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A.

Introduction

Application of the stock adjustment model to the study of inventory
behavior frequently produces parameter estimates which Imply implausibly
low speeds of adjustment of actual to target inventories. For example,
Feldstein and Auerbach's estimated parameters [1976] imply that firms
take almost 19 years to close 95 percent of the gap between actual and
desired inventory stocks, Application of the stock adjusiment model to
other areas-—for example, money demand--also ylelds implausibly low esti-
mates of aspeeds of adjustment.

One explanation of these anomalous results is that they reflect the
effects of ‘temporal aggregation bilas (for other explanations, see
Eichenbaum [198%] and Goodfriend [1985]). The stock adjustment litera-
ture typically assumes that the Interval of +time separating economic
declsions corresponds to the interval of time separating the observations
avallable to +the econometrician. Zellner [1968] and Mundlak [1961]
showed theoretically that 1if this is longer than appropriate, then the
econometriclan could be led to understate the speed of adjustment. This
is consistent with the experience of Bryan [1967], who applied the stock
adjustment model to bank demand for excess reserves. Bryan found that
when the model was applied to weekly data, the estimated time to close 95
percent of the gap between desired and excess reserves was 5.2 weeks,
When the model was applied to monthly time aggregated data, the g5 per-
cent closure time was estimated to be 28,7 months. Bryan's results,
which can only be due to temporal saggregation bias, reinforce the view
that temporal aggregation could account entirely for the anomalous re-

sults reported by Feldstein and Auerbach [19T76].



We propose to investigate empirically whether temporal aggregation
blas can account Ffor the slow speeds of adjustment typically found in
studies of inventory behavior. We plan to do this by estimating a con-
tinuous time version of the stock adjustment model, and +to compare the
speed of adjustment implied by the parameter estimates with those re-
poerted In the llterature. We plan to formulate a general equilibrium
model of employment, inventories, and output which implies a continuous
time version of the stock adjustment model studied Iin the literature. In
this way, we willl have an expliclt economic rationale for the stock ad-
Justment model.

In addition to shedding light on the anomalous findings in the stock
adjustment literature, we expect that our project will make several other
contributions as well. First, we will supply a completely worked example
of estimating a rational expectations equilibrium model in continuous
time. We hope that other researchers will find this useful in epplying
continuous time estimatlon technigues. Becond, if the evidence suggests
that the continuous #+time model performs better than =& discrete time
equivalent, then we plan to perform a formal non-nested test of the con-
tinuvous time model versus the discrete time model. Non-nested testing in
the empirical/macroeconomics/time series context is in its infancy, and
we think it would be useful if more of this were done. (See Singleton
[198L4] for a contribution.) Third, we plan to use the model to provide a
concrete example of some of the pitfalls of interpreting moving aversage
representations obtained by estimating time series meodels unrestricted by
economic theory. In doing so, we wlll be illustrating points made at the

theoretical level by Hansen and Sargent [1982].



Section B presents an example of the kind of model we plan to formu-
late and estimate. There it 1s shown in what sense the model implies the
stock adjustment model studied in the literature. Also, we indicate how
we plan to carry out non-nested testing. In Section C we show how we
plan to estimate the parameters of the model. In Section D we indicsate
how we plan to go about 1llustrating the pitfalls of interpreting moving

average representations obtained from unresiricted time series models.

B. The Model
We conslder a model of employment, inventories, and output which is
similar %o the general equilibrium model of employment that appears in
Sargent [1979 Chapter XVI, Section 3], As shown below, the model implies
a continuous time version of the stock adjustment equation for Invento-
ries that appear in the literature.
We assume a representative household which chooses {s(%),N{t);

t » 0} to maximize

(12) B, [ e Tfultrr)sltrn) - Zs(trr) ZMlor)far,
0
subject to
(1b) P(t)}s{t) = N(t) + =(t).
Here,
E. = linear least sguares projection operator, conditional on
time t information set,
u(t) = disturbance to marginal utility of consumption, with
second moment properties specified In Section C below,
8{t) = consumption of the one commodity,



N(t) = employment,

P(t) = price of the one commodity, denominated in labor units,

n(t) = lump sum dividend earnings of the household, denominated
in labor units, and

A,r = pogitlive constants.

Solving (1) yields the following inverse demand function:

(2) P(t) = -As(t) + u(t).

The representative firm's profit function is

(3a) E S e Tr{rer)dr,
0
where
(3b) n(t) = P(t)s(t) - N{t) - l;-[s(t)-cl(t)]g - w(8)I(t) - 5 1(t)°.

In (3b), P(t)s(t) represents total revenues at time t, and N(t) is the
wage bill incurred in producing time t output, Q(t). The third term to
the right of the equality in (3b) reflects the idea that there are costs,
denominaeted in units of labor, allowlng inventories to deviate from some
proportion of sales. (See, e.g., Blanchard [1983, p. 378].) Finally,
the last two terms In (3b) represent costs of holding inventories.
There, v{t) represents a disturbance %to the marginal cost of holding
inventories. TIts second moment properties are described In Section C.

We assume the following production function for Q{t):

(1) ) = [Bn(e)]”



In (3) and (4), r, a, b, c, and e are positive constants. The link be-

tween current production, inventories, and sales 1s given by
(5) Q(t) = 8(s) + pI(t).
Substituting (4) and (5) into (3b), we get

(36)"  w(t) = B(t)s(t) - &[a(6)+p2(t)]® = 2ls(t)-er(s)]?

- v(t)I(t) - gi(t)z

-

The objective of the representative firm at time t is to choose
DI(t+t), Q(t+r}, and s(t+t); T » 0 to maximize (3} subject to (L), (5),
(13), I{t) given, and beliefs sabout the law of motion of aggregate
8(t}). In & rational expectations equilibrium, these beliefs are self.-
fulfilling. Sargent [1979, p. 375] describes a simple procedure for
finding rational expectations equlilibria in the linear gquadratic, dis-
¢rete time context. The discussion in Hansen and Sargent [1980] spells
out precisely how Sargent's solution procedure [1979] can be modified to
accommodate our continuous time setup. Briefly, the oprocedure is as

follows. Write
(6) F[T(t),DI(t),s(t),vit),P(t),t] = e_rtw(t),

where 7(t) is defined in (3b)'. Then, the objective of the firm at time

t is to

{(7) maximize B, fg F(I(t+7),DI(t+1) ,s(t+1) ,v{s+7) ,P(t+1),1)d
DI{t+1),8{t+1)
T » 0



subject to I(t) given. The solution to this problem is simplified by
exploiting the property to certalnty equivalence. Accordingly, we flrst
solve a certainty version of (7) in which future random variables have
been replaced by thelr conditional mean. Then we use a continuous time
version of the Wiener~Kolmogorov forecasting formula to express the con-
ditional expectations in terms of observed varlables. Standard control
theory resulis inform us that if boundary conditions can be ignored, then

the optimal path for I{t) and s(t) satisfies the following conditions:

(8a)  sory = ©

() S o

aT(e) - D 3DI(%)

These imply respectively:
(9a) P(t} - {a+b)s(t) -~ aDI{t) + beI(t) =0
(9b} aD?I(t) — raDI(t) — (cZb+e)I(t) + aDs(t) + (cbera)s{t) = v(t)

In rational expectations equilibrium, P(t) must satisfy (2).

Substituting this into (9a) and rearranging

00 a0 = (I + (e +

Ju(t).

I
a+b+A
Tt is convenient to collapse {9b)} and (10) into one differentisl equation

in I{t). Substituting for s(t) and Ds(t) in {(9b) from (10} get

a+b + A ra—chb-al
— u(1)],

(11a) {DQ—rD—k}I(t) = m)——[v(t)+ —TOIA

where

a + b + Acbelc(atd)+ral + e}
a{b+a) | at+b+4 *

{(11p) X =



Alternpnatively,

(12a) (D-A) [D-(r=A) ] Z(t} =

a + b+ A

B v(t) - ropgyiave-ra)enlult),

where

1 2,1/2

(12b) A=t [k + gr J

Since k > 0, it follows from (12b) that A > O is real. Moreover, it is

eagy to verify that r - A = %-r - [k + -%-1'211/2 < 0. (To see this, con-
stder £(k) = %fr,— [k + %erlllz and note that £(0) = 0, and £'(k) < O

for k » 0.) Solving the stable root (r-)) backward and unstable root

(A) forward in (12a), get

+
(r-a)1{t) - E_ETgiﬂTé f E%v(t+1)d1
1 f e—l‘t

b+ 4 o

(13) DI(t)}

1t

Et[%(cb—ra)+D]u(t+r)dT

(r-2)1(t EE%§EK§45~I e"lTEtu(t+T)dT

n

o

1 1 rbe —-AT
- 5 we) F [ - (e-)] Io e "B u(t+r)dr
Bubstituting (13) inte (10),
_be - a(r—a) 1L, At
(1k) 8(t) =15 I8) + o [ e "B vlt+r)dr

- (b+A)?a+b+A) IO GHATE%[&(cb—ra)+Dlu(t+r)dT



The solution to the certainty eguivalent version of (7) is given by
{13) and (1L). The sclution to the stochastic problem is complete once
the forecasting problems in {13) and (14} have been solved. We do this
in Section C. First, we derive the stock adjustment model implicit (13)
and (1%).

Let I#{t) be the level of industrywide inventorles such that if I(t)
= I%(t), then DI(t) = 0. I¥{(t) is taken to be the time t level of "de-

sired" or "target" inventories. By (13},

a +b + A

. . AT
(15) I*(t) = Te-Nal(b+a) fo e Etv(t+1)dT

- Ir—A%{b+A5 / e_lrEtL%(Cb'ra)+D]u(t+T)dT
0

Substituting (15) into (13), we get the stock adjustment model:
(16) pr(t) = a(I*(t)-I(%)),

vhere o = (i-r) > Q.

We require a measure of "speed of adjustment" which cen be compared
with similar measures In the literature. In order to meke this concept
precise we imagine, counterfactually, that movements in I*{r) can be
ignored over an interval te(t,t+l), i.e., I*(g) = I¥ for T & (t,t+1). In
this case, the solution to (16) is

¥ - I(e+1) = e F(1-1(v)),

or, after adding I(t) -~ It to both sides,

(17) 1(t+1) - T(t) = (1-e7%) (T%-1(¢)}).



Thus, the amount of & given gep between target inventories, I¥, and I(t)
that is closed in one period is T = 1 - ™% = [I(t+l)—I(t)]/[I§—I(t)].
Our jintention is to obtain an estimate of T by Jointly estimating the
parameters of the model. Our plan 1s to compare ocur estimate of T with
those reported in the literature. For example, Feldstein and Auerbach's
estimate of T is .06 [1976 p. 366], which implies that firms only reduce
6 percent of a gap between actual and desired inventories in one quar-
ter. As they emphasize, their estimate of the speed of adjustment is
implausibly low.

The theoretical argument advanced in Zellner [1968] draws attenbtion
to the possibility that Feldstein and Auerbach's anomalous results are
due to temporal aggregation bilas. =~ They make the assumption that the
interval of time separating the economic decisions of agents is one quar-
ter, whereas 1t seems plausible that decisions of the representative
agent are in fact made over a finer interval. If this is the case, and
the agent makes decisions in continuous time, then our estimste of the
gspeed of adjustment will not be distorted by temporal aggregation bias.

If Zellner's conjecture is confirmed, then we plan to proceed one
step further and carry out a formal hypothesis test of the null hypothe-
sis that +the continuous itime model is true, agalnst the discrete time
alternative. The test we have in mind i1s a Cox-type test [1961] con-
structed to take into account our vector time series context. In sepa-
rate work, we hope to generalize this to the vector case. (Other work,
such as that of Pesaran and Deaton [1978}, does not apply to the time
series context. Walker [1967] developes the theory for the scalar time

series context.) ©Even if the latter effort falls, we can still compute
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the Cox statistic and present it as & model diagnostic statistic. The
computations reguired for this are described and applied in Christianc

[1984].

The Reduced Form of the Model

We agmume that wul(t) and {v(t)} are covariance stationary with the

followling continuous time Wold representation:

ul{t) h d (D) 0 e (t)
1 1 1
(18) ) * v
v(t) h, d, 0 ¢{D) se(t)

vhere g(t) = [al(t),az{t)IT is the coqtinuous time vector of linesr least
squares innovations in u(t), w{t) with EE(t)e(t—T)T = §(1)v, where § is
the Dirac delta function. Also, ¢ and ¢ are rational polynomials In the
time derivative operator D, and are assumed to be analytic in the {(open)
right half of the complex plane. Further restrictions will be placed on
¥ and ¢ bhelow.

The forecasting problems in (13) and (1hk) have the following solu-
tions, as proved in Hansen and Sargent [1980]:

L]

(19) f e_lTE%[é{cb-ra)+D]u(t+T)dr =

0

X Jhl+d 3 = 4 X B,y !
F(D)El(t} + { = cb-ra hl +d1} K-+ = cb-ra};g + 2 cb—ra)i— +
o AT h d
- 2

(200 [ me wlwrdar - | (BLrelady, (4) + (B + ) + L,
where

_[iﬂcb—ra)+D]w(D)+[%{cb—ra)+l]¢(l)
D~ A

F(D) =



Substituting (19) end {(20) into (13) and (14), and rearranging yields

(%)
{2la) ( ) = f + gt + C(D)elt)
g(t)

where, f and g are 2 x 1 element veciors whose elemenis are functions of

a, b, c, e, A, T, hl: hga dl, d2. Also,

C;,(D) = (b+A)Té?%P—A)1
Cyp(D) = (;+K)7Di(i-ATT‘ ¢(gli¢(k))
(21b) L _be
Cpy (D) = ((b+A5%a+b+A))[D—(r 1)]F(D) N __$££l?_i
o5 _be
CoaD) = (g by 5 (31:¢(A)]

It is easy to verify that there are no restrictions across the elements
of £, g, and C(b).

We do not have cbservations on {I(%),s(:)}, but on {I{%t),s(4t)},vhere
8(t) is s(%t) averaged over the unit interval. In order for our stabisti-
cal model to make sense, we require that {I(t),8(t)} be a2 physically
realizable stochastic process. This places restrictions on ¢ and ¢ in

(18), which we now discuss. Realizability of {I(t),s(t)} requires:

lim cll(s) = lim ¢ . (s8) =0

8]+ 5]

1m fc,(s)] <=, lim [c,,(8)] < w.

|8 |s]+e
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Examination of (21b) reveals that the latter imply the following restric-

tions on ¢ and P:

m+1
Yo ¥ YqD et oD v(D)
¢(D) ) + D 4+ ene + Dm—l-!- Dm ) O'.(D)
% 7 % 1
(22)

§, + 8D + eee + § D"
0 D
#(D) = 1 n _ 8(@)

n-1 n  g(D)?
BO + BlD + sse + Bn—-lD + D

where m, n » 0. {Earlier, we imposed the restriction that al(s) = 0 imp-

lies Re(s) < 0, B(s) = 0 implies Re(s) < 0.) Since Ypo Y

R and Sn are

permitted to be non-zero in the above expressions, u(t) and v(t) are
permitted to be non-realizable stochastic processes. This in turn gives
rise to the possibility that s(t) and P(t) are not realizable (see, for
example, (2) and (10)). In interpreting this note, in any case, s(t),
P(t), ul{t), and v(t) are realizable after they have been integrated over
an arbitrarily short interval.

The extensive cross-equation restrictions between the rows of C{D),
in addition to the rational form of C(D), can be expected-—-after some
additional restrictions—--~to result in the model's parameters being iden-
tified from discrete data (see, Hansen and Sargent [1983] and Christiano

[1982]).

D. Computing the Frequency Domain Approximation to the Likellhood Function

The objective of this section is %o provide a computationally conve-
nient strategy for evalunating the frequency domain approximation to the
likelihood of {Y(t),t=1,...,T} where T(t) = (I(t),E(t))T. We assume that
inventories I{(t), are measured point-in-time and at the beginning of the

sampling interval. Consequently,



(23) s(t) = jl s(t+1)dr.
0

In addition, we make the simplifying assumption that all roots of poly-
nomials are distinct. Finally, the discussion below assumes that {¥(t)}
is covariance stationary and has a zero mean. Equation (21a) indicates
that this assumption is approximately satisfied if {¥(t)} is the distur-
bance in a least square regression of ¥(t) on & constant and linear
trend.

The outline of +this section is as follows. First, we derive an
expression for the continuous time spectral density of Y(t) =
(I(t),s(t))T. We denote this by Sy(im), where we{-w=,+w) and 32 2 =l.

(1(3),36))7T at  fre-

Define S;(im) a8 the spectral density of Y(t)
quency e In the second part_of this section, we obtain 85; from Sy and
recover the covariance function of ?(t) from S;. Denote +this by
R;(-r) = EE—I_(t)Y({;—T)T. The R;( t) function at integer values of t is then
used to compute the spectral density of {?{ﬁ),t=0:,1;i;1,12,...}. We dencte
thiz by S%(e"im), vhere we(-7w,7)s The third and final part of this sec—
tion shows how to combine {¥Y(t),t=1,...,T} and Sg-to compute the fre-

quency domain approximation to the likelihood function.

1. The Continuous Time Spectral Density of {¥(t)}

We %begin by providing computationally convenient expressions

for F(D) and i-4{D)+¢(2}]/(D-A). Note:

o) Y=l DY e Ta(D)
(24) (D) = rpy = "6

* {Ym+1D+Ym_Ym+l 0\"m—].] *
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Write

(2La) al(D) = (D—pl) ces (D—pm),

and suppose that Py # pj for i # j, pyF r - X for all i, Then (24)
can be written in partial fractions expansion form as follows:

m B

J
(25a)  ¢(D) = L e (s P4 YY1 ) m>0
Y, +YD =0
Here,
_ Y(pj)
(25b) By == ( C 5 =1, eee, m (if m > Q)
T (pi-p)
k=1 9 %
k#]

Using (25), it 1s straightforward to verify that

m>0
(26) 3P - o) _ JE [ )( ) Y+
D=2
¥, -

We now turn to F(D). Note:

(D-x) §(D)

(272) (D-k)p(D) 16

T

(D-k}6&(D) - sns(n)n - (k8 _+8
B{D)

0180 Bn l]B(D)

+ 8D+ (~k8 +8 -8 8 .),

where

(27b) K = - %ﬂcb—ra)
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Then,
n A
[321 _Ln-u )+ 8§D + (—Kﬁn"'ﬁn_l—ﬁnﬂn_l) n>0
{282} (D~x)y(D) =
GO(D-K) n=0
where
{28b) 3 n ( J =1, ese, n {if n > 0)
T (u,-n)
k=1 9 &
X#]

{28¢) g(D) = (D—ul) .es (Duun).

Here, we assume that My # "3 ir 1 o+, "i* r - X, ui# pj for all i,
Jj+ Finally,

:}-1: lEiJ 1
- 8 n>0
o) e = < Lh T - &

-8 n=0
o

Substituting (26) and (29) into (21) and rearranging, we get

I(t)
(302) a(D)B(D)[D—(r—J\)l( ) = C(D)elt)
s(t)

Wwhere,



(30b)

and

(30¢c)

Here,

(304)

where

{30e)

Also,

(30r)

11(D)

R

o
[w]
P

12

ﬁél(n) =

22

]

@(Dp)

G(D)

o

n+m+1

det G(D) =

- 16 -

1 n n
— i I (D-u )] - & 8(D)}a(D)
(b+A]{[J§ )‘_uj =1 Hye ] n }
k]
- - S sl z L 1 (ep vy, o0
alb+th j k=1 m
k#j
2D - 29T (D) + g 6(D)al(D) [D-(r-2)]
b
- (G - 20,0
€, & (D)
¢,, (D) € p(D)
=3 o - +m+1
Co ¥ CyD ¥ eee n+m+1Dn "
5, 0
BrA J
m m
[D—(r—l)]G(D)a(D)B(D‘a(b+A El =, kE (D-p, ).

k#]



Define

T

EY(%)Y(t-1) Te( =0, te} s

v
—
~
S

il

+

f RY(T)e‘Tsdt,

"

SY(s)

where 8 = i, we(-w,+»), It is well known that

&(s)v8(-s)T
(322) SY(S) = —E%ETET:ET* »

where
{32b) 8(s) = als)B(s)s-(r-a)]
m n
= I (s—pj) il (s—uj)[s—(r—k)l,
3=1 3=1

if m, n > 0. (The modification to (32b) for the case n =0 or m = 0
is obvious.)

The continuous time spectral density of Y(t) at frequency
wel—w +e) is SY(iw). If § #0, so that s(t) 1s =a generalized
stochastic process, +hen RY(T)’ tg(~m,+w), defined by (31}, is =
generalized function.

The partial fractions expansion of SY(B) ias

{32a) s (s) = 8(8)V6(-3)T

¥ " To(s)e(-8)
~ T o T
| e)VE-e)" - CAGRIENIEEY L5t
8(s)e(-s) 2R
T
L W L W
.j j ~ o~
g1 ®Fy gm Py AR



where

{32b)

(32¢)

T
ﬁ(rj)vg(-rj)

W.j= 3 ’
—2erEl(rJ—rk){-r3—rk)
k#}

g =m+n+ 1

(rl’-on,rg‘) = (pl,-nn,pm,ul,ccnun,r—l)-

2. The Spectral Density of Unit Sampled {Y{t)}

Our first step is
tral density of the continuous
ne(—w, +eo),

B and use it to compute the spectral density of sampled Y(t).

latter is denoted by S%(z) for z=e_i@, ms(-ﬂ,w).

In operator notation,

following:
1 0 .
(33) I(t) = Y(t).
0 eD~1 -
D
Consequently,
1 0 1
(3b) 5yis) = ] B,(s) =
0 e -1 ¢
- 8
11 12
8y {s} 87 (s)
21 22
] 8% (s) 5% (s)

j = 1, -ooo, 2.

to obtain an expression for S;{im), the spec—
time fﬁIt)} procegs abt frequency

We then deduce. the covariance function of Ext) from

the link between Y(t) and Y(t)

5.1
=5
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Bimilarly, define S, = [S;LJ]. Then, from (34%)
11 _ oll
87 (8) = 8, (s)
12 12, \ e o-1
By (8) = SY (8)[—_3‘]
(35)
21 _ Ll2
87 (8) = 87 (-s)
22 %1, e®-1y .22
8?(5)‘-'(_'6 ](3 )SY(B).
We seek now to recover l’i:)—r from S;. In doing so, we make use

of the fact that R;a.nd E}f are related as follows:

+ oo
(36) 55(s) = f_mﬂ?(r)e—STdr,

vhere s = 1w, we(-w,+w). Write Ry = [-ﬁi‘jl’*sfz [ ;L: ], 8y = [Si‘j],
J o 5 R
W = {wk l; X =1, eea, %+ Then,
22 . 22
8 —8 g W, & W
(31)  82(s) = (EMESH ] 2L+ 1 i
Y B -5 j= :3',--r"j ,j+l_s-r,j
+ eB—»l e—s—l Gn 2V
(s )( -8 )[ b+A] 11
+co
= | R%E(-r)ew—rsd'r,

vom OO
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for 8 = iw. The R%? function that solves (37) is

("
-r T

% (e J-1)(e 9-1) w‘?eer*"r <1

5 ~2 3 T .
d
8
(38)  BE(x) =< (-0 [gg]

L W2 r T

) —%{QrJ(T—l)—(Q—e J)e JT+e(l_T)rj} 0< <1
J=L rJ
Rf(—f) T < 0.
.

That (38) solves (37) may be verified by checking that {(38) satisfies
(37} and taking into account the fact that the inverse Fourier transform

is uvnique. Next,

12 eB1,, % W,
87 (8) = (—){ 1 + 1 =
Y 8 §=1 s—rJ 521 £ rJ

+00
= [ (e
21 12
2 W 2 W
82s) = (5] o+ 1 5
j=1 "4 3=l ]



for 8 = iw. The unique R%E and R%l functions that solve this are
- Ty e
2w§2(1"‘:_ Ye 1> 1
J=1 J
L Tr {1-1)r
12 _ 1,12 J_ 21 J_
{39) Ry (1) = jzl rJ{WJ (e “-1}+i(e 1)} 0<t«<1l
21
R?- —1) T <0
_
L r r,T
f}j W?l %—(e d_1)e d T3>0
J=1 J
21 N
kR-JLE(—T) T < 0.
We summarize our results about R? as follows:
L YT
(h1a)  B{0) = [J__;le) + &V
L _
(41p) B1) = lewje T =1, 2, «ea
where
11 11 ,. %3
WJ W§ o (e J—l)
J
(Lie) ﬁj = - -
Wl e dog) W2 _2_(r +l-e J)
3o, I 20

- 21 -




Wit WSLQ ———(_i e J-1)
J
(414) W, =
J r. -1 r b
W?l %%{e J_1) W§2 —lg(e I_1)(e J—l)
J -rj

for jJ = 1, sesy Re

Now, the spectral density of {¥(t),t=1,+1,%2,...} is defined

by
a it T
(42 S?(z) = T=§w Rf(r)z

for z = efim, wel{-m,w). Substituting (41} into (L2), get

(b3a)  8%(z) = M(z) + M(z"H)T

Y - K

where

g W,
(53b)  M(z) = § —d— o

{L43e) K = (WJ

e b

=T

J

Bquation (U43) represents a simple formula for obtaining S% from
V-defined after (18)--and the parameters of C{D), defined in (21)}.
First, one obtains the A's, B's, p's, and u's defined in (25) and
(28). These are then used to compute the W's and r's in (32). Then
the W's are modified to get the W's and W's. With these objects in

hand, the S%{e—im) function can be evaluated at any desired fre-

quency wel-m,7).
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3. The Frequency Domain Approximation to The Llkelihood Function

We assume that T observations, Y{(1), ..., Y(T) are avallable.
Up to an additive constant, the frequency domain approximation to

the log of the Gaussian likelihood function of this sample is given

by

T -1
(4k) £ = _%E log det IS%—(& ‘j)]

J=1

T -ip
-1 } trace [Sg(e J)_ll(m 1,

551 Y J

mj =—2—%J-,J = 1, eeey T. The computetion of s%was described in

S8ection 2 abhove. The expression I(w) is a function of the data

only.

(458) () =& U)T(w7,

where H denotes the Hermetian transform and

T(t)e 01,

1

(k5b) Y(w) =
t

([ |

The expression in (LL4) is maximized over the vector of free
parameters:
L= (a:b:c:esAsrsaoa°°'96n:so:°°'!Bn_ls

R A N MR PP R PP ST LE

Glven a value for r, one computes £ in the following sequence of

steps:



Step 1:
Step 2:

Step 3:

Step b:

Step 5

Step 6:

Step T:

s

Step 8

Step 9:

.

- 2k -

Compute } from r, a, b, A, ¢, e using (11) and (12).

Compute p ., wve, p from o, .o, a using (2ha).

m—1
Compute Bl, esw, Bm fI“Om 'Yo, seey 'Ym+1 and pl’ cway pm nug=—
ing {25b).

Compute Ups sees M from B_, sse, 8.1 using (28c¢).

Compute Ay, eee, A, from a, ¢, b, r, Uy eoes Nps

8gs «=»» 8, using (28b).

0°
Compute Wy, +ss, Wy from (rl,...,rg) = (pl,...,pm,
ul,...,un,r—l), L =m+n+ 1, £, using (30) and (32b).
Compute ﬁ » ﬁ}, J =1, esey, £ from Wl, cuay Wg, Tis eeey Ty

using (Lie) and (k1d).

-1
d W _ 27k
Evaluate Sf(e } at o = S5

T k = }, esey T, from
ﬁE, ﬁh;'rj, J =1, eees £, 8, Vq;, using (30e), (4la), and
(43).
Substitute Si into (4k). Also use I computed from (45a).

X
In evaluating (LL4), one would want to explolit the symmetry
properties of S% and TI. In addition, if I{0) = 0, then
frequency zero should he omitted in order to avoid £ being

unbounded above.

E. The Sempled Representation of {¥(%)}

This section describes salgorithms for computing two kinds of time

gseries representation for {f(t),t=0,il,i2,...3}. The firat produces =&

set (K7W ,0") that satisfy

(46a) S%—(z) = k¥ (z) W e w2 ) Pkt (e~ T

(46B) det K'(z) = 0 implles |z]| > 1
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{46c) det W (z) = 0 implies izl > 1

p

]
H
4

(164d) K (z) K;z F oaee + K;z

(46e) W (z)

H
]
4

W+ Z 4+ ees F W+zq.
1 q

Here, K'(z) and w'(z) are 2 x 2 metrix polynomials in z and o  tsaz2x2
positive semidefinite matrix. The matrix polynomial S%(z) igs defined in
{(43). Conditions under which a (k¥ ,w5,a") exists and is unique are dis-
cusgsed in Hannan [1969].
+ +

This section also presents an algorithm for obtalning (e ,5+,V )
where
¥t &)t

. =

o (z) o'z

(4Tb) 0 (z) = 0 implies |z| > 1

(4Ta) 8%(3)

(47e) det ' (z)

.0 implies 'zl > 1

(L7d) 6 (z) = 1+ 072 + weu + 07 2P
1 P
(4Te)  §7(z) = I + 61: +oeee o+ GQZQ.

Here, e+(z) ig a scalar polynomial in z and a+(z) iz a 2 x 2 matrix poly-
nomial in z, while vt is positive semidefinite. Hannan [1970, Chapter 3]
discusses the existence and uniqueness of {e+,ﬁ+,v+). Sufficient condi-
tions are that ST(im) is a positive matrix for almost all u ¢ (-m,+m).
The first part of +this section descrlbes +the calculation of

(x",w",0%). We then consider the calculation of (ot v,



1. Caleulating (K',w",a")

Below we show how to compute (K+,W+,ﬂ+). The strategy involves
first obtaining Kt using a technique suggested by Phillips [1959].
We then find W' and @ using methods described in Whittle [1983] or
Rozanov [1963].

Write
(48) M(z) = u(z) " v{z),

where U(z) and V(z) are {as yet unknown) square, finite-ordered
polynomial matrices Iin non-negative powers of 1z, The expression
M(z) is defined in (43b). Substituting from (43b) into (48), and

premultiplying by U(z), get

) w
(49)  wlz) § —l—= v(a),
J=1 1 -1r.z
J
. r
where r, = e J, J =1, eee, L« Multiply both sides of (49) by the

J

scalar polynomial (1-?&2):

7

- ~o J ~
u(z) {W +{1-rz) | ——1} = (1-r 2)v(z),
J=1 1 - rj
J#x
E =1, seey Lo Evaluating this expression at z = ?;1 for each k
gives
(50)  Uu(FMW_=o0
k k ?

E =1, see, &+« Using the result in (30f), note that Wﬁ has renk 1

for all J. (Note: det 6(rk) =0, K=1, eeey £a)
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Expression (50) for k = 1, ..., § represents at most 2% inde-
pendent equations, Consequently, we can determine as many as 24

parameters for U{z). Write

e
(52} v{z) = 1 + UjZ + eee + Uz

Here, c = %ﬂ if 2 is even and c =-%(g+1) if ¢ is odd., Consider the
even case first, In this case, there are 24 unknown parameters in
U{z), so that a necessary condition for {(50) to determine U(z) is
satisfied, Suppose now that £ is odd. In this case, U{(z) contains
ke = 22 + 2 parameters--two more than we can hope to solve for using
(50). 1If, for example, we arbitrarily set the left column of U. to
zero, then a necessary condition for (50) to determine the remaining
parameter of U(z) is satisfied. In the remainder of this section,
we assume that sufficient conditions for (50) to uniguely identify
U{z) are satisfied. In this case, (50) represents a set of linear
equations in the unknown elements of U{z) and can readlily be solved.

With the matrix U(z) in hand, V(z) in (49) is eesy to com—

pute, Write

p U(z)¥W

(55)  v(z) = § —d

=l 1-r.z

! 3
The fact that U(?El)ﬁj is the zero matrix indicates that the scalar
polynomial 1 - Pﬁz cancels with every  element of U(z}W,, for

G = 1, seee, R« Therefore, V(z) is a matrix polynomisl of order
¢ - 1. Taking this into account and expanding the right hand side

in (5h)9 get
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V. o+ V,z + # v 2% = (14U 2+ +Uz)[§ﬁg(~ y<]
0 1 v o = 1 e e R I'j?i -

1 521 Yx=o

Matching coefficlents:

= vy (k-8) _
1WJ(I'J) . k--O, 1, sesy C© = 1

(L e B ]

k
(55) v, = JU
k g=0 B 1

where U, = I. Using the given U(z) and V(z) matrices, substitute

from (48) into (L3a) to get

(56)  s2z) = u(x)"v(z) + vH oYY - k.
Pre- and post-multiplying by U{z) and glz—1)T respectively get
(570 u(@)sH2uz)T = v(2)uH T+ vV - vk T
= Gg(z).
For example, when £ = 3 so that ¢ = 2,
{58e) glz) = G0 + Glz + Gez?n+_G$;_l + ng—2,
where : o .
Gy = Vg + vluri + vg + U1V$ - IK+U1KU;I_I+U2KUE]
(58b) G, =V, + U Ve + UVL - [U KU U]]

Obviously, we can identify K (2) = U(z). The objects
W {(z) and Q" are then found as the solution to the following matrix

factorization problem:

(59) whz)a W =™HT = alz).
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Tt 1s easily confirmed that S?(im) positive for almost =all
weg{-w,+w) guarantees that G(e-iw) is positive for almost all
we(-mw,7). Results in Hannan [1970, Chapter 3] then guarantee that
the factorization in (59}, together with the conditions (h6c) and
(L6e) with ¢ = ¢, is unique. Algorithms described by Whittle [1983]
or Rozanov [1963] mey be used to solve (59). (Whittle rules out det
¢(1) = 0.)

Consider the case n =m = Yo T 60 =1, Y, Yy = 61 = 0,
so that ¢ = 3 and ¢ = 2. This case, because p = g = 2 in (L6},
neatly illustrates some effects of sampling and aversging from a

continuous time process. In the present case, (30f) becomes

a{D) g{D) [D-{r-A)]
(A-pl)a(b+A)

det &(D) =
Therefore, premultiplying (30a) by E(D)ﬂl = B(D)%/det T(D), we get
(60) (l-pl)a(b+A)3(D)a 1{t) = elt).

Here, F(D)* denotes the adjoint matrix of G(D). Thus, in this case,
{¥(t)} is = pure vector second order auntoregression in continucus
time, Sampled and averaged {Y(t)}, denoted by {¥(t),t=0,%1,42,...}
on the other hand, is a discrete time ARMA(2,2) process. One moving
average term is due to sampllng and the other to averaging.

The following numerical example illustrates the polnts
made sbove. We assume the parameterization studled In section F, in
which n = m = vy = §; =1, v; = Y, = §; =0, so that (60) is the
relevant representation. The followlng continuous time parsmeteri-

zation was chosen:



[I+A D+A2D21Y(t) = e(t),

1

where

Al= |:l1.23 5.57], A2 =|:13 .906 0
.286 2.0 STL 0]

Es(t)s(t)T=[9 18].
18 17

Also, det (I+A s+A232) = 0 implies 8 = -.1, —.5, or -.812.

1
Uging the calculatlons described in +this section, the

representation for {¥(t),t=0,t1,%2,...} is:

(I+KIL+K;L2)?(t) = (I+W;L+W;L2)u(ﬁ)

where

no

K; =[-.814 -8.776 |, k¥ =[o 4.931
-.003 -1.1h1 |0 .318

]

W .209 -9.035 |, w;= [_17.25 -2.620
1.9h2  —-.290 | -1.113 —.169

Bu(t)u(t) = ﬂ+=[ 16.870 -111-068].
~111.068 T88Lk.5T
Also, the roots of det K'(z) are 1.105, 1.649, 2.252 and the roots
of det W'{z) are .6h1 % 3.9351.

This example 1llustrates some of the comments on ldentifi.
cation made above. In particular, the sampled VARMA (2,2) represen-—
tation for {¥(t)} is not identified without the indicated zerc re-
strictions on K;. Without these restrictions (but imposing

KO = Wb = I) .there is a two dimensional infinity of ways of choosing
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+ ok
Ki’ Wi,
+

that the null spaces of I{2

then applying the argument in Hannan [1969 p. 224, second to last

{ = 1, 2 which satisfy (k6). This can be seen by noting

and WZ have a non-empty intersection and

paragraph] .

2. Calculating (a" ,8+ ,V+)

Obtaining (e”’,ﬁ’* ,V+) is straightforward. One method of
doing this is %o execute the calculations Just described and set
07 (z) = det K™(z), & (z) = ladjoint(k*(z))IW"(z). This (indirect)
procedure suffers from the shortcoming thet sufficient conditions
for the existence and uniqueness of U{z) in {52) are difficul:t to
establish, even though we know that S;(im) is positive for almost
all @ g (=w,+)., The latter is sufficient for the calculations
described below to work.

Define

+ Z ~
(61) 9 (z) = 1 (l—rJz)

J=1

Multiplying s% in (43a) by 0" (z)et(z™), get

£ A
(62)  0"(2)s(2)e"(z™) = 6"z I W, m (1-F,a) +6"(z)
¥ J=1"* k=1
k]
4 2
) W§ I (1-?kz‘1) - 0¥ (z)ke"(z™h)
J:l =
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say, where G(z) = G(z_l)T. The matrix polynomial G(z) will be of

order £ §+ vt are found with the properties
(63) TV E T = 6le),

(LTe), and (4T7e). A sufficlent condition for the solution to {(63)
to exist and be unique is that Sy(im) be positive for almosat all

s~ ,+e),

F. Parameter Identification and Estimation With AR(1l) Dlsturbances

In this section we assume n = m = Yy = 50 =1, Y= Y= 51 = 0,

In this case, (30) becomes

(6ha)

o (H) = 18

v e D
0+ClD+C2D le(t),

where 0(s) = (s+a0)(s+50)ls-(r—x)l and

(6Lb)

(6ke)

(6hd)

" %% LBy
CO =
ao(qlbc—(r—k)) o ngcso
a + b+ A a+hbh+ A

N Y %
c1 = be .

—aql(ao— 574 + ay- (r—A) e o - be,

L a+b+ A a+ b+ A0 a

Q 0
o =
2 1 - agq, o —a.q_2 .

ta + b + A a+b + A

In (64),
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1
-E(cb-ra) - BO

- _—~(a + b + A)
(6ke) 9™ (3+8,)(0+4] L a(b+A) (Ata, )"
write €(t) = Ge(t), E(0) = €(D)€;1= I+ 8+ & 0% Here,
~  la be(By-ay) + ay(r-2) q, (ay=B, ) (a+b+a)
(652) €, = RN ERTY JERERTY

(be)®q, (B -0y) + beog B, (r=2) [be(ay -6, )-aa 8] a belay-8,) + B, (r-r-a,)

(a+b+A)Boao(r—l) Bouo(r—l)
N 0 0
'6 =
(65b) 2
(1-aq, Joep, + &{qlbc—(r—x)]ao -Bo(l—aql) - aq;qq
(a+b+A)BOaO(r—A) Bouofr—k)

~

Because the upper row of ﬁé con@gins zeroes, there are six
parameters in g(D). The scalar polynomial ©(D) supplies three more.
Finally, there are three parameters in ¥ = E se)es) T, Thus, the con-
tinuous time Wold representation of {Y(t)} has twelve "reduced form"
parameters. There 1s no allasing identification problem in the present
case becasuse the poles of the spectrum of {Y{t}} (e.g., —uo,—BO,r—l) are
real. Consequently, the necessary and sufficient condition for parameter
identification is that the mapping from the structural parameters +to

~ Y

9, Ei, 52,

parameters., The structural parameters are

7 have a unique inverse in the space of admiszsible structural

E = (a:b:cse:Asr!BO9ao’vllavl2 9V22)°
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S8ince there are 11 of them, & necessary condition for them to be identi-
fled is met. TUnfortunately, since the reduced form parameters are not
independent, identification does not occur.

The restrictions of the model Imply that no more than 9 of the

~ ~

12 reduced form parameters of 6, 81, Eé, ¥ are free to vary indepen-
dently. There are two ways to see this. One is to recall from {60) that
in the present case, {Y(t)} has a pure vector second order autoregressive
representation in continuous time. In that equation, there are =% most
six ldentifiable antoregressive parameters and three variance-covariesnce

terms. (Of the elght autoregressive parameters, two are zero.) An al-

ternative way to see this 1s to study (65). Simple algebra yields:

[Ei;sb—llao(r—l)

{66a) g.be = oz L
1 (Bo—uo)
~12
G, 8,0, (r=2)
(66b) g, (atb+a) = 1 agfg . .
0

~o2
solao(r-x)cz +1]

(66c) aq, = 5
¢ 0

Dividing (66c) into (66a) and (66b) respectively yields,

be [Eilﬁo‘liuocr‘*)
(67a) . - e
Boiuo(r-l)02 +1]
~12
~C-B.a (r-a)
a +b + A 1 7070
(67b) A = .

22
BO[aO(r—A)CE +1]



According to (6he),

cb a+b+A
- Byt (r—A—BO)( - l)g.a

(67c) r =% & i,

a

be a + b+ A

By (66c} and (6Ta-b), the parsmeters r, ——, ——_—— can be recovered

uniguely from

~22 w1l w12

02 2 cl 2 Cl 3 aos 803 (I‘-—-J\).

1

We maintain that 52 and the bottom row of ﬁl are determined from 8 and

—~ ~ - -

the remaining elements of Ei and ﬁé. This is seen as follows:

(a0+30)(r5}} - By,  ~1l
— _cl‘! )

~22
(68a) Co= By o, (r=1]

o1 BEYoeq (8y-0)) + (E2)aisy + (r-0)[(22)(ag-8y)-008,]

~

(68b) c

1 ’ '(ﬂ.'i'b"l'A

a )Boao(r—l)

_ (gHveq (8-a) - (r-NapBy + () [Bo(ag=(r-2)) + ay(r-)]
= (a+b+A

'-j;*—] Bouo(r-l)

o1 {l—aql)G?z)sO+ [qlbc—(r—l)]ao

(68c) ¢ —
2 (Eigiéﬂsoab(r-k)

be
(;4%'*%@ﬂ%-%)—(hﬁho

(a+2+A) BO ao (l"—l)

Equations {(68b)} and (68c) are obtained by dividing the numerator and

denominator terms of the corresponding elements in (65) by a. lNote



- 36 -

that everything in the right hand sides of (68) can be obteined from

the roots of 8, equations (66) and (67), and from 511, 812, 522.

Thus, the +twelve elements of 8, 5, ¥ are spanned by the

following nine element vector:

be a+b+A o & e
(69J (GOQBO g;\—r,;‘g‘_"a""'sravll svleavez) .

This vector 1is restricted by the conditions that all its elements,

except perhaps Vi, be positive. The restriction on Vio is

v V2 > 0. The Implications for the vector in (69) are as

11722 = V12
follows. First, (12b) and the line thereafter show that i > 0O,

r - A< 0, Also, r, (be/a) > 0, (a+b+A)/a > 1. Finally, iV..] is

i
positive semi-definite. Consider the vector T:
be atb+A

(TO) I = (303807:7\—1' s"a“‘"'sTsr’Lll 3L223L12) ’

where the first seven elements are restricted to be non-negetive and

~ ~

v _ 2 & v 2 )
vll = Lll’ V12 = L21L11, V22 = L21+ L22. The preceding discussion
shows that if Uy BO’ A - r can be identified, then the whole of T

ig identified. Unfortunately, 1dentifiability of T 1s tenuous when
we drop the assumption that g s 80, A - r are identified. The basic
difficulty 1is that there are six ways to allocate the labels
"—ao", "—BO," and "A - r" to the roots of o(s). This in turn cre-
ates the possibility that corresponding to a given I, there are five
other points in B’ which glve rise to the sgsame wvalues for

~ ~ e

a(s), &, 8, Vas does T. These five points differ from T in their

19 25
be a+b+ A

implied wvalues for uo, BO, A-T, o a » Te Conditional on

the assigned values of By BO’ and x - r, the latter +three are
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uniquely chosen to satisfy (66ec) and (67). If parameter identifi-
cation is to obtain at ', there mist be some way to rule out all
five alternatives to I'. It may be shown thet the restrictions im—
plied by {(68) =re of no help in this respect. On the other hand,

the restrictions {(be/a) > 0,

E;i_g_t;§ >1,and r » 0, not "too"

large, may do the job. Consider the following exanmple:

T = (.ooaho,.00761,6.06,102.,hh.a,.01,Lll,L22,L12)

Values have not been assigned to Lij’ i, J = 1, 2 since these zare

not relevant to the discussion. The given parameters Iimply

€, =]eil.see  -3h.83kh), &, =1 o 0
212.616 38.9635 -49.7959  20.k1Th

9(s) = —.000388 + .09T2s + 6.0788° + s°.

The five other parameterizations which give rise to this reduced
form are

(.00T61,6.06,.00840,-.0135 ,-.00223 ,~3.T1465,L L..)

22° 12
)

11° L

(.008h0,6.06,.00761,-.0135,—.00223,—3.506,1.11,1,22,1,12

11380001 5)

(6.06,.ooaho,.00761,-Th.3,_28.o,-Th.0936,L11,L22,L12)

11’L22’L12)‘

{ .00T61,.008k0,6.06,-Th3,~28.0,-1.997,L

(6.06,.00761,.00840,102,4L.2,101.558,L

Among the above five alternatives, all but the fifth are inconsis-
tent with the a priori restrictions. On the other hand, the fifth
parameterization implies an extremely large discount rate: 10155.8
percent. This parameterization, which is observationally equivalent

to I', may therefore be ruled out as implansible.
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A modification to the procedure in Section D is required
in order to evaluate the frequency domain approximation to the like-
lihood function 8t a value of T's In particular, replace steps 1

through 6 with the following:

¥.. 7

Btep 1: Compute v 12* Vop from Lyq, Loy Loos

11°*
Btep 2; Set r{ = =0y, Tp = _BD’ !‘3 =T — A.

Step 3: Compute ﬁi, Eé from (65}, end set ﬁ3= 0.

Er T8, )7
Step )4: Compu‘te W.j = . 3 * ,j 1, comy 3.

-—2rJ kEl (rj-rk)(-rj_rk)

k]

Using the W's in step L,

3 W Wy

3
(1) s (e) =) gow ] b - -
J=1

»
8=1 -8~

J=1 J J
Expression (71) is (32a) with £ = 3. To finish evaluating the like-—

lihood function, proceed with Steps T, 8, and 9 in Section D.

G. Temporal Aggregation Bias

In this section we describe an algorithm for compubing the

probablliity limit of the estimator of an econometriclian who understands

that the data are generated by the model of Section B, but who mistakenly

assumes that the economy evolves in discrete time, with 2 timing interval

equal to the data sampling interval. We assume that the data are gener-

ated by the continuous time model, and denote their spectral density

by S%{eim,;), w e (0,27). The parameter vector r is defined after (45b)

and Sg-is defined in (h3).
¥
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The econometrlcian posits that the inventory-—sales data are

generated as the solution to the following problem:

(72) : m;‘x " By EOB {Pt+JBt+J'§[5t+J+It+j“It+J—1]
Bpegoloejelig=0 97
b 2 e 2
-Eist'Fj_CIt'{',j] - vt_‘_JI.t_!_J'-'EIt_!_j}‘)

subject to I; given. All varlables are deflned as before. The only new
variable is g, the unit interval discount factor, which is expected to
lie in the unit interval.

The first order necessary conditions corresponding to 8y and

Tesq respectively, are

_ a-be a S S
(73a) 8, = - (a+b+A)It T R T T
2 -
(73D) pal, , - la(l+B)+be+e]I + aI, , + gas, ., - (a-be)s, = v ..

In {73} we have made use of Py = -As, + .

Substituting (T73a) into (T73b) and rearranging, get

_ _a+b+ A ra-be Ba
(Tha) (1-21) (- E%L)It+1 = sa[b{c+1)+A][a+b+A Y™ B+bih ut+1+“t]

)2 2

(Thb) A+ = a+b+ A rgalr(abe

2B T Balble+l)+Al L a+beA - (atbe

+e+ga) |

and |l| £ 1. The solution to (Tha)} which solves (72) is
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_ AB T -1 1
(75) I, = M4y - BaToleri)7A] izoEt[(a—bc)—B&L 1(ag) ™, o
a+ b + A s i
= Balble+i+a] 8 izo(ks) B Viss

_ Ala-be) [{a~be)r-a] e i
= M1 " alole+D)+A]l % T Talblerl)+A] 151(15) Belias

(a+D+A) A - i
~ alble+l)+A izo(hs) B Vigi®

As in the continuous time case, glven a itime series model for
ﬁ;t,ut}, (75) and {(73a) imply a time series representation for Y, =
(It,st)T. This in turn implies a spectral density, Se(eim,e), for
w ¢ (0,27)s {The superscript "e" denotes "econometrician™.) Here, £
denotes a vector of parameters which includes g, &, b, ¢, e, A, and the

paraneters of the statistical representation of {ut,vt}.

Define
g{g) = P 1im Epe

The above Flim is computed on the assumption that the data are generated
by the continuous time model, with parameter wvalues p. Here, ET is the
(misspecified) maximum likelihood estimator of g, Asymptotically, this
is equivalent with the following frequency domain estimator:

-iy

~ T
(77) Ep = argmax %{_.% 7 log det [s®(e J,g)l
g J=1
T -iw
- %- Y trace [s%(e j,a)_ll(mj)},

j=1
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J
that Plim g, 1s the argmax of (77) a8 T + «» with I replaced by the true

where @, = 2%1, J =1, sees T, and I is defined in (45). It can be shown

gspectrum of the data, which is Sgu Thus,
~ 27
(78) g(g) = argmax |~ | log det [Se(e_im,z)ldm
E 0
- fagrace[se(e"im,E)-lsg{e-im,c)]dw}
0
In (77) and {78) the maximization is carried out over the range of admis—
sible wvalues of E.
Qur objective is to compute g(c) for a variety of values of [.
In each case, we plan to compare the speed of adjustment Implied by ¢
with that implied by E(C)- The difference is due to temporal aggregation
bies.
As an 1illustration, we consider the case in which u; and Ve
have AR(1) representations and fail to be Granger caused by each other,

or any other model variable., This is the discrete time version of the

model considered in Section F. Accordingly, suppose

Ug T Wy T Sp
(79a)

Vg T PV gt gpy

_ T
vhere |u| <1, Ipl < l. Also, €, = (elt’eat) is a vector white noilse
with
Q =0

(T91b) E € €y o = .
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gubstituting from (79a) into (75),
(80) I, = Al

where

-1
h = ETETE:ITIET{R(a—bc)+[(a—bc)l—a]i—%§£§5}

_ {a+b+4) A 1
" T alolc+1)+A] 1-28p°

Equations (T3a), (79a), and {80) imply

(l—pL)(l—uL)(l—AL)It h{lupL)slt + g(l—uL)sEt

(l—pL)(l-uL)(lka)st

EI%:K{(I_DL)[l_(a_bc)h+(ah—A)L]s

1t

+ g(l—uL)Ibc-a+aL]sat}

Writing this in matrix form,

Ig

-]

{812) (1-pL)(l—uL)(l—AL)( )= (CO+ClL+CeL2)et,
t

where
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(81b) c. =
8]
1-(a-be)h g{bc-a)
a+b+ A a+b+ A
=hp -gu
{B81ec) C1 =
{ah-A) - pl1l-(a-bc)n] gla—u(be-a}]
| a+b+ A a+b + A
0 0
(814) C, =
-p(ah-2) -gyua
a+h + A g+ b+ A

In order %o obtain an identifiable reduced . form, compute

(L) = C(L)Cal and § =C. Q Cg. The Wold representation of {It’st) then

0
possesses 12 non-zero reduced  form parameters. However, only nine of
these are free to vary independently. This is fewer than the number of

structural parameters of the problem:

L= (Bsa!bsc!esAauspanllanQE3912) .

Like in the continuous time case, only nine of these reduced form pzram-
eters are free to vary independently. This will be proved in the discus-

slion that follows.

Consider the following nine elemeni parameter vector:

4

~ It

be atb+h
e S L TRV TCPY

The admissible region for T is P, where
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P = {XERgt xi#xk,i,k=l,2,3; Ixi[ <1, 1= 1,2,3,6;7

_ . . 2
%30, 1=4,7,8; x.>1; xsz-x9>0}.

5

We will show that for all T ¢ P, the mapping from T to 8(L), Hl’ 52, a
has a locally unique inverse in P. We will also show that given 8(L),

g, 52, l in the range of the mapping T ¢ P + {o(L},¥ ¢}, there are

1’62’
no more than six isclated elements in the associated inverse mapping that
belong to P. For any given o(L}, g, 52, G, we provide an algorithm for

determining how many elements of the inverse mapping belong to P. If

there is only one, then the model is sald to be globally identified at

~ ~r

o{n), €, &, &.

Note first that

. Cl Cl . 0 0
c. = . - c. =
1 * 2 ?
2], 22 21 ~22
¢y 1 ¢ €
where ) - .

'ﬁg‘_l = h{a-be)(p-p) - u

21 ~(8h-1) (z—c ~1)+p[1-(a-be)h] [E-c— ~1)+[1-u(-§-9 -1)][1-{a-be)n]

¢, = [{a+b+a) /2]

Ei2 = h{p-p)(a+b+a)

322 - —(a+p} + h{p-n){a-be)



--45 =
be

o1 Plg — 1)(an-2) + ul(a-pe)h-1]
o = (ao+i)/a]
522 = ha(u-p) + pi

There are six ways to infer u, p, A from the coefficients of (L)

= (1-pL){(1-uL)(1-AL). For every such way, it is possible to

he a+ b+ A

uniquely infer = > & B, a8 we show below. FTirst, note
522 - pA
ah = —————
-9
8%1-1-]_1
(a-bc)h = ——— - - -
B =09
631:2 _
(a+b+A)h = - -
H=p
Consequently,
~12
a+b+A=__Cl _
8 2 . )
11
b_c__l Hl'+u _ _
a 522 - oA _

Next taking into account the formule for h, note that

AL = 224 (1 - 22)a-1] aus}
ah = - ['bc + b"l‘A](l A )
a e [MTARM

Hence,

B = {[EE-+ Egé}luah ~- {1 - Egol—lllu}_l

{[A(z - 22)+[22 + 2Bian}



- Lh& -

b + A

B8ince-~-for the given wvalues of A, u, p-—a8h, and Eg-are
identified, it follows that R is tooc. 1In fact, p, u and A are
locally identifiable from o(L) = (1-pL){(1-pL)(1-AL). This estab-
lishes that all T ¢ P are locally Ildentifiable from the reduced
form coefficients 6(L), 522, 5%1, 512 and (.

It is of interest to note that &, o(L) and & do not
permit inferring more than the nine elements of T. To see this,

~2l ~22

note that C1 , C and 521 are exact functions of the remaining

1° 2
elements of € and of 6(L).

We have shown local, but not global, identification. In
fact, global identification does not obitain for all T ¢ P. It is
straightforward to check global identification for any particular

I ¢ P. First, execute the mapping T + o(L), s} Eé (§ can be

1?
ignored). Then compute the six different ways of allocating the
labels "u," "p," and "A" to the roots of 8(L). Then compute the
assoclated six wvalues of E—i—g—i—& ,‘EE, and B using the formulas
provided above., The result will be s8ix vectors in R9, where one
of these is by construction the T ¢ P we started out with. If
none of the alternatives to I belong to P, then global identifica-
tion obtains at the point T e P.

At this point, the sources of temporal aggregation bias
in estimates of speed of adjustment are clear, The restrictions
implied for the continuous and discrete time Wold representation
by the continuous and discrete version, respectively, are simi-

lar. However, the continuous time model loses the property of

being a pure AR(2) process upon sampling the data and averaging
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sales. This sampling and averaging results in the conbtinuous and
discrete models having different implications for measured data.
The experiment outlined in this section can be undertaken in such
a way as to isolate the contributions to bias of sampling and of

averaging.

The Effect of Averaging on (ovarlances

In a recent paper, Blinder [198k4] studies the so-called produc-
tion smoothing model of inventories and sales. In that model, the short
run production function is concave and the underlying shocks are domi-
nated by a serially unceorrelated demand shock. The model of this paper,
with the wvariance of +v(t) small and wu(t) serially uncorrelabed, has
these properties, The short run production function clearly is concave,

gince (with b=0)} it takes the form
¥ = Z(weal’

where z is & function of the existing stock of inventories. (Note that
the degree of concavliy in ¥ is inversely related to the size of a. The
variable z is guaranteed to be positive if the stock of Inventories is at
a level vwhere the marginal product of inventories is positive.)

The production smoothing model has the implication, according
to Blinder, that the covariance of sales, s{t), and inventory investment,
DI(t)}, is negative. In this model, inventories act as a buffer to smooth
production in the face of disturbances to sales. Blinder observes that
the covariance of measured sales and investment is in fact positive, thus
contradicting the implication of the production smoothing model. Blinder

argues that the model can be reconciled with the data by introducing the
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right kind of serial correlation im u(t) (it needs a "hump shaped"
moving average representation), or by raising the variance on the produc-
tion shock, wv(t) . The analysis of this paper suggest a third possibil-
lty. namely that the positive covariance between measured sales and in-
vestment 1s an artifact of averaging. (A fifth possibility, not dis-
cussed here, is b large and positive.)

Recall that measured sales, s(t), are related to actual sales,
s(t), by slt) = } s(t+71)dt. Similarly, measured investment, I{t+1) -
(t), is relateg to actual investment by the averaging operator:
I{t+1) -~ I(%) = } DI(t+T)dT. It seems In ©principle possible that
Cov(DI(t), s(t))o< 0 and Cov{I{t+l) - I(t), s(t)) > 0. To see this,

consider two random variables, x; and y., and suppose that Cov(xt,yt) <

@, but that Cov(xt,yt_f) is large and positive for t = +l. Then it is
1 1 _ 1
the case that Cov(E{xt+xt+l), 2(yt£yt+l)) = Cov(xt,yt) + ECov(xt+l,yt)

1
+ §Cov(xt.yt+l

reverse the sign of a covariance is a special one. It requires that the

) > 0. Evidently, the condition required for averaging to

contemporaneous covariance and lagged covariance be opposite in sign.
In a {(failed) attempt +to Ffind an example of the case
Cov(s(t),DI{t)) < 0 and Cov(s(t),I{t+1)-I{t)) > D we considered the fol-

lowing model:
Dx(b) = ax(t) + e(t),
where
12

22
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e(t) 1is white, and a,,< 0 1 =1, 2. then,

ii

& . T a5 8opT 84T
—) (e -e )

8507811

227

= eATVar(Yt), where

=
)
L
~
[
[
P
o
S
=
ct
i
-
S
3
i

&

1 2, 1 1 2 12
T B 2a,,(a 148y, )

2&22(a ‘e, ) B 28,

a 12& . Thus, in particular,

22 11

Here, k =

810

28 pla) ten,)

l - =
2&22

H

Covis(t}, DI(t))

Var(DIi(t))

Now,

cov(B(%), I(t+1) - I{t))

1
s(t+t)dr [ DI{t+v)dv
0

E

T

O

Covi{s(t+t), DI(t+v)]drdy

il
Ov—H
Qe

o e -1—322 a -1-a
= (=B ) var(DI(t)){[ 1-[
B207%1 Bap 11

Var(I(t+1) - I{t)) = 2 Vvar(DI(%})[



where

_ Cov(s(t),p1{t)) _ _ %12

Var(DI(t)) =

Define

_ Cov{s(t),I{t+1)-1(%))
T Var(I{e+1)-1{t]})

ol

Then,

o [ol
n
m
‘Ll—‘
R
—
n
n
[ |
P
)
4
[ —
Farma Y
o
o
S
1
o
|._I
l._l

1
2 [§'+ 31 2t I At "'](522]2 " )
T, 1 1 2 a .

. a, .=—8

If it were possible to choose 2¢; and a,, so that (p/p) < O, then we'd
have an example in which averaging produces e switch in the sign of =
covariance. Unfortunately, this seems not to be possihle, at least for

extreme values of a1y and Bone The followlng results may be confirmed:

\l‘l’
ool
+
’.-l

a22 + 0

{I,
ool
+
8

Bop® =

all+ 0 =>-§ + positive constant

= B
a11+ > 5 + 1

We do not have an analytic result for the case a._.+ a_... However, numer-—

11 22
ical simulations suggest that in this case {p/p)} + & positive constant.
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Interpreting Fundamental Moving Average Representations

A current widespread practice I1s to compute and report the
fundamental moving average representation of unconstrained estimated
discrete time vector ARMA models. TFreguently, errors In this representa-
tion ("innovations") are interpreted as surprise shocks to the utility or
production functions of agents. In addition, the moving average coeffi-
clents are Interpreted as reflecting the transmission mechanisms whereby
these surprises dynamically influence the variables observeble to the
econometrician.

A basic difficulty assoclated with the sbove procedure was
pointed out by Hansen and Sargent [1982]. They note that dynamic eco-
nomic theory does not always imply that the innovations in the sampled
data observed by the econometrician coinecide with shocks to {technology
and preferences, A divergence can arise for two reasons. TFirst, assum-
ing a correct model timing specification, the model may imply a nonfunda-
mental representation. In this case, the innovations are =a square
sumable linear combinatlon of shocks to technology and preferences goling
into the infinite past. (See Hansen and Sargent [1980, ftn. 12] for a
simple 1llustration of this possibility.) The second potential source of
divergence arises if sgents are making decisions over a finer interval
than the data sampling interval, for example, In continuous time. In
this case the first possibility mentioned above can alsoc arise (e.gz.,
detC{D) in (21) may not be invertible). However, even when this does not
cccur, there can be a divergence between the innovations in the discrete
time sempled representation and the continuous time disturbances to pref-

erences and technology. In addition, the discrete time moving average
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coefficients may deviate sharply from resembling a sampled verslon of the
continuous time moving average representation.

We propose ito supply evidence on the empirical importance of
both of the above difficulties in the context of our bivariate model of
inventories ‘and sales. As a byproduct of the estimation we plan to carry
out, we can compute the moving average representation that appears in
operator form in (21), evaluated at the estimated parameter values, We
plan to compare this with the moving average coefficients of the funda-
mental representation of sampled averages from our continuous +time
model. Finally, we plan to use discrete time data on sales and invento-
ries to estimate the one step ahead predliction errors that agents are
meking in continuous time (Hansen and Sargent [1982]) describe projection
procedures for doing this)., We will compare these with the innovations
computed from our discrete time fundamental sample representation.

As en example, consider the case n=m = §5 = §5 =1, §; = 85 =
§; = 0, which was studied in Bection F.

There we report

¥(t) = % $s)

= [ £(1)el(t-1)dn,
Q

where

£ {7}
£f{r) =( 1 )= ae”%T+ e—BoT + A e(r-l)T, T» 0,

fa(t

and



|
\Ji
w

I

-6(—ab)

1= Tp—a_Ja #r-2)

T
N

~8(-8 )

— O -_—
2 = T -B,)(B wr-n) -

P
Y\):Dm T'OPH

_ G(r-1) -
3 (r—-HaO)(r—A-—BO) =

)
)
).

P
o S

Where A% are two element row vectors, i, J = 1, 2. Note thet £;(0) = 0
and f2(0) # 0. This is an implication of the fact that I(t) is, and s{t)
i not, differentiable. TIn addition to {f{t)}, it is alsc of interest to
compute {f(1)}, the moving aversge representation of {Y{t)}, where
I(t)
(t) = .

s(t+1)dT

O

The function {f{1)} is defined by

T(t) = [ T(O)e(t-1)ar,
Z1
where
fl(T)
(1) = R
?é(t)
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Straightforward caleunlations show that

> -8 =@ T =B, -8 T
2/1l-e "o (o} 21— o]
Alﬂ——i;—J + A2E—7f——0e
fo} o}
(r-x)
. Ag(l_exir )e(r—l)r c >0
f2(1') =<
—ub(r+l) —BO(T+1)
2rl-e 2rl-e
B ]+ ]
(r=a)(t+1)
\h + A%[l—e o ] -1<1t<0

It is easy to verify that f(-1) = 0, and that‘?é(») is

differentiable for all 1 > -1. However, [ f(r)e(t-r)dr is not the
-1

fundamental representation for {Y(t}}. To get this requires first

factorizing the spectral density of {Y(t)}, which is
S?{s) = G(S)SY(S)G(—S)T,

where Sy(s) is the spectral density of {¥(t)} and

1 0
gls) = o .
O e;l

It appears that this factorization is difficult to accomplish,
since G(s) is not rational., If inventories were measured end-of-
period, rather than beginning of period, then the problem wvan-

ishes. To see this, suppose that the data are ¥(t), where

¥(+) = c{-D)y(t).
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In this case, [G(-D)}&(D)/o(D)]E(t) = ? g{1)e(t=-1)d1, where
o

g, (1) = £ (1)

1
[ £,(tk)dk,
5 2

[

82(1)

for t » 0. This 1s a fundementel representatlon for (¥(s)3.

A number of normalization questions arise when comparing
matrix continuous time and discrete time moving average represent-
ations. To see this, suppose

[ tlr)elt=1)dr
o

¥(t)

(%)

i

) Cyule-3).

J=0o
The first model is that of {y(t),t real}, while the second is that
of {¥{t),t integer}. Bince the above representations involve
products of moving averages and errors, there is considersable
latitude in how to measure these, while leaving the model sub-
stantively unaffected. Before undertaking comparisons of objects
like {f{(t),T?0} and {CJ,j=O,1,2,...}, some "natural” normalization

for these must be found.
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