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ABSTRACT

This paper constructs a model with two structural equations: the
Government budget constraint and a linear version of Cagan's
portfolio balance equation. The model contains a continuum of
equilibria with "sunspot equilibria." Closed forms for the solu-
tions are found. Even though there is a continuum of equilibria,
the model is overidentified econometrically, so that the model
restricts time series data on price levels and currency stocks,
We describe how the free parameters of the model can be estimated,
including some parameters that serve to index particular members
of the continuum of equilibria. the sunspot equilibria hold out
some promise of explaining anomalies in the observed behavior of
inflation and real balances during hyperinflations.
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1, Introduction

In Sargent and Wallace [1973], we created a rational
expectations model of the bivariate 1nflation-money creation
process 1ty solving the M"inverse optimsl predictor problem" for
Cagan's [1956] adaptive expectations scheme. Our model was con-
structed Yy working backwards and finding a bivariaste process for
inflation and money creation that implied both that Cagan's port-
folio balance equation held and that adaptive expectationz were
rational.}_/ That model is "successful" in several ways. First,
the model explains the pattern of Granger causality in Cagan's
data, in which inflation Granger causes money creation, but not
vice versa, Second, a version of the model prediets the pattern of
correlations scrogs countries between Cagan's estimates of A and a
(see Sargent and Wellace [1973]). Third, the model predicts that
the residuals in the regression equation fit by Cagan will he
random walks, which explains the very high serial correlation that
Cagan actually encountered (see Sargent [1977]). Fourth, the model
predicts a pattern of results obtained by Rodney Jacobs [1975]
when he reversed the direction of regression in Cagan's eguation
(see Sargent [1976]).

Against these "successes," the Sargent-Wallace model
suffers some notable "failures." First, the model implies that
both inflation and resl balances will behave like processes with
the highest autoregressive root being unity, so that while both
may drift, they would not be expected to move systematically in
one direction over time, However, for 2ix out of the seven hyper~

inflations studied Yy Cagan, there is a noticeable tendency for
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real balances to fall and inflation to rise during the course of
the hyperinfletion. Figures la-lg graph the data. The apparent
exception to this general tendency is Russia, The original Bar-
gent-¥allace model does not explain this general pattern.

Second, there is a long-standing claim, which Cagan's
egtimates in his Figure 9 support, that the hyperinflations even-
tually proceeded at rates of inflation that exceeded the selignor-
age-maximizing stationary average inflation rates. (Again, Bussia
geems to be an exception to the geneml pattern in Cagan's ta-
ble.) Our original model doesn't shed any light on this phenom-
enon,

Third, the model is weak in terms of economic motivation
because it posits a stochastic process for money creation that was
discovered on the statisticsl grounds that it solved the inverse
optiml predictor problem. We argued informally that the exten-~
give feedback from inflation to money creation embodied in this
stochastic process might be interpreted as reflecting a feedback
from prices through the government's tudget constraint that would
arise if the government were to attempt to finance a constant
deficit through money creation. This heuristic argument is in-
sufficient to permit interpreting the money creation process of
the model in terms of economic parameters appearing in the govern-
ment's budget constraint.

This paper describes a model that is designed to account
for the two anomalous patterns in the data. The model explicitly
incorporates a version of the governwent's budget constraint. The

model consists of two linear expectational stochastiec difference
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equations. ‘The #first equation is a linear version of Cagan's
portfolio balance equation under rational expectations and swmma-
rizes behavior of the public. The second equation is the govern-
ment 's budpet constraint with a particular and convenient parame-
terization of the part of the real government deficit that the
government chooses to finance hy creating base money. An equilib-
rium of the model is a solution of these two equations. The model
possesses what Stanley Fischer [1983] has aptly dubbed a "slippery
side of the Laffer curve.” This feature of the model iz the key
in giving it the potential t¢ account for the two aforementioned
puzzles in the data. Equilibria of the model potentially possess
two autoregressive roots, one larger Ithan the other and each
larger than unity, which correspond to the two stationary average
gross inflation rates that would finance the average real govern-
ment deficit. That there are two such stationary inflation rates
(or tax rates on currency) that finance the deficit is a reflec-
tion of the Laffer curve. In time series generated by thisz model,
the higher root will normally come to dominate as time passes.,
Moeong such paths, real balances gradually fall and inflation
gradually rises on average. Furthermore, the Iinflation rate
usually ends up exceeding the seignorage-maximizing rate of infla-
tion.

In constructing and using our model, a number of techni-
cal issues had to be confronted. These issues are of interest in
thelr own right, since they occur in a variety of other contexts.
Among the issues encountered are the following ones: {a) unique-

nesg issues involving the connection bhetween, on the one hand, the
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dimensionality of the equilibria that can be represented as de-
pending on square summgble I1inear combinations of current and
lagged wvalues of Innovations to "fundamental" forcing variables;
and, on the other hand, the dimensionality of additional solutions
depending on M"spurious I1ndicators™ (or sunspots); (b) the proper
egtimetion of a model in which there are restrictions across the
parameters of dinitial conditions, the exponentially growing co-
efficients on trend terme, and the remaining parameters in moving
averages of white noises; (c¢) proper econometric identification
and egtimation of a model in which a "spurious indicator" mey be
impinging on the solution; (d) delineation of the econometric
information and operating rules for the government that would be
required in order to rule out or to correct nonoptimlities asso-
ciated with "spurious indiecator™ equilibria,

The present peper confronts the preceding issues, and
deduces the restrictlionts that our model places on time series
data. A planned sequel to this paper will contain egtimates of
the model from +time sgeries drawn from various hyperinflationary

episodes,
2. The Model

Our model 1z a stochastic verslon of the nonrandom one
that we analyzed in our earlier paper [1981]. It is useful
briefly to begin Wy reviewing that model, which consisted of the

two equations

{0a) p(t) = ap{t+1) + vh(x)
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=

(ob) h(t) = Tom h{t-1) + Ep(t)

where 0 < A < 1, v > 0, and where p(t) is the price level at t,
h(t) is per capita nominal balances at %, £ is the constant real
government deficit per capits that mist be financed by printing

new base money, and n 1s the rate of growth of the economy, as-

. Arl 1
sumed constant. Tt is assumed that 0 < § <o [1+n + 35

2/1/(1+n)A| = &max, where £max is the maximl constant deficit

which it is feasidle to finance through seignorage. Equation (0a)
is a linear wversion of Cagan's portfolio balance equation, while
(Ob) is the government's budget constraint. The system is imag-
ined to run over the peried t # 1, ..., and to be subject to a
single initial condition for h(0). There is no initial condition
for the pric-e 1evei p(1), it being the job of the model to deter-
mine a price path for p(t), t » 1, Letting n(t+i) = p{t+1) /p(t),
Sargent and Wallace éhowed that (0a) and (Ob) imply the difference

eguation
w(t+1) = 8 - (1/(1+)2)/x(t)
vhere $ = (La(14n)~t-gy/2).

The preceding eguation is graphed in Figure 2, which is taken from
Sargent and Wallace [1981]. Evidently, there are two stationary
points #, and ¥, thet satisfy (1) < *y < My < 3~l.,  These
stationary points correspond to two alternative stationary levels
of the gross inflation rate p(t+1)/p{(t) that satisfy portfolio
balance and that finance a constant per capita real deficit of
E. Alternatively, direct calculations on (0) show that the solu-~

tion is
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p(t) -y 1 - 2w, "
= 11'1 -+ 11’2
h{t) Jq Is

vhere Jp and J, are chosen to satisfy the initlal condition for
h(0}., The absence of an initial condition for p(l) means that
there is a wvarlety of cholces of (J1=J2) pairs that work, each
implying a different value for p(l) but satisfying the initial
condition for h(0). FEvidently, unless Jds = 0 (vhich corresponds
to a choice of p(1) that starts the system at w; in Figure 2), the
gross inflation rate converges to 7, as t + ». Figure 2 and the
preceding equation both embody the "slippery side of the Iaffer
curve,” There is a contimuum of equilibrié, indexed Yy either J,
or the initial infletion rate w(0} or ﬁhe initial price level
p(l). All of the equilibria but one slide toward the higher of
the two sustained gross inflation rates w4 and w, that will fi-
nance the deficit, Mong all of these "slippery" paths, the
inflation rate increases over time, while real balances fall.
Also, along these paths, the inflation rate eventually exceeds the
revemue-maximizing rate., It is these features of these paths that
seem potentially +to give a wversion of our model the abillty to
match the anomalous facts cited at the beginning of this paper.
Our concern now is to study how such nonuniqueness
gurfaces in a stochastic version of the model, Our reasons for
studying a stochastic version of the model are, first, that we
want an econometrically implementable version of the model; and
second, that presence of iaperfect foresight by itself creates the

possibility of additional equilibria that are random.
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We now study the systenm
(1)(a)  plt) = AEp{t+1) + yh(t) + u(t)
(b) Mt)=T%4ﬂb4)+Eﬂt)+s&L

where 0 <A <1, Y>>0, n>»0, £ >0, and where (u(t),e(t)) iz a
stochastic process with means of zero. We shall begin our analy-
gis of the gystem at t = 1. As & normlization, we shall assume
that (u(s),e(s)) = 0 for & < 0, and shall take h(0) as an initial
condition. TFor t » ."1,‘ we assume that (u{t),e{t)) has a moving

average representation of the form

'wlét);

u(t) All(t) 0
(2) = . W2(t) 2
e(e)/ | 0 ay(L) 0 w3(‘t) '

where a;7(L) and ayp(L) are each polynomials in the lag operator
that are one-sided in nonnegative powers of I, a.nd‘wl(t) =ult) -
F,_1 ult), wolt) = e(t) ~ Fy_y e(t). These last equalities imply
that w)(t) is a white noise that is fundamental for u(t) and that
w2(t) is a white noise that is fundamental for e(t). In (2),
w3(t) iz a serially uncorrelated random process of mean zero that
is uncorrelsted at all leads and lags with wy(8) and wy(s). In

particular, we assume that

o0 (&) opa(t)

T _ _
(3) E wit)wlt-s) = 012(1:) 622(1:) 0 for s = 0
0 0 033(1:)
0 o 0
= {0 0 O for 8 ¥ 0,
0 0 0
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where w(t)T = (wl(t),v2(t),w3(t))T. For purposes of estimation,
we would impose more structure on Be(t)w(t)T, In particular, we

might eventually assume a version of
(4) Be(t)w(t)T = u® v

where y is a positive scalar, and V a positive semidefinite (3x3)
matrix with a pattern of zeroes conforming with (3).

In (2), v3(t) plays the role of a "spuriocus" indicator
that will be permitted to influence the solution for (p(t),h{(t)),
but which has no in%luence on the "fundamemtals™ u(t) and elt),
the disturbances to portfolio balance and the nominal defileit,
respectively.g/ The agents in the model are suppesed at time t to
see {Wl(B),Wa(S),WB(S),E’»:l,..-,t;p(l),h(O)}.‘. Equivalently, the
agents see {u(s),s(s),w3(s),a=l,...,‘t;p(l),h(O)}.“ The econometri-
cian will be imagined to possess a record of {p(t), h{t), t=1,
vses T}, from which he tries to estimate the structure.

The entire class of solutions of t'he pair of stochastic

difference equations (1)} can be represented in the form

(5) p(t) = ALI(6) + woF) + 1o,
n(t) = g(L)w(t) + wle + 1{;.12, £ 51

where d{L) and g(L) are each particular 1x3 polynomials in non-
negative powers of L; Fy, F,, Jy, and J, are particular random
variables that represent the initial condition; and wy and #y are
the same stationary inflation rates mentioned in the introduction.

The Jj 's are related to the initial condition for h(0) as follows:



(6) n(0) = Jy + Jp.

The parameters Fl and F2 can be thought of as determin-
ing an initlel price level p(0) = Fq + F,, which is regarded not
as an Initial condition given to the analyst, Wut as a random
variable representing one dimension of the contimuum of possible
equilibrium stochastic processes,

To be a solution, d{L) and g(L) mist satisfy a set of
restrictions as must also Fy and J9, and Fy and Jdoe  Given aur
assumption that at t, agents ‘gee {wy(s),wn(e) ,wgls),e=1,..00, 8
p{1),h(0)}, Wiener-Kolmogorov prediétion formlas for moving
averages in terms of the w(t)'s hold for agents' expectations.
Cross-equation restrictions in (5) can be derived ty assuming (5)
to be correct, then eapplying the W:i.ener—-l{olmolgorov prediction
theory to (5), substituting the results into (1) fa.nd solving for

the restrictions.-g—/ After meny computations, this process leads

to the followlng concrete version of (5)

1., -1
- plt)| S5l (1- —l—;n-L)(an(L)-AdolL )s
I G A Y " ) -1
h(t) 1 2 E(all(L)—-ld(nL ),
1 -1 -1 1 w., (t)
-(1- —f_;ﬁL)AdmL +Ya22(L),~ldo3L (1~ —1—+EL) wl(t)
=1 -1 -1 2
~EAd gL + a22(L)(1-}LL ), _gAdO3L w3(t)
“rJl Yd,
t+ [1 - Ax t |1 -
+ '1 1 + 1'2 2 .
Iy o
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In (T}, (dg1,dg2.dg3) = dgs the vector of coefficlemts on 1% in
d(L). The parameters L and T, are reciprocals of the zeroes of

the characteristic polynomial of the deterministic part of system

. 1 1 1 2
(1).  Thet is, (wy,7p) setisfy (1“(I+TE'{£)L+ Tt ) =

{1-7yL)(1-m,L), and are given by

(8) Tys Ty = T (1) gy a) 4

YO ta( 1)t %1)2-&/(14-11 Jal/e.

. . a1l L1
This formula implies that when 0 < E < Epp = -Y—[T;n—+1-..

2#1—(%57], (14m)-1 < T < omy < A=l that when £ = o0, % =
(1+n)"l, Wo = A~L: and that when £ = E g '1 =y = v/(l+n)"l;\'1.
Here £ ., 1s the maximl value for the real deficlt that is feasl-
ble.

Equation (7) represents the entire class of solutions of
the stochastic difference equations (1) and (2), so far ss their
second moments are concerned. Bguation (7) represents a solution
of {1} and (2) for any velues of the parameters dgq, dgo» dg3> I
and Jo. There is thus a multidimensional contimuum of solntions
to (1) and (3), a contimium that is conveniently indexed hy the
list of parameters (dgp,dgn,dg3.Jp). In indexing things in this
wgy, we are regarding the setting of Jq as reflecting a "choice of
units:" note that variations in J; affect the entire time paths
of p(t) and h{t) proportionately.

From the form of solution (7), it is evident that in
general the (p(t),h{t)) process becomes of mean exponential order
%5, Components of mean exponential order w, are "activated” in

tWo Ways. First, 1if J2 # 0, then the final term, which is a
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congtant times x;, occurg in the solution. Second, the presence
of (1-12L) in %he denominators of the polynomials operating on
each component of (wl(t),w2(t),w3(t)) implies that in general
nonzero values of the random variables wy(t), wo(t), w3(t) will
cause (p(t),h(t)) to become of mean exponential order wo.

Notice that in general the spurious indicator w3(t)
occurs in the solution for (p(t),h(t)) so long as dg3 # 0, and
that it gives rise to a component of mean exponential order wo.
The moving average in w3(t) appears in the solution despite the
fact that it influences Ineither of the "Pundamentals' ult) or
e{t). In connection with this spurious indicator, there is a
technical question sbout how we measure the extent of the mlti-
plicity of solutions that is introduced hy the freedom to meke
solutions depend on spurious Indicators. As the reader can ver-
ify, moving averages in any number of "spurious" white noises
wh(t), ws(t), ves, cAN be aéded to the solution (7), so long as

the moving average polynomials on each such white noise are pro-

portional to those on wg(t); e.g., the polynomials on w,(t) mst

be given Wy
-1 1 T
Al =gyl (1- 1+n )
(1-%,L)(1-7,L) _Eldth-l

This means that given s particular w3(t) process, so far as sample
paths are concerned, an indefinite mimber of additional solutions
can be generated YWy adding moving averages in additional spuriocus
indicators. However, each of these additional solutions will have

population second moments that can be completely represented by
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equation (7) with Ew3(t)2 = 033(1:) chosen appropriately. This
means that so far ss concerns their second moments, all of these
additional solutions are observationally equivalent with the
solution that we have represemted in (7). In this sense, the
possibility of adding spurious indicators adds a one-dimensional
multipliclty of Bolutions...lf'-/

For simplicity, we now focus on the special case in
which ay;{L) = 1, aps(L) = 1, 8o that both u(t) end e(t) are white
noises. Now within the entire class of solutions given ty (7),
there is a singular solution which is of  exponential order w;.
This particular solution emerges when (dOl’dOQ’dOS’JE) are ge-
lected s0 as to deactivate the 7o mode of this system. This is
accomplished by setting J, = O, dgg = 0, and by selecting d;; and
dgo 80 that a multiplicative factor of (L-¥,L) appears in each of
the mumerator terms in tlhg moving average polynomials operating on

wi(t) and wp(t), respectively. The values of dgy, and dyo that

accorplish this are given hy

(9) dOl = 1/A“2
4. = ~y(14n)
02 " A (1-w2(1+n3 )
dog = O
J2 = (1,

When (dp;,dgp.dg3sTp) are set at the values given W (9), the

solution (7) simplifies to
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o )] | gk, () /(e (1)) [ 6)
10 = 2
nte)| ) ey, & - (Er(Len))/(1omy(1em)) | [wylt)
Jl‘Y
+ 1= Mrl t
Jl "

In this solution, there appears no spurions indicator. Evidently,
the solution is of mean exponential order wq. Unless the param-
eters (dgy,dpo,dgz.Jdn) satisfy (9), the solution is of mean expo-—
nential order #o.

‘Some observations are in order sbout Interpreting the
multiplicity of solutions that we have described. Cne way to
interpret this mltiplicity of equilibria Is as reflecting the
incompleteness of the "feedback law" (1b) as a description of the
evolution of h(t). According to (1b), the monetary authority
simply oprints whatever new mﬂey ig required +to opurchase
le+e(t)/p(t)] goods per capita at the ruling price level p(t).
This 1s an easy rule:to implemt?nt, requiring little informetion
about the economy, only the real amount of goods to be purchased
and the price level, Furthermore, following this rule assures
that the budget is financed.

An alternative way to have set up the model would be as
follows. We could have imagined the monetary authority as having
selected a contingency plan for the per capita money supply of the

form

(1) n(s) = g(L)wlt) + I x0 + T,
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subject to the restrictions that portfolic balance prevails and
that the government Tdget constraint be satisfied, i.e., that
(12) and (1b) hold. 'These restrict h(t) to obey a law given by
the second row of (7), namely

N
(l-wlL)(1-12L)

(12) n(t) = [E(1ha g 1w (8)=(BAa g B

(1-AL-1)}we(t)—éldojL_lWS(t)] + Jlﬁi + Jeug.

Equation (12) represents the class of rules or strategies of class
(11) among which it is feasible for‘ thé monetary authority to
choose, The monetary authority's choice among such rules amounts
to its choosing values of (d01= doos d03, and ng). If the mone-
tary authority has enough information, it is possible for it to
select these parameters so that (9) is satisfied, thereby imple-
menting the singular equilibrium described in (lO‘I). Notice that
to formulate policy in this way, the authority has to know the
parameters of +the model, and to observe current and lagged
(wi(t),wolt)). To execute (1b), the authority needs mich less
information,

From this viewpoint, it seems that if a specification of
a policy means specification of & strategy of form {11), then the
equilibrium is unique. It also mekes sense that uniqueness wvan-
ishes when policy is specified in the less restrictive way repre-
sented iy (1b). In a way, this example illustrates a general
point, namely the importance of the specification of strategy
spaces in influencing matters of existence and uniqueness of

equilibria.
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However, the claim for uniqueness of equilibrium under a
policy of the form (12) is somewhat artificial because it hinges
eritically on our having defined an equilibrium as a stochastic
process h{t), p{t) thaet satisfies both (1a) and (1b}. In particu-
lar, by requiring that (1b} be satisfied, we are insisting that
the seignorage raised hy money creation finance the reasl expendi-
ture process (E+e(t)/p(t)). This is & natural requirement to
impose in defining equilibrium vwhen the government's rule for
creating base money is stated T’Ln the form (Ib), but is one that
seems artificial when the rule for creating base money 1s of the
form of the conbtlngency plan‘ (12). VWhen the rule for creating
base money is of the form (12), a natural candida{'.e for a defini-
tion of equilibrium is a stochastic process for (p{t),h{t)) that
satisfies (la) and (12), with the process for per capita real
selgnorage being given by [h(t) -ﬁ?lh(t-l)]/p(t). Under this
definition of equilibrium, for any cholce of hd:) process of the
form (12), there is a single equilibrium that satisfies (1n).
However, there is a contiquum of a.dditic:nal equilibria in which
the price level i eventually of mean exponential order A-1, For
each such equilibrium, real balances tend to disappear, and (1b)
is not satisfied. Buch equilibria correspond to the speculative
hubble equilibria familiar from overlapping generations models
(for example, see Wallsce [1980]), which occur when the government
sets out an exogenous sequence of nominel balances, there existing
many equilibria in which resl balances tend to zero with the

passage of time. In the present case, the government is once and

for all setting forth a contingency plan of the form (12), which
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involves setting h(t) as a function of exogenous wvarisbles, angd
refusing to feed back on p(t).

From these considerations, we draw the conclusion that
it is not easy to devise an operating rule for the government that
eliminates the mltiplicity of solutions of the form (7) without
making the system wvulnerable to multiple equilibria, elements of
which ironicaelly are eventually even more Inflationary than those

associated with (7)._5_/
3. Feonometric Identification

Despite the existence of many equilibria, the view that
the economy is operating along one of tﬂem turns out to restrict
observations. More precisely, accc;rding to "order conditions,"
the model repres'ente‘_d ;bY (7) 1is overidentified even when the
parameters (doi,d(ljg,doyJe) that index the multiplicity of equi-
libria are among the free parameters to be estimated.t/

To discuss identification, we shall specialize () by

setting p = 1 and assuming that

937 %o O
(13) Be(o)wl(t). = | %21 %22 O |z,
0 0 1

Our having set O33 = 1l is merely a normalization, since clearly
only d03/o33 is identified (see (7)), VWe shall consider the
special case in which aq;(L) = 1, aps(L) =1, This is the case in

vhich 1dentification is least likely to occur.
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When all(L) = a55(L) = 1, representation (7) becomes

P(t) '-'A—l
(T) h('t) = (1—!111)(1—1[211)

—

1 1 1
(1- ——L)(L-Ad ) (1 mL)AdOQ + v, ~;\d03( —--L)
E(L~Ad01), ~EXd, + (T2}, -5)«103
wl(t) . e ) Y9,
wg(t) + Ty T-Aw; * g 1-Am, .
|73 %) J; | I,

The form of (?i and the vector vhite noise characterization of
w(t) idmplies that (1-w1L)(1—12L)p(t) is a seéond-order moving
average process, and that (1fﬂle(1—ﬂ2L)h(t) ig a first-order
moving average process that is correlated with (l—ulL)(l-ng)p(t)
lagged 0, -1, +1, and ~2 times (here & lag of -2 refers to (l-mqL)
(1-woL)p(t+2)). At all other leads and lags, (l-wqL}{(1-moL)p(t)
is uncorrelated with (l-mqL)(l-mpD)h(t), These facts imply that a

uniquely identified Wold representation for (p(t?,h(t)) exists of

the form
_ 1
h(t)/ (1-n) L) (2-m,L)
[ o 1 2.2 0 o_2
(14) 11+°1L“"°11L’°12+°12L+°2L
1 0 1
c21L > Cop + s L
a. {t) c ¢ .
1 . 31 Y6, h1 5
a,(t) c 1 c 2
|2 32 ho
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where E a(t)a(t)T = I, snd where p{t) - E_;p(t) and h(t) -
Ey_;h(t) can each be expressed as linear cowbinations of the (2x1)
vector a{t) = (al(t),ae(t))T. (Here Et-l(') denotes the linear
least squares forecast of (¢) conditional on values of p(s), h(s)
for s € t-1l.) The identifiable parameters of the model (l.e., a
minimal set of parameters in terms of which the likelihood attains

its maximel valune) are the wj's and the c~ 's in (14). ‘There are

i}

15 of these parameters.

Notice that the restriction ¢’, = 0 is imposed in (1h).

21
Thig is normﬁlization‘that selects from among all Wold representa-
tions the unique one for which as(t) = h(tj -IEtﬂlh(t).

The theoretical wmodel (7) is a collection of restric-
tions on (14). The nature of the restrictions can be explored by
studying the spectral factorization iQentity that links the param-
eters of (7) and (14), The theoretical model has 12 deep free
parameters, (A, v, &, n; do1> dops 8g3s 911 9125 Tpps Jq» Jé).
These 12 parameters are linked to the 15 parameters of (1h) by 15

restrictions which arise as follows. Begin hy representing (7) as

. p(t) . .
(') o) = (T, 1) (1w ,5) D(L) w(t) + 7y
Y3, ) v,
1—;01'1 -+ 1'2 1-A'&'2
71 3,
a(x)
vhere D(L) = (1-m L) (1-%,) .
g(L)

Next, represent (1h) as
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p(t) c

- : t 31 + /%1
n{t) ”(meJu4%m<KMa&)+q .

1 2 |,
€30 4o

(1bt)

where C(L) is the (2x2) matrix of moving average polynomials on
the right side of (1k), The parameters of {7') and (14') are
partially linked via the identity D(L)w(t) = C(L)a(t). The impli-
cabions of this identity are exhausted by the spectral factoriza-

tion identity
(15) p(L)vp(L~ 1T = c(r)e(r~)T

vhere detC(z) has all of its zeroes on or outside the unit circle.
Equation (15) supplies a total of nine equations restricting the
elements of D(L), V (corresponding to the nine identifisble param-
eters in C(L)).-U We obtailn four more equations hy eaquating

coefficients on xe and 'l; in (71) and (1k%'), namely

1
I N ey, = T
(16) 31 1 ‘.Awl | hi 1 - 112 .
¢3p = Iy : °ho = Ip

Finally, two more restrictions are implied by egquation (8), which

we repeat here for convenience

(8) [ E (1) ogy /A (7L (140) 2 ogy /1) 2ok (14n)2 ]2

L1

mo=[ (N H (i) oty /A (e (1n) gy /)P (1A 2,

Equations (15), (16), and (8) supply a total of 15 independent
restrictions on the 12 free parameters of the model (A, Y, & n,
dp1s dgps dg3s G115 U125 Opps Is Jz) = 6, According to these

"order condition™ considerations, the model is overidentified.
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To this point, our discussion has assumed that s.ll(L) =
a55(L) = 1. In general, richer specifications for a;((L) and
app(L) will lead to stronger overidentification. As (7T) reveals,
the higher is the order of all(L) or 8oo(L), the more restrictions
there are on the moving average representation for {p(t),h(t)).

The appendix describes identification in the singular
case in which (9) holds so that the solution collapses to (10).
We find that overidentification wvanlshes, but that identification
gtill obtains., Thus, identification is more fragile than when the
T, root is asctivated. This situstion refleects the intuitive
notion that when the m, root is actiyated, there occurs richer
behavior of the time series, which contain more Informetion ahout

the parameters of the model.,
4. Granger Causality

An advantage of the model. éescribed' T Sargent and
Wallace [1973] and Sargent [1977] is that it predicts that infla-
tion Granger causes nbﬁey c;ea.’tion, while money creation fails to
Granger cause inflation. This predicted pattern of Granger caus-
ality has been found in data drawn from the hyperinflations (see
Sargent and Wallace [1973]). It is useful to study what restric-
tions need to be imposed on the present model in order to produce
such patterns of Granger causality.

First consider the special case of the mpdel in whieh
a11(L) = app(D) =1, wgy = 0. Also assuwe that (9) holds, so that
the 7, mode of the system has been deactivated., In this special
cage, we gsaw that the solution for p(t), h(t) has the representa-

tion
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(1 -35) L, y(1m)/(ion (1)
peN\ | 4 b " 2 v, (t)

(20) :
n(6)) |1 gry, A (Ev(14m))/ (1o (1m) )

YJll(l-Awl) &

+ L A
Jl 1

Note that in the representation for h(t), the polynomials in I on
wy{t) and w,(t) are proportional to one another, while in the
representation for p(t), the polynomials in w(t) and wy(t) are
not proportional. This ' implies that h(t) Granger causes p(t),
while p{t) falls to Granger cause h(t).

This structure of Granger ’causality is a apecial feature
of the singular case in whieh (1-woL) has been cancelled out. In
the general case, p{(t) and h(t) Granger cause each other, which
can be proved ty studying the structure of the solution (7). We
now seek special .cases in which p(t) Granger causes h(t), with no
Granger causality. extending from hit) to p(t).

We begin with a c¢ase in which there is no spurious
indicator impinging on the solution, so that in (T) dg3 = O
Suppose that aq¢(L) anad aQE(L) satisfy the restriction

_ oo

1
aQE(L) - Ydgy

ln

(L),

(1 - 1,)a

11

The reader can verify that under the above restriction, the poly-
nomials on w;{t) and wy(t) in d(L) are proportional to one an-
other, while the polynomials in g(L) are not proportional to one
another.,  Under this special condition, 1t follows that p(%)

Granger causes h{t), Wt that h(t) fails to Granger cause p(t).



-22 -

To motivate the next special case, notice that real
balances demanded at a constant expected gross return on money of
unity are given by (1-1)/v. Iet us reparameterize the system by
setting v = (1-1)0, where 8 = (p/n)(1), the inverse of real bal-
ances st a gross inflation rate of unity. To achiewve the fol-
lowing special case, we shall think of holding 0 fixed as we vary
A, go that as A + 1, v » 0, In the limiting case with A =1, v =

0, (7) implies

( ) )
1-7,L){1-wT =
: 2 g{L)
o ‘o2 ‘o3
1-L ’ T-L » -1
£(a,,-L) £dp+(1-1) Edys

1 ? 1 * 1
(11} (1 ”TI"n'L) (1-1) (1 "“ﬁn"L) (1-L)(1 -T,;EL)

vhere we are using the fact that when vy = 0, %y = (1+n)'l, T =
1, In the special case that wyy = 0, so that the portfolio bal-
ance schedule is exact, d(L) is such that p, is a mertingale, =o
that p(t) is not Granger—aused by h(t). However, p(t) Granger
causes h(t) so long as the spurious indicator is present. (The
martingale characterization of p(t) under these conditions can
also be deduced directly from equation (la).)

These examples constitute singular cases in which h(t)
fails to Granger csuse p(t). They indicate the presence of a
range of examples close to these In whieh Granger causality ex-
tends from h(t) to p(t), tut is diffiemlt to detect in short

samples. The model thus sappears to be potentially capable of
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accommodaeting Granger causality patterns such as those detected in

earlier work (Sargent and Wallace [1973]).
5. Estimstion

We shall describe two estimators which are modifications
of the time domain and fregquency domain estimators described by
Hansen and Sargent [1981]. The modifications involve properly
taking account of the restrictions that exist across the initial
coﬁditions and the remaining parameters of the model.

Let us define y(t)T = (p(t),h{(t))T, and represent (7) as

(17) y(t) = (1—ﬂlL%(l—ﬁ2L) D(L)w(t) + Howe + Wy
where
a(L)
D(L) = (1-m L)(1-wL) o()
YJ, Y9,
- 1 Jxxl - 1 J§w2 .
1 oo 2

Ve assume that Ew(t)w(t)T = V. It is to be understood that D(L),
Mis Fo, Hl and H, are all functions of the list of deep parameters
of the model & = (X,Y,E,n,d47,d00,d035017:0725000:T7570)

The first step in constructing the time domain estimstor
is to replace D(L)w(t) by its Wold representation F(L)a(t) where

D(L) w(t) = F(L) a(s)

2x3 3x1 2x2  2xl

where
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F(L) = I + FyL + F,L°
det ¥(z0) = 0 = |20 > 1,
and
a&)=y&)—E®&”y&4Ln.JWH,

vhere Fa(t)a(t) = 9. To compute F(L) we solve the spectral

factorization equation
(18) p(n)vp(r-1)T = r(L)ow(r~1)T

subject to the zeroes of det F(z) not being inside the unit cir-
cle. Practically, given the parameterg of D{L) and V, this equa-
tion can be solved for ¥y, Fp, & in a varietyiof ways, for ex-
ample, by use of the Kalman filterf

The white noise vector a{t) is fundamental for y(t) and,
therefore, is in the sﬁace spanned ty current and lagged w(t)'s.
Itfmmwsfmmw@)==bfm-s<01mm a(s) = 0 for 8 < 0, We

can then represent (17) as

(19) y{t) = (l—rlL%(l-wEL) F(L)a(t) + lei + HEIE.

We propose to use this equation to calculate the a(t) vector
implied by & given set of parameter values 6. Suppose we have a
sample on y{t} for t =1, ..., T. Writing (19) for t = 0, 1, and

using a(s) = 0 for 8 < 0, we have
(20) y(0) = H + H

y(1)

i

a(].) + Hl'ﬂ'l + H2ﬂ2
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Multiplying (19) by (1-w;L){1-w,L) and solving for a(t) gives
(21) a(t) =y(t) - (npimoly(t-1) + wymgy (£-2)

- Fqa(t-1) - Fpa(t-2)

We can thus solve for a{t) by beginning with (19), and then using

recursions on (21):

a(l) =y(1) - Hx - HQwQ

a(2) = 3(2) = (xyom)ylD) + wym [ 4] - Fia(1)
(22)  a(3) =¥(3) = (i )y(2) + wy(1) - Fra(2) - Fa(1),
alt) = y(t) - (g1, )y (6-1) 4 7wy my(e-2) -

'Flé(t-l) - Fg;(t-Ej.

Equation (22) is to be understood as expressing estimated innova-
tions as functions of the deep parameters B‘that determine Hy, Ho,
and F(L}. |

In estimation problems without restrictions on the (2x1)
vectors of initial conditions, H1 and Ho, it is posaible to choose
them so that the first two sample disturbences ;(1) and 5,(2) of
(22) are set equal to zero. In practice, this is accomplished by
first sgetting ;(l) and ;(2) to zero and ignoring the first two
equations of (22). All of the free parameters of the model except
the initial conditions H; and H, are then estimeted, conditional

~ ~

on a(l) = a{2) = 0. As a final step, Hy and H, are estimated by
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golving the first two equations of (22) for (Hy,Hp) with w; and 7,
taken at their estimated values. The restrictions across the rows
of Hy and Hp, and across Hq, Hp, and the remsining parameters,
prevent this procedure from belhg applicable here., These restric-
tions, and the inapplicability of the standard procedure, reflect
the information sbout the deep perameters carried by the initial
conditionsr§!

Assuming that the w(t) process is mltivariate normal,

the log likelihood function can he approximated by

L,= =P log 2 v = T/2 log det & -
T 2 %

a(t)T g la(t).
1

I3

Thigs is to be maximized with respect to the freelparameters of 0
subject to the ;(t)'s being given by (22) and F(L) and 9 satisfy-
ing (18).

Alte;natively, approximate meximum Jikelihood estimates
can be obtalned by minimizing
(23) det T % a(t)alt)”

t=1

with respect to the free‘parameter 6. The ;(t)'s are functions of
the parameters 6 via (22) and (18).

The frequency domain estimator has the virtue of avoid-
ing the need to factor the spectral density matrix (L)VD(L~ 1T a5

in (18). To employ the frequency domain method, one uses (17) for

t =0, 1, to get

]

y{(0) =H + H

]

y{1)} = Dgw(1) + wH; + 7 Ho.
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Solving for Dyw(1) gives
(2k) Dgw(1) = y(1) = mqH; - woH,
Then iterating on (17) glves
(25} D(L)w(2) = y(2) - (aq+n,)y (1) + wym,[Hy+H,)]
D(L)w(t) = y{(t) - (my+mp)y(£-1) + wyngy(t-2) for t > 3.

For a given wvalue of the parameter wvector & and the associated
D(L)w(t) series generated by solving (2h)}-(25), the periodogram is
to be formed. Letting z{t) = DfL)w(t), we define

. .

Sw,) = ) s(t)e ¥t W
)y T h 3

)
='_Ei_'9 J = I, eeey To

The periodogram is then defined as

(26) Iw,) = 7t z(wj) W

where the ber denotes complex:con,jugation. It is important to
note that the periodogram I(.Wj) of D{L)w(t). is a function of the
parapeters of the model 0, and must be recalculated for each step
in the nonlinear maximization of the ecriterion function (28)
below.

Next, +the theoretical spectral density matrix of

D{L)w(t) is given by
(27} s(z) = D(z)vD(z~1)T

Approximate maximom likelihood estimates can be obtained by maxi-

mizing with respect to 6



P
(28) L=-%(2r) -5 | log det s(e™y)
g=1
1p
-5 1 wrlsle™ ) )]
J=1

Tt is to be emphasized that both S(e™¥3) and I(wy) are functions
of the parameter 0, and must be recomputed at each step of the
maximization. The need to recompute I(wj) st each step of the
optimization is a result of the fact that cross-equation restric-
tions exist on the parameters in H; and H,, and that these re-
strictions contain information about €. Thig distingnishes the
current estimation problem from gtandard ones in which the ahsence
of such cross-equation restrictions means that there are suffi-
cient free parameters in By and 4, to meke it appropriate to
eliminate exponential terme before estimation, so:fhat the coun-

terpart of I(wd) need be computed only once.
6. Conclusionsg

This paper has described a model in which there is a
four-dimensional continuum of equilibrium:sfochastic processes for
the base money supply and price level. In many of these eguilib-
ria, there is a spurious indicator or "sunspot" variable that
affects the base money supply and price level even though it failg
to influence the fundamental forcing variables, namely, the randon
disturbances t6 portfolio balance and the government's hudget
constraint, Technically, the existence of equilibria depending on
sunspots appears to be intricately tied to the existence of multi-

ple equilibria depending on the fundamental driving processes.
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Despite the existence of a four-dimensional contimium of
equilibria, the model 1s econometrically overidentified, In other
words, the view that the economy 1s operating along one member of
the continuum of equilibria restricts the behavior of the time
serles for base money and +the price level, and permits one to
egtimate the behavioral parameters that describe portfolio balance
and the government budget consgtraint, and also the "nulsance
parameterg"™ that serve 1o select one from among the many equilib-
ria. That the model 1s overidentified in this way gives empirical
content to the hypothesis that hyperinflations have bheen charac-
terized Wy & process of sliding down the slippery side of the
Laffer curve. In a sequel to this paper, we intend to use the

model econometrically to study this hypothesis.,
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Appendix on Identification

This appendix studies ddentification in the singular
cage in which (9) holds. In this case, the bivariaste (p(t),h(t))

process evolves according to

(1 - -0 L}%—, =Y (1+n)/ (1= ,(14n))
P(t) A_l 2 Vl(t)

§/n,, A={E7(1n))/(1-x,(14n))

Yo,/ (1)

I

We assume that the covariance matrix of w(t) is given hy
T2
Ev(t)w(t)® = v

where V is a positive definite matrix. Let 61 ve a lower trian-
gular matrix that normlizegs  and 'diagonalizes V, i.e., I =

¢~1ve~1T, Define the transformed disturbance vector

' i

n{t) = c~Lw(t).

s, En(tIn(t)® = I. Fow using w(t) = Gn(t), we can express {(10)

a8 ‘ W
1.yl =y (1+n)
(- T+n )Tt;’ 1—w2l1+n5
p(t) 1
(l—wlL)I = A
h(t) Ey(1+n)
P G ™
i 2
817 O n, (t) 17/ (1-dxy)
+ 'I'lt
81 Gpp [[Mplt) 1
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or

5 - 1-'[2(1+n) 4 1—12(1+n) nl(t)
£y(1n) gy(1m) o | {m2ft)
Egll/'2+g21(A - 1-n2(1+n))’ 2[A - 1-12(1+n)J
t
+ X,
I 1

In this representation, the three parameters, gy, €p1, goo repre-
gent the covarlance matrix of the original w(t) process. The n(t)
process was constructed hy or’chonﬁrm&iizing the w(t) process with
the matrix G. The mg.trix G tl}us summrizes all ozf fhe information
in V.

Bquation (Al) is a vector autoregressive moving average

representation whose identifiable parameters can be diesplayed as

follows. Represent (A1) as?/

0 1
plt) 011+C12L’ L ny {t) ¢y 4
(1-11L) = + LR
h(t) o1+ %pp/ \Npft) Coq

The identifisble parameters are %, and the c};J 'ss From (A1) and

the formula (8) for 71, 7o, these parameters are linked to the

deep paremeters of the model ty the following equations:

0o _ A-1[511 Y8y, (1+0)

11 %, 1—12(1+n)

(A2) ¢
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-2 g
1 11
(a3) 11~ T,
A'l {14n)
(Ak) o = fBo2

12 1 - 12(1+n)

ey | O - £y(1n) 5

(a5) €py = 2 ) " T, (Tm)
-1 gy{14n)

(6) cop = A (2 - 1_12(1+n§]

(AT) ws Ty = {7 H(1m) ey /o)

o 10T (1) "oy ) 2ol (1 12 12

i

(48) cyg = YT/ (1-A7y)

(Ag) 023 = Jl.

The known varisbles (identifiable parameters) in the nine equa-
tions (A2)-(A9) are =%y, c](_)l, C]%l’ ¢1os Co1s Cpoo C13s Cpge The
unknown variables to be determined are A, £, Y, n, o, 811, 8o7s
gop, J1+ Ve thus have nine equa‘pipns to be solved for nine un-
knowna, which is promising from the viewpoint of identification.
To highlight the role of equations (A8) and (A9) in
helping to sachieve identification, we shall begin ty ignoring
them. This amounts to considering identification in the system
from which the deterministic components rlt [ile) have been removed
prior to estimation.—~ 10/ 1n this case, equations (A2)-(A7) form
seven equations in the eight unknowns a, £, Y, Toy 811> 8o1. and
gnp 80 that these parameters are in general underidentified.
However, under the special assumption that 801 = 0, local identi-

fication obtains. The assumption that goq = 0 i1s equivalent with
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the hypothesis that wq(t) and wp(t), the disturbances to portfolio
balance and to the government budget, respectively, are orthogo-
nal,

In the case that gy = 0, identification can be thought

to proceed as follows. Fquations (A2) and (A3) imply that
(1+n) = '081/011’

while equations (AS5) and {A2) imply thet
§ = ~op /09 . |

BSo n and £ are identified.

After some algebra, (A6), (Ak) and (A7) imply that
N

(A10) 022/012 = (1—“1A)/—Y
I

Given knowledge of n and £, equation (A10) together with (AT) for

Tl namely,

n, = {(A‘1+(1+n)‘l_-%15- /(-1

1 +{14n)" %}-h/(lm)xh

form two equationz in Y and X which possess a 1oéally unique
solution. Given wy, A, &, and n, ¥, can be obtained from (AT).
Then gq1 cen be obtained from (A2), and go, from (AM). This com-
pletes the discussion of identification in the gpecial case in
vwhich goq = 0 and J, = 0.

With J; = 0 and g,; an unknown to be identified, the
parameters of the model become underidentified. In this case, we
are one restriction short of having an identified system. When Jy

# 0, equations (A8) and (A9) add two equations ™t only one un-
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known to the systems This leaves us with a system of nine equs~
tions in the nine unknown parameters to be identified.

The preceding analysis shows that in the singular case
in which the root To has been eliminated from the system, identi-
fication is delicate. Identification hinges elther on iIncluding
the deterministlc component (#§) explicitly in the estimation
brocess, or by a priori imposing orthogonality between wq(t) and

wo(t).
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Footnotes

1/This wes thus en application of the same method that
John Muth [1960] used to discover & univariate stochastic process
for income that made Friedman's [1057] geometric lag formilation
for forming permanent income consistent with rational expecta-
tions,

2/ 50nn Taylor [1977] has studied rational expectations
models in which solutions exist that depend on a spurious indica-
tor.

éjThis is the soluéion gtrategy uzed hy Whiteman [1983]
and Saracoglu &na Sargent [1978].

Egihere are tight 1links hetween the dimensionality of
solutions depending on fhe gpurious indicators, the dimensionality
of the mltiplicity of solutlons depending on the "fundamental"
noises wl(t) and wz(t), and the fact that solution (7) is a sec-
ond-order system in which two roots are Ibeing solved backwards and
none forwards. It 1s no colnecidence that the number of M"extra™
roots gsolved backwards {one) equals the dimensionality both of the
multiplicity of solutions dependent on each of the fundamental
noises {one), and the dimensionality of solutions depending on the
spurious indieator, It 1s our conjecture that these links reflect
the workings of an as yebt unproved theorem that would exbend
Whiteman's theorem [1983, Chapter 5] to permit spurious indicators
to impinge on the solution.

jfThey are more inflationary because A~t s Toe

ﬁyThe order conditions described in the text and appen-

dix are suggestive, tut are not sufficient for identifieation. In
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econometrle practice, local identification can he checked numeri-
cally by inspecting the condition of the information matrix.

T/mme (2x1) vector of innovations a(t)} lies in the
linear space spanned by current and past values of the (2x1)
vector (p{t),h(t)). Tn general, even if dg3 = 0, the (3x1) vector
w(t) does not lie in the linear space spanned by current and past
values of (p(t),h(t). 'he likelihood function is most readily
viewed as a function of the a(t)'s (see Box and Jenkins [1970] or
Hansen and Bargent [1981] for examples), ‘The identity P(L)a(t) =
D(L}w(t) and (15) are used to present the model in a form that
exposes parametbers that gppear in the likelihood function., Note
that alt) may gpan a smaller space than v(ts for two reasons. A
first occurs when d03 # 0. A second occurs wheﬁ d03 = 0, and in
which detD(z) has oﬁe or more Zeroes ingide the unit circle.

.§/However, note in (22), that as t grows large, the
dependence of ;(tj on (H1=H2) becomes‘attenuated. fhe peason is
that the zeroes of detF(z) in general lie ocutside the unit circle.
This obaservation suggests that 1t will not be possible to estimate

Lo
J1 and Jp consistently.

.nghe off-diagonal parameters ¢y, and c¢oq are both
uniquely identified because cqo{L) as a polynomial has been re-
stricted to be zero order., It is possible to obtain an alterna-
tive representation in which c21(L) = e¢py = 0. However, in such
an alternative representation, it is necessary to meke CIE(L) a
first-order polynomial (c£2+c%2L) with C%E # 0, (In the section
on identification in the text, such a representation setting cgl =

0 was used, )
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Eiyihe ghructure of identification in thig case is
closgely related to that which characterizes the model described by

Sargent [1977].
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Figure 1a
Log of real balances and log py/py.y for the German hyperinflation
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Figure ib
Log of real balances and log p/p_y for the Greek hyperinflation
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Figure ic
Log of real balances and ieg p/p_y for the first Hungarian hyperinflation
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Figure ld
ipg of real balances and log p/p_y for the second Hungarian hyperinflation
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Figure le
Lpg of real halances and log pfp_l for the Polish hyperinflation
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Figure 14
Log of real balances and log p/p_y for the Russian hyperinflation
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Figure 1g
Log of real balances and log p/p_y for the Austrian hyperinflation
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Figure 2





