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A.

Introduction

Application of the stock adjustment model to the study of inventory
behavior frequently produces parameter estimates which Imply implausibly
low speeds of adjustment of actual to target inventories. For example,
Feldstein and Auerbach's estimated parameters [1976] imply that firms
take almost 19 years to close 95 percent of the gap between actual and
desired inventory stocks, Application of the stock adjusiment model to
other areas-—for example, money demand--also ylelds implausibly low esti-
mates of aspeeds of adjustment.

One explanation of these anomalous results is that they reflect the
effects of ‘temporal aggregation bilas (for other explanations, see
Eichenbaum [198%] and Goodfriend [1985]). The stock adjustment litera-
ture typically assumes that the Interval of +time separating economic
declsions corresponds to the interval of time separating the observations
avallable to +the econometrician. Zellner [1968] and Mundlak [1961]
showed theoretically that 1if this is longer than appropriate, then the
econometriclan could be led to understate the speed of adjustment. This
is consistent with the experience of Bryan [1967], who applied the stock
adjustment model to bank demand for excess reserves. Bryan found that
when the model was applied to weekly data, the estimated time to close 95
percent of the gap between desired and excess reserves was 5.2 weeks,
When the model was applied to monthly time aggregated data, the g5 per-
cent closure time was estimated to be 28,7 months. Bryan's results,
which can only be due to temporal saggregation bias, reinforce the view
that temporal aggregation could account entirely for the anomalous re-

sults reported by Feldstein and Auerbach [19T76].



We propose to investigate empirically whether temporal aggregation
blas can account Ffor the slow speeds of adjustment typically found in
studies of inventory behavior. We plan to do this by estimating a con-
tinuous time version of the stock adjustment model, and +to compare the
speed of adjustment implied by the parameter estimates with those re-
poerted In the llterature. We plan to formulate a general equilibrium
model of employment, inventories, and output which implies a continuous
time version of the stock adjustment model studied Iin the literature. In
this way, we willl have an expliclt economic rationale for the stock ad-
Justment model.

In addition to shedding light on the anomalous findings in the stock
adjustment literature, we expect that our project will make several other
contributions as well. First, we will supply a completely worked example
of estimating a rational expectations equilibrium model in continuous
time. We hope that other researchers will find this useful in epplying
continuous time estimatlon technigues. Becond, if the evidence suggests
that the continuous #+time model performs better than =& discrete time
equivalent, then we plan to perform a formal non-nested test of the con-
tinuvous time model versus the discrete time model. Non-nested testing in
the empirical/macroeconomics/time series context is in its infancy, and
we think it would be useful if more of this were done. (See Singleton
[198L4] for a contribution.) Third, we plan to use the model to provide a
concrete example of some of the pitfalls of interpreting moving aversage
representations obtained by estimating time series meodels unrestricted by
economic theory. In doing so, we wlll be illustrating points made at the

theoretical level by Hansen and Sargent [1982].



Section B presents an example of the kind of model we plan to formu-
late and estimate. There it 1s shown in what sense the model implies the
stock adjustment model studied in the literature. Also, we indicate how
we plan to carry out non-nested testing. In Section C we show how we
plan to estimate the parameters of the model. In Section D we indicsate
how we plan to go about 1llustrating the pitfalls of interpreting moving

average representations obtained from unresiricted time series models.

B. The Model
We conslder a model of employment, inventories, and output which is
similar %o the general equilibrium model of employment that appears in
Sargent [1979 Chapter XVI, Section 3], As shown below, the model implies
a continuous time version of the stock adjustment equation for Invento-
ries that appear in the literature.
We assume a representative household which chooses {s(%),N{t);

t » 0} to maximize

(12) B, [ e Tfultrr)sltrn) - Zs(trr) ZMlor)far,
0
subject to
(1b) P(t)}s{t) = N(t) + =(t).
Here,
E. = linear least sguares projection operator, conditional on
time t information set,
u(t) = disturbance to marginal utility of consumption, with
second moment properties specified In Section C below,
8{t) = consumption of the one commodity,



N(t) = employment,

P(t) = price of the one commodity, denominated in labor units,

n(t) = lump sum dividend earnings of the household, denominated
in labor units, and

A,r = pogitlive constants.

Solving (1) yields the following inverse demand function:

(2) P(t) = -As(t) + u(t).

The representative firm's profit function is

(3a) E S e Tr{rer)dr,
0
where
(3b) n(t) = P(t)s(t) - N{t) - l;-[s(t)-cl(t)]g - w(8)I(t) - 5 1(t)°.

In (3b), P(t)s(t) represents total revenues at time t, and N(t) is the
wage bill incurred in producing time t output, Q(t). The third term to
the right of the equality in (3b) reflects the idea that there are costs,
denominaeted in units of labor, allowlng inventories to deviate from some
proportion of sales. (See, e.g., Blanchard [1983, p. 378].) Finally,
the last two terms In (3b) represent costs of holding inventories.
There, v{t) represents a disturbance %to the marginal cost of holding
inventories. TIts second moment properties are described In Section C.

We assume the following production function for Q{t):

(1) ) = [Bn(e)]”



In (3) and (4), r, a, b, c, and e are positive constants. The link be-

tween current production, inventories, and sales 1s given by
(5) Q(t) = 8(s) + pI(t).
Substituting (4) and (5) into (3b), we get

(36)"  w(t) = B(t)s(t) - &[a(6)+p2(t)]® = 2ls(t)-er(s)]?

- v(t)I(t) - gi(t)z

-

The objective of the representative firm at time t is to choose
DI(t+t), Q(t+r}, and s(t+t); T » 0 to maximize (3} subject to (L), (5),
(13), I{t) given, and beliefs sabout the law of motion of aggregate
8(t}). In & rational expectations equilibrium, these beliefs are self.-
fulfilling. Sargent [1979, p. 375] describes a simple procedure for
finding rational expectations equlilibria in the linear gquadratic, dis-
¢rete time context. The discussion in Hansen and Sargent [1980] spells
out precisely how Sargent's solution procedure [1979] can be modified to
accommodate our continuous time setup. Briefly, the oprocedure is as

follows. Write
(6) F[T(t),DI(t),s(t),vit),P(t),t] = e_rtw(t),

where 7(t) is defined in (3b)'. Then, the objective of the firm at time

t is to

{(7) maximize B, fg F(I(t+7),DI(t+1) ,s(t+1) ,v{s+7) ,P(t+1),1)d
DI{t+1),8{t+1)
T » 0



subject to I(t) given. The solution to this problem is simplified by
exploiting the property to certalnty equivalence. Accordingly, we flrst
solve a certainty version of (7) in which future random variables have
been replaced by thelr conditional mean. Then we use a continuous time
version of the Wiener~Kolmogorov forecasting formula to express the con-
ditional expectations in terms of observed varlables. Standard control
theory resulis inform us that if boundary conditions can be ignored, then

the optimal path for I{t) and s(t) satisfies the following conditions:

(8a)  sory = ©

() S o

aT(e) - D 3DI(%)

These imply respectively:
(9a) P(t} - {a+b)s(t) -~ aDI{t) + beI(t) =0
(9b} aD?I(t) — raDI(t) — (cZb+e)I(t) + aDs(t) + (cbera)s{t) = v(t)

In rational expectations equilibrium, P(t) must satisfy (2).

Substituting this into (9a) and rearranging

00 a0 = (I + (e +

Ju(t).

I
a+b+A
Tt is convenient to collapse {9b)} and (10) into one differentisl equation

in I{t). Substituting for s(t) and Ds(t) in {(9b) from (10} get

a+b + A ra—chb-al
— u(1)],

(11a) {DQ—rD—k}I(t) = m)——[v(t)+ —TOIA

where

a + b + Acbelc(atd)+ral + e}
a{b+a) | at+b+4 *

{(11p) X =



Alternpnatively,

(12a) (D-A) [D-(r=A) ] Z(t} =

a + b+ A

B v(t) - ropgyiave-ra)enlult),

where

1 2,1/2

(12b) A=t [k + gr J

Since k > 0, it follows from (12b) that A > O is real. Moreover, it is

eagy to verify that r - A = %-r - [k + -%-1'211/2 < 0. (To see this, con-
stder £(k) = %fr,— [k + %erlllz and note that £(0) = 0, and £'(k) < O

for k » 0.) Solving the stable root (r-)) backward and unstable root

(A) forward in (12a), get

+
(r-a)1{t) - E_ETgiﬂTé f E%v(t+1)d1
1 f e—l‘t

b+ 4 o

(13) DI(t)}

1t

Et[%(cb—ra)+D]u(t+r)dT

(r-2)1(t EE%§EK§45~I e"lTEtu(t+T)dT

n

o

1 1 rbe —-AT
- 5 we) F [ - (e-)] Io e "B u(t+r)dr
Bubstituting (13) inte (10),
_be - a(r—a) 1L, At
(1k) 8(t) =15 I8) + o [ e "B vlt+r)dr

- (b+A)?a+b+A) IO GHATE%[&(cb—ra)+Dlu(t+r)dT



The solution to the certainty eguivalent version of (7) is given by
{13) and (1L). The sclution to the stochastic problem is complete once
the forecasting problems in {13) and (14} have been solved. We do this
in Section C. First, we derive the stock adjustment model implicit (13)
and (1%).

Let I#{t) be the level of industrywide inventorles such that if I(t)
= I%(t), then DI(t) = 0. I¥{(t) is taken to be the time t level of "de-

sired" or "target" inventories. By (13},

a +b + A

. . AT
(15) I*(t) = Te-Nal(b+a) fo e Etv(t+1)dT

- Ir—A%{b+A5 / e_lrEtL%(Cb'ra)+D]u(t+T)dT
0

Substituting (15) into (13), we get the stock adjustment model:
(16) pr(t) = a(I*(t)-I(%)),

vhere o = (i-r) > Q.

We require a measure of "speed of adjustment" which cen be compared
with similar measures In the literature. In order to meke this concept
precise we imagine, counterfactually, that movements in I*{r) can be
ignored over an interval te(t,t+l), i.e., I*(g) = I¥ for T & (t,t+1). In
this case, the solution to (16) is

¥ - I(e+1) = e F(1-1(v)),

or, after adding I(t) -~ It to both sides,

(17) 1(t+1) - T(t) = (1-e7%) (T%-1(¢)}).



Thus, the amount of & given gep between target inventories, I¥, and I(t)
that is closed in one period is T = 1 - ™% = [I(t+l)—I(t)]/[I§—I(t)].
Our jintention is to obtain an estimate of T by Jointly estimating the
parameters of the model. Our plan 1s to compare ocur estimate of T with
those reported in the literature. For example, Feldstein and Auerbach's
estimate of T is .06 [1976 p. 366], which implies that firms only reduce
6 percent of a gap between actual and desired inventories in one quar-
ter. As they emphasize, their estimate of the speed of adjustment is
implausibly low.

The theoretical argument advanced in Zellner [1968] draws attenbtion
to the possibility that Feldstein and Auerbach's anomalous results are
due to temporal aggregation bilas. =~ They make the assumption that the
interval of time separating the economic decisions of agents is one quar-
ter, whereas 1t seems plausible that decisions of the representative
agent are in fact made over a finer interval. If this is the case, and
the agent makes decisions in continuous time, then our estimste of the
gspeed of adjustment will not be distorted by temporal aggregation bias.

If Zellner's conjecture is confirmed, then we plan to proceed one
step further and carry out a formal hypothesis test of the null hypothe-
sis that +the continuous itime model is true, agalnst the discrete time
alternative. The test we have in mind i1s a Cox-type test [1961] con-
structed to take into account our vector time series context. In sepa-
rate work, we hope to generalize this to the vector case. (Other work,
such as that of Pesaran and Deaton [1978}, does not apply to the time
series context. Walker [1967] developes the theory for the scalar time

series context.) ©Even if the latter effort falls, we can still compute
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the Cox statistic and present it as & model diagnostic statistic. The
computations reguired for this are described and applied in Christianc

[1984].

The Reduced Form of the Model

We agmume that wul(t) and {v(t)} are covariance stationary with the

followling continuous time Wold representation:

ul{t) h d (D) 0 e (t)
1 1 1
(18) ) * v
v(t) h, d, 0 ¢{D) se(t)

vhere g(t) = [al(t),az{t)IT is the coqtinuous time vector of linesr least
squares innovations in u(t), w{t) with EE(t)e(t—T)T = §(1)v, where § is
the Dirac delta function. Also, ¢ and ¢ are rational polynomials In the
time derivative operator D, and are assumed to be analytic in the {(open)
right half of the complex plane. Further restrictions will be placed on
¥ and ¢ bhelow.

The forecasting problems in (13) and (1hk) have the following solu-
tions, as proved in Hansen and Sargent [1980]:

L]

(19) f e_lTE%[é{cb-ra)+D]u(t+T)dr =

0

X Jhl+d 3 = 4 X B,y !
F(D)El(t} + { = cb-ra hl +d1} K-+ = cb-ra};g + 2 cb—ra)i— +
o AT h d
- 2

(200 [ me wlwrdar - | (BLrelady, (4) + (B + ) + L,
where

_[iﬂcb—ra)+D]w(D)+[%{cb—ra)+l]¢(l)
D~ A

F(D) =



Substituting (19) end {(20) into (13) and (14), and rearranging yields

(%)
{2la) ( ) = f + gt + C(D)elt)
g(t)

where, f and g are 2 x 1 element veciors whose elemenis are functions of

a, b, c, e, A, T, hl: hga dl, d2. Also,

C;,(D) = (b+A)Té?%P—A)1
Cyp(D) = (;+K)7Di(i-ATT‘ ¢(gli¢(k))
(21b) L _be
Cpy (D) = ((b+A5%a+b+A))[D—(r 1)]F(D) N __$££l?_i
o5 _be
CoaD) = (g by 5 (31:¢(A)]

It is easy to verify that there are no restrictions across the elements
of £, g, and C(b).

We do not have cbservations on {I(%),s(:)}, but on {I{%t),s(4t)},vhere
8(t) is s(%t) averaged over the unit interval. In order for our stabisti-
cal model to make sense, we require that {I(t),8(t)} be a2 physically
realizable stochastic process. This places restrictions on ¢ and ¢ in

(18), which we now discuss. Realizability of {I(t),s(t)} requires:

lim cll(s) = lim ¢ . (s8) =0

8]+ 5]

1m fc,(s)] <=, lim [c,,(8)] < w.

|8 |s]+e
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Examination of (21b) reveals that the latter imply the following restric-

tions on ¢ and P:

m+1
Yo ¥ YqD et oD v(D)
¢(D) ) + D 4+ ene + Dm—l-!- Dm ) O'.(D)
% 7 % 1
(22)

§, + 8D + eee + § D"
0 D
#(D) = 1 n _ 8(@)

n-1 n  g(D)?
BO + BlD + sse + Bn—-lD + D

where m, n » 0. {Earlier, we imposed the restriction that al(s) = 0 imp-

lies Re(s) < 0, B(s) = 0 implies Re(s) < 0.) Since Ypo Y

R and Sn are

permitted to be non-zero in the above expressions, u(t) and v(t) are
permitted to be non-realizable stochastic processes. This in turn gives
rise to the possibility that s(t) and P(t) are not realizable (see, for
example, (2) and (10)). In interpreting this note, in any case, s(t),
P(t), ul{t), and v(t) are realizable after they have been integrated over
an arbitrarily short interval.

The extensive cross-equation restrictions between the rows of C{D),
in addition to the rational form of C(D), can be expected-—-after some
additional restrictions—--~to result in the model's parameters being iden-
tified from discrete data (see, Hansen and Sargent [1983] and Christiano

[1982]).

D. Computing the Frequency Domain Approximation to the Likellhood Function

The objective of this section is %o provide a computationally conve-
nient strategy for evalunating the frequency domain approximation to the
likelihood of {Y(t),t=1,...,T} where T(t) = (I(t),E(t))T. We assume that
inventories I{(t), are measured point-in-time and at the beginning of the

sampling interval. Consequently,



(23) s(t) = jl s(t+1)dr.
0

In addition, we make the simplifying assumption that all roots of poly-
nomials are distinct. Finally, the discussion below assumes that {¥(t)}
is covariance stationary and has a zero mean. Equation (21a) indicates
that this assumption is approximately satisfied if {¥(t)} is the distur-
bance in a least square regression of ¥(t) on & constant and linear
trend.

The outline of +this section is as follows. First, we derive an
expression for the continuous time spectral density of Y(t) =
(I(t),s(t))T. We denote this by Sy(im), where we{-w=,+w) and 32 2 =l.

(1(3),36))7T at  fre-

Define S;(im) a8 the spectral density of Y(t)
quency e In the second part_of this section, we obtain 85; from Sy and
recover the covariance function of ?(t) from S;. Denote +this by
R;(-r) = EE—I_(t)Y({;—T)T. The R;( t) function at integer values of t is then
used to compute the spectral density of {?{ﬁ),t=0:,1;i;1,12,...}. We dencte
thiz by S%(e"im), vhere we(-7w,7)s The third and final part of this sec—
tion shows how to combine {¥Y(t),t=1,...,T} and Sg-to compute the fre-

quency domain approximation to the likelihood function.

1. The Continuous Time Spectral Density of {¥(t)}

We %begin by providing computationally convenient expressions

for F(D) and i-4{D)+¢(2}]/(D-A). Note:

o) Y=l DY e Ta(D)
(24) (D) = rpy = "6

* {Ym+1D+Ym_Ym+l 0\"m—].] *
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Write

(2La) al(D) = (D—pl) ces (D—pm),

and suppose that Py # pj for i # j, pyF r - X for all i, Then (24)
can be written in partial fractions expansion form as follows:

m B

J
(25a)  ¢(D) = L e (s P4 YY1 ) m>0
Y, +YD =0
Here,
_ Y(pj)
(25b) By == ( C 5 =1, eee, m (if m > Q)
T (pi-p)
k=1 9 %
k#]

Using (25), it 1s straightforward to verify that

m>0
(26) 3P - o) _ JE [ )( ) Y+
D=2
¥, -

We now turn to F(D). Note:

(D-x) §(D)

(272) (D-k)p(D) 16

T

(D-k}6&(D) - sns(n)n - (k8 _+8
B{D)

0180 Bn l]B(D)

+ 8D+ (~k8 +8 -8 8 .),

where

(27b) K = - %ﬂcb—ra)
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Then,
n A
[321 _Ln-u )+ 8§D + (—Kﬁn"'ﬁn_l—ﬁnﬂn_l) n>0
{282} (D~x)y(D) =
GO(D-K) n=0
where
{28b) 3 n ( J =1, ese, n {if n > 0)
T (u,-n)
k=1 9 &
X#]

{28¢) g(D) = (D—ul) .es (Duun).

Here, we assume that My # "3 ir 1 o+, "i* r - X, ui# pj for all i,
Jj+ Finally,

:}-1: lEiJ 1
- 8 n>0
o) e = < Lh T - &

-8 n=0
o

Substituting (26) and (29) into (21) and rearranging, we get

I(t)
(302) a(D)B(D)[D—(r—J\)l( ) = C(D)elt)
s(t)

Wwhere,



(30b)

and

(30¢c)

Here,

(304)

where

{30e)

Also,

(30r)

11(D)

R

o
[w]
P

12

ﬁél(n) =

22

]

@(Dp)

G(D)

o

n+m+1

det G(D) =

- 16 -

1 n n
— i I (D-u )] - & 8(D)}a(D)
(b+A]{[J§ )‘_uj =1 Hye ] n }
k]
- - S sl z L 1 (ep vy, o0
alb+th j k=1 m
k#j
2D - 29T (D) + g 6(D)al(D) [D-(r-2)]
b
- (G - 20,0
€, & (D)
¢,, (D) € p(D)
=3 o - +m+1
Co ¥ CyD ¥ eee n+m+1Dn "
5, 0
BrA J
m m
[D—(r—l)]G(D)a(D)B(D‘a(b+A El =, kE (D-p, ).

k#]






