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Abstract

Myagari, 3. Rao--Optimality and Monetary Equilibria in Stationary
Overlapping QGenerations ¥odels With Long Lived Agentsa: Growth

Versus Discounting.

This paper studies the relationship between the existence and
optimality of a monetary steady-state and the nonoptimality of
nonmonetary steady-states. We construct a sequence of stationary
overlapping generstiona economies with longer and Ilonger lived
generations in which a1l agents maximize a discounted sum of
utilities with & common discount rate. Under some assumptions the
following result is established: If the discount rate is greater .
(less} than the population growthk rate, then eventually every
nonmonetary steady-state is optimal {(non-optimal) and a monetary

steady-state does not exist (exists and is optimal).

Address: Research Department, Fedéral Reserve Bafk of Minne-

apolis, Minneapolis, Minnesota 55480. °

Journal of Economic Literature Clagsification Numbers: 021, 023,

111.



List of Symbols

= capital "oh", same as zero

= lower case "oh"

script "el", 1 = type "el", {1 = one
(k) = upper (lower) case "kay"

= greek lower case "alpha"

= greek lower case "omega"

= greek lower case "beta"

= greek lower cage "tau"

= greek lower case "gamma"
= greek lower case "mu"

= greek lower case "lambda"

= greek lower case "theta"

= greek large "sigma"



I. Introduction

This paper extends previous work on the relationshiyp
between the optimality of nommonetary equilibria and the existence
of monetary equilibria in pure exchange stationary overlapping
generations (OLG) models. In simple OLG environments (e.g.,
Wallace [17]) the following relationship exists: 4 fixed supply
valued fiat money equilibrium exists (end there ig one that is
optimal) if, and only if, the nonmonetary equilibrium is nonopti-
mal.i/ Focusing on steady siates, a nommonetary equilibrium is
optimal or not depending on whether the interest rate exceeds or
falle short of the growth rate. The interest rate in s nonmone-
tary steady state depends on all aspects of the environmenty; i.e.,
preferences and lifetime endowment patterns of members of each
generation and also technology in a model with production (e.g.,
Diamond {7], Cass and Yeari {6]). TFurther, there may be multiple
nonmonetary steady states, some of which may be optimel and others
nonoPtimal.g/ Ir guch a case, existence of a monetary steady
state depends on aggregate desired assets of the population at an
interest rate equal to the growth rate (Gale [9], Casa and Yeaari
[6]). If desired assets are positive, a monetary steady state
will exist, otherwise it will not. As before, this too depends on
all aspects of the environment. Consequently, no simple answer
can be found in terms of the primitives of an OLG model regarding
the optimality of nonmonetary steady states and the existence of a
monetary steady state, and the relationship between them. Fur-

thermore, it dis difficult to assess vwhether gituations in which



nonmonetary steady states are nonoptimal and & monetary steady
state exists (and is optim&l), or the converse situations arise
due to special patterns of endowments and preferences or may arise
more generally. This 1s especially true when sgents live many
periods and there 1s heterogeneity within generations.z/

The above situation is in marked contrast to a popular
class of models of a fixed number of infinitely lived agents (or
equivalently, a growing number of families connected by beguest
motives) who maximize a discounted sum of utilities with & common,
fixed and positive discount rate. The classic one-sector growth
model is one in which the steady state inferest rate is entirely
determined by the discount rate and exceeds the growth rate.
Furthermore, competitive equllibria are optimal and monetary
equilibria do not exist.

The analysis in the present paper is motivated by the
above obgervations. TWe consider OLG models with long (but fi-
nitely) lived agents who maximize a discounted sum of utilities
with a fixed, positive and common discount rate (d). Heterogene-
ity within generations is permitted. The intuition is that if
agents have sufficiently long lives then the interest rate in =a
nonmonetary steady state ought to be (almost) entirely determined
by the diascount rate Independently of period utility functions and
lifetime endowment patterns. Therefore, the optimality of such
steady states ought to depend entirely on whether the discount
rate exceeds or falls short of the growth rate; i.e., on whether

agents exhibit sufficient impatience relative to the economy's



growth rate. The same condition may then determine whether or not
a monetary steady state existe; i.e., we should expect it to exiat
when the discount rate is lese than the growth rate but not in the
contrary case.

The sabove intuition 4is formalized irn +the following
mammer. We construct a sequence of OLG economies indexed by T,
the length of l1ife of each generation. Population growth rate is
fized at n and each generatlion is taken to consiast of H types of
agents. Types are distinguished by their one-period utility
functions and lifetime endowment patterns which are generated as
follows. We take H infinite sequences of nonnegative numbers.
The lifetime endowment vector of a type h agent ir a T-period
lived agent OLG economy (henceforth, OLG(T)) is then teken +o be
given hy the first T elements of the corresponding infinite se-
quence. We then examine nonmonetary steady state interest rates
and the existence of monetary equilibria and establish the follow-
ing results.

Let r(T) by any nonmonetary steady state interest rate
for the OLG(T) economy and let A{T} be the desired aggregate
azsets of the population at an intereat rate equal %o the growth
rate, n. Then, subject to some additional assumptions, we show
the following. As T becomes large, any such sequence { r(T)} will
exceed n if d is greater than n. Conversely, if 4 is less than n,
then eventually any sequence {r(T)} will remain below n. Further,
the sequence {A(T)} will eventually be bounded away from and sbove
(below) zero if 4 is less than (greater than) n. The following

conclusions emerge from the above results.



(i) With sufficiently long lived agents, if 4@ is greater than n,
every nonmonetary steady state is ophtimal and monetary steady
atates do not exist. Conversely, if 4 is less than n, every
nonmonetary steady state is nonoptimal and a monetary steady
siate exists and is optimal. Thkis result suggests the fol-
lowing generalization of Wallace's [17] result: A monetary
sateady state exists and is optimal if, and only if, every
nonmonetary steady state is nonoptinmal.

(1i) Therefore, nonmonetary steady states may be nonoptimal gener~
ally (as well as optimal, generally). Consequently monetary
steady =states may exist generally (as well as not exist,
generally) in this class of OLG economies with long lived
agents. In a sense, nelther of these situations seems spe~
cilal, at least in the sense of requiring particular types of
endowrent patternsz. Asymptotically, an important factor is

the degree of impatience relative teo the growth rate.

We believe that implication (ii) should anawer the
criticism that Tobin [16] and others have made of QLG models of
MONey . Baged on two-period 1lived  agent models, they peint out
that for a valued fiat money equilibrium to exist, endowments in
youth should be relatively larger than in o0ld age and that the
life cycle pattern of savings should display asavings followed by
dissavings. This, they suggest, is unrealistic. Our results show
that one does not need lifetime endowment patterns to be tilted in
any particular way for monetary equilibria to exist. Rather, what
natters is the relationship between the discount rate for consum-

erg and the economy's growth rate.



Our results have obvious implications for the analyeis
of asset bubbles in 0LG economies, as in Tirole [15]. He shows
that the existence of such "bubbly" eguilibria is intimately
connected to the nonoptimelity of the equilibria without bubbles
and rents. In terms of our characterization, we may say that with
long lived agents (and subject to some other assumptions), if the
utility discount rate exceeds the growth rate then asset bubbles
cannot exist; whereas, in the converse case, they always will
exist.

The particular specification of intertemporal prefer-
ences adopted here, nemely, time-separable with a fixed, positive
and common (ecross agents) rate of time preference, is quite
strong. The results from models of infinjtely lived agents sug-
gest that time preference plays an Important role in intertemporal
models (Lucas and Stokey [12]). Since we are considering OLG
medels with longer and longer lived agents, the specification
adopted here geems, as s first step, natural. It permite us to
obtain & simple &nd economically interesting characterization of
situations in which a monetary steady state does or does not exist
and whether barter steady states are or are not optimal. This
characterization 1s in terms of agents' common rate of time pre-
ference and growth rate and is valid for & reasonable and wide
class of endowment patterns and heterogeneity within generations
when agents are sufficlently long lived.

We suspect that the resultms established here will carry

over for more general preference structures. What we have in mind



are recursive (but not necessarily time separable) preferences
over conasumption streams with a well defined notion of a rate of
time preference as in Epstein [8] or Iumcas and Stokey [12]. It
would seem that for the results described earlisr, the important
thing is the relationship between a notion of time preference and
the growth rate. 'This need not be restricted to preferences of
the discounted sum of utilities type with a common, fixed discount
rate.

The particular cholice of preferences 1ls also motivated
by &8 desire to compare the determination of interest rates and
consumpiion profiles In QLG economies and a class of models of a
fixed number of infinitely lived agents referred 1o earlier.i/
This +%opic was pursued in greater detail in an earlier paper
(Alyagari [1]). In that paper, attention was restricted +to the
case of zero growih and even stronger resulte were obtained. It
was shown that every sequence of nonmonetary steady state interest
rates {r(T)}, in fact, converges to d, and that consumptions at
any fixed age converge to permanent income evaluated using d_é/
It has not been possible to obtain such sharp results Iin the
present case even though the intuition for them is strong.

Some justificetion for focusing on nonmonetary steady
atates is perhaps desirable here. BEach OLG economy iIs a pure
consumption loans economy with no outside assets and is viewed as
having a given siarting date at which aggregate assets of the
population are zero. As Gale [9] shows, for given initial condi-

tions, such an economy can only converge (if it ever does) to a



balanced or nommonetary steady state. We omit consideration of
the difficult issue of convergence to a steady state from given
initial conditions and focus directly on the behavier of steady
states. &/  Alternatively, and to avold dealing with initial
conditions, each OLG economy could be viewed as having neither
beginning nor end. Fquilibria are defined by requiring goods
markets as well as ssset markets {o clear and optimality is re-
gtricted to be forward looking. Given the underlying stationarity
in preferences ard endowments, we may focus directly on steady
state equilibria (see, Benveniste and Cass [4]).

The rest of this paper is organized gs follows: Section
II describes the sequence of OLG economies we consider, the as-
sunptione imposed on preferences and endowment patierns, and char-
acterizes the steady statem. In Section III, we prove the main
regults of the paper described before. Section IV concludes.

Proofs of some propositions are relegated to Appendix A.

IT7. Sequence of OLG Economies

The model described here is similar to that in Cass and
Yaari [6]. At each date t (t=1,2,...), (1+n)® agents are born,
gach of whom 1lives T periods. At a given date 1, agents of dif-
ferent generations are indexed by their current age s, which runs
from O through (T-1); &8 = 0 describes the newly born agents.
Heterogeneity is introduced by indexing agents also by their type
h whiech runs from 1 through H. The fraction of each generaticn
which ie type h is given by'yh and these fractions sum to one. At
the initial date (t=1), there also exist agents born at dates O,

-1, =2, <., ={P-2).



Endowments are described as follows. For fixed h,
2}:=O be an infinite sequence of nonnegative numbers.
Apsumptions on these sequences will be described shorily. Let

let {a

mg(t,T) be the (nonstorable) endowment of agent type h of age s at

time t in an OLG model with T periocd lived agents. Then, we put

h

(2.1) mg(t,T) = o7,

h=1, 2, +¢., Hand s = 0, 1, «e., T -~ 1. The sequence {u:} for
8 =0, 1, aes, (P-1) and h = 1, 2, ..., H describes the disiribu-
tion of endowments smong members of a glven generatiorn and across
memberg of different generations. The model is stationary asince
the population characteristics are time independent, except for
grovth.

Let cﬁ(t,T) be the consumption of agent type h of age s
at time t. Preferences of such an agent are described by
2.2y 18w (h (bee,m)

) =0 ht TadT ’

where B 1s the discount factor and is positive and less than
one. The discount rate, d, is given by (1-8)/B and is positive.
Note that the one-perlod utility function may be different for
different agents in a given generation though it is the same for
all type h individumals who differ only by dates of birth.

A steady state nonmonetary competitive equilibrium for
the above economy ias described by the following. Let T be the
interest rate and let 22(T) be claims to consumption (lozns due)

held by agent (h,s) at any date. Then an agent faces the follow-

ing sequence of budget constraints.
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h
£s+1(T)

1 + r

(2.3)  25(1) + ol(m) = (1) + -

B‘O, 1, ---,T-1 andh=1, 2, ey H.
h = h =
(2.4) 25(7) = 2 (1) = 0.

Note that all loans are taken {o be one-period loans. Further,
all lcoans are 1ngide loans; there are no outgide assets in this
economy. In addition, preferences are sirictly selfish and there-
fore no bequests are allowed in the budget constraints.
The market clearing condition may be expressed ss
T-1 H
h -
(2.5) ap= I IyaN(m(1en)™® =0
8=0 h=i
where ap is total assets of the population relative to the size of
the young (s=0) generation. The first order necessary conditions
for a ntility maximum subject to the budget constrainta are
h
1
BU(cgyq (1))

(2.6) -
(2 (r)) P Ty

g =0,1, vssey, T-2 @and h =1, 2, «s., H. A steady state equilib-
riun consists of rf, cgh(T), *™(T) for 8 =0, 1, «oe, T -1 and b
=1, 2, .u., H which satisfy (2.3)-(2.6).

The above economy is well defined for every T. This is
because the sequences of endowments in (2.1) are taken to be the
truncations of +the H infinite sequences [ag}z=o, truncated at

(T-t). Similarly, the preferences defined in (2.2) can be ex-

tended naturally as T iz increased.
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By virtue of (2.4), the sequence of budget consiraints
in (2.3) can be collapsed into the following single lifetime

budget constraint:

. —C = —
8=0 (1+rT)B 8 8=0 (1+r )®

h=1, 2, «.., H.
We now develop an aliernative version of the market

clearing condition (2.5). From (2.3) and (2.4) we have

2 (1) = cp_ (D) - op

- Tt
h
2o ,(T)
h n h e
zmﬁT)“cm§T1'“mz+1a-%
(T)-a
_ h h 1 mq
= ep (™ - ap_, +, T+,

Proceeding backwards in this way we get

h h
e, (T)-a (T)—a
ﬁh(T)=ch(T)_ah+2_.—_£+...+ T1_
1 1 1 1 + T-2
T (1+rT)

Substituting the above expressions in (2.5), rearranging terms and
noting that ng(T) = 0, we obtain

P H
(2.8) g = z (14n)78 z (“n) h=1yh(c§(T)—q}Sl).

1+rIIl

If rg # n, the above can be gimplified by noting that

{(1+r )—8—(1+n)-8}(1+r )
(1+n) 7" E [1:? )3 - — o T
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Hence, we have

n-r -1 H
(2.9) (q;r—z] an(rg#n) = 21{ (1+rT)'S—(1+n)"s} h21yh( cz(T)—aZ)
s= -

T-1 H
=3 ()™ § v D
8=0 h=1

in view of the budget constraints (2.7) multiplied by y! and then
summed over h. It fellows that for rp # n to be an equilibrium,

the market clearing condition (2.5) may be replaced by

71 "
(2.10) R R cg(T)-az) =0
a8=0 h=1

which is the economy's resource constraint.

When rp = n, the budget constrainta (2.7) automatically
imply the resource constraint (2.10). Aggregate assets ap from
(2.8) may be expressed as

T-1

H
2.11 a (r.=n) = § s(1+n)™® Bepy ol
10 gty = Lot L)

which may or may not equal zerc. The above considerations lead fo

the following:

Definition 1 (nonmonetary steady state). A nonmonetary steady

state for an OLG(T) economy comsists of rp and {cg(T)} for 8 = O,

1, sesy T =1 and h =1, 2, ..., H which satisfy either:

(1) equations (2.6), (2.7}, and (2.10) with rq # 1, or

(1i) equations (2.6), (2.7), and (2.11) at zero with rp = n.
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Correspondingly, a monetary steady state may he defined

as followss

Definition 2 (monetary steady state). A monetary steady state for

an OLG(T) economy consists of {cZ(T)} for 8 = 0, 1, eeua, T =1,
end h =1, 2, ..., H that satisfy (2.6) and (2.7) with rp = n and

such that ap(rg=n) from (2.11} is positive.

Such a steady state can be supported as an egquilibrium
by a fixed positive quantity of fiat money distributed (appropri-
ately) among the initial old (s=1,2,...,T-1) generations. If M
represents the fized stock of money and p(t) is the price level at
time t, then in such an equilibrium

B =a {r =n) >0

p(t) (1+)® T 7

and obviously, p(t)/p(t+1) =1 + rq = 1 + m.

We now describe the assumptions imposed on endowment

sequences and prefarences.

H
Assumption 1. The sequence | J thx};} is bounded and bounded away
h=1
from zero; il.e.,
7!
0<acx } Yhdz < A< w,

h=1
Even though we assume a single good at eack date, 1ts endowment
could be thought of as income from a bundle of different goods
vhose relative prices are fixed (across the sequence of econom-

ies), possibly via a within period fized coefficients technology
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for transforming goods. With +this interpretation, the above

agsumption on endowmente is not unreasonable.

Asgumption 2. Uy(e) is twice contiruously differentiable,
strictly increasing and strictly concave and satisfies:
lim Ul (e) = «, lin U {ec) = O.
h h
c+0 oro
With +this assumption, we may define consumption as a

function of marginal utility (denoted by p) implicitly as followsa:
N
P = Uh[c (P)) °

It is then apparent that c2{p) is continuously differentiable,
gtrictly decreasing and satisfies:

lim ch(p) =, lin ch(p) = Q.

p*0 0
The elasticity of marginal utility, dJdencoted ]1h(p), can he ex-
pregased as

n ~"(p)

u(p) = T > 0.

p(de”/dp)

In a context with uncertainty, p?(p) would be the measure of rela-
tive risk aversion. The next asaumption putes upper bounds on the

H functions, uh(p).

Assumption 3. u2(p) < § < ». Further, y is "small.”

How large we can allow w to be depends on the other
varameters of the model; namely, 8, n, and the bounds s, A on the

endownent sequence. While specific formulas can he given, they do
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not appear to be easily interpretabie and hence are avoided. This
assunption also permits u=s to put bounds on the growth rate of an
agent's consumption relative to the population growth rate and
thereby on per-capita consumption demand relative to per-capita
endowment. When p is small we can show that (see the discuasion
after proposition 1), at an interest rate equal to the population
growth rate, the growth rate of an agent's consumpiion is greater
(less) than the population population growth rate if the discount

rate iz less (greater) than the population growth rate.

JII. Nonmonetary Steady states

To recapitulate, let rp be eny nonmonetary sieady state
interest rate. We will show that i1if the discount rate d
(d=(1-8)/B) is 1less than n, then eventually the sequence { ol
stays below n; whereas if 4 is greater than n, then the sequence
{rT} eventually stays sabove n. We will also examine the sequence
{ap(re=n)} given by (2.11) and show that eventually it is bounded
away from and stays above (below) zero if d is less than {greater
than) n. It follows that for all sufficiently large T, every
nonmonetary steady state is optimal if d exceeds n and nonopitimal
if 4 is less than n. Further, a monetary steady state exists for
all T sufficiently large 1f, and only if, d is less than n; i.e.,
if, and only if, every nonmonetary steady state ir nonoptimal.

In what follows, we do not worry about existence of a
ateady state rqp for each OLG{T). This can easily be guaranteed

if, in each such economy, there is some agent type h for whom.ag
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is pomitive in at least two periods, s (see Gale [9], p. 34).
Therefore, we proceed as if a balanced steady state rq exists for
each 0L&(7).

We now make some changes in notation and establish =a

preliminary result which is used repeatedly in the mein proofs.

Let
- -1 +d
(3.1) Ap = 1/8(14ry) = 4— v
1 +4d
(3.2) A% = 1/8(14n) =/

h ir h

(3.3) p (1) = U, (c (7)) -

From equation (2.6) and assumption 2, we can then write
h _ h

(3.4) Py (T) = Agp (T)

(3.5) o1 = (ph(M).

Proposlition 1.

(1) If Ap < 1, then

(.60 o, (m/el(m) > a7
whereas,

(1i) if Ap > 1, then

(3.1 o, M/l < ag'

Proof. We will omit the indexes h and T in this proof as these

are not relevant and should not cause any confusion.
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- d 1n e(Ap) |
1n c(ip) = 1n ep) + 1n x T 0 l 3

in c(p) + 1n l(igf%é%jgﬂx

1n o(p) - 1n A/u(ip)

where A is between A and ome. The inequalities (3.6) and (3.7)
follow from this and agsumption 3 because,

Cor C(APB)

cy B e(py)

The impact of assunption 3 can now be explained as
follows. TWhen the interest rate Tp equalg the growth rate n, XT
equals A¥ yhich will be less than one if d is less than n. 1In
this case, having a small p makes lifetime consumpiions increase

more rapidly than the economy's growth rate. This is becausse,

fe, > (A%)7 gL - (Lo Il)1/11 1 + n.

¢ T+ 4a

g+1

Conversely, if 4 is greater than n, A% %ill be greater than unity
and having a small yu makes consumptions decrease faster than the

economy's growth rate. This happens because,

-1/ _ el /e
e iq/cg < (%) (=3 <1+ n.

These facts will turn ocut to be decisive in evaluating the behav-

ior of aT(rT=n) and in analyzing the behavior of interest rates.

Proposition 2.

(1} If 4 < n, then a =n) diverges to plus infinity.

2 (Tp

(i1} If 4 > .n, then lim sup a (r =n) < Q.
Tyoo
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Proof. In Appendix A.

Proposition 3.

(1) If 4 < B, & monetary steady state exists for all T suffi-
ciently large.
(i3) I£ 4 > n, & monetary steady state does not exist for any T

sufficiently large.

Proof. Follows from the previcus proposition and the definition

of a monetary steady state.

We will now show that if d < »n, then eventually every
nonmonetary steady state 1s nonoptimal. Conversely, if d4 > n,

then eventually every nonmonetary steady state will be optimal.

Proposition 4. JTet 4 < n and {rT} be any sequence of equilibrium

interest rates. Then

(i) the seguence {rT} ig bounded.
(11) 1f {r is any convergent subsequence converging to r, then
Ty

r < n.
Proof. In Appendix A.

Proposition 5. If d < n, then eventually every nonmonetary steady

gtate is nonoptimal.

Proof. DProposition 4 shows that if {rT} is any sequence of equi-
librium interest rates then lim sup rpy < n, which proves the

proposition.



-18 -

We now consider what happens when the utility discount
rate d exceeds the growth rate n. We wish to show that eventually

every steady state is optimal.

Proposition 6. Suppose that ¢ > n. Then eventually every non-

monetary steady state is optimal. That is, if {rT} is any ge-
quence of such equilibrium interest rates, then for all T suffi-

clently large, Tp > n.
Proof. In Appendix A.

IV. Conclusion

In this paper, we have provided a simple characteriza-
tion of the optimality of nommonetary steady states and used this
to extend earlier resulis on the relationship between nonopti-
mality of nonmonetary steady states and the existence of 2 mone-
tary steady state, in the context of a class of CLG models with
long lived agents and population growth. Preferences &are re-
stricted to be of the discounted sum of utilities +ype with a
fixed and common discount rate but heterogeneity within genersa-
tions regarding one-period utility functions &nd lifetime endow-
ment patterns is permitted. We are able to establish under addi-

tional assumptions that when agentsa are sufficiently long lived:

(1) If the utility discount rate exceeds the growth rate, then
every nonmonetary steady state will be optimal and & monetary

ateady atate will not exist.
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(i1} Conversely, if the utility discount rate is less than the
growth rate, then every nonmonetary steady state will be

nonoptimal and s monetary steady state always exisis.

One Implication of these results is that an optimal
steady state always exists, either with or without a positively
valued fiat money (see Benveniste and Case [4]). Another, and %o
ug more Iinteresting, implication 1z that in +thiz class of OLG
econcnies with long lived agenta, optimslity and existence of a
monetary steady state seem fo hinge on the relationship between
the rate of time preference exhibited by agents and the population
growth rate. One does not need sapecial patterns of lifetime
endowmente to generate nonoptimal gteady states and valued fiat
money eguilibria. In this sense, ocur results dilute one of the
criticisms of OLG models of money made by Tobin [16] and others.
Baged on an analysis of two-period lived generation models, they
guggest that the existence of a monetary steady atate requires
that sagents save in early periods of life and then dismave; or
that lifetime endowments be heavily tilted towards earlier sges.
Instead, our analysis suggeats that when sagents are long lived,
the relevant consideration is the impatience of consumers relative
to the economy's growth rate. In the absence of a priori know-
ledge about which way the relationship goes, one can only conclude
that optimality and nonexistence of a monetary steady atate are
perhaps, as general (given our specification of intertemporal
preferences} as nonoptimality and existence of a monetary steady

state. That i1s, neither of these situations is, in some =sense,
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special. Our resultz also suggest the following: A monetary
steady state exists (and is optimal) if, and only if, every non-

monetary steady state is nonoptimal. This is obviously reminig-

cent of earlier results (e.z., Wallace [17]).
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Footnotes

i/A nomonetary equilibrium is also variously referred
to as "balanced" by Gale [9], "real" by Kehoe and Levine [10], end
"barter" by Cass, Okumo, and Zilcha [5]. For us, a nonmonetary
equilibrium is one in which aggregate assefs of the population are
zero at each date. A monetary equilibrium is one with a fixed
positive supply of valued fiat (outside) money. Note that in our
terminology, in contrast %o Kehoe and Levine [10], golden rule
steady states with "negative"” money are not monetary equilibria.

g/Kehoe and Levine [111 show that, in general, there is
an odd number of such steady states.

3/3e%, for instance, Tobin's [16] critique of OLG models
of money. He criticizes the %wo period model because it requires
saving followed by dissaving for a monetary equilibrium to exist;
i.e., requires endowments to be tilted in favor of earlier ages.

ﬁfThis class of models of a fixed number of infinitely
lived agents may be viewed as arising out of OLG models of the
type considered here with bequest motives and operstive be-
quests. However, this transformation is well-defined only when
the discount rate 4 exceeds the population growth rate n. For
this case and in light of the results in this paper, the contrast
hetween the two frameworks noted previocusly is not as grest.

E/It follows that eventually every nonmonetary steady
state ig optimal. It was also shown that eventually a monetary

gteady state never exisits.
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éfSome discussion of these is contained in Kehoe and

Levine [10].
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Appendix A

In the proofs that follow, sums over B are slways taken

over s = O through (T-1) and sums over h from 1 through H.

Proof of proposition 2

(1) Let 4 < n. Using the budget constraint (2.7) and the in-~

equality (3.6), we have,
I (1+m) %k = T _(1+n) 5c2(n)
op_y () 0T g (an)mse e,
Therefore, we have,
[ 8(t+m)™ L yRel(m) 5> (2-1) (140)~ (1) 7 4Bl (m)

(0-1) (1om) =B oy =(T-D Ay (1an) 8 5 yBub
I (1+m)” RO

»

.......) o0

for gmall enough u because (1+n)(k*)1/u = (1+<§1)1/“(1+1:1)1-1/’1 will

be less than one.
Further, EBB(1+nJ"B Ihjhug ig bounded because
n>d>0. It follows from (2.11) that agp(rp=n) -Ef} .

(1) Let 4 > n. Then,
ap(ry=n) = § _s(1+0)™® vyl (m) D)

< I (1) ™ Ly PR G A o § a(1em)7
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(because of (3.7) and assumption 1)
< AT (1+m)7%) §_s(14m)T500) M L o § g(14n)7®
(because of the budget constraint (2.7) and assumption 1.)

If n = 0, then the sequence on the right diverges to
minusg e, If g_> 0, then the sequence converges tc a negative
limit for small enough u. This is because (1+n)(l*)1/u =
(1+a)E (14n) "M can be made quite large by meking y small,

s8ince 4 > n.

Lastly, suppose that -1 < n < 0. In thiz csase,

285{1+n)-8/§'_8(1+n)-8 + + o

and hence,

aT(rT=n) > - =,

Proof of proposition 4.

(i) Suppose %o the contrary that {rT} is unbounded above. Then
it hae 2 subseguence diverging to + ». To avoid clutter in nota-
tion, we suppose that {rT} + + @ and hence {AT} + 0. TFrom the

budget constraint (2.7) and equation (3.6) we have,
s h s h
I (%l = 1 (81 ) %(m)
h {T~1)/n 8 -8/u
It then follows from the resource comstraint (2.10) that,

(a.1) I, T,0em) ™Rl = T, (1en) By Pel(n)
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> (1)~ g BB ()

(1e0) " 0 )T (B DAy 5 aa B Rad

I (Br)%0 )™

>

- a3y =1/ .
Now, let BT SAT . Since AT

T t.. If eT + O fthe relevant terms on the right hand side can

+ O either BT + 0 or BT + @ Qr

8

be written as,
(I, 097 O/ o) =1 o,

If BT + = then the same expression can be written as,

T—1 8y -1 -(7-1)
R ) (BAT(1+n)] y o,
Lastly, if eT = 1, we can rewrite the right hand side as,
T_1(BRT(1+D)]_(T_1) > o,

In all cases, we get a contradiction since n > 4 > 0 and there-
fore, the left side remains bounded; hence the sequence {rT} mus t
be bounded above. It is obviously bounded below by minus one and
hence bounded.

(i1} By (i), & convergent subsequence exists. Again, to avoid
clutter in notation, we assume that {ry} itself comverges to r.

We will show separately that r cannot exceed n or equal n.

(a) r cennot exceed n: Assume the contrary. Then,

148 (e =122 oy,

A g T+n
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Since {AT} converges to A which i1s less than one, we can apply
(3.6) in the budget constraint {(2.7) and use it with the resource
constraint (2.10) to obtain the inequality (A.1), Jjust as in

(1). YNow, let 0p be as defined in (i) above and,
5 =)'~
g = g(am) 1A 5y

by assumption (3). If 8 > 1, then eventually 8y > 1 and the

relevant terms on the right side of (4.1) can be written

(1 +Il) —(T—’ )65—1

T-1 8
(8Ag) ESBT

+ + oo

because, {A,} + A <A* end 8p» 06 > 1. If6 < 1, then® < 6% and

z}

hence eventually 6, < 8%. It follows that the right side of (4.1)

can be rewritten as,

(e*>T-1(AT)—(T-1)/H (em)T ! a® (-1 A

()= LT=1)/ Zseg ” }:8(5*)8 Ap

because AT + A < A% and 8% > 1.

In 8ll cases, we arrive at @& contradiction which shows
that r cannot exceed n.
(b) r # n. Suppose to the contrary that r = n. Then, {1T} + A
< 1. Tnequality (A.1) is therefore again applicable and using the

notation from part (s), we have
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T 1 hhb
o3 I yrg) s

I zzun)"’“

(E%J\T)T“1(1+n)T"1 >

Since, 8, » 0% > 1, it follows that (8Ay(1+n))” is bounded below

and away from zero by some m > O.

Kext, using (3.6) in the resource constraint (2.10) we

have

(8.2)  T0+0)7® TixPa= T (1em)™® [xPel(m)
-1

< (IR (M) 0g) * I (15m) %0 )

Now, multiply the budget constraint (2.7) by yh and sum over h to

obtain
I (Brg)® Tyl = 1 (81 )° [y Pel(m)
> ™ Ly e ()

o Ig(1+0)™® I yMe®

I ()0,

>

Therefore, we have

I (1) 20 )™M T (B ) Tyl
—gT—fj B )

()"0 ¥ p ()™ D

(8ag) T (14m) ™"
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Since (1+n)7] (AT)-Vu + 8% > 1, it follows that (BAT(1+n)]T"1 is

bounded above by some M < ». Therefore, we have,
T
(4.3) 0 < m< (Brn(1+n)) <M< w,

Now, if A, < A%, then for any j such that 0 < j < T-1 we have

T

15> (Brg(1+m)? > (Bag (1+n)) ™" 5> @ > 0.

Therefore, for any & such that 0 { 8 £ T-1 we have
s-1 .

(A.4) ) (BAT(1+n))J > 8 m.
Jj=0

Conversely, if AT > A%, then for 0 < j < T-1, we have
T-1 ]
M > (BAg(1+n)) > (BAg(1+0)) < > 1
and hence, for s such that 0 < &8 £ T-1, we obtain,
8-1 3
(4.5) s> ¥ [BAT(1+n)] > s.
§=0

Using, (A.2), (4.4), and (A.5) in the alternative form
of the loan market clearing condition given by (2.8) and (2.5), we

have

(4.6) M zgs(1+n)-s Zhj ol > Lo (1+n)_s E (BA (1+n))? ZEY o B
J=0

- zB<1+n)'B_zo[sAT<1+n>)3 I,y eh(m)
=

> m Ess(1+n)'s EHY cy By
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> m(T-1)(1+n)‘(T'1) zhyhcg_1(T)

-(T-1) 7 .
m(T-T)(1+n)'(T“1)(AT) oL ()7 Ehxaui

’ I, (1+0) 720 '

Since (1+n)_1(AT)_1/“ + 6% > 1, it follows that the right side of
(A.6) diverges to + « whereas the left side is bounded since n > 4
> 0. This contradiction establishes that r # n.

Putting the results of parts {(a) and (b) together, we

conclude that r < n, which proves (ii).

Proof of proposition 6.

Suppose to the contrary that there are infinitely meny
T's for which rp < n. Then there is a subsequence [er} converg-
ing to r less than or equal o n and, as before, to avold nota-
tional clutter, we will proceed as if {rT} converges %10 T less
than or equal to n. Therefore, we have
1 +4d 1 +4
1+ 1

=1 +r4a =1 *td, w1 *4d
AT T rT + A - > A ra > 1.

Bventually, therefore, A, exceeds ote and we ray use inequality

T
(3.7) in the form,

(4.7 oM < pM Gy

There are several cases to consider and we do so one by one.
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(i) r < n< 0. Using (A.7) in the budget constraint (2.7) we

have
I (8ag)%l = 1 (83)%0()
< g I rg)%0 )™M,

Using the above in the resource constraint (2.10) we get,

T (1+m™ Tyl T (1em)™® IRl

Zs(1+n) XS(Hn)

(4.8) A

ZhY ¢ (T)
B

1,62 )% Trfel
S EsmxT><aTrﬂﬁ

a ES(SAT)S
I ()™ I (%0

>

Since, n < 0, § _(1+n)™% < T(1+n)'(T"1). If B(AT)M/“ < 1 then

ZS(BAT)“(AT)'S/" < T. In this case, (4.8) can be rewritten as,
(4.9) A5 a(B;\T)T"1 (1+n) T 22,

+
Now, BAT(1+n) + gA(1+n) = %ﬂ:—%'> 1 and hence the right hand side
diverges to + o resuliing in a contradiction. On the other hand,

if B(AT)1-1/U > 1, then we have
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- -1 -(T=~1)/
I (r)%0 )™ < n(ar )T O g
and (4.8) becomes

a(1+n)T-1 8-(1"'11)11—1 % { (1+n) (;\*)ifll)T-1 .

(4.10) 4> T(J\T)_(T_”/u > T(;\*)"(T“”/*T-

Again we arrive at a contradiction becsuse the right side of
(A.10) diverge to + w. This is because, by assumpiion 3, u is

small and hence (1+n)()\*)1/u will be greater than one.

(i1) r < O < n. Since n > 0, ZS(1+n)—B converges. If r < O,

then BAp + B4 > 1. If s(xT)1"1/“ < 1, then (A.8) becomes,

a(grg) "

A ——
T, (142)7°

whereas, if B(AT)1-1/u > 1, then (4.8) becomes,

a(grg)”

2(8rg) T Ag MY _(14m)™®

4>

In either case, the right side of (A.8) diverges to + « resulting
in a contradiction.
-1/
If r.= O so thatBi,+ BA = 1, then B(AT) +
B(l)1n1/ﬁ = B1/u < 1, so that EB(BAT)S(AT)_S/u converges. We
therefore have to investigate the behavior of

(81 ) ™1
Lo(eag)® = Bhg-1
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Ir (BAT)T does not converge to one, then obviously the above
expression diverges to + . S0, suppose that (BAT)T also con-

verges to one. If 3XT ? 1 we have
8
I8rp)" > T
whereas if BAT < 1 we have
] T-1
D (Bag)® > m(aag)" .

In either case, the right side of (A4.8) diverges to + » which is a

contradiction.
(i1i) 0 < r < n. Since rp < 1, Ve may use {(A.7) in the form
(A.11) cB(T) < cO(T)(AT) < cO(T)(l ) .
From the resource constraint (2.10) we have
(1+n)A -8 hh
(4.12) o zs(1+n) Eﬁy ay
= 1 (1+n) 8 LY ch(T)

> Zﬁy s (T)

We now use the aliernative form of the loan market clesring condi-

tion given by (2.5) and (2.8). Since rp < n, we have

1+n 81 14n 9

(HrJ > 1 () > s
j=0 T

Using this in (2.8) and (2.5), we obtain

I_s(14r)™® Ty el(m) > §_(1+m)7® | [‘*n J 1,y

1+r
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J
- 1 h h
= ZB(Hn) 8 Ej[Tile‘_T) th a

> 8(1+m)™ I y"u?

> a ng(1+n)“s.
Therefore, we can write

(4.13) & § s(1+0)™® < § _s(1+r,)™® I yPel(m)
< zssc(;lt*)'ﬁ/l‘l Zhvh‘cg(T)
< (1+n) 4§ (1),

The steps follow because r, + r > 0 and hence (1+rT)_‘I + (1+r)—1 <

T
1 and then we use (A.11) and (A.12). However, the above inequal-
ity will result in a contradiction for small enough y.

Thig proves that r cannot be between zero and n. Put-
ting the results of (i), (ii), and (iii) together, we conclude
that there cannot be infinitely many T's for which rp is less than
n. That is, for all T sufficiently large, rq is greater than or

equal to n and hence, every nonmonetary steady state ig opitimal as

claimed. .



