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ABSTRACT
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1. Introduction

Frequently, it is of interest to study the properties of dynamic,
equilibrium models which cannot be transformed into a form in which the ob-
Jective is quadratic and the constraints linear. 1In this case exact soluticns
are computationally burdensome, and this has prompted the search for reliable
approximete solution methods.l/ This paper reports on the dypamic properties
of two versions of the linesr quadratic (LQ) approximation method proposed by
Kydland and Prescott (1982). The KP method involves replacing the non-1Q
growth model by an LQ model which approximates 1t in a neighborhood of itis
ateady state. Since thia paper is concerned with a model which exhibita
steady state growth in capital, consumption, and ocutput, the KP methed does
not apply directly. However, the fact that ratios of these variables do
converge to a steady =state im exploited to transform the original model into
an alternative, equivalent one to which the KP approximation method does
apply. This alternative model is called the "star economy” below. Simple
modifications of the approximate decision rules for the star economy produce
the desired approximate decigion rules for the original economy of interest.

The paper reporis the regults of experiments uaing two methode for
epproximating the optimal decision rules of the star economy. Under ome
method, the "linear method”, the approximate decision rules in the star econ-
oy are linear in the state variablesrg/ Under the other method, the "log
method” the decision rules are log linear in the state variables. The paper
showa that, even for shocksz/ of reasonable size, the linear approximation
method performs poorly, exhibiting bizarre dynamic behavior that almost cer-
tainly doea not characterize %the true decision rules that 1% supposedly ap-

proximates. For example, for large shocks--larger than those observed in the



data——a positive productivity shock induces negative capital invesiment in the
reriocd it occurs, followed by & more reasonable positive respomse in subse-
quent perlods. Since all output is allocated either to consumption or invest-
ment, the national income identity implies a very powerful initial positive
regponse of consumptlon followed by & subatantisl correction in the subsequent
pericd. VWhen the shock size is reduced %o a more reasonsble range, the resasc-
tion of capital investment strenglthens, putting it in the positive--though
small--range. The initisl gstrong reaction of consumption with subasequent
correction remains. Thum, for shocks of reasonable magnitude, the model
implies that consumption is more volatile than output and that consumption
growth d4s negatively autocorrelsated. The log linear method, on the other
hand, produces decision rules that exhibit reascnable dynamic behavior, even
when the exogenous shocks are largeui/

To execute the experiments on which these conclusions are hased,
values had to be assigned to the parameters of the model. The=ze were chosen
80 as to match the model's implications for variables like the consumption to
output ratic and the capital atock to output ratio with the corresponding
average values in the U.S. dats.

Pollowing is an outline of the paper. Section 2 describes the
model. Section 3 describes the approximation technigues used. Section 4
enalyzes and compares +{the shock responses of the fwo approximaftion methods
used. The reasons for the poor performance of the linear approximation rela-
tive to the log linear approximation method are described there. Section 5
reporta the second moment implications for +the two approximstion methods,

which are quite different.



2. Model:

Economy-wide Resource Constraint

Cy * Ky - (1-6)K, = (tht)(1-e)Ki-1'

Here, Ct--total consumption, Kt--end of period stock of capital, Ht-~total

hours worked, zi--productivity shock. In per capita terms, the resource

constraint is:

(1) e, * ¥y - [(1-6)/nlk, , = nqe(ztht)(1-e)ki‘1,

where lower case denotes per capita terms, and n is the gross {constant) rate

of population growth. Time is measured in quarters.

Technology Shock

I assume:

{2a) z, = zt_1exp(xt),

where

(Eb) xt‘u+pxt_1 +Et"1b5.t_1v'p|<19 "Pl‘ 1y
Et = (0 t< 0.

Then,

(3) (1-pL)(1-L)1log z, =u + e, - Ve, _,.

When |¢| < 1, this is a @ifference stationary representation for log z . When

¥ =1, log 2, is an AR({1) about a deterministic trend:

(4) log 5, = [u/(1-0)]t + (1) 7ley + £(t)  t5 O,



where f(t) is deterministic, and converges to a constant for large t. (Whenop
= 0, f£(t) = log zg5, all t.) Tn addition, for large encugh %, (1—pIJ_1at is

approximately covarlance stationary.

Preferences

A representative agent orders stochastic consumption and hours

gtreams as follows:

(5) E, tizost{ln o v}, y > O

Gary Hansen (1985) has shown that the linearity of hours in the representative
agent's utility function can be interpreted as arising from a2 nonconvexity in
individual agents' leisure choice set. Under Hansen's interpretation, (5)
does not require that individual agents' utility functions be linear in lei-

Bure.

3. Approximate Solution:

The stand-In agent chooses contingency plans for ci, hy, kt to
maximize (5) subject to (1) and (2). Approximations to these contingency
plang may be obtained by first transforming the problem into one in which all

decisjon varisbles have a steady state.

The Transformed ("Star”) Economy

Tet
* =
(6) ct ct/zt, kg kt/zt.

Congider the following problem: Maximize over plans for c:, by, k: contingent

on Xy, k:_1, €y to maximize



(7N E 8%1n ctwyn
0 tzo { vyt
subject to
(8) cf + k¥ - [(1-8)/n]exp(-x k¥ _,

= n'eexp(-ext)(k:_1)ehi1'e)

and {2b). Equation (8) is just (1) divided by g, (>0) and (7) and (5) coin-
cide (except for an additive constant). Consequently, plans for c¥%, k¥, hy
solve (7) - (8) if, and only if, the implied plans for ci, ki, h, maximize (5)
subject to (1) and (2).

Note that a positive imnovetion to productivity in the original
econonmy is a negetive innovation to productivity and a positive inmovation to
capital depreclation in the star ecconomy. Therefore, one expects the optimal
plan for k: to respond negatively to an innovation in Ay

The tranaformed economy (the "star economy") is one in which all the
decision variablea converge to a steady state when Xy = u/(1-p), a constant
for all t. For this reason, this representation of the original economy is
convenient from the point of view of applying versions of the Kydland-Prescott
linear quadratic approximation. Below, I describe two such versions. 1In each
cage, however, it is convenient firast to substitute c} out of (7) using the

resource constraint, (8). This yields:
T .t
(9) By t);os (k¥ ,k%,h % ).

Denote the steady state (i.e., €, = 0, t > 0) values of k}, x4, and hy by k¥,

x, and h, respectively. Obviously, x =pu/{1-p).



Two verslons of the linear quadratic approximation method for get-

ting approximate decision rules for k% and hy are described next (decision

rules for c; and yg then follow trivially from the resource comnstraint, (7},

and the production function.) What I call the "level method" involves approx-

__1!' k:‘l

method"” involves approximating u about the logs of k¥_1, k*, hy, and the level

imating u about the levels of kz x4, h, and what I call the "log

of xtnif These two methods are now described in turn.

The Level Method

I approximated u in (9) by U, the second order Taylor series expan-—

gion of u about k¥_1

is easy to solve using standard methods. Denote the soluticns by:

= k%, k¥ = k* x = x, and hy = h. The resulting problenm
t % t

(10) kY - k% = (kg )+ dxox) 4 oge

(11) hy -h = h1(kg_1-k*) + hz(xt-x) + hjst.

Here, A, 4, 4, h1, hg, h3 are functions of the structural parameters of the
model: uy, p, v, B, v, n, &, §. The approximate decision rule for c% is
obtained by substituting (10) end {11) inte (8). Gross investment in the star

economy, dk*, is defined as followa:

.t’

(12) dkg = kt - [(1~6)/n]exp(—xt)k§_1.

Evidently, given the decision rule for k¥ in (10), a decision rule for dk:

follows trivially from (12). Finally, output in the star economy is given by

% = ¥ o+
(13) y¥ = cf + akf.



Rotice that the trivariate, linear system formed by
[k:-k*,ht-h,xt-x] has a unique steady state--[0,0,0]--and that steady state is
giobally stable.

The approximate decision rules for the originsl economy are the

following:
(14) ke = {e*lk, /e, -k*]ra(x -x)vee Jag
(15) hy = b+ 0, {(ky 7z, (J-k*]+ Bo(x,—x) + Be..

The decision rules for cy and dky are then derived in an obvious way.
Finally, gross output, Yg» is just yz Zye

It is also useful to have the risk free rate in this economy.
Denote the price of & unit of capital, Kt-1’ at the beginning of date t by

Py- If Py is denominated in utility terms, then,

av(ky 4y2y hXiel)

(16) P =
t 3kt_1 Nt-1

where v is the value of the optimal plan when the state is kt-1' Tyoqs Tgs

'1) is the population at date t-1. In par-

e,, and where N, _ (=[3k, ,/oK, .]

ticular:

(17 V(kt-1’zt—1xt’£t) = kma; {u{kt_1/zt_1,kt/zt,ht,xt}
%

+ BEtV(kt'zt’xt+1’et+1)}'

Then, the risk free rate of intereat in this economy is

(18) t+r, =P /(ESBP. ]



In steady state, this is n[exp(x)/ﬁ], vhere n is the grose rate of population
growth, x i the rate of growth in per capita consumption, and 8 is the dis-

count fsector. 3By the envelope theorem,

(19) av{ky_yozy_poxpoe /oy o = 3ulky /oy ok /ag0hx,) Bk
= [au(ig_y kphyoxy) /0 Joxy ok,
= [ou(kf_ khnx) okt 4 1/5, 4

with the second and third arguments of u evaluated at the optimal plan. (The
function u is 4implicitly defined in  [9].) I approximated 3u!§k¥_1 by
3U/8k:_1. Thig completes the discussion of solving the model using the lavel

method.

The Iog Method

Define:
*S =
(20) 1k§ = log kg, 111t log h,

1k* = log k*, 1h = log h,

where log denotes the natural logarithm. Using this notation, write,

(21) u(kg_f,kg,ht,xt u(exp(lk:_1),exp(lkg),exp(lht),xt],

Tu(1k¥_,,1k%,10%,x,) -

m

Define the following opiimization problem. Maximize over plans for 1k¥, and

lhg, contingent on 1k¥_1, xy, and e, the criterion:

v t * # *
(22) E, tgoa Tu( 1k} _,,1k¥,1n%,x ).
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It is easy to see that the exponential of plans that solve (22) solve (9).
Also, the log of plans that solve (9) solve (22). Thus, (9) and (22) are
equivalent representations of the star economy.

The method of logs involves replacing iu in (22) by LU, the second
order Taylor series expansion of 1lu &gbout lk*é‘_1 = 1k¥*, 1k; = 1k%, X = X, and
1ht = 1h. The resuliing optimization problem is easy to sclve since it is

quadratic. Denote its solution by:

(23) 1e¥ - Te* = (1KY, -2c*) + 1d(x -x) + 1ge,

t-1

- 1h = S B i -
(24) b, - 1h = 1o (1K} _,~1kc*¥) + 1h,(x ~x) + lh.e,.

The parameters, 1n, 1ld, 14, lhj, 1h,, 1h3, are functione of the =atructural
parameters of the model., The approximate decisien rule for c% is obtained by
exponentiating lk% and lht and substituting the result into (8). The gross
investment rule, dkﬁ, is derived using (12) after obtaining kg and k¥_1 by
exponentiating 1k$ and 1k¥_1, regpectively.

The approximate decision rules for the original economy are the

following:
(25) ky = z, exp{l*+I[log(k, ,/z, ,)-1k*]+ld(x ~x)+lqe ]
(26) hy = exp{1h+lh1[1og[kt_1/zt_1]-1k*]+1h2(xt—x)+1h35t}.

Note that these decision rules express log kt and log ht as linear functions
of log kt-t' log %4, Xy and €, e Congequently, the rules for ky and hy in (25)
and (26) are monotone in ki ;, %;, X, and ¢,- This is a property probably
shared by the true decision rules, but not by the approximate ones generated

by the level method. On this dimension, then, the log method probably pro-

duces a superior approximation to the correct decision rule.
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Next, we discues the computation of the risk free return in thie
economy. The discussion in (17) - (19) remains valid. However, in the pre-

sent context, it is convenient to make the following change to (19) using

(21):

@D av(ey g gaxgey) kg = au(ley /ag gk fughy ) kg
= 3luf log(k, (/% .),log(ky/z.),log(h),x ] ok, _,
= [d1u(1k}_, ,2x%,1n,,x.) /02kY_ [olkY_ /Jak, ,
= [eru(1® ,1k¥,x,}A1k% 1/k, .,

where the second and third arguments of lu are evaluated at the optimal

The risk free

plan. The function Blu/alkt_ was approximated by 3LU/31K¥_

1 1°
rate was then obtained by substituting the approximation to 3v/d0k, , from {(e7)

inte (16) and (18).

4. BShock Response of the Approximate Decision Rules

This section descripes the shock responses of the approximate deci-
sion rules obtained by the level method and by the log method. First, I
present the parameter values used for the shock response experiments, and the
resulting steady state properties. These are deduced without the use of
approximations. Then I report the decision rules implied by these parameter
values. Finally, the shock response functions themselves are reported. It is
shown that the level method producea shock reaponses that are perverse, even
for shocks of reasonable magnitude. In contrast, the log method produces

"reasonable" shock responses, even for large shocks.
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Parameter Values and Mean Properties of the Model

I chose the following parameter values for the model:
{28) p =0, p = .003589, vy = .00263, n = 1.00324
B = .99, § = .018, 6 = .39, ¢ = O.
These parameter values imply the average values indicated in Table 1.§/

The Decision Rules

The parameters values in (28) imply the followlng decision rules.

The approximate decision rules yielded by the level method are:
(29) ky = 2,{16790.92 + .949{(¥x, ,/z; ) - 16790.92]

- 15932.87(x, - .003589)}
(30) h, = 320.68 - .0087{ (k,_,/z, ,) - 16790.32]

+ 145.31(x, - .003589).

The approximate decision rules yielded by the log method are:
(31) k, = ztexp{9-729 + .949[10g(kt_1/zt_1) - 9.729]

- .949(x, - .003589)}
{(32) hy = exp{ 10.18 - .453[103(kt_1/zt_1) - 9.729]

+ .453(x, - .003589)} .

The reduced form parameters themselves are:

(33) A = .949, k* = 16790.92, d = -15932.87, q = 0



{2 .

h = 320.68, h, = -.0087, h, = 145.31, h3 = 0, x = .003589,

1

1A = .949, 1k* = 9.729, 1d = -.949, 1lg = O,
lh = 10-18, 1h1 = —-453’ 1h2 = 1453’ 113.3 = On

Note from the sgign of 4 and 1d, that capital in the star eccnomy responds
negatively to an innovation in technology in the original economy. This ia
because, as noted above, a positive innovation in techrology in the originsl
economy Implies a drop in productivity and a rise in the rate of capital
depreciation in the star economy. Hours reapond positively to a positive
innovation in technology (see h2 and 1h2), presumably reflecting the domirnant
effect of the jump in capital depreciation. (Steady state hours is an in-

creaging function of 8, at least in a neighborhood of the parameter values in

[28].)

Shock Response of Approximate Decision Rules Obtained by Level Method

Following is a discussion of the shock response behavior of (29) and
(30). These are the approximaste decision rules obtained using the level
method. Casual inspection of (29) reveals that decision rule's capacity to
generate perverse behavior. The reason lies in the fact that it is the prod-
uct of a linear function (k‘é) of the technology innovation and an exponential
function of the same innovation (zt), i.e., kt = k‘{ Ty The linear form
of k‘;’ and the signs of its parametera have the effect that the further k:'__! is
below k%, and/or the more poasitive the shock ¢ 4 the greater, in percentage
terms, the negative effect of e, on k:.z/ On the other hand, the effect on Ty
of a shock is a constant, in percent terms. Therefore, for an initial capital

stock that is far below a steady state growth path, or a sufficiently large
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positive shock, the response of capital in the approximate decision rule will
perversely be negative. Since the response in (29) is positive for amall
shocks, it follows 4in addition that the approximeste decision rule, (29), is
not wmonotone in €yr Since the true decision rule for capital probably is

monctone in ¢ the non-monotone behavior of (29) must reflect approximation

7
arror.

By themselves the preceding observations are perhaps not surprising,
aince we know that for sufficiently large shocks, any approximation mst
eventually break down. The real issue is whether the considerationa ralsed
above are asignificant relative to the magnitude of variation in the dala.
Below I supply evidence that they are significant. Fortunately the approxi-
mate decision rules obtained by the log method do not share the deficiencies
of (29) ard (30).

I begin by formalizing the preceding argument. I focus the discus-
sion on the decision rule for capital invesiment, rather than the rule for the

capltal stock. In the star economy, the decision rule for capital investment

is given by
(34) Gk = k* + A(kY_ k¥ + a(x-x) + qey - [(1~a)/n]1cg_1
= k* + A(KE_ k%) + dpl(x,_ -x) + (d+gde,
- [(1-8)/n]expl-x - p(x,_,-x)-e JK%_,.
where x, - x = p(xt_1-x) + e, has been used (for now, ¢ = Q). Also,

(35) z, = ﬂt_1exp[2+p(xt_1—x)+et].
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From this, we get
= *
(36) 3dk, /3e, = = 3dk%/de, + k¥ dg, fie,
= o [lc*an(k¥_, -Kk®) +dp (x;_ -x)+de ],

This expreasion shows that if the capital stock is far below a steady state
path (eg., k§_1 -~ k® very negative), or if ey is sufficiently big and posi-
tive, the approximate declsion rule could imply a negative reaction of invest-
ment to a favorable productivity shock. To get an idea of the numerical
importance of this, several shock response functions were graphed. These
appear in Figures 1 - 6.

Firat, I discuass Figures 1 - 3. Each figure reports results based
on two simulations of length 112 {(“pericd 1" through "peried 112"). 1In the
firat simulation, paths for ey, dky, hy, yg were calculated assuming the
econcmy started on a steady state growth path and €y = 0. 1In particular, 1
chose an initial (“period O") z such that the resulting k/z was 16790.2 and k
was egual to the U.S. capital stock im 1956,1 (= 52010.09, in 1982 dollars).
The second sample path was identical to the first for periods 1 and 2, but in
periocd 3 €4 is non-gzero, and takes on the value indicated in the figures. The
pathas reported in Figures 1 - 3 represent 100 times the log deviation of the
shocked path from the unshocked one. The measured sgtandard deviation of €y
using U.S. data (1956,2 - 1984,1) and the parameter values in (28) is about
+019. This is & useful benchmark to keep in mind.

Figure Ja ghows the response of the approximate decision rules %o a
very small ahock, .0019. This Tresponse seems "reasonable”, with capital
investment responding airongly, output jJjumping very quickily to its new, higher

steady state growth path due to an assist from greater work effort. Note the
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damped response of consumption to the shock. The motive to smooth consumption
(eg., the income effect) which derivea from the diminishing marginal utility
in the period utility function is offset somewhat by the motive to invest when
the returns are high ("the substitution effect"), so that consumption does not
Jump immediately to its new, higher steady state growth path. It is note-
worthy that the accompanying interest rate move is very tiny. (This is not
reported in the figure.) In particular, the interest rate jumps by an incred-
ibly small .006 basis points in period 3 and slowly returns to its ateady
state value of 1.017 (= 7 percent AR). Figure 3b displays the response of the
model to a ghock of -.0019 in period 3. The response is the mirror image of
the one in Figure 3a, reflecting the approximate linearity of the model for
such small shocks.

Figure Z2a shows the regponse to a shock of .019. For the most part,
Pigure 2a 1a Jjust Figure Ja scaled up by 10. An exception ie given by the
first period, in which the surge in capital investment is not guite so strong,
resulting in an extra boost to consumption (this shows up as a small "hook" in
consumption's impulse response).

Equation (36} leads us to expect that with a bigger shock, the
negative impsact on k% beginas to play a larger role in determining the effect
on kt' This is confirmed by Figure 1a, which shows the effect of a very
strong shock in periocd 3. There the "hook" in consumption’'s response has
grown s¢ large that consumption Jumpa more than output in the peried of the
shock. 0f course, it follows that capital invesiment--perversely-—-must fall
in this periocd.

Figurea 2b and 1b show, respectively, the response of the approxi-

mate decision rules to a moderate and strong negative technology shock. Those
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figures suggest that the first periocd response of capital to this shock i=s
probably too large, indeed with a shack = -.19 the negative effect on invest-
ment is so sirong that consumption perveraely rises initially.

Thus, examination of Figuresa 1 - 3 asuggests, not surprisingily, that
the level method of approximstion is inaccurate for large sghocks. On the
other hand, there is not much evidence in these figures of & breakdown in
accuracy for shocks of "reasonable” magnitude, i.e., ¥ .019. A curiocua fes-
ture of all the impulse reasponses is that when things do seem %o go wrong, it
is principally in the first period of the response. In addition, "problems”,
when they do occur, seem to be in the response of consumption and capital
investment. The response of hours always looks reassonable, even for large
ghocks. A conseguence of this is that output also behaves reasonably, since
in eddition Yo hours, its only other argument is the stock of capital, which
cannot move much on short notice.

Unfortunately, the fact that the shock response funetion is appar-
ently well behaved for shocks of reasonable magnitude when the system is on a
steady state growth path does not rule out perverae behavior. As eguation
(%6) suggests, shocks of reasonable magnitude can induce a perverse reaction
if they "hit" when the system is far enough below a steady state growth
path. Figures 4a -~ 5b illustrate this possibility. In these figures the
baseline path is above or below a steady state growth path, as indicated. The
deviations from the growih path considered are small in that deviations even
greater than this were obaserved when the system was hit by a sequence of 112
independent, normal shockas with mean zero and standard deviation .019. ILike
before, in each case, it is the initial response to the shock that seems "per-

verse", and the shock response function one period after the shock and later
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seeme "reasonable". Note, interestingly, that in most of the figures, the
initial reaction of consumption to the shock is greater than is the reaction
of income. This suggests that consumption fluctustes more in a asystem like
this than does ircome. In addition, since consumption seems to "correct”
itself after the initial response, one anticipates some negative serial corre-
lation in the growth rate of consumption, or st least some high frequency
movements.

Pigures ba - 64 illustrate the response of the sgystem to small
shocks, when away from the steady state. {The magnitude of the deviation from
steady astate was chosen after observing the response of the aystem to =z sme-
guence of 112 ghocks and noticing that the upper bound of the deviation from
ateady atate was abhout 1.8 percent). For the most part, the shock reaponse
functions in these figures look “reasonable”, suggesting that--for the indi-
cated shock magnitude--the approximate solutions mimick closely the exact
solutions. (Of course, as the shocke become smaller, we can claim with con-

fidence that the approximate solutions become arbitrarily accurate.)

Shock Response of Approximate Decision Rules Obtained by Iog Method

In the brief discussion after equation (26), it was noted that the
decision rules obtained by the log method are monotone in their arguments.
The reason, of course, 1s that an inncovation to technology in this case has a
congtant percent effect on k;,
avoid the major deficlency of the level method. To confirm thias, T plotted in

in addition to z;. Thus, this method aeems to

Figures 7 and 8 the shock responss of these decision rules in circumstances
thet produced the most perverse behavior by the declaion rules compuied using
the level method. The drammtically suspicious responses we obeerved in the

latter decision rules do not occur here. For example, Figures Te and Tb show
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the response to a large shock when the system starts in a steady state growth
path. The pattern there looks guite similar, except for scale, to the re-
gponse of the decielon rules derived by the level method %o small shocks, as
in Figurea %2 and 3b. In additlon Figures 8a and Bb depict the responae of
the decision rules to a shock of ressonsble msgnitude, starting from a capital
stock below the steady state growth path. These response patternas alao
closely mimick the response in Figures %a and 3b {except for scale), and seem
"reasonable”. They should be compared with the bizarre response patterns
plotted in Figures 4a and 5a. I conclude that there is no evidence of suspi-
cicus behavior in the approximate decimion rules derived using the log method,
even for large shocks. This gtands in sgtriking contrast with the resulis on

the decision rules derived using the level method.

5. Second Moment Properties of the Model

This section presents some second moment propertiea of the variables
in the approximate soclutions to the model. The varisbles I look at are con-
sumption, capital investment, hours, output, and the risk free rate. Since
some of the data generated by the model are not afationary, transformations
have to be made to induce (at least approximate) covariance siatlonarity.
Without this, sample moments are not meaningful. Two fransformations were
nged. The first is the one proposed by Hodrick and Prescott { ), and I label
this the "HP data transformation". This inveolves firat logeing all variablea
except the interest rate, snd then computing their deviations from a trend
1inei§/ The other data transformation--called the “growth transformation"--
used exploits the fact that cy, dky, yi are the product of a covariance sta-
tionary process and %;. Thus, the log first difference ¢of these three vari-

ables 18 covariate stationary. Under the growth transformation the log firat
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difference of Cgs dkt, and y, were computed, and ht' Ty where lefti untransg-
formed. The latter two are predicied by the model to be covariance station-
ary.

Resulta are presented both for the level and log methods of approxi-
mation. The results are consistent with what we saw in the shock response
functionra. In particular, Table 2a shows that for shocks of reasonable sige
(eg., with standard deviation .019) consumption is more variable than output
when the growth transformation is used. In addition, in this case the auto-
correlation of consumption growth is negative. This is what one would have
enticipated given the sharp "hook" evident in the shock response functions.
For small end "tiny" (eg., .00019) shocks the variance of conaumption is about
half fthat of output, which is also %o be expected given the ghock response
functions for small shocks. The relative volatility statistics for the HP
trenaform seem slightly less sensitive the bizarre ghape of the shock response
functione for the level approximation method. Nevertheless, for shocks of
reassonsble magnitude, the volatility of consumption is gtill slmost that of
output, but falls substantially with a fall in o Tables Ja and 3b report
the results for the log method of approximation. The results there also
mirror what we saw in the shock response functions. In particular, the rels-
tive volatilities for reasonably sized shocks are roughly the same as what
they are for =zmall and tiny shocks. 1 conjecture, based on the resacning in
the preceding section, that that reflects the greater accuracy of that approx-

imation.
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Table 1: Averages
Variable Model U.S. Economy (1956,3 - 1984,1)

ct/’yt .72 T2
ktfyt 11.21 10.58
ht 320.7 320.4
(ey-e, (/e -0036 .0039
(ht-ht—1 )/:ht—1 OO -00051
(kt-kt-‘l )/k‘c-‘{ 0036 .0046
r 1 0017 1 010

%
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Table 2a: Results for Growth Transformation Based on
Decision Rule Caleulated Using Level Method¥®

g [+ o] [¢)
%e E_c- E'd_li c_r_ a_l'l_ ° c(1)
y y ¥ y

.019 1.407 4.3%63 .094 411.6 -417
(.173) {2.16) ( .0006) (10742.60) {.102)

L0019 508 2.38 .088 411.76 .041
{.00%) (.024) (.0005) (10760.0%) {.146)

.00019 491 2.35 .088 411.76 .063
(.0001) {.0004) {.0005) (10759.84) (.106)

*Baged on 1000 simulations, each of length 112. Initial condition for each
simulation: 8teady atate k/z and initial ¥ = 52010.09. Column 1: =atandard
error of e, in {(2b). Column 2: average across simulations of ratio of atan-
dard deviation of detrended consumption to standard deviation of detrended
incone (cy). Column 3: average across simulations of ratio of deirended
capital inveatment %o Gy' Column 4: =sverage across s8imulations of ratic of
standard scross simulations of ratico of standard deviation of hours to cy.
Column 6: average acrose simulations of first order autocorrelation of de-
trended consumption. XNumbers in parentheses: standard error scross simula-

tions.
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Regults for HP Transformation Based on

Table 2b:
Decision Rule Calculated Using Level Method*

9, Ui a. 9y
I . o . o p (1)
¥y ¥ ¥ ¥y
.019 .879 z.13 044 516 207
(.044) (.524) { .00005) (.00004) (.158)
Q019 511 2.34 035 515 .709
(.0003) (.0037) { .o000008) { .00004) (.080)
(.0001) (.0004) (.0000002) (.00004) (.067)
¥See note to Table 2a for all except columns 4 and 5. Column 4: ratio of
Column 5: ratic of

standard deviation of detrended interest rate to o_-

standard devistion of detrend hours to o
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Table Ja: Results for Growth Transformaiion Based on

Decision Rule Calculated Using Log Method™®

% 9dK Iy 9
¢ — — — — o (1)
E o a g [s3 C
y ¥ ¥ y
.019 493 2.40 .088 412.04 063
(.0010) {.028) {.0005) (10870.48) (.107)
0019 491 2.35 .088 A11.77 - .064
(.0011) (.0004%) (.0005) (10764.94) (.106)
.0019 491 2.35 .088 414 .76 064
(.00010) (.0002) {.0008)} (10760.25) (.1086)
*3ee note to Table 2Z2a.
Table 3b: Results for HP Transformation Based on
Decision Rule Calculated Using Log Method®
o o g g
h
% EE_ cdk EE‘ o 90(1)
y y y y
.019 507 2.38 035 515 .723
(.0011) (.031) ( .0000006) {.00004) {.067)
.0019 .506 2.34 035 515 .723%
(.00012) (.0006) (.0000002) (.00004) {.067)
.00019 506 2.3% L0355 515 723
(.00011) {.0004) {.0000002) ( .00004) { .067)

*See note to Table 2b.
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Table 5: Results for Growth (HP) Transformation
Based on Actual U.S. Data, 1956 Q2 - 1984 Q4%

a a a
o h

c - dk r 1
= -1 ~= S p (1)
Iy - Y % %y ©
487 1.920 2.24% 699.59 2714
(. 407) (2.188) (.788) (.B40) (.820)

*Note: First row corresponds to results based on growth itransformation. Se-
cond rvow corresponds to results based omn HP transformation. For colums in

row one, see note to Table 2a. For columns in row two, see note to Table 2b.
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Footnotes

E/For recent work that pursues alternative approximate solution
strategies to the one described here, see Gagnon and Taylor (1986), Iabadie
(1986), and Sims (1984).

Eyfor pepers which use this approximation method, see Christiano
(1986) and ¢. Hansen (1986).

3/a "productivity shock" is defined relative to the model of this
paper, in which output 1a produced using a Cobb-Douglas Ffunction of capital
and labor, and a multiplicstive productivity shock. Once parameters are
agsigned to the Cobb-Douglas production function--as I must to carry out the
experiments in the paper--~then the productivity shock can be computed directly
from the data as in Solow (1956) and Prescott (1986}. A "large" productivity
shock is an Iinnovation to productivity that is ten times the standard devia-
tion of the measured innovation to productivity. A “small™ productivity shock
is one tenth the standerd deviation observed in the data.

£/51nce I d¢ not kmow the properties of the true decision rules, it
ig hard to be certain about what constitutes "plausible” and "implausible"
behavior on the part of the approximste decision rules. Statements of this
kind are based on conjecture about the true decision rules. I hope 1o make
this conjecture rigorous in subsequent drafis. TFor example, it may be possi-
ble to show that the true decieion rules are monotone functionas of their
argumente. In this case, my finding that in the linear approximation, invest-
ment responds positively to small productivity shecks, and negatively to
larger ones would be shown to he an artifact of approximation error.

é/Actually, what I call the "level methed" is really a combination

of level method and the log method, to be Adescribed subsequently in the
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text. It is a combination because, in calculeting the approximation around
xy, the level method in fact is approximating about the log of zt/zt—1‘ The
fact that the "level method" involves a mixture of approximating about logs
and levela is at the root of its problems, which will be documented below.

é/The formulas used to calculate the resulis in Table 1 were derived
from the first order necessary conditions for &n cptimum in steady state. A
velue of p = O was chosen tc simplify the exposition. In fact the parameter
values in (28) together with U.S. data suggest a value of p in the neighbor-
hood of -.1.

Y particular, the greater ]alog k%/aetl, where | | denotes the
absolute value.

§/On each simulation, the number of obsgervations on each variable
was 112. A trend line was computed for a given vector of 112 cobservatione by
multiplying it by a particular 112 by 112 metrizx. For details about the

construction of this matrix, see Hodrick and Prescott { ).



comnt Firviacten
Nlazien FESPONSE 30 SMOCK « .19 1N PIXI0D ) frem Saralise ETIPONIE O SWKE » -, 10 IX PENIOD )
o pansling
“e, 198,
N 1~
Tonaugpt |, capital Imvestment
fenavaption heurn
19, — 0. e, -
tput
Nm e
g, =100 . —
. 4= capital fpvescmant
. |
he—tag. vidaBmnsnn k.
=20, — ~200 ,
=N, — =300, —4
-10. R aa s L s R A R R Py =400 . A RS RAE L ha B DA R AR LA MR Al sk wa LA
"
58 €3 $2 %4 85 ek 70 7 TMHN B TS BO W2 W% Se 83 €z &4 8¢ ge YT TR M 76 TR n:? hotd
. nCE — ——
ln'[g — Saselinet atesdy Atare grovch yath . !DYE .
Maseline: aresdy stata groveh pach . F— . A_& Lg”t - F. : . ﬂ_b 1 OnE ==
' : ! . '
eng
wciem ALSFONT T SAOCK = .01 TK PRAIOB 3 Tvintien RLIPORSE To TNOCK = =817 IN PTRICE )
\:'nlln frow banaline
I\
\, -1, —
3. — '\ cipiral imvantment
-z_—
X . -
P -
1.—1
-
{Mu
0. CMELIME B S SANLIMAS S I B e dy BLAE EMF S B i e BLBE B S LA SLEL AL ALELELSY Bum 2 o -5, A M B S s B I LI S B I S St I I I I |
= L] &2 [ 4 [ 1] F 1] kd] 72 ™ kd ] b4 | 20 52 [ b1 T e 52 & &% €8 7O 72 1M T8 A ® 'Y "
haselt tasdy stat lgsE o .BEE -
aseline:  ateady state N QO\ LB e baselinar szandy scate oYL -
. CHE — . CHE =
F B OXE . wm F‘% . Qb ORRE [
! -
i
fation RISTOWEE TO BWCK = 8018 T FEATon 3 o i IO
« Mucaline Pres basaiioe f
™ . .
hi
\, .
\\ caplpal tmveacmant
N\, -10. —
.3
N
20, —
.2 — autput S ————
Rpaplial fnvestmme
-30. —
. -
. /
FOT I
-0 RS RS I I LA IS I R T I I I IS I L n‘;‘lé LS A R SAM SIS RS RIS R MM A L RS RIS LA
53 40 2 &4 L 1 &8 70 T2 ™ Kl 7e 80 2 "™ L2 ] 60 &2 L ) (1] 70 T2 ™ 78 m .!ﬂ_ 82 L L]
T S raie —
hameline:  Avssdy sgata ! — Nauglinai stasdy scace 1 OYE ——
. F- -9 DHE — Fa, .3 b ione -
U'h' LooKE o - LADRE L. o




®
HrEen

dvintipy
frox Yraeitne

BESMONSE TO SMOCK o 019 IN PLREGD ), wITH MIRIOD ] CAFITAL
STACK .11 3FLOW STCADY STATE CROWTH FaATH

\'
\‘
\ /=lplt|l (Avestinrar
.
AN
.

H \.\‘
1 1ur e

o TV

-

LT YR,
T g 4 g
- b
wverresseverneanatmssanyy 1roas

sasermsnmrran
PP

st

e COBsuapt lon

~
LT
.
-
.

Tast)lny

percent
davizrisn
"V Padt] ok

I gtweth pALh vith paried 0 ¢ 33 akeve anoust reaulred to 2YE

LIS AN MU UM IS SRS I I Iy BN M "I"""'""I"J

58 §0 E3 B4 BB 1] ] 70 2 74 76 78 BQ 82 LE
DCE —

abe perddd O WSy g steady atle. Metlod O % et
1t 1Y%, duirter 1 0.8 BrE o=

F.\.B, . Ll O COIXE —

. capital steck,

ALSHONST TO SNOCK * ~.01% IX Fekiod J. ¥ITH PERTOD 2 CAPITAL
ATOCK .38 BELOW STLADT STATE

-1, —

B

pp————_ 2

o
—
-
-
-

hauth

cpatuept Lo

ttena,
LR R P LR L TP gyt o

ey s T B

—
-
-

-

Fadeline:

T T

"'l'_l""l T l “I" T L]

58 k¢ €2 6N §& B8 70 T2 7% 7§ 78 84 42 &M

erovih paih with period O £ 33 abeve avsual Tequiied i ocE -
Baht peridd O kIt & tteady state. Merled O N gt IVE ="
te 1935, gwirter 1 U.8, capital steck. g:‘;EE -

K _—

Fiy. 5o

petoest
érvistion
iton N’ullm

KESPonst TO SHOCK « 014 1y pERIOS ), WITH PENSud 2 CAPTTAL
STOCK &Pt ABSE STEADT STATE CROWTH PATH

5.—-1

X —

\
‘\‘ APETaT Invastoent
\\
-
3.~ ~,
‘-._._"
.
vt Tt
it . ‘""""‘-—---. T vt g T
sanerteararcirndrrirrston s rnac ot ety i yy bdd =
-
1. e bunt fon
..f-""'!’h‘\---v-a--—-—nq----_—_-_-_.
i -
M{n
-1. T T ,vrj—rir l..-]r;—:—"r [.l T ™7 T T ™7 T |
50 60 - 62 [ 4] 66 [ 1] 70 72 ™ 78 | Y] 02 "
SCE —
Ratelina:  prevth path with perind Q& 4 ahave pmunt reguired te 2YE ass
sake period & Liy 2 stesds stite. Yerlod O & get OME -
e 1934, guarter L .5, capital steck, . NxE
Fl.ob- He =
mm’i“ RESPOMSE TU BHOCK = - 019 1x FEEIVE ), VITH PEMIOD 1 CAPITAL
fres dtisdy state STUCK 4.J% ABOVL STLADY STATE CAOWTN PATH
i.
-1, -
L gy P AT
curput r“____,..-....-.._-._.,....a
,',-r"":unul IaveaLeent
-3, Wt
L~
/
-5, =
-7, =
-3,

R DML IR B I I NN I LI (N ML I I ML |

¢ 6D B2 &N 6% BB 70 72 M 76 "0 BG k2 DM




.

Sevlagion
Trae Basebine

KISFOSSE Tu SHOLK » ,OQ1F 1N PENIQD ), KITH Fexpob § CAPLTAL
STUCK 1.0 BELOW STEALY STAIE GRUGTH RaTH

capital invegtoent

autpot .

" OnBUEDE o0

\\
R hayr s
\'\
~—
N
.0 T T T T l.,:;:‘:"?“". e T T T T T
1] $C 62 64 1] 1] 70 ne Y TE 7e. MO 82 B4
I e
baseline: growth path with period 0 r 2% above dmoutn tequirted Lo :sg -
vake petlod O k/r 2 3esdy stage. Perlod O k aop 4 £ ——
o 1956, quarter 1 U.5. capleal stock, gg?’[
L —
F"b" bo.
mrcsat BESPONSE TO SHUCK = ,001F IX PEKROD ), WITH PLRIOD 7 CAPITAL
deviatlon STOCK 1.8 ABUXE STEADY STATE CAOVTH FATW
fros basellne
5]
¥ capiral \nvedtrent
i
T
P output "‘---"..._.“
. _".—-_-—"-v—qn.---n-
L) -
-'"wn_‘_-
-0 ﬁ"'l'l‘i'l"l'_l-;_l"I"'I'I"-"l T T
5¢ 60 E2 6y &5 68 T¢ 72 TM 76 78 80 82 e
Waslise:  preveh path with perlod O ¢ 23 bulow 2300nt Tesulrsd to ACE —
=3kt prried O klp g eteady statw.  Pesiod M & ket YE J—
o 1956, quartec | U.S. capital stock N F . ARE -
W ' c"C'..- 2aek —_

pTcERt

devistion RESFUNSE 10 SHOUK = -.GUAE I¥ PENISD J, VITH POKIGE 2 CAFITAL
Eran baseline STOCK 1.4 BELOW STEALY STATE CAUWTH PATW
- TS o v
T ‘—"
hours T
N
o
Lll'
19, cauruapt lon
.20, - wotput I T T
. -
."
. -
| s
,/' \cul!u Ltivestment
K
~30, - /’/
! i ’ .
| 4
/
] /
Y4
l
-30_2 T T | AL SRR IS R 2ty LI SR BB Bt S o T
L

58 690 52 B4 &6 68 10 T2 M 78 T8

baselingy  grovth path with perlod € ¢ I1 dbove apayal vgulred [v
Tkt period O kfr 2 wteady agate. Feried O % set
to 195w, quarter | E.S, capipal stock.,

. . Fia.
| ‘&%falﬁ

prrcant
drvialion
from bassline

RESFOSSE TO SHUCK = -.00JY [N PERIOD 3, WITH PERIUD 2 CarlTAL
STOCK 1,83 ABUYE STEADY STATE CKUWTH PATH

=10, —]

L
e L b b L T sy ey £

~20. —

T T T TR
JE— ——

dut pyt P

/""”
-

3.

/ eapital Envestment

b Y

=50,

~60. —

51072

54 66 B2 EY &8 (1 B
SA41AREY  pIOvVAR path with perlod O & 21 below qodunt requiced to

aahe peilod O %/z 2 steady s3atv. Feriod ¢ 1 st
e 1936, quarter ! U.3. caplual seoch.
1]
o]




percent RESPONSE TO SHOCK = .19 IN PERIOD 3

deviation
from ba%e ine

-—

N
AN
hY

30.— |\,

1

N

, .

I ~ capital investment
25, — i

|

‘ -
20 . ll w““"""‘-u—_.-.“.- ) 6

I ———————————— Mfmw

!
{
15, — |
10, —
SHOCK RESPONSE OF DECISION RULES
APPROXIMATED BY LOG METHOD
g . —

58 60 62 64 66 68 70 72 74 76 78 80 82 84
DCE —

BYE ——— W
Fin. 7 & DHE g IS
“Y DOKE — @

baseline: steady state growth path.




percent
deviation
from bas eﬁ_ing

RESPONSE TO SHOCK = - .19 IN PERIOD 3

"-r" o TSI IS S e F S S (b e T s A A S e A ~:‘:;;;;":;_";;;:;—_;;._.;;_m—5_\wa.aw’-&umwnﬂwm——-’-*-ﬁ """'"—-*""1.
l ,.-—-"‘"'_‘-"—' i
1 - :
! - }
; - Khours ]
o
-
!
~10, - |
i !
! consumption
i i ;
S i
[ T e ;
“20 » it ! OUtPut '-.',--‘MFW“—__*-—--‘-.-“—'--"‘ s - T :‘
l T !
l - i
o~ i
! e :
‘ /,/ Kcapital investment
] a i
30, ~— | i :
i ' :/ I
{ H / i
{ /’ i
{ :
’ /’ SHOCK RESPONSE OF DECISION RULES v
: APPROXIMATED' BY LOG METHOD g
-Ll 0 , l H
!
1
]

/

-'5 0 i | “{""1'_‘,' LIt I b l 11 [ Ol '!"'f"‘l" f"l""r' T 'l""I "l'"'r'T"f‘ T r’T’r"!‘"['"T"]"'T’ I ML | ’ [N "l'_' [ I O | I'V T 11 I e

58 g0 62 a4 6& 68 70 72 74 786 78 80 82 g4
Baseline: steady state growth path, T“D[.:Em o [ !

Fiy .7 owE -
- DHE -
s LDPKE . — 4



percent
deviation
from baseline

RESPONSE TO SHOCK = .019 IN PERIOD 3, WITH PERIOD 2 CAPITAL
STOCK 4.4% BELOW STEADY STATE GROWIH PATH

AN
\\
N
\
i capital investment
\ /

‘*~5‘5~~‘\_

i OUtPut “-‘.--‘—"‘-.—___—‘-—--—-—-..-.hu--&-—h
T Pk O B M A Y Oy e e S . Ay T B . W o B R T O Wil i e P s ? ‘-! e e o e S .

SHOCK RESPONSE OF DECISION RULES
APPROXTMATED BY LOG METHOD

-h\-.‘*
-..u....__h.
T e e
-—.-_.-.u-.-n...__._-__h__‘_

baseline:

"l]lllllllrllllllllllllill||l||||.h;=|='=1ﬂr-r-r‘rt-r-r—[-,-'—r~r1—1—1—-r1-r—1-T—4

82 84

—

o

e

[

58 60 62 64 66 68 70 72 74 76 78 80
growth path with period 0 z 5% above amount required to DCE
make period @ k/z a steady state. Period 0 k set to DYE
1956, quarter 1 U.S. capital stock i DHE

Fm%% DOKE



percent
deviation
from baseline

RESPONSE TO SHOCK = ~.019 IN PERIOD 3, WITH PERIOD 2 CAPITAL
STOCK 4.4% BELOW STEADY STATE GROWTH PATH

-1 . —
"""""" e e e e e e T S W SR ey e
-2 . — o e T
-3 . —
SHOCK RESPONSE OF DECISION RULES
APPROXIMATED BY LOG METHOD
-y, :[lll|ll1|lIl|tlTllll||Il|r[||l|||lI||lll[[II[rTr"]““'l"I"Y'T’T_T"“J
58 60 62 64 66 68 70 72 74 76 78‘ 80 82 84
bagseline: growth path with period 0 z 5% above amount required to DCE =
make period 0 k/z a steady state, Period 0 k¢et to b DYE -
1956, quarter 1 U.S., capital stock. /wa ] DHE -
DOKE —




-27 -

References

Barro, R. J., "are Government Bonds Net Wealth?" Journal of

Political Economy, 82 [1974], pp. 1095-1117.

Eichenbaum, M., Lars Hansen and 3cott Richards, "The Dynamic
Equilibrium Pricing of Durable Consumption Goods," GSIA,
Carnegie-Mellon University, 1984,

King, Robert, Charles Plosser, James Stock and Mark Watson,
"Stochastiec Trends and Economic Fluctuations," NBER, Stanford,
January 1987.

Kydland, F. and Edward C. Prescott, "Time to Build and Aggregate

Fluctuations," Econometrica, 50 [1982], pp. 1345-1370.

Manuelli, Redolfo E., "Modern Business Cycle Analysis: A Guide to

the Prescott-Summers Debate,” Quarterly Review, Federal

Reserve Bank of Minneapolis, Fall 1986.



