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ABSTRACT

We prove the existence of a competitive equilibrium in an over-
lapping generations model in which each generation has a prefer-
ence ordering over its own and its descendents’ consumptions. The
model is one of pure exchange with many goods in each period and
two period lived generations. The beguest from one generation to
the next is required to be non-negative and is endogencus. In
equilibrium, some seguences of agents of successive generations
may be continually "linked" by positive bequests and act as in-
finitely lived agents. Other sequences of agents may not be so
linked and therefore behave as sequences of finite lived agents.
We give three examples which illustrate the following points: (i)
multiple equilibria may exist some of which resemble those of
standard overlapping generations models, whereas in others some
sequences of agents behave as if infinitely lived, {(ii} multiple
steady states of the ahbove two types may exist in which the latter
are unstable and the former are stable, and-(iii)_if agents have
preferences given by discounted sums of utilities with different
discount rates, then not all sequences of generations can be con-

tinually linked and hence behave as infinitely lived agents.




I. Introduction

We prove the existence of a competitive equilibrium for
an overlapping generations (hereafter, OLG) model which may be
viewed as an endogenously determined mix of infinitely lived
agents and sequences of finite lived agents. The meodel is one of
pure egchange with many goods in each period and sequences of
overlapping two period lived agents.l We assume that each agent
in a generation cares not only about its own lifetime consumptions
but also about the welfare of its descendent in the next genera-
tion. This 1is characterized by specifying the preference ordering
for an agent as defined over the infinite stream of consumptions
consisting of its own lifetime consumptions, its descendant's
lifetime consumptions and so on, ad infinitum, & consistency
requirement is imposed on preferences in the following sense. Let
ch(t) be the lifetime consumption vector of agent h in generation
t. Then for any fixed ch(t), agent (h,t)'s subpreference ordering
over {ch(j),j>t} ig the same as agent (h,t+1)'s preference order-
ing over {ch(j),j>t}.2
Each generation makes a bequest to the next and the

bequest is regquired to be nonnegative; a constraint which may be

binding. Agents of two successive generatlions may be said to be
“linked" if the older agent 1s making a poslitive beguest to the
younger. A sequence of agents of successive generations who are
so linked act as a single infinitely lived agent, i.e., as one who
not only has preferences over the entire infinite stream of con-
sumptions of the linked agents but also faces a single iInfinite

horizon budget constraint involving those same consumptions. A&




sequence of agents of successive generations for whom the con-
straint on bequests is binding at some dates act as a sequence of
finite lived agents in terms of their preferences and budget
constraints, both of which are effectively truncated. Bequests,
and hence the effective horizon of various agents, is determined
in equilibrium.

By means of examples, we discuss some pessible types of
behavior in such models. It is possible to have multiple equi-
libria with some of them corresponding to those of standard over-
lapping generations models whereas, in others some sequences of
generations behave as infinitely lived agents. Similarly, there
may be multiple steady states with steady states of the latter
type being unstable whereas steady states of the former type are
stable. In models of iInfinitely lived agents with time additive
utilities and constant Cime preference rates, agents with the
lowest rate of time preference (the most patient type) end up
asymptotically owning all of the wealth and the consumptions of
all the other agents converge to zero asymptotically (Lucas and
Stokey [1984, p. 159]). This never happens in the present model
for a similar specification of preferences. Instead, the con-
straint on bequests will become binding for some sequences of
agents so that the infinitely lived agents structure cannot be
maintained.

The paper borrows heavily from Wilson [1981]. It is
also, obviously, related to the earlier work of Bewley [1972],
Balasko and Shell [1980], and Balasko, Cass and Shell [1680].

Wilsen's [1981] set up is general encugh to accommedate both




finite and infinitely lived agents. However, the distinction is
made a priori and is not part of the determinabion of equilib-
rium., A similar comment applies to Muller and Woodford [1983].
Mention must be made of Barro [1974] which provides the motivation
for considering models of this sort. Laitner [1986] is closely
related to ours, though it has a different focus.

The rest of this paper is organized as follows. In
section II, we lay out the model, establish existence of equi-
librium and study optimality of equilibrium. Section III contains
three examples which illustrate some of the possible types of
equilibrium behavior mentioned previousiy, =~ Section IV con-

cludes. All of the proofs are relegated to the Appendix.

II. Model

At each date t (21), a constant number of agents H are
born (indexed by h) who are alive at dates t and (t+1)} and are
referred to as members of generation t. At date 1, there are also
alive H agents of generation 0, in their last period of life.
Henceforth, agent h belonging to generation t is denoted by
{h,t). The symbol H denotes the set {1,2,...,H}. There are a
fixed number 2(21) of completely perishable goods at each date,

indexed by 1.

Consumption Sets, Endowments and Preferences

For t 2 1, let (w(t),ul(t)) e R'RY, let wP(e) -
{9032, Wl3+1)), 52t} < R

a similar fashion, for t

: and let w(Q) = {wg(T},wh(1)] < R:. In
> 1, let [x?(t),xh(t)] ¢ RYXRY, let xB(t)

= {[x?(j),xh(j+1)],jat} < R: and let, x1(0) = [xg(i),xh(T)) 5 R:.




For t = 0 and h < fi, agent (h,t)'s consumption set is R: with
generic element xh(t) and his/her endowment is wh(t). We inter-
pret w?(t) (respectively, wg(t)} as the endowment when young
(respectively, when old) of a type h agent at date t 2z 1. Simi-
larly, we interpret x?(t) (respectively, xg(t)) as the consumption
when young (respectively, when old) of a type h agent at date t.
Each agent (h,t} has a strict preference relation (>):
and we lev P2(x) = {yly ()7 x} ana N T = {y]x O] y}.
P:(x) denotes the set of commodity bundles that agent (h,t)
strictly prefers to x and (Pt)‘%x} denotes the set of commodity

bundles to which x is strictly preferred by (h,t).

Assumptions. The following assumptions are made regarding prefer-
ences and endowments. Except for assumption 2, they parallel

those of Wilson [16981].

Assumption 1

{i) (Continuity)} The sets PE(X) and (Pt)_1(x) are both open

relative to Rj with respect to the produet topology on R™.

(11) (Convexity) If y ¢ Pt(x) then Ay + (1-A)}x € Pt(x) for 0 < a

< 1.
(iii) (Free Disposal) If J Pﬁ(x) and z 2y then z ¢ Pﬁ(x).

{iv) {(Irreflexivity) x £ P?(x).




Assumption 2 {(consistency of preferences)

For any fixed t 2 0, let x{t) and y't) be such that
h h _ ¢.h h . .r .h
[y1(t),y2(t+i)) = [xl(t),xz(t+1)). We then have: ity (t+1)
P2+1[xh(t+1)) then yR(t) e P?[xh(t}].

With regard to endowments we have,

Assumption 3

The aggregate endowment of each good at each date is

positive. That is,
i g%
Z W (t +W (t)) RT, for all t 21

In addition to the above we need an assumptlon regarding

irreducibility for the economy.

Assumption 4 (Irreducibility)

For t = 1, let H(t) = {(h,s)|hefl,se{t-1,t}] be the set
of agents alive at date t. If a = (h,s) e H(t) then w®(j) denotes

agent a's endowment at date j = 1. This is given by,

w{J)

OQfor 28, 28+ 1

w®(s)

n

Wi (s)
wi(s+1) = wg(s+1).

Now, let H,(t) and Hy(t) be any two nonempty, disjoint

subsets of H(t) whose union is H{t). We then have:




There exists 8 = (h,s) « H1(t} such that, if

y?(s) - x?(s) T ws)

aEHz(t)

yg{s+1) = xg(s+1) + z wr{s+1)

acH {t}

2
B =, 521, 50 s
yRI) = xa(), J2 1, Jes e
then,

y™0) < BD(x"(®).

Def'inition of Eguilibrium

The notion of competitive equilibrium here 1s slightly
different from the traditional Arrow-Debreu notion hecause of the
ncnnegativity restriction on bequests. This is reflected in the
budget constraints which are developed as fecllows. Let Py € Ri be
the price vector of goods at date & and let p = (p1,p2,...) € R:.
Let bh(t} € R, be the value of bequests made by agent (h,t-1) at
date t to agent (h,t). Further, let bl = {bh(t),ta1} € R: and b =
(bh,heﬁ}.

We then have,
(2.12) (1) = p, (Wh(1)-xD(1))

(2.16)  bMeen) = p (WN(0)-xN(E)) (Wp(t+1)=xD(t+1))

* pt+1

B ONERE




This leads to the following Formulation of the budget constraints
for agents (h,t).
n t+k-1
(2.2) bNE) + Z {pj[w (3)-x (J)J+DJ 1(W (J+1)-x (J+1))} ke >
where we take bh(O) = 0 and py = 0.
4 compact way to write these constraints is as fol-
lows. For t =z 1, let z1(t), za(t) ¢ R* and let z =

(25(1),24(1),2,(2),...]) € R®. " Then define

{2.3a) v{t+1,p,2)

E pj z,(3)+2,(3)) + p, (2 (E+1), £ 20

n
(=)

(2.30y  v(0,p,2) =
The constraints (2.2) may now be rewritten as follows.

(2.4) b(L) + v(t+k,p,w (0)-x(0)) 2 v{t,p,w(0)-x(0)), k = 1.

Now let Bg(p,bh(t)], D:(p,bh(t)] be the budget set and the demand

set, respectively of agent (h,t). We then have,

(2.5)  Bl(p,b™)) = {x"(t)erT|x"(t) satisfies (2.1))

{x*(£)eB(p,b"(t) ) B (p,b" (£))nP2 (" () )=6}

(2.6) D?[p,bh(t))

where ¢ stands for the empty set.
Let x = {xh(O),th}. fn alloecation x is said to be

attainable if
H h h h h
L (W(e)an(e)-ni(e) -y (6) =

A competitive equilibrium for this economy is defined as follows.




Definition 1 (Competitive Equilibrium)

A competitive equilibrium for the above economy consists

of ape Ri, b e R: and X such that X is attainable and
(1) 2'(6) € DX(5,5"(t)) for all (h,t).
(i1)  BMt) = v(t,5,wN0)-T0)) for all (h,t).

Because of the recursive structure of the model it Is
possible to simplify the definition of a competitive equilib-

rium. This is done by means of the following proposition.

Proposition |

For any h e B, if x%0) e Dg(p,o) and bI(t) =
v(t,p,w™(0)-x"(0)) for all & 2 1, then x™(t) ¢ D(p,b"(t)) for all

t 1.
Proof: In the aAppendix.

By virtue of the above proposition we may simplify the

notation and rewrite the definition of a competitive equilibrium

h h

as follows. From now on we will write w* and % in place of w(0)

and xh(O). The budget constraints (2.4) can be rewritten as
2.7) v(t+1,p,w0-x) 2 0, h e f, t 2 0.

The budget szets and the demand sets can be simplified to
(2.8) Bh(p} = {xheR:Ixh satisfies (2.7))

(2.9) Dh{p)

[x"eB™(p) {B(p)npS(x"™) = o}.



Definition 2 ({(Competitive Equilibrium)

& competitive egquilibrium is (p,x)} such that % is at-

tainable and ¥* ¢ D'{F) for all h e B.

The model consisting of equations (2.7)-(2.9) and defi-
nition 2 may be interpreted formally as a model of a fixed number
H of infinitely lived agents but with budget sets which are not
standard. This interpretation may be supported by distinguishing
goods on the basis of date (t21), physical characteristics
(i=1,2,...,%) and an additional type (k=1,2 for young and old,
respectively). A production possibilities set may be defined by
assuming that good (t,i,k) can be transformed into good {(t,i,k')
on a one to one basis where k, k' e {1,2}. It follows that in
equilibrium we must have p,;, = py; for k =1, 2.

An obvious implication of the budget constraints {(2.7)
1s the feollowing.

(2.10)  1im inf v(t+1,p,w’-x") 2 0.
Lo
In fact, it can be shown that at a consumer optimum, (2.10) must

hold as an equality.

Proposition 2

Given assumptions 1 and &, if X e Dh(p) then,

lim inf v(t+1,p,wh-xh) = 0.
tom

Proof: In the Appendix,

The above proposition together with (2.10) suggests that

if the nonnegativity restrictions on bequests are never binding
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then 1t ought to be possible to replace the budget constraints
(2.7) by (2.10). This can be shown rigorously. Let us define an

alternative budget set Eh(p) and demand set ﬁh(p) as follows

(2.11)  B%p) = [x"r7[x" satisfies (2.10)}.

(2.12)  B%p) = {x"eB(p) [B(0)nBlx™) = 6},
We then have,

Proposition 3

(i) If lim inf v{t+1,p,wh) > 0, x ¢ DP(p) and the budget con-
Eram
straints (2.7) hold as strict inegualities, then ¢
5%p).

(1i) If £ ¢ ﬁh{p) n BP(p), then z!' ¢ Dh(p).
Proof': In the Appendix.

We, therefore, have the result that if the nonnegativity
resktrictions on bequests are not binding then the budget con-
straints {2.7) may be replaced by (2.10). This is exactly the
form of the budget constraint imposed by Wilson (1981, section 3,
p. 100). If, in addition, the consumption sets are restricted
to 2?, the endowment sequences wh(O} € Ej and the price sequence p
€ 21 then {2.10) becomes the standard Arrow-Debreu budget con-
gtraint for an infinitely lived agent. Thus, the principal dis-
tinetion between this model and Bewley [1972] is in the nonnega-
tivity constraints on hequests. On the contrary, if bequests are

zero In every period then it can be seen that the budget con-

straints (2.7) break up into separate budget constraints for each
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generatlon and the equilibria correspond to those of the standard
OLG model (Balasko and Shell [19801]}.

Thus, we have a situabtion 1in which if the nomnegativity
constraints in (2.7) are never binding then agent h behaves as an
infinitely lived agent in terms of his/her preferences and budget
constraints. If the constraints (2.7) are binding in every period
then the agent behaves as a sequence of independent overlapping
generations 1In terms of preferences and budget constraints. It
goes without saying that intermedliate cases can alst occur and
that the situation may be different for different h's., However, a
pricri, we cannot assume that the equilibrium corresponds to one
or the other case. Thus, we cannot appeal to Bewley [1972],
Balasko and Shell [1980], Balasko, Cass and Shell [1980] or Wilson
[1981] to clalm the existence of a competitive equilibrium.
However, as will be seen the methods involved are the same. We

have chosen to follow Wilson {1981].3

Existence of Equilibrium

Here we will prove existence for the economy (denoted by
E) defined by (2.7)-{2.9) and definition 2. We will construct an
increasing sequence of ftruncated aconomies each with finite num-
bers of goods and agents and by a standard limiting argument
establish existence for the infinite model. Let T = | be finite

and let Ep be a truncated economy in which the set of agents

(2T+1)2

N with ge-

is f} and the commodity space of each agent is R

neric element

(2.13) xg [K¥’2(1),{(K¥’1(t),X?,Q(t+1)),t=1,2,...,T}].
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The endowment vector of agent h is wg where,
(2.14) w? - [wg(1),{[w?(t),wg(t+1)],t=1,2,...,T}].

Let wg(i,T+1) be the endowmenit of good 1 for a type h old agent at

date {T+1). Let Mp be a & x 2 matrix such that,

M(1,3) = 0 if 1% j

=0 1f 1= Jand Jwy(1,T+1) = O
h
o h, .
= 1if i = j and Xw {i,T+1) > O.
2
h
Let,
~h h h h
(2.15) Ry = [{[xT’E(t),xT,1(t)),t=1,2,...,T},MTXT’E(T+1),

(G () wie+1)), 8T} ).
ARREL

For each h, a preference ordering (>}§ is defined as follous:
h h _h . Pt h ~h
o (>)T Vo if and only if ip (>)0 Yo

Now, let

P?(x) = {yly (>); x}

T %
P, € R+, £E=1, 2, y T+ 1
T T T T
P° = {pysP5s--sPp 4}
= (x2 hefl
Xp = (XT,heH).

The budget constraints are defined as follows:

T h _h

(2.16) v{t+1,p ,wT—KT) >20,t=0,1, ..., T.
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The budget sets and the demand sets are then defined as
(2.17) B?(pT) = {x?]x? satisfies equations (2.16)}.

(2.18)  oBe") = {xealpT) BB )aR e = o).

It

A competitive eguilibrium for the above Eruncated economy is

defined as (pT,xT) such that x?

€ D;(ﬁT) for all h € H and
(2.19a) E [w (t)+w (t)- xT (8- xT SE)) =0, t=1,2, ..., T

T+1)] =

H
(2.196) 2 W (T+1)-XT o

It may be observed that the budget constraints together with the

market clearing conditions (2.19) imply that in equilibrium,

(2.20)  v(T+1,pT,u-xl) 2 pt(w (£)+u(t)- xT (6)-x] 2(0)
+ by, (Wh(T+1)-x] ,(T+1)

0, for all h ¢ H.

We then have,

Lemma 1
For each T 2 1, the economy Eo has a competitive equi-

librium (p’,x;) with,
p? wg{T) > 0 for all h
T h T h -
2 w1(t) * Piyq wz(t+1} >0 forallhand t =1, 2, ..., T.
Proof: In the Appendix.

Next, we have,
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Lemma 2

There 1is a subsequence ETk of economies such that

x? » @ in the product topology of R~ where,
k

H
} (D) nde)-2e-28e) = 0, 62 1.
h=1 : .

Proof: In the Appendix.
Henceforth, we restrict attention to the subsequence in

the above lemma. In view of lemma 1, it is legitimate to restrict

T

attention to equilibrium prices p* which are normalized such

T
1

prices pT are normalized in the above fashion.

that p w;(1) = 1. From here on, we assume that equilibrium
For t 2 1, let H(t) = {(h,s)]heff,s=t-1,t} be the set of
agents alive at date t&. If o = (h,s) € H(t} then let I;(t) be the

income of agent a, so that

T

a;.y _ T h n
IT(t) = Dy w}(s) + Py, w2{3+1)

where, if necessary, we define pg o.

I

Lemma
For any fixed t 2 1 and any two agents o, 8 € H(t),
Ig(t)/lg(t) is bounded and bounded away from zero as T goes to

infinity.
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Proof: In the Appendix.

We now let ﬁz € Ri be such that

By = pz For t = 1, 2, ., T + 1
T
P, = G for £ >T + 1.

Further, let p° - {ﬁg,tzi} & R:.

Lemma 4

There exists a subsequence of economies ETk such that

e o - h - h - h
P+ p >0 with 0 < p1w2(1) < =and 0 < ptw1(t) + pt+1w2(t+1) { =

for all h and £t = 1.
Proof: 1In the Appendix,

Theorem 1

(p,X) is a competitive eguilibrium for the full economy

Proof: 1In the Appendizx,

Optimality of Equilibrium

We will show that Theorem 4 of Wilson [1981, p. 105]
extends to the present set up provided the convexity assumption 1
(ii) is replaced by a strong convexity assumption and assumption 2
is also suitably strengthened. We can then show that if the value
of the aggregate endowment at competitive prices is finite then
the competitive equilibrium allocation is pareto optimal. The
argument for this is slightly more involved due to the difference
in the bhudget constraints of agents. We now state the new assump-

tions.
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Assumption 1!

Fach agent (h,t) has a preference preordering (2)? that
is complete, reflexive and transitive. The strict preference
relation (>)2 derived from (2)2 satisfies assumption 1 except that
1 (ii) is replaced by: if z (2}2 X, Z # % then iz + (1-1) x

(>)2 2 for O < A < 1.

Assumption 2!

Let £t 2 0 be given and let xh(t) and yh(t) be as in
assumption 2. Then yh(t) € Pg(xh(t)] if and only if yh(b+1)
h h
Pt+1{x (t+1}].
In this subsection we will assume that assumptions 1 and
2 have been replaced by 1' and 2' respectively., We will say that

an attainable allocation x is pareto optimal if there ls no other

attainable alloecabtion z such that zh(t) {2)2 xh(t) for all (h,%t)
and z(t) ¢ P2(x"(t)) for some (h,t) where h e H and & 2 0.

The need for a strong convexity assumption on prefer-
ences for optimality may be seen from the following example with
Just one agent In each generation and one good at each date. Let
endowments be given by [w1(t),w2(t)] = {(w,w) where w > 0 and let
preferences of the initial old be given by xe(l) + xq{i) +

2 Bt[ (x (t+1)]+u[x (t+1)]] with 0 < 8 < 1. The preferences of
generatlon I are given by x,(1) + 2 8%[u [xz(t+1)]+u(x1(t+1)]] and
for t 2z 2, the preferences of generation t are given by

E BJ[u[x {t+j)]+su{x (t+3+1))]. The function u(-} is assumed to
ﬂé bounded, continuously differentiable, strictly increasing and
strictly concave and further satisfies u'(w) = 1. It is obvious

that p, = 8“1 and (XT(t)’XE(t)) = (w,w) is a competitive equilib-
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rium with a finite value of the aggregate endowment. However, it
is pareto dominated by the alternative attalnable alloecation,
§2{1) = W - =g, §1(1} = W + g, (ﬁz(t),§1(t)) = {(w,w) for t 2 2
where 0 < e < W.

We now state a preliminary lemma.

Lemma 5
Fix an h and suppose that x e Dl(p). 1If y@ « RS is
such that y(t) (2)2 f0(t) for all t > 0 and y® # xB then

lim inf v(t+1,p,ul-y1) < O.
t + =

Proof: 1In the Appendizx.
We can now state the main result of this subsection as

follows.

Theorem 2
Let (p,Xx) be a competitive equilibrium. if

{} v(t+1,5,wh}} is bounded then X is pareto optimal.
h

Proof: 1In the Appendix.

IIT. Examples

In our examples, preferences will be taken to be given
by discounted sums of utilities as follows.
For agent h:stp

(3.1) Ug[x2(1)] + t§1(sh)tUh[x?(t),xh(t+1}], 0 <8 <1
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(3.2) (w?{t),wg(t)] = (w?,wg) for all hand t 2 1,
h _h
(3.3a} b(1) = p1[w2—xz(1)]
(3.3b) bh(t+1) = bh(t) + pt(w?-x?(t)) + pt+1[wg-xg(t+1)], t = 1.

We assume that the functions Ug(-) and Uh(-,-) are bounded,
strictly inereasing, concave and twice continuousliy differen-
tiable. Maximizing (3.1} subject to (3.3) and assuming an inte-

rior soclution for {xh] we have the first order conditions,

]
Q

(3.42)  up (x5(1)) - 2,

(3.Lb) (Bh)tUg’i(x?(t),xh{t+1)] A1) (p, )y = 0, £ 2 1

i

(3.4e) (Bh)tU?’i(x?(t),xh(t+1)] AE+1)(p), = 0, & 2 1
(3.8d)  AP(e) 2 aP(te1) with equality if bB(t) > 0.

In eguations (3.4), {lh(t)} are the multipliers associated with

the constraints {3.3).

Example 1 (Multiple Equilibria)

Suppose we have two types h = 1, 2 with B8, < By = 1/4

and only one good at each date. Let,
1 T-a 1-a
U'(x,y) = {(x' "%-1D)+v(y -1 }/(1-a)
with a = 2, v = 1/9.

U2(x,y) = x - x°/2 + y/26.
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Endowments are chosen as follows.
W, = T, wy = 1, W, = 0, w- = 100.

Let Ry = pt/pt+1 be the gross interest rate at t. We will look
for stationary equilibria with Re = R for all t. Overlooking the
initial old for the moment {their utility functions Ug{-} will be

chosen appropriately later} we can see that as long as R < U

IS B
= 62 < 81

as a standard OLG model. The savings functions of the two types

bequests must be zero and hence we can treat the model

are graphed in Figure 1 (at the end) and show that there exist two
such equilibria denoted Ry and R2. We will focus on the R1 equi-
librium. We have to make sure that in this equilibrium there are

no bequests being made by the initial old. This requires that,

h
BUO h
(3.5) Fo R1> shU1(x,y)lR1, n=1, 2.
where,
h 1 , h=1
(3.6) x2(1) = .
160, h = 2

We now argue that there 1is alse ancther stationary
equilibrium with positive bequests for type 2 and zero bequests
for type 1 in which R = 4 = 851 < 3;1. Again, setting aside the
initial old, we can see that since R < 821 there will be no be-
quests for type 1. Hence, they continue to behave as standard OLG
agents and their saving can be caleulated to be 11/14. As for

type 2, let b > 0 denote bhequests received when young. Then,

their saving and consumption when ycung are given by,
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(3.7a) s b~ 1+R/AHE =b - 11/13

(3.7b) X 1 - R/26 = 11/13.

n

—

It follows that there is a positive soclution for hequests with b =

11/{13x14). For the initial old, we need

aUé ,
(3.82) 3¢ |Rat > &U1 (Y oy
2
53U
0 2
(3.8b) W R=k = BZUT(X’y)Iﬁzu
where
x§(1) = 100 - 11/(13z14). .

There is no problem in satisfying conditions (3.5) and (3.8) for
type 1. We ecan simply pick aU;/ax to be arbitrarily large.
However, for type 2 agents aUg/ax has to be picked appropri-
ately. It can be seen that x°

1
is smaller at Ry. That is,

is larger at R, than at R =4 and

hence U?

2 2
Ui{x,y} R < U1{X’y)lR=4'

1

Therefore, we need to pick Ug(-) in such a way that,

2
BUO

X

2
BUO

S_......._.
R X

2
1 et = 8V (% Y0 gy

2
32l11(x,y)!R'l <
It is obvious that such a choice can be made. We can pick,

2 2
Ug(x) = 804 (3,70 gy -
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We thus have another stationary equilibrium with R = 4 and posi-
tive bequests being made every period for the type 2 agents. Note
that with the above choice, R, is also an equilibrium of the same

type as R,. Moreover R, is optimal whereas R, is not,*

Example 2 (Steady States and Stability)
Assume that there is only one type (=o that we will omit

the h index) and only one good at each date. Let,
{3.9) Ug(x,(1)]) = U(%,(0),x,(1))

where §1(O)'is regarded as an initial condition. Let the endow-

ments be glven by (3.2) and let,

01 + 2 = W1 <+ N2
U1 U1 = -1
U_ (w]fwz) = R ¢ U_' (01,02) = B
2 2
and 51 > w1 and 52 < Wye The above situation corresponds to

assuming that in a neighborhood of (61,62) where the marginal
rate of substitution U1/U2 exceeds one, U1/U2 decreases as ey is
reduced and ¢, increased by the same amount. This will happen

provided,

(3.10) —BU11 + (1+S)U12 - U0,, < 0 at (01,c2).

22

This example has two steady states. 1If E1(D) = W,, then

'I?
there is a steady state with zero beguests in every pericd so

t
then there is a steady state with

that, (x1(t),x (t}) = (w,,w,) and R, = R for all £ > 1. On the

other hand, if §1(0) = Gy

positive bequests, b = w, - ¢, =¢, - W

- -1
5 5 1 1 > 0, and Ry = 87" for all

€.




- 22 -

The second steady state can be shown to be unstable.
Let b(t) = Wy - K5{t) = xq(t) - Wy be the bequest at date t and
suppose to the contrary thabt the second steady state 1s stable.
Then for b(1) in a small neighborhood of B, the path {b(t}} con-

verges to b and is hence always positive. We therefore have,
Uz[x1(t—1),x {t)) = BU1[x1(t),x2(t+1))
or, equivalently

U E1+b(t-1)—5,52-b(t)+5) = sU1[61+b(t)-5,52—b(t+1)+5).

2(

Linearizing the above equation around (61,52) we have,

8U12(bt+f—b) - (U22+BU11){bt—b) + U, (b b) = 0.

1247617

In view of condition (3.10}, 1t is easy to verify that both roots
of the above equation are outside the unit circle which contra-
diets the assumed stability of the bequest equilibrium.

The first steady state with bequests bheing always zero

is, however, stable. This is because,
U2(w1,w2) > BU1(W1,W2}

and hence for §1(0) in a small neighborhood of w,, we still have,
Ug(x1(0),w2) > BUT(Wl’WE)'

Example 3 (different discount factors)
In models of infinitely lived agents with preferences
analogous to (3.1), asymptotically the interest rate is determined

by those agents with the lowest discount rate, l.e., the most
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patient type. Consumptions of all the other agents coaverge to
zerc (Lucas and Stokey [19881, p. 159). We will show that in the
present context, this can never happen. Instead, at some point
the nonnegativity constraint on bequests will become binding for
some type of agents so that the infinite lived agent set up be-
comes untenable. In example 1, we have a situation with different
discount factors but only one type of agent behaves effectively as
infinite lived in the bequest eguilibrium. We will show that this
situation 1is general in the sense that when discount factors
differ, not all types of agents can act as Infinitely 1lived
agents.

Suppose that preferences and endowments are as given in
(3.1) and (3.2). We assume that the utility functions Ug(-) and
Uh(-,-) are strictly concave and that the marginal utilities

h h
UO,i{ )1 U

.(+,*} and Uh .{+,-) are bounded and bounded away from
1,1

2,1
2 2%
zero over compact subsets of RY , R
++ ++

and Rff respectively. We
further assume that, Ug’i(x) > for all 1 only if x -+ 0, and
[U?’i(x,y),Ug’i(x,y)) » = for all i only if (x,y) ~ (0,0). For
simplicity, let there be only two types of agents with Bs < B, and
suppose, 1if possible, that there is an equilibrium with bh(t} > 0
for all t and h. It follows that a™(t) = aP(t+1) = AP for all t.

Let us define,

(3.11a) q{t) = p(t)/(sz)t

(3.11b)  b(t) = bh(t)/(sz)t.
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The equations (3.3) become,
(3.12a)  B%(1) = q(1)(w5-x3(1))
(3.120) B b (e+1) = B7(E) + q(&) (WK} (1))
h h
+ Beq(t+1)(w2-x2(t+1)], £ 2 1.
It follows that,

“h 5 h h b, .h

(3.13)  b(E) = (8,)7 § (B, 1a(d) (wivwn-x, () -%5(3))
2 =1 2 1772 71 2
h h
+ q(t)(wg-XE{t)], t 2 1.

By market clearing we then have,

iy h _h
(3.1%)  J b)) = qlt) ¥ (wo-xj(t)}, t 2 1.

2 72

h h
Similarly, conditions (3.4) can be rewritten in terms of g(t).
The argument now proceeds along standard lines to show that q(t)
must be bounded and bounded away from zero. Therefore,
(x,(6),x](8)) » 0.  Houever, from (3.12b) this implies that
b (t) » +» which contradicts (3.14).

The basic intuition behind this is quite straightfor-
ward., In the standard infinitely lived agents set up, the agent
with the high discount rate (type 1 here) is facing a lower inter-
est rate and hence would like to transfer consumption from the
future to the present by borrowing and would asymptotically drive
future consumption to zero. If one interprets such an agent as a
succession of linked generations then this strategy can only be

sustained if one 1s permitted to pass on debts to succeeding

generations i.e., if bhequests are allowed to be negative. if
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bequests have to be nonnegative, then this strategy is infeasible
and the best that can be done is to zet bequests to zero. Then
the model becomes like that in ezample 1 where one type of agents
ig linked and behaves as infinitely lived whereas the other type
igs not linked and behaves as a succession of Iindependent over-
lapping generations. Another way to see the above point is to
note that when bequests have to be nonnegative any strategy that
drives consumptions to zerc is suboptimal for the type 1 agent.
He/she would be better off tc set bequests equal to zero for all
large t and simply consume his/her endowment in each periocd of
life at each date thereafter.

This feature of our example is similar to that in Becker
[1980] in which the consumptions of the high discount rate indi-
viduals are not driven to zero asymptotiecally. He, however,
obtains this result by imposing a restriction that agents cannot
borrow against future labor income. The nonnegativity constraint
on bequests serves a similar purpose. While agents may borrow
freely against their own future labor income they cannot borrow

against the labor income of their descendants.

A Remark on Preferences

It may be noted that 1if the utility functions Uh(-,-)
are time separable across the two periods of life and negative
bequests are permitted, then example 3 can be mapped exactly into
a model of a fixed number of infinitely lived agents who maximize

discounted sums of utilities. Suppose that,

h _ _-1.h h
U {x1,x2) = 8, £ (x1) + g (xz),
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and
h _h
UD(XE) = (xz).
Let,
h __h h
W o= w1 + w2

xe) = L) + xa(E)

N and xP(t) as the total family endowment and

We may think of w
consumption, respectively, of a type h infinitely lived agent at
date t. We can now define a new period utility function uh(-) as

follows.
Wi{(x) = max [fh(x1)+gh{x2)]

subject to, ¥y + X5 < X.

Then, each agent has preferences described by,
(3.15) Z DGR,

As for budget constraints, we can rewrite (3.13) as,
h &5 h _h h _h
() = § et [w-x (D] + ot (wy-xs(t) ).
J=1
It would be natural to impose the condition
1im b(t) 2
Erw
In equilibrium, it must be the case that p(t) + 0 and hence

p(t)[wgwxg(t)] + 0. Therefore, we have the standard budget con-

straint,
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(3.16) g p{t)[wh-xh(t)] =z 0,

t=1
The market clearing conditions are obviously given by,
(3.17  § (WP=xe)) = o.

h

The model defined by equations (3.15)-(3.17) is standard.

IV. Conclusion

We have formulated a pure exzchange model of overlapping
generations of twe period lived agents with bequest motives and
many goods in each period. Bequests are restricted to be nonnega-
tive. The model resembles that of a f[ized number of infinitely
lived agents as in Bewley [1972] except that each agent faces a
sequence of budget constraints rather than a single Arrow-Debreu
budget constraint. We proved existence of a competitive equilib-
rium using the method of Wilson [1981].

In equilibrium, if a seguence of generations 1s linked
by positive bequests, then that sequence behaves effectively as a
single infinitely lived agent both in terms of preferences as well
as the budget constraint. In this case, the sequence of budget
constraints becomes equivalent to a single Arrow-Debreu budget
constraint. However, if bequestsz are always zero for a seguence
of generations, then that sequence of generations behaves as
independent coverlapping generations. Intermediate situations are
also possible in which bequests may not be zero at every date but
there 1s a subseguence of dates at which bequests are zero. The

sequence of generations break up into a sequence of agents whose

effective plamning period runs from one date at which bequests are
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zero to the next. The equilibrium behavior of our model may,
therefore, consist of some infinitely lived agents and some se-
guences of finite lived overlapping generations. This is in
contrast to Wilson [1981] or Muller and Woodford [1983] in which
the set of infinitely lived agents and the set of finitely lived
agents are taken as data.

Because of the above feature, we cannot appeal directly
to Bewley {19721, Balasko and Shell [1980] or Wilson [1981] to
claim existence of equilibrium. However, slight modifications in
Wilson's [1981] method have been used to establish existence.

We have glven three examples of iInteresting behaviors
that can emerge from models of this type. . The first exhibits
multiple equilibria. Some equilibria look like standard OLG
equilibria whereas in others some sequences of agents behave as
infinitely lived. In the second example, there are (at least) two
steady states; one which looks like a standard OLG equilibrium
while the other looks like that of an infinitely lived agent. In

addition, the second steady state is unstable, whereas the first

iz stable. The third example is designed to illustrate what
happens if agents have preferences given by discounted sums of
utilities with different discount rates. The standard answer is
that asymptotically, the Interest rate converges to the lowest
digcount rate and agents with that discount rate end up owning all
of the wealth in the economy whereas the wealth and consumptions

of all the other agents are driven to zero. This cannot happen in

the present model due to the nonnegativity restriction on be-
quests. Instead, bequests must bhecome zero for some sequences of

agents so that they no longer behave as if infinitely lived.
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We believe that the above results are Iinteresting and

enhance our understanding of models of infinitely lived agents.
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Footnotes

'We believe that the restriction to two period lived
generations is inessential even though it is helpful for exposi-
tional elarity. In footnote 3, page 11, we outline a possible way
of handling any demographic structure.

“This way of specifying preferences together with the
consistency condition is along the lines of Gale [1983, p. 61].

%ef. footnote 1. Assume that tkere is a finite set of
agents # = {1,2,...,H}. The commodity space is R® and each
agent's consumption set is R:. Each agent has a strict preference
relation (>)h and we define Ph(x) and (Ph)‘1(x) as usual and
assume that (>)! satisfies assumption 1. For each h e H, there is
h

a sequence {w']}” . where each wh € R and Z w = w! ¢ R°. For p
K k=1 o1 +

€ R:, the budget sets and the demand sets are defined as follows.

Bh(p) x eR |x = z xk,x eR z p{w —xE)aO,k21}

0Bp) = {x8(p) |BM(p)nP (2™ = s}.

An alloecation x = {xh,heﬁ} is attainable if } GlexBy = 0. &
n
competitive equilibrium is a (p,x)}) such that x is attainable

and & ¢ Dh(a) for all h ¢ H.
The preference relations (b may be viewed as arising
as follows. For each h, there is a countable infinity of agents

indexed hy k = 1 each with consumption sets_,Rm and preference

relations {>)i which satisfy assumption 1. Let {x } and {yk} be

h _h = =
such that Ker Vo € R+ for all k = 1, 2 x = € R+ and kETyk =
yh € R:. Analogous to assumption 2, we assume that for any fixed
k > 1, if I %1l (>)h Z yh then z X (>)h s Z yh. The
J k+1, J e k "k _ J
J=k+1 J=k+1 Jj=k J=k+1
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preference relation (>)! is then defined as being identical to
(>)?. Assumption 3 can be rewritten as ) Wt e Rf+. Assumption &
(irreducibility) would have to be suitabf} modified.

*That R; is optimal follows at once from Theorem 2. The
nonoptimality of R, can be verified easily by constructing a

pareto superior allocation in the usual fashion by transferring

goods from the young to the old.




Proof of Proposition 1

By construetion, zP(t) e BZ(p,bh(t)]. Suppose, if
possible, that for some (h,t) there is a y(t) « Bt[p,bh(t)] n
Pg[xh(t)] . Consider the alternative consumption plan zh(O)
= (2B, a0, Lxhe) ¥,y ), L) Clearly, 2R(0) e
Bg(p,O) and by repeated application of assumption 2, zh(O) €
Pg(xh(o)) which contradicts the fact that x(0) Dg(p,ﬂ). There-
fore, BZ(p,bh(t)) 6 Pt(xh(t)) = ¢  and hence  xl(t) €

D?(p,bh{t)) for all (h,t).

Proof of Proposition 2

Suppose, if pessible that lim inf v(t+1,p,wh—xh) > 0 for

tero

some h, say for h = 1. Then, there is an e > 0 and a T such that,
v(t+1,p,wix') 2 € for all t 2 T.

Consider the following alternative allocation

Tee T¢m 8 n:

Yo(T) = x(T) + J wi(T)
h=2
~ ~ H - H ~
y;(T+T) = x;(T+1) + ) wg(T+1) + 3 w?(T+1)
h=2 h=1

y}(t) = x}(t), t21, £=+T

1 1 -
y2(t) = xz(t), tz21, t =T+ 1.

It is possible to choose x» € (0,1] such that,

u(%) = Apﬁ(y}(%)-x}(%)) + ADa [y;(%+1)—x;(%+1)] < e.
T T+1
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T e Pg(xT) and hence by assumption

1 {(ii) we have that

2! = Ay1 + (1—1)31 € P;(x1).

It follows that,

v(t+1,p,w1-z1) = v(t+1,p,w1—x1) 20 for £t <T

whereas for t 2 T we have,

v(t+1,p,w1—z1) = v(t+1,p,w1-x1) - u(T)

Therefore, z! e 31(p) fn P;{x1) which is a contradiction.

Proof of Proposltion 3

(1)

Since Bh(p) < ﬁh(p), it follows that xo e Bh(p). Now, sup-
pose, if possible that there is a yo « ﬁh{p) n Pg(xh} 0.
From proposition 2 and assumption 1 (i) we can find a k < 1

such that zh

ky? e Pg(xh) and 1im inf v(t+1,p,ulzD) >
~ t,+m
0. Therefore, there iz a T such that v(t+1,p,wh-zh) > ¢ for

all t > T. It follows that for x positive and sufficiently

small, Azl (1—k)xh € Bh(p). From assumption 1 (ii), rzh

ES
h h, h s s
(1-2)x" € PO{x ) which is a contradiction. Therefore,

Bh(p) n Pg(xh) = ¢ and hence x ¢ ﬁh(p).

(ii) Obvious, since BR{p) < Eh(p).
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Proaf of lemma 1

The proof is an application of McKenzie [1981, Theorem
31 with minor changes. In what follows, we point ocut the differ-
ences and indieate why the proof goes through.

First, the consumption sets of each agent may be re-
stricted as follows: x¥,1(t)’ x¥,2(t) < %(w?(t)+wg(t)], t =1, 2,
.., T and xg,E(T+1) < é wg(T+1). It should be noted that the
aggregate endowment of every desired good is strictly positive.
The only possible difficulty in this regard arises at date
(T+1). However, as can be seen from the definition of the prefer-
ence relation (>)¥, goods for which the aggregate endowment at
{T+1) is zero do not matter in terms of preferences.

We may normalize prices by setting, pTeT = 1 uwhere ey is
a (T+1)2 dimensional vector of ones. The budget ecorrespondence

Bg(p) is upper hemicontinuocus, compact valued and convex valued.

In addition, it is continuocus at pT provided,

T

T h .
£+1

T h h
(A.1) P wz(i) > ¢ and Py w1(t) + p 2(t+1) >0

for all £t =1, 2, ..., T.

We may now use the mapping in McKenzie [1981, lemmas 2-6 and
Theorem 3] from the product of the price simplex and the consump-
tion sets into itself to find a fixed point. Such a fixed point
will bhe an equilibrium provided {(A.1) is satisfied for all h.
Assumption 4 (irreducibility) guarantees this and hence we may

claim the existence of a competitive equilibrium in which (A.1)

holds for all h.
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Proof of lemma 2

This follows from Tychonoff's theorem. See Wilson

(1981, lemma 2, p. 102).

Proof of lemma 3

It is encugh to prove that I%(t)/l%(t} is bounded away
from zero. Suppose to the contrary that for some t 2 1 and some
pair of agents a, B € H(t), lim inf Ig(t}/lg(t) = 0.

T » =
Let,

Hy(t) = {veH(t)] lim inf 11(t) [15(t)=0}

and H1(t) = H(t) - H2(t). We can select a subseguence of econo-
mies ETk such that I% (t)/I? (t) » 0 for all v € Hz(t) and
k k

1Y (2)/1B (¢) 2 ¢ > 0 for all ¥ € H,(t). By construction, H,(t)
Tk Tk ¥ 1 1

and Hz(t) are nonempty, disjoint subsets of H(t) whose union is
H(t). From assumption 4, we know that there is a § = (h,s) <
Hq(t) such that, if we put,

i?(S) = E?(s) + ) w¥(s)
yeH, (t)

=h =h Y
Yols+1) = x (s+1) + T wi{s+1)
2 2 veh, (t)

7o) = B, 3o s

7330 =BG, 3 s a1
then,

7 e Pg(ih).
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From assumption 1 (i), we may choose A < 1 such that Ffor suffi-
ciently large T and & = (h,s) ¢ H1(t), if

h h
ye (s) = xe (8) +  § w¥(s)
T, 1 T, Y€H2(t)

{s+1) = Kh (3+1) + Z wi{s+1)

h
y
T,2 T,2 veHa(t)

h h . :
YT,1(j) = xT,i(J)’ J # 38

h h
yT,E(j) = XT,2(J}’ j # 8 +
then, 2 yh (>)h 12, We will show that A yh € Bh(pT). For this,
T T T T T

it is enough to show that,
(1.2)  py(Wi(D-ayg (D)) + BT, (Wh(I+-yh L3+ 1)
> pg(w?(j)-x$,1(j)] + p§+1(wg(j+1)—x¥’2(j+1))

for ¢ = (h,s) € Hi(t) and all 3 2

Clearly (A.2) holds for all j # 5. For j = 8, we have,
Tr b h T h h
ps[w1(s)—kyT’1(s)] + ps+1[w2(s+1)-lyT’2(s+1)]

A T(

I Y
= 12083 1- p (s)+ §  wi(s))
T 80 )5 T e
D 1[ b (s+1)+ T owi(s+1))
s* veH, (t)
= Ia(t) | 1- = plgh (s)+ps . 2(s+1)+ IR

Iﬁ(t) s T 1

T eHz{t)
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v

13(t) [1-{pzx‘;’1(s)+p§+1g§1,2(3+1 )}/Ig(rﬂ

pi[w?(s)—x? 1(S)] + p§+1[wg(s+1)-x¥’2(s+1)]

because I%(t)/lé(t) + 0 for all y € Hz(t) and » ¢ 1. Therefore,
)y y? € Bg{pT) n P?(x%) which contradicts the fact that (pT,xT) is

a competitive equilibrium.

Proof of lemma I

By the price normalization, we have that p? w;(1) = 1

for all T. It, then, follows from lemma 3 that for each (h,t),
T h T h
(4.3) Py w1(t) ¥ Py w2(t+!)

is bounded and bounded away from zero. Therefore, for each t 2
H
1, ¥ pz[w?(t)+wg(t)] is bounded and hence by Tychonoff's theorem,
h=1 T
there is a subsequence {p k} + p. {(A.3) then implies that p > 0
- h - h - h
and that, 0 ¢ P w2(1) ¢ = and 0 < Py w1{t) *+ Py w2(t+1) ¢ = for

all hand t z 1.

Proof of Theorem 1

Since (pT,x ) + {p,%) we have from (2.16) that for each
fixed <(h,t), v(t+1,5,wh—§h) = 0. Therefore, e Bh(ﬁ) where
Bh{p) ig given by (2.8). By lemma 2, X is attainable. Hence, it
only remains to show that Bh(ﬁ) n Pg(ih) = ¢ for all h. Suppose
to the contrary that for some h, §h € Bh(ﬁ) n Pg(ﬁh) * 4. From

assumption 1 (i) and lemma 4 we can choose some x < | such that
(a.3) 2% e 3D

(4.5) v(te,5,w-25%) > 0 for all t 2.1.
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From (A.4) and assumption 1 (i) we can find a T' suffi-

ciently large such that,

?h [Ay2(1),ky?(1),lyg(2),...,lyg(T'+1),w?(T'+1),wh(T'+2),...]

5 Pg(ih).
Lpplying assumption 1 (i)} again, we can find a T suffi-

clently large such that 7o e Pg(ig) where % is given by (2.15).

T
Now let,

v = [aypn oDy, . oayieen,

W (T ), (T 42), L (T ]

h _h

T *r°
<7 s h h, T

equilibrium we must have that Yy £ BT{p }. Therefore,

We then have that y? (> Since (pT,xT) is a competitive

(A.5) v(t+1,pT,w¥—y?) <0

for some t =0, 1, 2, ..., T'. Now, letting T » = and noting that
pT +~ p we see that (A.6) contradicts (4.5). Therefore, Bh(ﬁ) n

Pg(ih) = ¢ for all h and the theorem is proved.

Proof of Lemma §

Ir yh € Bh(p) then for 0 < A < 1, AL kyh + (T-A}xh €
Bh(p) n Pg(xh) which is a contradiction. Therefore, yh £ Bh(p)

and there is a t; such that v(t1+1,p,wh—yh) ¢ 0. Consider the

allocation z = [xh(1),...,xh(t +1),yh(t +1),...). If 28 o B
t1 2 2 71 1 t1
then yh = [yg(T),...,yg(t1+1),x?(t1+1),...]. For t > &y,

v(t+1,p,wh-yh) = v(t1+1,p,wh—yh) + v(tsl,p,wl-xt) - v(t1+1,p,wh-

). By proposition 2, lim inf v(t+1,p,wh—xh) = O which implies
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that lim inf v(t+1,p,wl-y?) < 0. If z: + xP then z? ¢ B%(p) and
1 1

therefore, there is a t, > t; such that v(t2+1,p,wh-yh) <

v(t1+1,p,wh—yh) < 0. We may now define zig =

2
[xg{ﬂ,...,xg(t2+1),y?(t2+1),...] and proceed as before to con-

clude that ultimately lim inf v(t+1,p,w-y?) < 0.

Proof of Theorem 2

Suppose to the contrary that there is an attainable
allocation y such that yh(t) (2)1; ih(t) for all (h,t) and yh(t)
€ PZ[:’:h(t)] for some (h,t). From proposition 2 and lemma 5 we
have that lim inf v(t+1,B,w’-y?) < 0 for all h with striet in-
equality hotid;n; for some h. By assumption, v(t+1,5,wh), and
v(t+1,§,yh) are monotone inecreasing, bounded sequences and are
hence convergent. Therefore,

: = by . €= cho o h = (o h_h

Lim v(t+1,p,w ) = lim § p.(wi(5)+wal(3)) = B.(w, +w,)

fom bow j21 451 2 172
and similarly for yh. Therefore, 5.(w?+wg) < 5.(y?+yg) for all h
with strict inequality for some h. Summing over h and noting that
the left hand side is finite by assumption, we obtain a contradic-

tion. This shows that there cannot be any attainable allocation

that pareto dominates ¥ and hence that X is pareto optimal.
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