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Abstract

We construct a sequence of pure exchange, statlonary OLG
economies in which generations have longer and longer life spans
and all agents maximize a discounted sum of utilities with a
fixed, positive, and commeon discount rate. Pericd utility fune-
tions and endowment patterns are subject to mild restrictions and

within generation hetercgeneity is permitted. We show that:

(i) Every sequence of equilibrium interest rates converges to
the discount rate.

(i1) Eventually every nonmonetary steady state is optimal and a
monetary steady state will never exist.

(iii) For any agent consumption at any fixed age converges to

permanent income evaluated using the utility discount rate.



I. Introductlion

Versions of the overlapping generations model (here-
after, OLG) and the model of a fixed number of iInfinitely lived
agents have been popular f{rameworks for dynamic macroeconomic
analysis. The particular version of an infinitely lived agents
model that we are interested in here is that where a fixed number
of infinitely lived agents maximize a discounted sum of one-periocd
utilities with a common, fixed and positive rate of time prefer-
ences in a stationary environment. The one-sector growth models
of Cass [1965], and Brock and Mirman [1972] are classic exam-
ples. In this paper we undertake a comparison of nonmonetary
steady state interest ratesl’ and consumption profiles hetween
this class and a comparable class of OLG models; essentially
digerete time versions of Cass and Yaari [1967]. We consider a
stationary pure exchange environment with no uncertainty; however,
extensions to ineclude production and ecapital accumulation and
uncertainty via random endowments are briefly discussed.

The aspects of the two models that this paper is con-
cerned with are the following., It is well known that QLG models
may have nonmonetary steady states that are nonoptimal. In simple
cases this also implies that a fixed supply monetary steady state
with valued fiat money exists (Wallace [19807). In contrast, the
Infinitely lived agents model always yields equilibria that are
optimal and contains no natural role for fiat money.g/

Secondly, in the class of infinitely lived agents models

we are considering (even 1if agents have different one-period

utility functions), it 1is easy to see that if: (i) aggregate



consumption is constant over time (a steady state condition), and
(ii) all agents are at an interior optimum, then the interest rate
must be constant over time and equal to the fixed, common rate of
time preference. Therefore, Individual consumptions must also be
constant over time and hence equal to permanent Iincome. However,
analogous statements do not heold in an OLG model with similar
preferences. The reason why could be that when we look at two
successive dates, the newly born in the latter and the oldest
agent in the former are, in a sense, not at interior optima.i/
Presumably, this difficulty should disappear with long lived
generations; i.e., the "overlapping" structure should become less
and less important.

The analysis in the present paper 1s motivated by the
above observations. We construct a sequence of OLG economies
indexed by T, the length of life of each generation. Each genera-
tion is ftaken to consist of H types of agents who are distin-
guished by their one-period utility functions and lifetime endow-
ment patterns., All agents have a fized, common and positive rate
of time preference. Endowments are generated as follows. We take
H infinite sequences cof nonnegative numbers. The lifetime endow-
ment vector of a type h agent in a T-period lived agent OLG econo-
my {(henceforth, OLG(T)) is then taken to be given by the first T
elements of the corresponding infinite sequence. We then estab-
lish the followlng results.

If r{T) is any nonmonetary steady state interest rate
for the above OLG(T) economy then, as T becomes large, any such

sequence {r(T)} converges to the rate of time preference. Fur-



ther, a monetary steady state does not exist for any large T.
Under a slightly stronger assumption we also show that consumption
of a type h agent at any fized age converges to his/her permanent
income evaluated using the utility discount factor. These results
obtain under relatively mild assumptions on the one-period utility
functions of agents and the infinite sequences of endowments. The
following conclusions emerge from the above results for the class

of OLG economies considered:

(1) If generations are sufficiently long lived then the interest
rate in any nonmonetary steady state is determined (almost)
entirely by the rate of time preference. This is true even
if there are multiple nonmonetary steady states.

(ii) It follows that multiplicity of nonmonetary steady states
becomes less important since the entire set of steady state
interest rates converges to the common rate of time prefer-
ence as life spans become large.

(iii) With sufficiently long lived agents, every nonmonetary
steady state is optimal (since the interest rate is posi-
tive) and monetary steady states do not exist. In Gale's
[1973] terminology, we only have "classical"™ cases; there
are no "Samuelson" cases. This implication is of interest
in light of the literature on asset price bhubbles. Tirole
[1986] shows that the existence of such bubbly equilibria in
OLG economies is Intimately linked to the inefficiency of
the equilibrium without rents and bubbles, and cannot arise
in the efficient case. In particular, such bubbles do not
arise with a finite number of infinitely 1lived agents

{Tirole [1982]).



(iv) The consumption smoothing result is, to our knowledge, new
in the OLG context. It is interesting that borrowing and
lending across generations, rather than within cohorts,
makes it possible for agents to smooth consumption. The
interest rate and consumption profiles are both determined
in equilibrium. s agents live longer the overlap among
agents of different generations also increases. This en-
ables them to smoothh out fluctuating patterns of lifetime
endowments.

(v) Lastly, the above results strongly suggest that empirically,
infinitely lived agents models of the class considered here
would be good approximations to the corresponding class of
long {(but, finite) lived overlapping generations models.
That is, the "overlapping" structure does not make much

difference.

The particular specificatlon of preferences considered
here for the OLG, as well as the infinitely lived agents model, is
quite strong. It is motivated by the fact that sharp results are
avallable for such a specification in the latier class of models
which no doubt explains their popularity. In order to have 2z
meaningful comparison, we therefore adopt a similar specification
of preferences for the OLG model and consider what happens as
lifetimes get large.

Another reason for our specification of preferences is
the following. Suppose that each generation in the OLG model also
cares about the welfare of the next generation and ({(additively)

discounts it with the same common discount factor and is allowed



to leave (optimally chosen levels of) bequests. Then, provided
the discount rate is positive, it can be shown that steady states
wlth operative bequests of such an OLG model are identiecal to
those of a fixed number of infinitely lived agents who maximize a
discounted sum of utilities with the same discount factor. Thus,
the comparison we make should be viewed as reflecting on the
unimportance of generationally dependent preferences and operative
bequest motives (for this class of preferences) when generations
are long lived.

Within the specification adopted here, the assumption of
a strictly positive discount rate is eritical to all of our re-
sults. That this is also the case where the transformation from
the OLG model with bequest motives and operative bequests to the
analogous infinitely lived agents model is well defined, is, in
our opinion, a reasonable Jjustification. It is, however, not
essential that all agents in a generation have the same rate of
time preference. I iz not difficult to show, using the same
method, that in such a case the sequence of equilibrium interest
rates will converge to the smallest time preference rate; i.e., to
the discount rate of the most patient type of agents.

We suspect, however, that the results established here
Wwill earry over for more general preference structures, What we
have in mind are recursive (but not necessarily time separable)
preferences over consumption streams with a well defined notion of
a rate of time preference as in Epstein [1983] or Lucas and Stokey
[19841]. It seems that for the results described earlier, the

important thing Is the notion of time preference and impatience



and this need not be restricted to preferences of the discounted
sum of utilities type with a fixed discount rate.

It should he noted that throughout our focus is on
steady states and that we omit consideration of the difficult
issue of convergence to a steady state from given initial condi-
tions.ﬁ/ We hope that this is not a very serlous omission since
the entire set of steady state interest rates converges, as life
spans increase, to the rate of time preference. Thus, it would be
adequate for our purposes if the set of steady states for each OLG
economy were stable; i.e., from given initial conditions, an
equilibrium path converges to some steady state. Further consid-
eration of these 1issues 1s, however, beyond the scope of the
present paper.

The rest of this paper is organized as follows. Section
IT describes the sequence of OLG economies we consider, the as-
sumptions Imposed on preferences and endowment patterns, and char-
acterizes the steady states. In section III we prove the main
results of the paper described before. Section IV contains a
discussion of the assumptions and some extensions. Seection V con-

cludes. Some of the lengthiler proofs are relegated to Appendices

A and B.

II. Seguence of OLG Economies

The model described here 1is similar to that in Cass and
Yaari [1967]. At each date &t (t = 1, 2, ...), a continuum of
agents whose size is normalized to unity are born, each of whom
lives T periods. At a given date t, agents of different genera-

tions are indexed by their current age s, which runs from O



through (T-1) and s = 0 describes the newly born agents. Hetero-
geneity is introduced by indexing agents also by their type h
which runs from 1 through H. The fraction of each generation
which is type h iz given by yh and these fractions sum to one. At
the initial date (t=1) there also exist agents born at dates O,
-1, =2, ..., =(T=2).

Endowments are described as follows. For fixed h,
let {ag}:zo be an infinite sequence of nonnegative numbers. Let
mg(t,T) be the (nonstorable) endowment of agent type h of age s at

time t In an OLG model with T period lived agents. Then we put

h h
(2.1) wl(t,T) = ol h=1,2, ..., H

=0, 1, , T=1
The numbers {02} for s = 0, 1, ..., (T-1) and h = 1, 2, ..., H

describe the distribution of endowments among members of a given
generation and across members of different generations. The
economy 1s stationary since neither the total endowment nor its
distribution is time dependent.

Let cg(t,T) be the consumption of agent type h of age s

at time t. Preferences of such an agent are described by
T-3-1 . h
(2.2) TEO 87U (e, (t+1,T)), 0<g <t

h=1,2, ..., H, s = 0, 1, ...,T-1. DNote that the one-pericd
utility function may be different for different agents in a given
generation though it 1s the same for all type h individuals who
differ only by dates of birth.

We also assume that in the aggregate there iz a fixed

positive quantity M of fiat money held by the initial old (s = 1,



2, ..., T-1). We will distinguish between steady state equilibria
with zero value of money (non-monetary)} and those with positive
value of money (monetary).

The above economy is well defined for every T. This is
because the endowments in (2.1) are taken to be the truncations of
the H infinite sequences {a:}:=o,

the preferences defined in (2.2) can be extended naturally as T is

truncated at (T-1). Similarly,

increased.

A steady state competitive equilibrium for the above
economy 1s described by the following. Let rq be the interest
rate and let £:(T) be claims to consumption {loans due plus real
value of money holdings) held by agent (h,s) at any date. Then an

agent faces the following sequence of budget constraints.

h
2 (T)
h h _ h S+ 1 _ _
{(2.3) QS(T) +oag = CS(T) + T“:_F;_ s =0, 1, , T=1
=1, 2, ., H
h _ .h _
(2.4) QO(T) = %T(T) = 0,

Since preferénces are strictly selfish no intergenerational be-
quests are allowed in the budget constraints. Per-capita assets
of the population, denoted agj, are given by
T-1 H
1 h. h

(2.5) an =& L 1 v e (T)

T T 5=0 h=1 s
The first order necessary conditions for a utility maximum subject

te the budget constraints are:

h
Ul {c_ . (T))
(2.6) h Z” = - n . $=0,1, ..., T-2
1
Uy (eg(T)) T =1, 2, , H



By virtue of (2.4), the sequence of bhudget constraints
in (2.3) can be collapsed into the following single 1lifetime

budget constraint

-1 " T-1 a:
(2.7) ] — e m= § —— h=1,2, ..., H.
s=0 (1+PT) 8=0 (1+rT)

We now develop an alternative expression for per-capita assets,

ap. From {2.3) and {2.4) we have

n _ h h
Rp_q(T) = cq_y(T) - eq_y
h
Lo L(T)
h _ h h T-1
bp o(T) = eq o(T) - aq 5 + 773 r7
h h
B S 5 M
* %12 T-2 T g
Proceeding backwards in this way we get
h h h h
h h n Co{T-9; cp (T * op_4
2. (T) = ¢, (T) = o, + —— + ... +
1 1 1 T+ r T-2
T (1+rT)

Substituting the above expressions in (2.5), rearranging terms and
noting that gg(T) is zero, we obtain

T-1 s~1 H
(2.8) ag = % ZT JZO (1+rT)'jhzi Yh(cz(T)-u:).

If rp + 0, the above can be simplified by noting that

s-1 {1=(1+r) "%}
{ 1+r )-'j = {1+r.) T . -
jéo T T Lo
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Hence, we have

rpap 1 T sy B b on h
(2.9) T—;—F;'= T 821 [1-(1+PT) ) h§1 v (e (T)-a))
T-1
1 h, n h
=7 s§0 v (e (T)-a)

in view of the budget constraints (2.7) multiplied by Yh and then
summed over h. The aggregate resource constraint for the economy
is given by

T-1 H
(2.10)  § § +Pelm-ad) = o

s=0 h=1

When rp = 0, the budget constraints (2.7) automatically
imply the resource constraint (2.10). Per capita assets ap from
(2.8) may be expressed as

T-1 H
21 h, h h

(2.11)  ay(ry=0) = SZO hszy (e (T)-a])

The above considerations lead to the following:

Definition 1 (nonmonetary steady state). A nonmonetary steady

state for the OLG(T) economy consists of rp and [cz{T)} which
satisfy equations (2.6), (2.7) and ap = 0.

In view of (2.9) the last condition may be replaced by
(2.10) provided Cp * 0. 1Ir re = 0, then the appropriate expres-
sion for ap is given by (2.11). 1In such an equilibrium the real
value of the aggregate money stock is zero, or equivalently, the
price level is infinite.

We also have:
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Definition 2 (monetary steady state). A monetary steady state for

the OLG(T) economy consists of {cZ(T)} that satisfy (2.6) and
(2.7) with Py = 0 and such that aT(rT:O) from (2.11) is positive.
If p(t) is the price level at t, then in such an equi-

librium

M -
TH(E) - aT(rT_O) >0
and obviously,

t

Tz_p_(_L_Tzo,
p(t+1)

r

We now describe the assumptions imposed on preferences and endow-

ment sequences.

Assumption 1. Uh(c) is twice continuously differentiable, striect-

ly increasing, strictly concave, and satisfies

' - o : -
lim Uh(c) = o, lim Uﬁ(c) = 0.
c+0 g+

et p be the marginal utility asscciated with a given

consumption level, i.e.,
h
- T
p = Uh(c ).

Assumption 1 allews us to implicitly define consumption as a
function of marginal utility, ch(p). it also follows that ch(p)
is continuously differentiable, strictly decreasing, and satisfies

lim ch(p) = w, lim ch{p) = 0.
p+0 pre
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The elasticity of marginal utility, denoted uh(p), can be ex-
pressed as
h -ch§92
p(p) = " > 0.
p{de”/dp)
In a context with uncertainty, uh(p) would be the measure of
relative risk aversion. The next assumption puts uniform upper

bounds on the functions, uh(p).

Assumption 2. uh(p) Sy (o for all h and p.

We now impose the following assumptions on the sequences {a:}:

Assumption 3.

B un
0ca< J vya, SA <= foralls
B
h=1
In the next sectlon we state and prove the main resulis.

III. Nonmonetary Steady States

To start wilth, we prove existence of a non-monetary
steady state equilibrium for every T (Theorem 1) so that the
results of this paper are not vacuous. The principal results of
this paper are contained in Theorems 2, 3, ¥ and 5 which are
interspersed with propositions leading up to them,

In what follows, T takes values from 2 through infinity,
s takes values from O through (T-1) and h from 1 through H.
3imilarly, summations over s run from O through (T-1) and summa-
tions over h from 1 through H. Unless qualified, statements are

agsumed to hold for all admissible values of T, s and h.
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Theorem 1. Under assumptions 1 and 3, a non-monetary steady state

equilibrium exists for every T.

Proof. The proof is along the lines of Gale [1973, p. 3%, Theorem
6] and is given in Appendix A.

Next, we will show that every sequence {rq} where ry is
a non-monetary steady state interest rate, converges to (1-8)/8.
The intuition behind this is quite straightforward. From utility
maximization (equations (2.6)) it follows that if (1+rT) exceeds
1/8, consumption profiles will be increasing with age and 1t can
be shown that per capita consumption demand will be unbounded as T
increases, whereas per capita endowment is bounded. Consequently,
for large T, excess demand will result. Conversely, if (1+rT) is
lesg than 1/8, consumption profiles will be decreasing with age
and it ecan be shown that exXcess supply will result. The method
used to obtain the result is by contradietion; we show that if any
subseguence of (1+rT) does not converge to 1/8, a contradiction
will arise either due to excess demand or excess supply as out-
lined ahove.

We now make some changes In notation and establish a
preliminary result (proposition 1) which is used repeatedly in the

main proofs. Let,

_ 1
(3.1) Ap = ET7:F;T

(3.2 pMT = yiem)

From equation (2.6) and assumption 1, we can then write

h
S+

(3.3) p_. . (T) = lTp:(T), s ¢ T-1.
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3.5 () = Mpl(Ty)

Proposition 1. Under assumptions 1 and 2,

(1) If Ap < 1, then

-1/u
h h 2
(3.5) cs+1(T)/cs(T) 2 (AT) , 5 < T-1,
(ii) If Ay > 1, then
-1/u
h h 2
(3.6) cs+1(T)fcs(T) < (AT) , 8 < T-1.

Proof. We will omit the indexes h and T in the proof as these are
not relevant and should not cause any confusion.

Let p be fizxed and let,
X = &n i, f(x) = ¢n c(exp)

Therefore,

b4 X
pr(gy cReelee) 1o 1
c{pe®) u(pe™) M2

Then we have,

2002000, pi3) ¢ - L
2

where x is between 0 and x. Equivalently, we have

gn c(ip)-gn c{p) . _ 1_
i A - s

If x ¢ 1, then &n A < 0 and we have,

-1/u2
e(ap)/e(p) = ()
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whereas, If A > 1, then %n » > 0 and we obtain,

-1/u2
e{ap)/clp) £ (1)

Inequalities (3.5) and (3.6} then follow because, °s+1/°s =
e(apgl)/elpg).
In what follows assumptions 1, 2, and 3 are in force,

unless otherwise noted.

Proposition 2. The sequence {i;} is bounded.

Proof. Suppose to the contrary that it is unbounded. Then it has
a subsequence that diverges to plus infinity. To save on notatlion
suppose {kT} diverges to plus infinity. Plek M > 1. Then for all
T suffieiently large, Ap > M. From (3.6} we have

-1/u2 -1/u2

h h -
B (T)/ed(m) < (1) < () -85 < 1,5 < T-1.

From the budget constraint (2.7) we have
g8 h _ 5 h
) (BAg)Y ag = § (BAG)Te (T)
8 s
h s
<ey(T) § (B8AL)".
8
Therefore,
nh
5 % (8rg) %y o é (BAT)SsT

Tv _hh s s
(s) ¥ ea(T) > . .
% 0 I (ap)® ] (8sr)®
B <1

which is bounded away from zero. This iz a contradietion because

the resource constraint (2.10) implies that:



()7 7 vPep(m) s ()" § § yel(m)
h s h
OB R
g h
< (8)TTa
+ 0.

Hence, the sequence {i;} is bounded.
It follows that {ip] has convergent subsequences. We
next show (in Appendix A) in several parts and again by contradic-

tion that every convergent subsequence must converge to cne.

Proposition 3. Let {ig} be a convergent subsequence of {i}

converging to x. Then a = 1.
Proof: In Appendix A.

Theorem 2. Let {rq} be any sequence of nonmonetary steady state
interest rates for the given sequence of OLG(T) economies. Then

the sequence converges to (1-8)/8 as T becomes large.

Proof. By propositions 2 and 3, any sequence {ig} is bounded and
every convergent subsequence of it converges to one. Hence {ip}

converges to one and therefore {rT} converges to (1-8)/8.

Theorem 3. For all T sufficiently large, every nonmonetary steady

state is optimal.

Proof. 3Suppose that there were infinitely many T's with at least
one non-optimal (and hence with rq¢ < 0) non-monetary equilib-

rium. Then there exists a subsequence of non-monetary equilibrium
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interest rates which is negative and hence a convergent sub-
sequence that cannot converge to (1-8)/8 which contradicts Theorem

2.

Theorem Y. For any T sufficiently large, there does not exist a

monetary steady state.

Proof. Suppose that there were infinitely many T's for each of
which a monetary steady state exists, i.e., aT(rTzo) is posi-
tive. Then by the proof of Theorem 1 (case (i)), each of these
economies also has at least one non-monetary equilibrium with rq
being negative. The argument for Theorem 3 applies resulting in a

contradiction.

Consumption smoothing. In this subsection we briefly discuss a

strengthening of assumption 2 that is needed to establish consump-
tion smoothing. We then state the maln result (Theorem 5) whose

lengthy proof is relegated to Appendix B.

Assumption 2'. 0 < uy < w(p) < ¥y < @ for all h and p, i.e., the
elasticity of marginal utiliby is bounded and bounded away from

zZero.

Agsumption 2' arises due to the following considera-
tions. The first order conditions (2.6), together with proposi-

tion 3, already imply that for any fixed age s and T > 5 + 1,

h By _ 5 o1
ps+1(T)/ps(T) - lT - s(1+rT5 1
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as T becomes large. However, this need not imply that

h

csH(T)/c:{T) (for T > s + 1) also converges to one. The problem

arises due to ‘the possibility that pg(T) may diverge to
infinity.2/ If the elasticity u(p) is not bounded away from
zero, then it is quite possible for ez+1(T)/cg(T) not to converge
to one. For instance, if we consider the example c(p) =
e P/(1-e7P) then u{p) is given by (1-e P)}/p which is bounded above
but goes to zero as p becomes large. It is then not difficult to
construct examples where ps+1(T)/ps(T) converges to one but the
ratio of consumptions does not.

The main result in this sub-section is:

Theorem 5 (permanent income/consumption smoothing). Let {rq} be
any sequence of nonmonetary steady state equilibrium interest
rates and let {cE(T)} be the corresponding sequence of consump-

tions at any fixed age 8. Then, under assumptions 1, 2' and 3,

1im (1) = (1-8) T (8)dd" for fixed s, h.
T 8 j=0 J

Proof: 1In Appendix B

IV. Discussion

The methods of proof make heavy use of the boundedness
of the elasticity of marginal utility. For the permanent income
result, we also require that the elasticity be bounded away from
Zero. As can be seen from proposition 1 and proposition 4 (in
appendix B), these assumptions serve to impose bounds on the
growth rate of an agent's consumption and, thereby, on aggregate

consumption demand relative to aggregate endowment. These assump-
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tions are stronger than usual but appear to be indispensable. It
is, however, possible to slightly weaken assumption 3 on endowment
patterns (see, Alyagari [19861) to permit the aggregate endowment
of some generations in each OLG(T) economy to be zero. It is also
possible to let the aggregate endowment of a sequence of genera-
tions (across T) to go to zero or be unbounded.

It is also possible to extend the results obtalined here
to inelude production and capital accumulation. The results
parallel _those in the classic one-sector growth model with a
representative infinitely lived agent. A more difficult exten-
sion, attempted in Aiyagari [1986]1, is to environments with uncer-
tainty. For the special case of a logarithmic one-period utility
function and random endowments, we were able to show that the one
period ahead contingent claims prices converge (as T gets large)
to the prices that would prevail in the analogous infinitely lived
agent model. This was not possible for other utility functions
because it turns out that so long as agents live three or more
periods, consumption allocations and contingent claims prices
depend on the entire infinite history of endowment realizations.
This is essentially the same problem that arises in Spear [1985]

even though the intertemporal preferences here are time-separable.

V. Coneclusion

This paper has investigated the behavior of steady state
interest rates and consumption alloeations in a eclass of OLG
models in which agents have longer and longer lifetimes. The
environment is one of pure exchange, endowment patterns are fairly

general but intertemporal preferences are restricted te be of the
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discounted sum of utilities type with a common, fixed, and posi-
tive discount rate. It has been shown that every sequence of
equilibrium steady state Iinterest rates converges to the common
rate of time preference. The assoclated sequence of consumptions
at any fixed age converge to permanent income. These results can
also be extended te include production and capital accumulation.

The chief implications are as follows. In this class of
OLG economies with long lived agents, nonmonetary steady state
interest rates are almost completely determined by time preference
and nearly independent of one-period utility functions or the
distribution of endowments either within or across generations.
Further, multiplicity of nommonetary steady states almost dis-
appears when agents are long lived and every such steady state
will be optimal and a monetary steady state will not exist. This
result is Interesting in light of the OLG literature on money
since the existence of monetary equilibria in simpler versions of
such models is closely linked to the nonoptimality of nonmonetary
equilibria (Wallace [1980]).

The consumption smoothing/permanent income result is, to
our knowledge, new in the OLG context. It is interesting that
borrowing and lending across generations rather than within co-
horts makes it possible for each generation to approximately
smooth out its consumption pattern, whatever be the pattern of
lifetime endowments. Further, both the interest rate and consump-
tion allocations are determined simultaneously in eguilibrium. As
agents live longer, the overlap across members of different gener-
ations becomes greater and this makes It possible for them to

smooth out consumption.
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The above results and their implications suggest a
strong similarity between this class of OLG models with long lived
agents and the corresponding class of models of a fixed number of
infinitely lived agents. Even in the absence of any intergenera-
tional bequest motives linking members of successive generatlions,
the latter would appear to be reasonably good approximations to
the former. However, these results are for steady states only and
their implications for nonstationary equilibrium paths are un-
clear. Even though we show that the multiplicity of steady states
almost disappears, it does not seem likely that the continuum of
nonstationary equilibrium paths that generally exist in OLG models
will also disappear. Their importance may be diminished if the
set of steady states is stable,

The case of uncertainty has proved to be difficult
{except for log utility) and is currently belng studied. Another
issue that is clearly important is the speed of convergence of the
get of nonmonetary steady state interest rates to the rate of time
preference. This will clearly depend on the discount Ffactor
itself, the nature of the utility function, and the extent of
variability in lifetime endowment patterns. This is also being

studied.
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Footnotes

1/1in the OLG model these are variously referred to as
"balanced" by Gale [1973], “barter" by Cass, Okuno, and Zilcha
[1980], and "real' by Kehoe and Levine [1985]. The term "nonmone-
tary" is from Wallace [1980]. For us, a nonmonetary equilibrium
is one where the aggregate assets of the population are zero or
equivalently, money has zero value. A monetary equilibrium is one
with a fixed positive quantity of valued fiaf money. Note that in
our terminology, in contrast to Kehoe and Levine [1985], golden
rule steady states with "negative" money are not monetary equilib-
ria.

g/See, for example, Bewley [1972] or Wilson [1981,
section 5].

31 am grateful to Neil Wallace for the exposition in
this paragraph.

E/Some discussion of these 1s contained in Kehoe and
Levine [1985].

E/p:(T) is bounded away from zerc by virtue of the fact
that (1+r'T)'1 + g < 1, The budget constraint, together with
assumption 3, then guarantees that OE(T) is bounded above for any

fixed s. However, cg(T) may not be bounded away from zero.
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Appendix A

Proof of Theorem 1.

For purposes of this proof T can be taken to be fixed
and 1is hence suppressed. Differentiate the budget constraint

(2.7) with respect to r to get,

X {-5)(1+r) =8 1(0 -a ) + Z (1+t‘)-s g_r' (Cg—d:) =0

h

Evaluating the above at r = 0, multiplying by ¥ and summing over

h and using (2.11) we have,
- R Mgl = (D] o] = Tate0)
3 h r=0 s r=0
If a{r=0) is zero, then by definition 1, r = 0. is a non-monetary
steady state. So, suppose that a(r=0) is non-zero. We have two

cases,

i} a{r=0) is positive: ¥Note that when r equals zero, the budget
h

constraints (2.7) multiplied by ¥y  and summed over h imply the

resource constraint,

) yh(ch-ah) = Owhen r = 0

e 8 s
Therefore, by (A1), there exists an ¢ > 0 such that,
(a2) ) YPel-a) < 0 for r € (-£,0)

st 5 S

Multiply the budget constraint (2.7) by y?(1+r)T-! and sum over h

to get,

(43) Ty (1ep)T-1-8 h(c ) = 0
s h
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and let (1+r) » 0 from above. It must be that cg for some h and
gsome 8 = 0, 1, ..., T-2 must be unbounded above because, if each

of them is bounded above then we have from (2.6),

U'(c?_T) - [3(1+p)18+1'Tuv(c:), $=20, 1, o, T =2

so that cg_q + 0 as (1+r) » 0. But then the aggregate budget con-
straint (A3) will be violated because by assumption E Yhag 1 > 0.
5 -

Hence c: must ke unbounded for some h and s and therefore even-

tually,
z z yh(ch-ah) + o ag {(f+r) » 0
8 8
s h

Together with (A2), this implies the existence of a striectly
negative r which satisfies the resource constraint (2.10) and

hence from (2.9) the condition that a = 0.

ii) a{r=0) is negative: By the same reasoning as in (i), using

{A1) we have that there is an £ > 0 such that

(ab) ) yh(ch—ah) <0 forr e (0,e)
8 8
8 h
Now let r » =, It must be that c: for some h and some 5 = 1, 2,

., T - 1 is unbounded above because if each of them is bounded

above, then we have from (2.6),
Ur(eh) = [B(1+r) 150" (D), s = 1, 2, .oy T -

so that ch + 0 as r » =, But then the aggregate budget constraint

0
corresponding to (2.7) (obtained by multiplying (2.7) by Yh and
summing over h) will be viclated since by assumption, Yhag > 0.
h

Therefore, c: must be unbounded for some h and s and therefore

eventually,
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%y YcPa?) » masr » o
s 8 s

Together with (A#), this proves the existence of a strictly posi-
tive r which satisfies the rescurce constraint (2.10) and hence

from (2.9) the condition that a = 0.

Proof of proposition 3. To avoid elutter in notation, assume that

{xp} converges to A. The proof is in several parts.

(1) Xx 2 1. Suppose to the contrary that A < 1. Pick £ > 0 such
that 1 > A + . Then for all T sufficiently large, Ap <X+ &

It then follows from {3.5) that
-1/u2 -1/u2

h 2 (h+e) =8> 1, 5 < T-1

ok (T/e(m) = (1)

From the budget constraint (2.7) we have

s h s _h
§ (BAp) oy g (8rp) e (T)

h

cT-T(T) s
< ————— 3 (B8(2+e))

(5)T- g &

We can always pick e so that A + g is close to (bubt not equal to)

one and hence B(A+e)d is less than one. Therefore,

7Rl mo)T Tt 2 T T ()5S (B8(aee))S
T-1 T s

h s h 5

is bounded away from =zero by assumption 3. This results in a

contradiction because of the resource constraint (2.10}) which

implies



7 el (i) s
h

1
@ it~
o1 T
-
ja
=]
=y
~
P
o
—
=3
I

(1) x & (1,1/8). Suppose to the contrary that x e (1,1/B).
Choose ¢ so that 1 ¢ A -~ & < A + e < 1/8. Then for all T suffi-

ciently large, IAT-k[ < . Using (3.6) we have

-1/u2 -1/u

h h 2 _
cS”(T)/cS(T) < (AT) < (a-2) = §, 8 < T-1

where & 13 between zero and one. Hence, we have

h h
; Y cO(T) <

which 1s bounded above by assumption 3 =ince

g{i+e) is less than one.

However, this implies that

h h h h
gvas=zl§¥cs(T)

2

7]

< 7 ehm § (8)°
3

=

which iz bounded above which contradicts as-

sumption 3.

(iii) A _< 1/8. Suppose to the contrary that x > 1/8 and pick ¢
so that € < A - 1/8. Then, for all T sufficiently large, le-AI <

e. Just as in part (ii), using (3.6) we have
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—1/u2 -1/u2

cg+1(T)/c§(T) < (AT) < (x-¢)

1/
< (g) 2z {a-e)sle) 8 < T-1

A +¢ ?

n

where &(e) is defined in the obvious way. It is obvious that &(0)
is less than one; hence, for sufficlently small e (which we as-
sume), &(e) is less than one. We now have from the budget con-

straint

8 h 3 h
g (8rp) e é (8Aq) e (T)

1A

} (s(x~a)5(e}]3cg(T)
3

It follows from the resource constraint (2.10) that

) g Yhﬂg =} % thg(T)
8

A%
b~
-

b= 2

(8]
o~

-
o

v

1 ( S(l 6)5(5)]
8

If B(r-£)8(e) is less than one, the above inequality, together
with assumption 3, implies that

5T A"al/Y (80x-e))®

s h s
is bounded away from =zZero which is a contradiction sinece
g{x~g) > 1. Similarly, if B(Ar-e)s(e) exceeds one, then the above

inequality implies that

B&HTZZYG

5
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i1s bounded away from zero which is again a contradictlion. In the
borderline case where R(X-e)§(e) is exactly one, we have
h h s hh
T} LY ag 3 1 (Br-e))7y ag
s h 5 h

I (str-e))® T (8(r-e))®

3 8

Since B(A-¢) exceeds one, the left hand side above goes to zero,
whereas the right hand side is bounded away from zero; resulting

agaln in a contradiction. Hence the result.

(iv) A # 1/8. Suppose to the contrary that A = 1/8. Using the
budget constraint, equation (3.6), and the resource constraint we

have

8 h h 8 h h
1] (Al = 1 T (aap*ehem)

-3/u2

A

h h s
c (T) (Bx.) " (An)
% T % g T T

s11Aeg ] ()
5 h s

1

1=

_ u
where z; = B(XT) 2.
For T sufficiently large, Zp wWill be less than one.
Using assumption 3, we can conclude that } (BAT)S/T is bounded
s

above. In a like fashion, we have

L] veg = I elm
s h 3 h

—s/u2

IA

7 vel(m § ()
h s

-8/
(er )3y 7 (a2
§ g /Y% g T

1A
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It then follows that
¥ (eag)®/T
p T

is bounded away from zero. Now let &y, = Bip and

T
(8.) -1

s T
£(8,T) = g (8)°/T = TTE;iTT

Ir (6T}T + 4=, then T(ST-1) + 4=, However, since f£(s§,T) is a

convex function of & and £(1,T) = 1, we have

f(ST,T) z 1+ (ST-1)f1(1,T)

(85-1)(T-1)
2

=1+

which implies that f(éT,T) + +w», which is a contradiection. 1In a
similar fashion, if (sp)T + 0, then it must be that T(&p-1) »
minus infinity. If we have to the contrary that T(&p-1) 2 a, then
6 2 1 + a/T, and (GT)T > (1+a/T)T » €@ > 0 which is a contradic-
tion. However, if (GT)T + 0 and T(8p-1) + minus Infinity, then
£(87,T) + 0, which is again a contradiction.

It follows that (GT)T is bounded and bounded away from
zero. Next, we will show that

si1 (6T)j/s

320
is bounded and bounded away from zero for all s = T - 1. Let
0<a =< ()T s8¢ Ifap21, then 1 s (800 < (67T < &,

Hence,

A
=%

8-1
15 ) (ST)j/s
J=0

1A

If 6p < 1, then a < (8¢)7 < (87)d < 1 and hence
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5-1
< ) (GT)j/s < 1
=0
Hence the result,
Next, it is easy to see that
Z Z sYhah/E z Y > 2 z + plus infinity
8 T A
s h 5 h 5
We are now ready to show that x» = 1/ leads to a contradiction.

From (2.5), (2.8), and using (3.1), we have

1A

5-1
h h jv hh
a SY a (8r.) Y o

g % 8 é jzo L 5

5-1 :
I3 epd § e
s j=0 h

<Aj Z sy? e, Ber)
s

-s/u2

iA

h h
A e~ (T) ) s(A.)
; "o é T

which is bounded above leading to a contradiction,
It follows that every convergent subsequence of {Ap}

converges to one,
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Appendix B
The proof of Theorem 5 is established by means of a

serieg of propositions.

Proposition 4.

(1} If xp < 1, then

h h =1/u,
{B1) cs+1(T)/cS(T) < (AT) , 8 < T-1.
(11) If Ap > 1, then
-1/u
(B2) c2+1(T)/c:(T) > (Ag) LN

Proof. Similar to that for proposition 1.
We start by considering the solution to an individual
agent's optimization problem which is characterized by equations

(2.6) and (2.7). The (unique) solution may be characterized by:

(B3)  pa(m = f2G,,T)

(B oM™ = ()T

(5) J (8)%(T)-a!) = 0
3

where fh(+,+) is a continuously differentiable function of Ap for
each T. Next we show that there is a neighborhood of one in which
the sequence {(in T) of functions fh(+,T) is (uniformly) bounded
and bounded away from zero. Further, the sequence of derivatives
f?(-,T) is also uniformly bounded. Since Ap + 1, it will then
follow that

Lim £, T) = Lin £31,1) = U2 (5™
T+m T
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where

y' = (1-8) (B)ja?
J=0

Proposition 5. There exists an interval [RT,AE] where 0 < Ay < 1
< A5 < = and numbers b, B such that 0 < b < £(2,T) € B < = for

all h, T and X & [Aq,25].

Proof. Let x 5 1.

h _..h h

p3+1(T) = 1pS(T) < pS(T), s ¢ T-1
and hence

h h

cs+1(T) 2 cs(T), 8 < T-1

It follows that

cg(T)

A

(28)53(T) = ¥ (1) %8
L (18)7eg(M) = J (a)eg

1A
B~

(B)sa:

which is bounded above.

1

define, z(x) = 8(x) M1
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Now, using (B2), we have

5 h s h
é (28)%e ; (A8) e (T)

-3/u1

1A

() § (8%
3

cg(T) ¥ (z(a)5.
5

Since z(1) = B < 1, we can find Aq < 1 such that

z = sup {z(1), Ay S A S 1} < 1.
It then follows that

h s h

eq(T) 2 (1-2) g (x,8) a

which is bounded away from zero.

Next fix Ap SO that 1 < Ay < 1/B and let A be such that

12X = Az. It follows that

h

B h h
Pg,1(T) = ApL(T) 2 p(T), 5 < T-1
and hence
h h
cs+1(T) < cs(T), 5 ¢ T-1
Hence,

s h s h
g (18) oy g (x8)7e (T)

IA

cg(T) T (x8)%.
g
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It follows that
h 3 h
> -
co(T) = (1-3,8) g (8)%a
which is bounded away from zero.
We also have
h s h s h
eo(T) < § (38)7c (T) = § (28)7e
5 8
s h
< z (xes) ey
8
which is bounded above.

Since cg(T) = ch(pg(T)) and pg(T) = f%x,T), the proposition is

proved for X e [Xq,A5].

Proposition 6. Let ¢ > O be given. Then there exists § > 0 such

that whenever A', A" ¢ [A,A5] and [r'-A"] < g,
800, T) =220, T) | < e
Further, § can be chosen independently of h and T.

Proof. The result follows by differentiating the budget con-

straint
§ (8% = § ()%l
s s
8 s
with respect to 2 and noting that
h _h, h
eg(T) = e (pg(T))

pz(T)

(l)spg(T) = (%G, T).
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We then obtain

) s(ks)sag + (1+ &—) ) s(ks)scg(T)
h 5 18

A

=, =

o -7 (ae)%h(m)
Y2 3

.

£
(a) For x & [xq,A;] we have that:
(1) ¥ s(lB)sa: is bounded above since A8 < 1, and

3

(11) ) (As)scg(T) 2 cg(T) which is bounded away from zero.
8
(b) If A e [1,A,], then cg(T) < oP(T) and hence,
I s(80)%0(T) < o) T s(x,8)°
s 8

which is bounded above.

(e} If 2 e [11,1], then

-8/u
I s(an)%(T) < (T § sam)r) !
8

3

< cg(T) z s(z)s
3

which is bounded above {z is as defined in

the proof of proposition 5).

From (a), (b), and (c) and because £R(A,T) is uniformly
bounded and bounded away from zero, it follows that for A =
[xy:20], f?(l,T) is also uniformly bounded. Therefore, let M

> If?(A,T)I and given ¢ > 0, choose § = ¢/M. We then have

<

lfh(k',T)-fh(l“,T)

v |G|

< 8M = ¢
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where A is between X' and A",

Proof of Theorem 5.

Let ﬁg(T) = £(1,T). Then from (B3)-(B5), we have
B = (J (®°)7" ] (8)%h.
s s
Therefore,

z (B}Jah

~h h h, h h
p (T)} + p. Where ¢ (p.) =y = (1-8)}
{8 0 0 L@

Given ¢ > 0, there exists T, such that
1°

(B6) [ﬁg(T)—pgl < e/2 for all T > T

By the previous proposition, there exists & > 0 such that, when-

ever |a-1]| ¢ &,

h h
(BT) lf {Ar,T)-f (1,T)[ < g/2 for all T.
Since {AT} + 1, there exists T, such that
(B8) |1T~1l < & for all T > T2.

Combining (B6)-(B8), we have that for all T > max [T,,T,],

g -sh| = | g -0}
< fh(AT,T)—ﬁg(T) - ﬁg(T)-pgl
¢ ‘fh(AT,T)—fh(1,T) + e/2

< e/ + /2 = .
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Hence, {pg(T)} + pg. Further, it follows from (BY) and Thecrem 2

that for fixed h and s,
h _ [.h 5 h
{p (M} = {pg{TY(1)®} + .

Hence,

cg(T) = ch(pz(T)) ;:;> Ch(pg) = yh-

That is, consumption at age zero (or at any fixed age) for any

agent h converges to permanent income.
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