency w, in composing Ve is the squared amplitude of A(w

k k)’
which is

A AW = |at) |
= (a(w, )+ib(w,)) (a(w )-ib(w,))
- az(wk)+b2 ) -

The higher is this quantity, the larger is the weight put on the sine
and cosine of frequency W in (25) in making up Yo As it turns out,
the quantity IA(wk)I2 can be used to estimate the value of the spectrum
of y at frequency w .

Consider the quantity

1 %—1 iw t g—l -iw,j
T A(w, JA(w, ) = = vy e y.e
| kT T fag't j=0 3
T T iwk(t—J)
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1 —iw, 1 —iw2 -iw(T-1)
= T Yolrgtyye K Hvpe T H . +¥p_1@ )

iwl -iwl -iw(T-2)
+ly1(y0e +y1+y2e + ... +yT_le )

‘ iw?2 iwl T-3
F Y, (yge " Hye Ay e Ay 1w(T-3),
+
- iw(T-2
+ YT_l(yoeiW(T Dyyelw(T-2), | +¥r_g)
T-1 T-1 T-1 iw § -iw j
2 1 k k
= = y. + = X y.¥ (e +e )
Tigo 't T §=1 Ly Tt e
T-1 T-1 T-1
— 1 2 1
TAG A ) == 3 vy +z L L vy, _,2coswj.
k k T =0 t T 5=1  t=j tt-j k

We are taking the view that Ve {t=0,1, ..., T-1 } is . the realization
of a random process, so that it is appropriate to inquire about the
expected value of TA(wk)Af;;T, which is a random variable itself, being
a function of the random yt's. Taking expec;ed values on both sides of

the above equation gives
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ETA(wk)A(wk) = ET(az(wk)+b2(Wk))

T-1 1 T-1 .
= cy(Q) + 2 §=1 3 sz E(ytyt~j) cos W j
o -1
(33) ETAQw)AG) = ¢ (0) + 2 JZ=1 (l—;Jr-)cy(j) cos w j.
Recall that the spectrum of y is
—iwk o
gy(e ) = cy(O) + 2 §=1 cy(j) cos wkj.

Now as T > », the term 1 - j/T + 1 for fixed j. Thus if cy(j) approaches
zero fast enough as j + %, we have that
o -iw
ETA(w )ACe ) + g (e )
for all frequencies 2R (not just those for which W, = 21k/T, integer k).
(It is possible to show that for any T,
-iw

ETA(wk)K?G;7 = gy(e ")

for w, = 2mk/T, k an integer. See, e.g., Melvin Hinich, "Introduction

k
to Fourier Analysis of Data," Center for Naval Analyses, 1969, p. 22.)
We have thus showed that the variable (az(wk)+b2(wk)) bears an
intimatre relation to the spectrum. The quantities (az(wk)+b2(wk)) are
called periodogram ordinates, and a graph of them for various v against
W is known asg the periodogram. (In fact computing the periodogram is
where one often begins on the way to estimating a spectrum.) It is the
relation of the quantities a(wk) and b(wk) to the regresaion (25) of Ve
on sines and cbsines, on the one hand, and to the spectrum of y on the

other hand, that motivates the interpretation of the spectrum as a

decomposition of the variance of y by frequency.
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Let us examine the spectra of some simple processes. First

coneider the white nolse process

. 2
€, white so that cy(O) =g cy(h) = (O for h # 0.

For this process the covariance generating function is simply
2
z) =0
_gy() c
so that the spectrum is
g (e ) =0_, -1 < W<

so that the spectrum is flat, as depicted in Figure 3, and equals

2 .
o, at each frequency. Notice that

T
[ e e aw =2 o’
b4 €
_rn’
as expected. So a white noise has a flat spectrum, indicating that all
frequencies between ~T and ™ are equally important in accounting for its

variance.

Next consider the first order process

1
vy =B e, = 101 S -1< A< 1.

For this process the covariance generating function is

1_12)( 1 ) c 2'
1-)

gy(Z) = ( 1 %

Therefore the spectrum is



By

Notice that

d
g (w)
dw

(e-iw)

1
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1 2

1

) (

iw) Oe

1- Je

(1—2A(eiw+e—iw) +a2)

1

(w) =
gy 1—2}\cosw+)\2

= - {1-2)cos w + 12)_2(2A sin w) .

The first term in parenthesis is positive. Since sin w » 0 for

0D < w < T, the second term is negative on (0,7} if A < 0 and positive on

(0,7] if A>0.

Therefore 1f A > 0, the spectrum decreases on (0,T] as w

increases; if A < 0, the spectrum increases on (0,7] as w increases.

Ao

/

{

New

//,,z”

nfw = 2n/m = 2 periods.

Thus if }» > 0, low frequencies (i.e.,
low values of w) are relatively
important in composing the variance

of w, while if A < 0, high frequencies
are the more important. It is easy

to verify that the higher in absolute
value is A, the steeper is the spectrum.
Notice that the first order process

can have a peak in its spectrum only

at w=0 or w=tm. A peak at w=T

corresponds to a periodicity of

A peak at w=0, corresponds to a cycle with

Minfinite" periodicity, which is unobservable and hence not a cycle at all.

¢
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With quarterly data, a business cycle corresponds to a peak in
the spectrum at a periodicity of about 12 quarters. A first order
process is capable of having a peak only at two quarters or at "infinite"
quarters, and so 1s not capable of rationalizing a business cycle in the
sense of a peak in the spectrum at about 12 quarters. As we saw above,

a first order process camnot possess a covariogram with a periodicity
other than two periods, and so with quarterly data cannot rationalize a
business cycle in the sense of an oscillatory covariogram.

Next consider the second order process

B S
r 2 t’
1-tlL—t2L

€, white noise. For this process the covariance generating function is

g (z) = —L1 —— . 1 ¢ 2
y —t.z-t. 22 bzl g2 e
1 tlz t2z 1 tlz tzz

Therefore the spectrum of the process 1is

g (e—iw) - 1 1 s 2
b4 _ -iw_ -2iw _ iw_ 2iw £
1 tle tze 1 tle t2e
o 2
£
2. 2 iw, -iw -2iw, 2iw
1+t1+t2+(t:2t1—t1)( +e )-tz( +e" )
2 2
, 2,2 )
1+t1+t2-2t1(l-t2) cos w-—2t2 cos 2w h(w)

Differentiating with respect to w, we have

'dgy(e”iw)

2 -2, .
v -UE h(w) (2t1(1—t2) sin w + 4t2 sin 2w)

+ -oezh(w)—z(z sin w * [t (1-t,)+4t, cos w]).
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We know that h(w) > 0. For the above derivative to be zero at a w
belonging to (0, 7), we must have the term in brackets equal to zero:

Fl(l—tZ) + Atz cos w =10

or
-t,{1-t.)
(35) Cos W = _.i-__,.._z_
t2
so that
_ -t (1-t,)
(35") w = cos L ( -%?"-310
ty

Equation (35) can be satisfied only if

—tl(l-tz)
4t

2

(36) | | <1,

since |cos x| < 1 for all x. If (36) is met, the spectrum of y does
achieve a maximum on (0,7). Condition (36) is slightly more restrictiye
than the condition that the roots of the deterministic difference equation
be complex so that the covariogram display oscillations. Let us write
(36) as

—cl(l-tz)

(37) -1< “*‘ZE;——~ < 1.

The boundaries of the rvegion (37) are
(38) —tl(l-tz) = Atz
and

{39) : —tl(14t2) = —4t2 .
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The points (tl, tz) = (0,0) appear on both boundaries, while the point
(tl’ t2) = (2, -1) appears on (38) and (tl, tz) = (-2, -1) appears on

(39). Differentiating (38) implicitly with respect to t; gives

dt tz—l

so that along (38)

%) ._1
dt1 4
t =‘t2'—'0

and

pifferentiating (39) with respect to t, gives

dt2 l—t1

dtl 4+tl

so that alomg (39)

d2 L1
dt.’ 4
1 t,=t,=0
1 72
dt
2
dtl) =],
t.=-2
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Such calculations show that the boundaries of region (37) are as depicted
in Figure 4. To be in region (37) with t, < 1 (a requirement of covari-
ance stationarity) implies that the roots of the difference equation are
complex. However, complex roots don't imply that (37) is satisfied.
Consequently, our two definitions of the business cycle aren't quite

equivalent.

The "Slutsky Effect" and Kuznets' Transformation
In the above examples, we have seen that if
(40) Yo = B(L)Et,

where € is white noise, then the spectrum of y is related to the spectrum

of €, by
g (e = B ™B™) o
vy £
or
—iw -iw iw -iw
(41} gy(e ) = B(e )B(e g (e )
since for the white noise g, gy(e_iw) = 062. It is straightforward to

show that for any €> not necessarily a white one, affecting y via (40},
the spectrum of y is related to the spectrum of € by (41). Thus assume

that y is related to X by

q
(42) Ve = E,_p bX . = B(L)xt p>0,q9>0

and that the spectrum of X is defined. From (42) we know that
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q q
yth_j = £=—p bsxt—s gz_p brxt-j-r

q q
=3 ) bsbrxt—sxt-j—r'
s=-p T=-p

Taking expected values on both sides gives
e, = Elyy, ) =] ) bgb.c (jtr-s).
§=-p T=-p
The spectrum of y is defined as

o

-iw -iwk
= k
g (e ) £=_w cy( Je
-] w <) fwk
(43) = ) ¥ ) b_b_c_(k+tr-s)e V<,
r s x
k=—co S=-p r=-p

Dgfine the index h k+r -5, so that k = h - r + s, Notice that

(44) e_1WR = e—iw(h—r+s) = E—iwhe—iwseiwr .

Substituting (44) into (43) gives

» q q » » >
gy(e 1w) _ z breiwr z bse iws z cx(h)e iwh
r=-~p =-p h=
4 g e = BB g (e
or
-iw —iw 2 -iw
g (e ) = [Be ) | g le ),

which shows that the spectrum of the "output" y equals the spectrum of
the "input” x multiplied by the real number B(elw)B(e_lw).
‘Relation (45) can be used to show the famous "Slutsky" effect.

Slutsky considered the effects of starting with a white noise et,
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taking a 2 pericd moving¢éum n times, and then taking first differences

m times. That is, Slutsky considered forming the series

Z, = (WL)(WL)...(HLye, = (1) e,
and

y, = (LD ... A-DZ, = (1-1)"z,
ey oy, = WAL,

Applying €45) to (46) we have

m
g
e

n n m .
gy(e—iw) - (1+eiw) (1+e-iw) (1_eiw) (1_e-1w) 2

iw, .2

. n
(e (e )] (- -1 o

. n m
[+ Ve )1 [(2-(eM+e ™)) oEZ

(e™H¥)

(47) g = 0E22n[1+cos W]t 2 m[l—cos w]® .

Consider first the special case where m = n. Then (47) becomes

-iw n
g (e )

=g 24n[l- cos2 w])
y £

2n, . 2 "
(48) =0 4 [sin” w]
On [0,mw], Fhe spectrum of y has a peak, at w = 1/2, since there

sin w = 1, Notice that since sin w < 1, (48) implies that as n becomes
large, the peak in the spectrum of y at 7/2 becomes sharp. In the
limit, as n > «, the spectrum of y becomes a "gpike" at n/2, which means

that y behaves 1like a cosine of angular frequency w/2.
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gimilar behavior results for fixed m/n as n becomes large
where m # n. Consider (47) and set dgy(e-iw)ldw equal to zero in order

to 1ocaté the peak in the spectrum:

dg m n-1
551'2 0522m+“{ n[l-cos w] [ltcos w] (~sin w)
m-1 n

+ m{l-cos w) (sin w)[1+cos w} }
m-1
= 0622m+n sin w {(1-cos W) (1+cos w)n 1)

« [m(l+cos w)-n(l-cos w)] }.

This expression can equal zero on (0,m) only if the expression in brackets

equals zero:
mn(1l+cos w)-n(l-cos w) = 0

which implies

1 - B
n
cOS W = — .
1+2
n
or
-1,1-m/n
W = COS (l+m/n)

which tells us the frequency at which the spectrum of y attains a peak.
For fixed m/n, the spectrum of y approaches a spike as n + «. This
means that as n=>=, y tends to behave more and more like a cosine of
angular frequency cos_l((l—m/n)/(l+m/n)).

. What Slutsky showed, then, is that by successively summing and
then successively differencing a serially uncorrelated or "white noise"

process E_, a series with "cycles" is obtained.
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Another use of (45) is in the analysis of transformations
that have been applied to data. An example is Howrey's analysis of the
transformations used by Kuznets. Data constructed by Kuznets have been
inspected to verify the existence of "long swings," long cycles in
economic activity of arocund twenty years. Before analysis, however,
Kuznets subjected the data to two transformation;. First, he took a

five year moving average:

1 -2..-1 2 -
Zt R [L "+L "+14+L+L ]Xt = A(L)Xt.

Then he took the centered first difference of the (nonoverlapping) five

yvear moving average:

y, =42

-5 _5
t 5 = Ze-s (L "-v71z, = B(LZ, .

So we have that the y's are related to the X's by

l-+1+L+Lz]xt

Y, =% w22
= A(L)B(LX, -

The spectrum of y is related to the spectrum of X by

_ -1 . _ »
) g T = A AEBET)BE g, T -
We have
2 .. iw2  -iw3
A(e-iw) - %_ Z Bt % (e -Eiw ) .
j=-2 T (e )

Thus,
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1.2, iw2 -iw3 -iw2 iw3
A(e_iw)A(eiw) _ (g) (e ¢ )(e —e )
(- (1-e™)
(%)2(2_(eiw5+e-iw5))
= (2_(eiw+e—iw))
(%)-22(1—0-08 5w) (%)Z(I-COS 5w)
= 2(1l-cos w) = (1-cos w)
Next, we have
B(ehiw) - (e+iw5_e—iw5)
so that
B( —iw)B( 1w) (eiw5 iw5)(e—iw5_eiw5)
= (2= 110y = 5(1-cos 10w).

So it follows from (49) that

1.2
. (e_iw) ) {Gg) (1-cos 5w)2

y (l1-cos w)

(1-cos 10 w)] gx(e‘iw)
= a(e M.

1
where G(w) = 2{(5)2(l—cos 5w) (l~cos 10w)/(1l-cos w)}.
The term G(w) is graphed in Figure __ . It has zeroes at values where
cos 5w = 1 and where cos 10w = 1. The first condition occurs on fo,m]

where
5w = 0, 27, 4T,

or
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The condition cos 10w = 1 ¢a {0,7] where
10w = 0, 2w, 4w, 6m, 8w, 10T

or

w= 0, %ﬂ, %ﬁ, %ﬂ, and .

So G(w) has zeroes at w = 0, w/5, 2/5W, 37/5, 4mf5, and T.

From the graph of G(w), it follows that even if Xt is a white
noise, a y series generated by applying Kuznets' transformations will
Have a large peak at a low frequency, and hence will seem to be
characterized by "long swings." These long swings are clearly
a statistical artifact; that is, they are something induced in the
data by the transformation applied and not really a characteristic
of the economig system. With annual data, the biggest peak in Figure
corresponds to a cycle of about 20 1/4 years which is close to the
20 year cycle found by Kuznets. Howrey's observations naturally
raise questions about the authenticity of the long swings identified

by studying the data used by Kuznets.
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