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1. Introduection

Application of the stock adjustment model to the study of inventory
behavior frequently produces implausibly low estimates of the speed of adjust-
ment of actual to target inventories, For example, the parameter estimates
reported by Feldstein and Auerbach [1976] imply that firms take almost 19
years to close 95 percent of the gap between actual and desired inventories.
Application of the stock adjustment model to other problems such as the demand
for money alsc yvields implausibly low speeds of adjustment.

4 variety of interesting explanations for these ancomalous results
exist. Blinder [1986], Eichenbaum [1984], Maccini and Rossana [1984] explore
different explanations for the slow estimated speed of adjustment of invento-
ries. Goodfriend [1985] discusses this problem with respect to the demand for
money. In this paper we explore the possibility that estimated slow speeds of
adjustment reflect temporal aggregation bias. Mundlak [1961] and Zellner
[1968] showed theoretically that, if agents make decisions at intervals of
time that are finer than the data sampling interval, then the econometrician
could be led to underestimate speeds of adjustment. This iIs consistent with
findings reported in Bryan [1967] who applied the stock adjustment model to
bank demand for exzcess reserves. Bryan found that when the model was applied
to weekly data, the estimated time to close 95 percent of the gap between
desired and actual excess reserves was 5.2 weeks. When the model was applied
to monthly aggregated data, the 95 percent closure time was estimated to be
28.7 months.

Qur strategy for investigating the role played by time aggregation
on the empirical estimate of speed of adjustment is as follows. First, we
construct a continuous time equilibrium rational expectations model of inven-

tories and sales. The model rationalizes a continuocus time inventory stock




adjustment equation. Uéing techniques developed by Hansen and Sargent [1980a,
1981] we estimate the model using monthly data on inventories and sales in the
nondurable manufacturing sector. The parameter estimates from the continuous
time model imply that firms close 95 percent of the gap beiween actual and
"desired" inventories in 17 days. We then estimate an analogous discrete time
model using monthly, quarterly and annual data. The parameter estimates
obtained using monthly data imply that it takes firms L6 days to close 95
percent of the gap between actual and "desired" inventories. The analogous
figure obtained with annual data imply that it takes firms 1,980 days to close
95 percent of the gap between actual and "desired" inventories. These results
indicate that estimates of speed of adjustment are very sensitive to the
effects of time aggregation. |

Unfortunately, we cannot claim that temporal aggregation effects
account for the statistical shortcomings of existing stock adjustment mod-
els. Both the discrete and continucus time versions of our equilibrium stock
ad justment model impose strong over identifying restrictions on the data.
Using a variety of fests and diagnostic devices, we find substantial evidence
against these restrictions. In addition, we find no evidence that the overall
fit for the continuous timg model is superior to that of the discrete time
model.

In section 2 we formulate a continuous time equilibrium model of
employment, inventories of finished goods and output. In section 3 we discuss
an estimation strategy which explicitly takes the temporal aggregation problem

into acecount. Section 4 presents the empirical results.

2. A Continuous Time Model of Inventories, Output and Sales

In this section we discuss a modified continuous time version of the

model in Eichenbaum [1984]. Our model is designed to nest, as a special case,



the model considered by Blinder [1981, 19861 and Blinder and Holtz-Eakin
[1G8U4]. We take model to be representative of an interesting class of inven-
tory models. An important virtue of our model is that it provides an explicit
equilibrium rationale for a continuous time version of the stock adjustment
equation for inventories. An additional advantage of proceeding in terms of
an equilibrium model is that we are able to make clear both the theoretical
underpinnings and the weaknesses of an important class of inventory models
which has appeared in the literature,

Consider a competitive representative household that ranks alterna-

tive streams of consumption and leisure using the utility funetion:'

(1) E, e " {u(ter)s(ter)-.5A(s( ) )2-N(t+7) Idr.

O+— 8

In (1),

«r
1]

the time unit, measured in months,

E, = the linear least sguares projection operator, conditional on the time ¢©

information set,

a{t) = time t consumption of the single nondurable consumption good,
N{t) = total work effect at time t,
u{t) = a stochastic disturbance to the marginal utility of consumption at time

t, and,

A,r = positive constants.

We now specify the technology for the production of new consumption
goods and storing Inventories of finished goods. Let Q{t) denote the total
output of new consumption goods at time t. The production function.for QL)

is given by:

(2) act) = [(era)(e) ]2,



where a is a positive scalar. In order to accommodate two different types of
costs associated with inventories that have been considered in the literature
we suppose that total inventory costs, measured in-units of labor, are given

by:
(3) c () = (b/2)[s*(t)-c1(t)}2 + v(B)I(E) + (e/2)1(t)%,

where b, ¢, and e are positive scalars, v(t) is a stochastic shock to marginal
inventory holding costs and s*(t) denotes time t sales of the good. The last
two terms in (3) correspond to the inventory holding cost function adopted by
Blinder [1981, 1986] and Blinder and Holtz-Eakin [1984], among others. This
component of costs reflects the physical costs of storing inventories of
finished goods. The first term in (3) reflects the idea that there are costs,
denominated in units of labor, assccilated with allowing inventories to deviate
from some fixed proportion of sales. Blanchard ([1983], p. 378) provides an
extensive motivation of this component of inventory costs. Similar cost
functions appear in Eichenbaum [1984], McCallum [1984] and Eckstein and
Eichenbaum [1985].

The link between current production, inventorles of finished goods

and sales is given by,
{4 Q(t) = s*(t) + DI(t),

where D is the derivative operator, Dx(t) = dx(t)/dt.

It is weil known that, in the absence of externalities or similar
types of distortions, rationai expectations competitive equilibria are Pareto
optimal. Since our representative consumer economy has a unique Pareto opti-
mal allocatlon, we could solve directly for the competitive equilibrium by

considering the relevant social planning problem ({see Lucas and Prescott
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[1971], Hansen and Sargent [1980b] and Eichenbaum,. Hansen and Richard
[1985]). On the other hand there are a variety of market structures which
will support the Pareto optimal allocation. In the interest of preserving
comparability with other papers in the inventory literature, we find it con-
venient to work with a particularly simple market structure that supports this
allocation. As in Sargent [1979] we require only competitive spot markets for
labor and the consumption good to support the Pareto optimal allocation.2
Suppose that the representative consumer chooses contingency plans
for s(t+t), v 2 0, to maximize (1) subject to the sequence of budget con-

straints,
(5) P(t+T)g{t+t) = N{(t+t) + mw(t+1).

In (5),

P(t) = the price of the consumption good, denominated in labor units, and

m({t) =lump sum dividend earnings of the household, denominated in labor units.

Solving the representative consumer's problem we obtain the follow-

ing inverse demand function,
(6) P(t) = -As(t) + u(t).

Given the very simple structure of relation (6) it is important to contrast
our specification of the demand function with different specifications that
have been adopted in the literature. In constructing empirical stock adjust-
ment models, most analysts abstract from medelling demand. Instead, the
analysis Is conducted assuming a particular time series representation for an
exogenous sales process (see for example Feldstein and Auerbach [1976] or
Blanchard [1983]). Our model is consistent with this practice when A is very

large. To see this, rewrite (6) as,




(6) s(t) = =(1/8)P(t) + n(t},

where n{t} = -(1/A)u{t). The assumptions we place on u(t} below guarantee
that n(t) has a time series representabtion of the form y(D)n{t) = vw(t), where
v(t} is eontinuous time white noise, uncorrelated with past values of s{t) ad
I(t). Also, y(t) is a finite ordered polynomial satisfying the root condition
required for covariance stationarity. If A is very large ("infinite") then
sales have the reduced form time series representation v{D)s{t) = v(t). This
is the continucus time analogue of the assumption, made in many stoeck adjust-
ment models, that sales are exogenous stochastic process in the sense of not
being Granger caused by the actions of the group of agents who make inventory
decisions. (Cur empiriecal results indicate that the assumption of one way
Granger causality from sales to inventory stocks is reasonably consistent with
the data.)

Other authors like Blinder [1986] and Eichenbaum [1984] begin their
analysis by postulating the industry demand curve (6). Our analysis provides
an eguilibrium interpretation of this demand specification. In so doing we
are forced to confront the strong assumptions implicit in (6). For example,
we implement our model on nondurable manufacturing shipment and inventory
data. This choice of data was dictated by the desire for our results to be
comparable with those appearing in the relevant literature. Notice however
that manufacturer' shipments do not enter directly as arguments inte consum-
ers' utllity funetions. Rather they represent sales from manufacturers to
wholesalers and retallers who in turn sell them to households. Consequently,
objective function (1) consolidates the wholesale, retail and household sec-
tors. We know of no empirical justification for this assumption. By focusing
on nondurable manufacturers, we place more faith than we care to on the sta-

bllity of their relation to wholesalers and retallers. For example, shifts




through time in the pattern of inventory holdings between manufacturers and
retailers and wholesalers would have effects on our empirical results that are
hard to predict. At the same time they do not represent phenomena that we
wish to model in this paper. In future research we plan to avoid this type of
problem by consolidating data from the wholesale, retail and manufacturing
sectors.

We assume that the representative firm seeks to maximize its ex-
pected real present value. The firm distributes all profits in the form of

lump sum dividends to consumers. The firm's time t profits are equal to
(7 w(t) = P(t)s*(t) - N(t) - C (t).

Substituting (2}, (3), and (4) into (7) we obtain,

(8) () = P(t)s*(t) - (a/2)[s*(t)+DI(t)]® - (b/2)[s*(t)-ci(t)]?

- w(B)I(t) - (es2)I(t)°.

The firm chooses contingency plans for s*(t+t) and DI(t+t), t 2 0, to maxi-

mize,

(9) E, e T n(t+r)dr

o8

given I(t), the laws of motion of v{(t) and u(t), (1) and beliefg about the law
of motion of industry wide sales, s*(t).3 In a rational expectatlons equilib-
rium these beliefs are self-fulfilling. Sargent ([1979], p. 375) describes a
simple procedure for finding rational expectabions equilibria in linear qua-
dratic, discrete time models. The discussion in Hansen and Sargent [1980a]
shows how to modify Sargent's solution procedure to accommodate our continuous

time setup. Briefly, the procedure is as follows. Write,
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(10) F{I{t),DI(t),s*(t),v(t),P{t),t] = e Tti(t),

so that (9) can be written as,

(11) E, [ FlI(t+),DI(t+1),s¥(t+1),v{t+T),P(L+t),T]dr,
by

by cholice of DI(t+t), s*(t+t), 1 2 0, subject to I(t) and the laws of motion
of v(t) and P{t). Notice that the principle of certainty equivalence applies
to this problem. Accordingly, we first solve a version of (11) in which
future random variahles are equated to their time t condificnal expectalbion.
Then we use a continuous time version of the Welner-Kolmogorov forecasting
formula to express the time t conditional expectation of time £ + t varliables
in terms of elements of agents' time t information set.

The variational methods discussed by Luenberger [1969] imply that

firm's EBuler equations for s{t)} and I(t) are:

{(12a) aF/as*(t) = 0
and
(12b) 3F/3I(t) = D{aF/aDI(t)}.

These imply respectively:
(13a) P(t) - (a+b)s#(t) - aDI{t) + becl(t) = O,
and,

(13b) aD2I(t) - raDI(t) - (c2bse)I(t) + asDS*(t) + (cb-ra)s*(t) = v(t).




In a rational expectations competitive equilibrium, P(t) must satisfy (6},
with s(t) = s*(t). Substituting (6) into (132} and replacing s*(t) by s(t) we

obtain,
(1) s{t) = -[a/(asb+a) |DI(L) + [be/(asb+a) [1(t) + [1/(a+ben) Jule).

It is convenient to collapse (13b) and (14) into one differential equation in

I(t). Substituting s(t) and Ds(t) from (14) into {13b) we obtain,

(152)  (D-A)[D~(r-a)]Ict) = $2+RrA) ooy [(be-ra)/asD]u(t)

a(b+h) (b+4)
where,
(15b) A = .5r + (ke.25r2)1/2
and,
(15¢) k = [(a+b+a)/a(b+d) ] {(be[c(atn)+ra]/(a+h+n) )re}.

Since k > 0, it follows from (15b) that A > O is real. Moreover, it is easy
to verify that r - X = .5r-[k+.25p271/2 * Solving the stable root (r-i)
backward and the unstable roct » forward in (15a)} we obtain,

(16) DI(t) = (r-a)I(t) 2B+ B [ =ATi i, var

a(b+A)

o8

1
b + A4

-kt[

+ e " [(eb-ra)/a+D|ult+r)dx

O 8

a+ b+ A
a(b+A)

(r=a)I(t) - g e-lrv(t+r)dr -5 l = u(t)

+ E—:—;—[bc —(r-l)]g e-lru{t+f)dT,




where the second equality is cobtalned using integration by parts. 3Substitut-

ing (16) ad (14), we obtain,

_be - a(r-x 1 T At 1
(17 s(t) = T:-—b—+_ﬂl I(t) + —— g e "v(t+t)dr + Y u(t)

- (b+A)2a+b+A)[(be/a)_(r-l)]g e *Tu(t+r)dr.

Equations (16) and (17) are the equilibrium laws of motion for
inventory investment and consumption in the perfect foresight version of our
model. Before allowing for uncertainty we discuss some qualitative features
of this equilibrium.

First, suppose that the parameter b is equal to zero and there are
no technology shocks. This is the model considered by Blinder [1981, 1986]
and Blinder and Holtz-Eakin [1984]. The role of inventories in this version
of the model is to smooth production in the sense that inventory Investment is
negatively related to current demand shocks and positively related to expected
future demand shocks (see (16) and recall that r-a<0). As Blinder [1986]
points out, production smoothing, as defined here, does not necessarily imply
that the variance of sales will exceed that of production. For example, if
the serial correlation structure of u(t) were such that a jump In u(t) typi-
cally implies a large increase in u(t) in the future, then the current jump in
u{t) could lead to an increase in inventory investment, as well as sales. We
rule out these types of u{t) processes below. Consequently, production
smoothing in our model implies that the variance of production is lower than
the variance of sales when b = v(t)} = 0.

Second, suppose that there are no preference shocks. Then, the role

of inventories is to smooth sales. To see this, notice that inventory invest-
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ment depends negatively on current and future shocks to the inventory holding
cost funection. The firm holds less inventories when the marginal cost of
holding inventories inereases. Suppose that Inventory holding costs are
viewed as general shocks to production costs. Firms will use inventories to
smeoth production costs{ as opposed to production levels, over time in the
face of stable demand for their product. For the kinds of production cost
shocks that we consider in this paper, this implies that the variance of sales
will be smaller than the variance of production.

A slightly different way of seeing these points is to remember that
the competitive equiiibrium solves the problem of a fictitious social
planner/representative consumer. The representative consumer has a utility
function which is locally concave in consumption so that, other things equal,
he prefers a smooth consumption path. If preference shocks predominate we
would expect sales/consumption to be volatile relative to production. On the
other hand if technology shocks predominate, we would expect sales/consumption
to be smooth relative to production. Blinder [1981, 1986] and West [1986]
document the fact that, at least for pest World War II data, the variance of
production exceeds the variance of sales/consumption. This suggests that the
primary role of Inventories is to smooth sales rather than production levels.

We now consider the equilibrium of the system in the uncertainty
case, In corder to derive explicit expressions for the equilibrium laws of
motion of the system we parameterize the stochastic laws of motion of the
shocks to preferences and technology. To this end we assume that u{t) and

v(t) have the joint AR{1) structure,
(18a) u(t) = €,(6)/(8+D) = [ & F%e (t-1)dr,
0

and
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{18b) v{t) = ez(t)/(G+D) ) I e—afee(t-r)dr,
0

where o and B are positive scalars. The vector €(t) = [Ei(t)e2(t)]' is the
continuous time linear least squares innovation in [u{t)v(t}]' Ee(t)e(t-<)*
= 6(t)¥, where ¥ is a positive definite 2 x 2 symmetric matrix and &(t) is the
Dirac delta generalized function.

Given the above specification for the shocks it is obvious that, for

Tz 0,

(19a) Etu(t+r} = f 6'5561(t+r+s)ds = ¢ BT ) e'38e1(t—s)ds = e‘sru(t).
0] 0

Similarly,

(19b) E v(t+r) = e *Ty(t).

Simple substitution from (19} yields,

Et f efktu(t+t)dT = u(t)/(B+r)
0
and
E, [ e w(ter)dr = v(t)/(an).
0

Substituting these expressions inte (16) and (17) we obtain the equilibrium

laws of motion for s(t) and DI(t),

_ a+b+ A (ch-ra) - aBg
{20a) DI(t) = {(r-A)I(t) - 200+R) (arn) vit) + 2 (be) (BN ul(t)
_be - a{r-3) v{t) a [ﬁbc—ra!—sa]
(200) s(t) = a+hb + A I(t) + {b+a) (a+r) ¥ {b+a)(a+b+4) a{8+x)

+ [ ! ]u(t).

a+b+4
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It is convenient to write the eguilibrium laws of motion for I{t) an
s(t) in the form of a continuous time moving average of 51(t) and EE(t)'

Substituting (18)int6 (20) and rearranging we obtain, in coperator notation,

I{t)

(21) = (D) B(D)e(t)
s(t)
where
(22) 8(D) = (a+D){(8+D)}{D~(r-1)],
(23) 8(D) = &y + &0 + E0%,
q1“ q23
- a(q1bc-(r-x)] q bes
0~ a+b+4 a+b+f
a, a
s . -aq1(a-_§9)+u-(r-x) -aqz(s-bc/a)
1 a+b+4 a+bh+4
0 0
1—aq1 ~ad,
C2 = a+b+A a+hb+4
(ecb-ra)-ag
(24) 94 = a(nep)(b+h)
and

_ '"{a+b+l
92 = alb+b) (rto)"




.

We find it useful to write (21)' as,

(L) 1
(21) = 8{D) 'C(D)e{t)

s(t)
where e(t) = Bue(t), C(D) = C(D)CO'1, and Ee(tle(t)' = 8(x)V = s(£)ETE, .
With this definition of C(D) and e{(t), eguations (21)-(24) summarize all of
the restrictions that our model imposes on the continuous time Would MAR of
I{t) ans s(t).

We conclude this section by showing that our model is consistent
with a stock adjustment equation for inventories. Let I{t)}¥* denote the aggre-
gate level of inventories such that if I(t) = I(t)*, then actual inventory
investment, DI(t), iIs equal to zerc. I(t}* is taken to be the level of "de-

sired" or "target" inventories. Relation (20a) implies that,

_ a+h + A (bc-r‘a) - ag
(25) HEM = + oatormy (ann) ") = Zroa) (bem) (aeny 208

Substituting (25) into {(20a) we obtain a stock adjustment equation for inven-

tory investment,
(26) DI(t) = (A-r)[I(t)*-I(L)].

We require a measure of the "speed of adjustment" which can be
compared with similar measures reported in the literature. In order to make
this concept precise we imagine, counterfactually, that movements in I(t)}* can
be ignored over an interval < e (t,t+1}, so that I(t)¥ = I{t)* for t €

(t,t+1). Then the solution to (26} is

(27) I(t+t) - I(E)* = e'(*'P)T[I(t)—I(t)*]-
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Relation {(27) gives rise to an interesting summary statistic re-
garding the speed of adjustment of actual to target inventories. In particu-
lar, the number of days required to close 95 percent of the gap between actual

and target inventories is,

(28) T = =30 [log (1-.95)]/(r-r),

where 30 is approximately the number of days in a month.

Given the estimates of the structural parameters It is straightfor-
ward to calculate this statistie. In the next section we discuss a strategy
for estimating the parameters of our model from discrete data. In addition we
formulate a discrete time version of the model which 1s useful for estimating
speeds of adjustment under the assumption that agents' decision intervals

coincide with the data sampling interval,

3. Estimation Issues

In this section we discuss a strategy for estimating the continucus
time model of section 2 from discrete observations on inventeories and sales.
Since our estimator corresponds to the one discussed in Hansen and Sargent
[1980a] we refer the reader to that paper for technical details. Christiano
and Eichenbaum [1985] provide additional details for the model considered
here. In this section we also display a discrete time version of our basic
model and describe a method for estimating its parameters. By estimating both
models we are able to derive an empirical measure of the effects of temporal
aggregation on speed of adjustment estimates.

We now describe the procedure used to estimate the parameters of the
continuous time model described in section 2. This procedure takes into
account the fact that the inventory data are point-in-time, and measured at
the beginning of the sampling interval, while sales are averages over the

month.
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Qur estimation strategy involves maximizing an approximation of the
Gaussian likelihood function of the data with respect to the unknown parame-
ters, r, which we list explicitly in section 4, The approximation we use is
the frequency domain approximation studied extensively in Hannan {1970].
Hansen and Sargent [1980a] show how to use this approximation to estimate
continuous time linear rational exzpectations models from discrete data re-
cords.

One way to describe our estimation strategy exploits the observation
that estimation of a continuous time model actually is a speclal case of
estimating a constrained discrete time model. Recall from the discussion of
section 2 that g implies a continuous time ARMA model, characterized by the
polynomials @(D) and C(D) and a symmeric matrix, V (see {(21}-(24)). This
continuous time series representation implies a particular discrete time
series representation for the sampled, averaged data. In Christiano and
Eichenbaum {[1987], Theorem 2) we characterized this discrete time repre-
sentation by a scalar third order polynomial e%(L), a third order 2 x 2 matrix
polynomial C%(L), and an innovation variance matrix, VC. Here, L is the lag
operator where ij(t) = x{(t-}). The polynomial 8€ satisfies 8%(e™%) = 8C(e™8)
= 8%(ef™*) = 0 and #%(0) = 1. Also, det C°(z) = O .implies [z| > 1. Letting
Y(t) denote the measured data on inventories and sales (Y(t) is defined pre-

cisely below), then the time series representation of (¥(t), integer t) is

[1+B?L+B

cL2+B§L3]Y(t) = [I+EOL+ECL2+ECL3]ut,

2 17 72 3

where uy the white noise innovation in Y(t) with variance V©.

Given 8%, T®, V® it is possible to compute the spectral density of
the data, Sy(z;;), which is one of the two ingredients of the spectral approx-

imation to the likelihood function. It ecan be shown that Sy(z;c) is given by,
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Sy(z;c) = EC(Z)VCEC(Z_j)'/90(2)8c(2-1),

'iw, we{-m,m)}.

for z = e
The other ingredient of the spectral approzimation to the likelihood
function is the pericdogram of the data. We denote the available data by
[¥(e),t=1,2,..,T}. Here, Y(t) = {I(t),s(t))!, where S(t) denotes average
sales:
1
(29) s(t) = £ S(t+t)§T.

The periodogram of the data at frequency E I(wj), is

ye(w ) F,

I(wj) = {(1/T)Y¥(w

3l

where H denotes the Hermetian transpose and,

T -
Y(w,) =} y{t)e V3",
37 g2y

Here, Wy o= 2735/T, j = 1, 2, ....,‘T. Given these expressions for Sy{z;c) and

I(wj) we can compute the spectral approximation to the likelihood funetion,

T .
(30) Lo(g) = -T log 27 - .5 J log det [S{e™™"j;0)]
J=1

- .5 % trace [S(e"iwj;;)'TI(wj)].
J=1
Since the likelihood function {30) is a known function of the data and the
parameters of the model it can be maximized with respect to those parame-
ters. We obtain an estimate of the variance-covariance matrix of the esti-
mated coefflcients by computing the negative of the Inverse of the second

derivative of LT Wwith respect to r, evaluated at the estimated values of g
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We now consider the problem of estimating a discrete time version of
the model. Accordingly, we suppose that the representative consumer maxi-
mizers,

o

31 E, Jzofbj{u(t+J)S(t+J)-.5As(t+J)2—N(t+j)},
subject to (5) by ch&ice of linear contingency plans for s(t) and N(t). The
parameter ¢ is a subjective discount rate that is between zero and one. As
before the solution to the consumer's problem is given by the inverse demand
funetion (6).

The representative competitive firm chooses linear contingency plans
for s*¥(t) and I(t) to maximize,

(32) E, ¥ ¢J{p<t+j)s*(t+J)-(a/2)[s*(t+J)+1(t+j)_1(t+j_1)]2
j=0

-(bfz)[s*(t+j)-c1(t+j)]2-v(t+j)1{t+J)—(e/2)z(t+j)2},

subject to I(t) given and the laws of motion of v(t) and P(t). We suppose

that the shocks to technology and preferences have a discrete time AR(1)

representation:

(33a) u(e) = wu(t-1) + e, (t),
and

(33b) v(t) = av(t-1) + e (t),

where |u| < 1 and |p| < 1. Also e(t) = [51(t)ee(t)]' is a vector white noise

that =zatisfies,
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(34) Ee(t)e(t-1)'

R 1 equal to zero,

0 1 equal to zero.

The model summarized by (31)-(34) is the discrete time version of
our continuous time model in that, essentially, it has been obktained by re-
placing the D operator by its "approximation," 1 - L. An alternative would
have been to specify the discrete time model so that the implied reduced form
time series representation for inventories and sales would be an ARMA of the
same order as that predicted by the continuous time model. In order to do
this we would have to abandon the assumption that u(t) and v(t) have first
order autoregressive representations or change other basic features of the
discrete time model. This 1Is an important point which we will return’ to in
section 4.

Eichenbaum and Christiano [1985] show that the equilibrium laws of

motion for inventories and sales are given by,

(35a) I(t) = pI(t-1) + hu(t) + gv(t)
(35b) s(t) = -(a-be)/(a+b+B)TI(t) + a/(a+b+B)I(t-1) + [1/(a+b+h) jult)
where
(35¢) h = ————:l—————{w(a-b0)+[(a—b0)$-a]$¢u/(1-$¢u)},
a[blc+1)+a]
g = ~{a+b+A)
a[b(c+1)+A](1-¢¢p)
2 2
v+ 1/7(p8) = -{a+b+i) [¢a +{a-be) _ (a+bc2+e+¢a)],

¢a[b(c+1)+A] a+b+ 4

and |w] < 1.
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The relevant measure of the speed of adjustment of inventories which
can be compared to the measure which emerges from the continucus time model

is,
(28) 19 %[1og (.05)]/ log w,

where X is the number of days in the data sampling interval.

It is convenient to write the equilibrium law of motion for s(t) and
I{t) in the form of a moving average representation of the discrete time
innovations to agents' information sets. Substituting (33) into (35) and

rearranging we obtain,

I(t)
(36) = 4L e(t)
s{t)
where,
(37) ed(L) = (1-p)(1-ul){1-uL),
(38) cdr) = 20+ TG+ ThZ,
h g
7 1-{a-be)h g(be-a)
0 a+b+4 a+b+4
-hp -gu
gd . (ah-p)-p[1-(a-be)h] gfa-u(be-a)]
! a+ b+ A
0 0
gd . zeflah-y) -gua
2

a+b+4 a+b+A
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Given these relations the free parameters of the discrete time model can be
egtimated by maximizing Hannan's spectral approximation to the likelihood
function.

We are now in a position to demonsirate some of the possible sources
of temporal aggregation bilas in estimates of the speed of adjustment. Rela-
tions (21)-{24) and (36)-(38) summarize the restrictions on the continuous and
discrete time Wold representation imposed by the continuous and discrete
versions of the model, respectively. It can be shown that the continuous and
discrete time models imply that I(t) and s(t}) have centinucus and discrete
time VAR(2) representations, respectively. For example, to see this for the

continuous time model, notice that (21)-(24) imply

(39) det C(D) = (a+D){B+D)[D-(r-1)]/(a-r)a(b+a).
Premultiplying (3.22) by c(D)~1 = ¢(D)3/ det C(D) we obtain,
(40) (r-a)a(b+8)C(D)?Y(t) = e(t).

Here C(D)2 denotes the adjoint matrix of C(D). Thus {Y(t)} is a
pure VAR(2)} in continuous time. However, Theorem 1 of Christiano and
Eichenbaum [1987] implies that sampled and averaged {Y(t)} is a discrete time
ARMA(2,2) process. One moving average term is due to sampling and the other
is due to averaging. We choose not to focus upon this representation of the
discrete data because its AR part requires stronger than usual restrictions to
ensure ldentification (see Christiano and Eichenbaum [1985], pp. 29-31).
Instead we focus on an alternative reduced form representation for the data

which emerges from the continuous time model,

(41) s%(L)Y(t) = [1+cC+cCeclL3]e(t),
172 73
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where e®(t) is the innovation in Y(t) which has covariance matrix V¢, Here
dec C(L) = 6%(L)x(L), where «(L) is a second order polynomial in the lag
operator L. The presence of k(L) is a sjmptom of the effects of sampling and
of averaging s(t). Since det C®(L) is not proportional of BC(L), the sampled
repreéentation is not VAR(2). As we indicated it 1s vector ARMA (2,2).
Christiano and Eichenbaum [1985] discuss the mapping between the representa-
tions (40) ad (41). ‘

Of course the discrete time model remains a VAR(2). It is useful to
write the reduced form of the discrete model in a manner that is analogous to
(43). Define e¥(t) = Tpe(t) and c(L) = THLIED)™". Then (36) implies that

the reduced form representation for Y(T) emerging from the discrete time model

is
(42) 0 (L)¥(e) = [LecTLeci?]ed(t),
where the first row of Cg is composed of =zerocs. We denote the covariance

matrix of ed(t) by vd,

Comparing (41) and (42) we see that the moving average component of
the reduced form for the diserete model is of smaller order than that of the
continuous time model. Again, this reflects the fact that the continuous time
and discrete time models have different Iimplications for measured data. Not
surprisingly, estimation of the two models will yield different estimates of
the underlying structural parameters and speeds of adjustment of actual to

target inventories,

L., Pmpirical Results

In this subsection we report empirical results obtained from esti-
mating four different models. The continuous time model was estimated using

monthly data. Three discrete models were estimated, one each using monthly,
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guarterly, and annual data. Qur main results can be summarized as followus.
First, the parameter estimates from the different models that we estimated are
consistent with the Mundlak-Zellner hypothesis that temporal aggregation can
account for slow speeds of adjustment in stock adjustment models. Secondly,
we find that while the effects of temporal aggregation are substantial as we
move from annual to quarterly to monthly specifications of the model, they are
rather small when we move from the monthly to the continuocus time specifica-
tion. This second result is consistent with findings in Christiano [1986b]
where the length of the timing interval in a rational expectations model 1s
treated as a free parameter. Christiano [1986b] plots the maximized value of
the likelihood function of an annual data record against various values of the
model timing interval. As the interval is reduced from an annual to a quar-
terly specification the wvalue of the 1likelihood funetion rises substan-
tially. However, further decreases in the model timing interval result in
smaller Iincreases in the value of the likelihood funetion. This result is
also consistent with findings in Christiano [1986al in which a continuous time
model of hyperinflation is estimated using monthly data. When an analogous
diserete time model is fit to the same data, the results are virtually indis-
tinguishable from the continuous time results.

The 11 free parameters of our continuous time model are:

e
AT = (r,a,b,c,e,A,u,B,V11,V22,V12).

Qur discrete time model also hass 11 free parameters:

d d .d
a9 - (¢,a,b,c,e,A,p,u,V11,V22,V?2).

Equation (40) implies that no more than 9 parameters of the continuous time

can be identified. The smame 1is true for the discrete time model. Conse-
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quently, we searched for a lower dimensional parameter set that was identi-
fied. We restricted our attention to sets that included (A-r) and ¢ for the
continuous and discrete time models respectively. For present purposes, it
does not coneern us that we cannot Iidentify all the elements of ¢ and Ad,
gince our prineciple motlvation is to identify the adjustment speeds implied by
the two models. These are contrélled by (a-r} and ¢ in the continuous and

discrete time cases, respectively. The parameter sets that we estimated are

the following:

z = [r,a,s,x-r,bc/a,(a+b+A)/a,V?1,V§2,V?2],
and
: d .d .d
£ = [¢,p,u,$,bc/a,(a+b+A)fa,V11,V22,V12].

Christiano and Eichenbaum [1985] establish that g and g are identified.®’ In
practice we fixed the discount rates r and ¢, a priaori, at values which imply
a monthly discount rate of .997.”7

Both models were estimated using seasonally adjusted monthly data on
nondurable manufacturing shipments and finished goods inventories. The data
correspond to those used by Blinder [1986]. This data is published by the
Bureau of Economic Analysis (BEA) except that Blinder has converted BEA's end-
of-monith inventory stocks to beginning-of-month figures. We constructed
quarterly and annual data by taking arithmetic averages of the monthly data.
The data cover the period February 1959 to April 1982 and are measured in
millions of 1972 dellars. Shipments data are averages over the month. All
data were demeaned and detrended using a second order polynomial function of

. 8
time and seasonal dummies.
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Table 1 reports the results of estimating the continuous time model
using monthly data.® We are particularly interested in the Ilmplications of
these estimates for the speed of adjustment statisties. The point estimate
for A - r is 5.29 with 90 percent confidence interval given by (1.83, 8.75}.

This implies that,
1% = 17 (10,49).

The ninety percent confidence interval is reported in parentheses. Thus the
continuous time model implies that it takes 17 days to eliminate 95 percent of
the gap between actual and desired inventories, This speed of adjustment
seems plausible, especially in light of Feldstein and Auerbach's [1976] ob-
servation that even the largest swings in inventofy stocks involve only & few
days' worth of production.

We now turn to the results obtained with the discrete time models,
Table 2, 3, and 4 report results obtained with monthly, quarterly and annual
data, respectively. The point estimates of § obtained with monthly, quarterly
and annual data are .14 (.036,.244), .28 (.070,.490) and .58 (.150,1.01},
respectively. Ninety percent confidence intervals are reported in parenthe-
ses. The standard errors of the estimates of ¢ increase with the degree to
" which the data. are temporally aggregated. Presumably this reflects the
smaller number of data points that are available for the more temporally

aggregated data.
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The implied speed of adjustment statisties are given by,

Continuous Monthly Quarterly Annual
Days to Close 95%
of the Gap 17 46 212 1980
Confidence Interval (10,49) (27,63) (101,378} (SYT,N)EO

The continuous time figures are repeated here for ease of comparison. The
numbers in the last three columns of the £irst row correspond to 9 in
(28)'. The number in the first column of row one corresponds to T® in (28).
Numbers in parentheses in the second row are G0 percent confidence Intervals.

Notice that the number of days required to close 95 percent of the
gap between actual and desired inventories (Td) is more than twice as large
with monthly data, more than twelve times as large with quarterly data, and
more than one hundred and fifteen times as large with annual data, than the
estimate ohtained using the continuous time model. Evidently, the estimated
speeds of adjustment are a monotonically decreasing fuhetion of the degree to
which the data are temporally aggregated. We take this result to be support-
ive of the Mundlak-Zellner conjecture that temporal aggregation can account
for slow speeds of adjustment In stock adjustment models. The estimated
ad justment speeds are plausible for the continuous time and monthly models,
but implausibly slow--in our view--in the quarterly and annual models.

An interesting feature of our results is that the estimated speed of
ad justment increases in diminishing inecrements as the model timing interval is
reduced. The increase is very large going from annual to quarterly data, but
appears to have approximately converged at the monthly level. To see this,
notice that the'adjustment speed confidence intervals for the monthly and

continuous time models overlap cousiderably. To investigate the conjecture
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that convergence has occurred with the monthly specification, we compared the
discrete time reduced forms of the monthly and continuous time models.
The reduced forms of the continuocus and discrete time models are

reported 1n the second columns of Tables 1 and 2 respectively. These are

e
3

while the third order term in Cd(L) is exactly zero. Also, the 2,1 elements

similar along a number of interesting dimensions. First, C; is close to zero,

c ¢
1 and 02

fail to be Granger-caused by inventor'ies.11 One dimension along which the

of C are small, and so compare well with the implication that sales
reduced forms differ concerns the first row of Cg, which does not éppear to be
close zero. In contrast, the first row of Cg is identically equal to zero.
Also, the variance of ;he second innovation error is three times larger in the
continuous time model than in the discrete time model. Unfortunately, the
importance of these differences and similarities is hard tco judge, since we do
not have the relevant distribution theory. Moreover, it is not clear that a
direct comparison of the reduced form parameters is the most revealing one.

In our view, it is more interesting to compare the implications of
the two reduced forms for heoth sets of structural parameters. We are particu-
larly interested in the implications of the reduced form representation of the
data emerging from the continuous (discrete) time model for the structural
parameters of the discrete {(continuous) time model. Consider first the impli-
cations of the reported reduced forms for the structural parameters of the
continuous time model. Since the continuous time model is identified the
reduced form parameters in column 2 of Table 1 map uniquely into the parameter
values reported in the first column of Table 1. It is less obvicus how to
deduce the implications of the reduced form emerging from the discrete time
model for the structural parameters of the continuous time model. Since the

reduced form of the discrete time model does not satisfy the cross equation
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restrictions implied by the continuous time model, there is in fact no set of
continuous time structural parameters consistent with the discrete time model
reduced form. In view of this, we decided that the most sensible thing to do
was to compute the set of continucus time parameters that comes "closest" to
reproducing the discrete time reduced form in Table 2.

4 natural candidate for this set of parameters is the probability
limit of the maximum likelihood estimator of the continuous time structural
parameters calculated under he assumption that the data are generated by the
estimated reduced form corresponding to the discrete time model.'? If the
discrete time model is true then the estimates of the continuous time model
obtained uging monthly data ought to be close to this probability limit.
These probability limits are reported in the second of the two columns labeled
"Plim" in Table 5. Numbers in parentheses are the estimated parameter values
taken from columns one of Table 2. We find some discrepancies. For example,
the plim of « is .035, while its estimated value iz .081. Other discrepancies
which stand out are the results for be/a, V22, and Vq5. Unfortunately, we
cannot draw any definitive conelusions regarding the magnitude of these dif-
ferences in the absence of the relevant distribution theory. Nevertheless it
is interesting to note the similarity between the estimated value of A -~ r and
its reported probability 1limit. As noted earlier, the estimated value of
A - r Implies that firms close 95 percent of the gap between actual and de-
sired Inventories in 17 days. The estimated probability limit of this number
under the assumption that the data are generated by the discrete time monthly
moedel is 19.5 days.

We now consider the implications of the two reduced form representa-
tions for the structural parameters of the discrete time model., In column 1

of Table 5 we report the probahility limits of the structural parameters of
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the discrete time monthly model. These were calculated under the assumption
that the data are generated by the confinuous time model. If the continuous
time fodel is true then the estimates of the struetural parameters of the
discrete time model obtained using the monthly data ought to be close to the
corresponding probability limits reported in Table 5. In fact these appear to
. be quite close to each other, The principal discrepancy is that bc/a is
larger than the value reported in Table 2. In addition vgg and V?z are some-
what different from the values reported in Table 2. As before we cannot draw
any definitive conclusions from this exercise without the relevant distribu-
tion theory. HNevertheless, it 1s interesting to note how similar the estimate
of ¢ reported in Table 2 is to its plim in Table 5. In particular, inferences
about the speed of adjustment of actual to target inventories are basically
the same for the two values of .

We conclude from the results in Table 5 that, when viewed from the
point of view of their implications for the discrete time parameters, the
reduced forms in Tables 1 and 2 are falrly similar. Some differences are
apparent when examined from the point of view of certaln structural paraneters
of the continuocus time model.

A third way to compare fthe two reduced form representations is to
compare their log likelihood values, Tﬁe difference hetween the log likeli-
hood vale of the discreée time monthly and continuous time models is equal to
25.36. In this sense the discrete time monthly model "fits" the data better
than the continuous time model. On the other hand, the likelihood ratio
statistic obtained when either of the two models is compared with an unre-
stricted reduced form ARMA(3,3) model indicates rejection of both structural

models at essentially the same level. The log likelihood value of the unre-

stricted ARMA(3,3) model is 3307.5 which iIs significantly greater than the log
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likelihood values asscoclated with both the continuoué ad discrete time monthly
models {see Tables 1 and 2).

Overall, we conclude that the monthly discrete time and continuous
time models appear to be fairly similar when examined from the perspective aof
the reduced form time series representations that they imply for the monthly
data. Next, we report some diagnostic tests on the underlying statistical
adequacy of the two structural models.

The validity of the formulas used to compute the confidence inter-
vals around our speed of adjustment estimates requires that the underlying
models be corrvectly specified. Unfortunately, we found evidence against this
hypthesis. As we indieated, a likelihood ratio test rejects both models
multivariate Box-Pierce staiistics proposed by Li and McLeod {1981] to test
for serial correlation in the fitted residuals from the continucus time and
monthly discrete time models. These statistics were computed at lags 12 and
24 and are denoted by BP{12) and BP{21), respectively. Under the null hypo-
thesis that the underlying disturbances are white noise, BP{(k) is drawn from a
chi-square distribution with 4 x k -~ n degrees of freedom, where n is the
number of free par-ameter-s.13 In our case, n = 9. The Box Pierce statistics
for the continuous time model are BP(12) = 162 and BP(24) = 278, For the
discrete time model, they are BP{12) = 386 and BP(2Y4) = 602. These statistics
indicate a substantial departure from white noise in the fitted residuals.
Because the likelihood ratio statistic and Box-Pierce statistics supply evi-
dence against our models the speed of adjustment confidence intervals that we
reported above must be Interpreted with caution.

To what extent are our results sensitive to the way in which we

specified our discrete time model? As we indicated in secfion 3 there are at

least two ways to choose a discrete time analogue te the continuous time model
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of section 2. Our‘procedure was to specify the shocks in the discrete time
model to have the same representation as the point-in-time sampled representa-
tions the continuous time shocks. Sinece our continuous time shocks are AR{1},
this implies an AR(1) representation for the shocks in the discrete time
model. We adopted this specification of the discrete time model because it
matches well with what 1s commonly done in the literature. = An alternative
would have been to specify the shocks in the discrete time model so as to
produce a reduced form for that model with AR and MA orders identical to those
implied by the continuous time model. This can be accomplished by adding a
first order moving average term to the shocks In the discrete time model. We
conjecture that the effect of these moving average terms would bg to raise the
estimated speed of adjustment implied by the discrete time model. This con-
Jjecture is based on the belief that the additional MA terms would take over
some of the burden borne by the AR parameters--cne of which contreols the speed
of adjustment--for accommodating the serial correlatlon in the data. This
would be consistent with results in Telser [1967]. As yet, we have not for-
mally Investigated this conjecture. . However, it is important to note that
these comments illustrate the observations made in Christiano and Eichenbaum
({1987], section 2B) where we argued that the temporal aggregation effects of
shrinking the model timing interval can have the same effect on the reduced
form implications of a model as allowing for more serial correlation in the

unobserved shock terms.
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Table 1
Continuous Time Model

Monthly Data

Structural Parameters®* Reduced Form Parameters
a .081 s? = -1.85
(.021)
8 .082 eg = .857
(0.21)
A-r 5.29 ag = —.004
(2.10)
bc/a 610.9 o ~-.772 -.035
{9120.5) C1 =
-.032 -.698
a/{a+b+4) 0.00
(.001)
-, 104 .009
cC -
132415 -507.3 2 088 -.243
Vv (12046.2)  (u4854.8)
28310.7
(25150.5) . 24852.1 12459.9
V™ =
187924.0

£** = -3352.33

#3tandard errors are displayed in parentheses.

#%Value of the log likelihood function.
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Table 2
Discrete Time Model
Monthly Data

Struectural Parameters® Reduced Form Parameters
” .910 | a‘f = ~2.01
{.027)
p .960 Bg = 1.14
{.021)
" . 140 eg = .12
(.063)
he/a 1.00 d ~.910 .008
{(1.17) cy =
0.00 -1.10
a/{a+b+4) 0.00
{.001)
0.00 0.00
Cd =
i 24808.7 7594.0 2 0.00 .130
v o= {(2110.4)  (3781.3)
54792.8
(13156.5)
£ = -3326.Q7#%

#¥Standard errors are displayed in parentheses.

##yalue of log likelihood function.




-3l -

Table 3
Discrete Time Model
Quarterly Data

Structural Parameters#

Reduced Form Parameters

be/a

a/{a+b+4)

65530.8

vd = (9731.9)

.82 ol = -1.96
(.07TT)
.854 ag = 1.18
(.063)
.283 eg = -.20
(.132)
.078 4 -.824 . 007
(.602) C_‘ =
0 -t.14
0.00 -
(.001)
4 0.00 0.00
C2 =
0.00 .2u2
(14396.0)
276318.4
41021.8

£4% = -1161.52

#Standard errors are displayed in parentheses.

##Value of the log likelihood function.




- 135 -

Table 4
Discrete Time Model
Annual Data

Structural Parametersh Reduced Form Parameters
" 139 s‘f = -1.31
{.224)
0 584 03 = .500
{.256)
" .58 eg = -.050
{.525)
ba/a .998 d -.1239 -~ ,038
(.525) C1 =
.206 -1.17
a/(a+b+4) .021
{.396)
d 0,00 0.00
C.L =
133765.1  -42203.5 2 _.029 .333
vd = (42082.6) (60428.8)
B68030.5
(146721.4)
ﬁ**

#¥Standard errors are in parentheses.

#¥Value of log likelihood funetion,



Probability Limits

Discretel 3 Continuous2 3
Parameter Plim Parameter Plim
o) LG40 a .035
{.360) {.081)
u .938 8 .16
(.910) (.082)
U 116 A-p 4,60
(.140) (5.30)
be/a 51.45 bc/a .879
(1.00) {(611.1)
a/{a+b+8) 0.00 a/(a+b+4) 0.00
(0.00) {0.00)
v, 24951.7 V1 19013.6
(24808.7) {13244.5)
d
v 200570.0 Vas 8276.7
22 (54792.8) (28310.7)
v, 11701.0 Vig 2661.6
(7594.0) (-507.3)

1Probability limit of parameters of monthly discrete time model, assuming data
are generated by reduced form in column 2, Table 1.

2
Probability limit of parameters of continuous time model, assuming data are
generated by reduced form in column 2, Table 2.

3 :
Numbers in parentheses are parameter estimates obtained from the data.
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Footnotes

'The fact that we specify utility to he linear in leisure warrants
some discussion because it appears to ke inconsistent with findings in two
recent studies. Our specification implies that leisure in different periods
are perfect substitutes from the point of view of the representative con-
sumer. MaCurdy [1981] and Altonji [i986] argue, on the basis of panel data,
that leisure in different periods are imperfect substitutes from the point of
view of private agents. Rogerson [1984] and Hansen [1985] describe conditions
under which the assumption that the representative consumer's utility function
is linear in leisure is consistent with any degree of intertemporal substi-
tutability at the level of private agents,

’It is of interest to contrast our model with the equilibrium model
in Sargent ([1979], chapter XV). In that model, the representative agent's
utility function is linear in consumption and quadratic in leisure. s a
result, the interest rate on risk free Qecurities, denominated in units of the
consumption good, 1s constant. In our model, the representative agent's
utility function is quadratic in consumption, with the result that the inter-
est rate on risk free securities, denominated in units of the consumption
good, is time varying and stochastle. This feature of our model is attractive
in view of the apparent nonconstancy of real interest rates in the U.S. In
order to remalin within the linear-guadratic frameswork, we specify utility to
be llinear in.leisure. This implles that the Interest rate on risk free secu-
rities, denominated in units of leisure, 1s constant.

%To avoid proliferating notation we do not formaily distinguish
between variabhles chosen by individual households and firms and their economy
wide counterparts. MNevertheless the distinction hetween them plays an impor-

tant role in the model. By assumption agents are perfectly competitive and
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view economy wide variables, such as P(t) and economy wide sales and invento-
ries, parameterically.

“To see that A > 0 consider £(k) = .5r - [k+2.5r2]1/2 and note that
£(0) = 0 and £'(k) < 0 for k 2 0,

*See Hansen and Sargent [1980a] who show that this procedure yields
the unique optimal solution to the social planning problem which the competi-
tive equilibrium sclves.

6Specif‘ically, Christlano and Eichenbaum [1985] show that ¢z and §
are locally identified. In addition, we show that, given any admissable ¢,
then there are at least 5 other values of § which are observationally equiva-
lent, i.e., yield an identical wvalue for the likelihood function. We con-
structed an algorithm to find these g's in order to determine whether any of
them is admissable in the sense of satisfying the nonnegativity conditlons
imposed by the model. Generally, we find that one other 7 is admissable in
this sense. This value of ¢ is obtained by exchanging the values of a and
(x-r) and suitably adjusting r. As we point out later, our continuocus time
parameter estimates imply o = .082 and (x-r) = 5.29 with r = .003. This
parameterization implies a relatively rapid speed of ad]justment of actual to
desired inventories. An alternative parameterization which yields the same
value of the likelihood function is one in which & = 5.29 and (A-r) = .082.
This implies that the speed of adjustment is very slow and relatively little
serial correlation in the inventory holding cost shock. This parameterization
can be ruled out as being implausible since it requires the discount rate to
be r x 100 = 62,112 percent. We experimented with numerous parameterizationsg,
and always found that If we placed a reasonable upper bound on r, then global

identification obtained. We found the same result regarding £.
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"our results were insensitive to the different values of r and 8
that we considered.

®This time trend can be rationalized as follows. Suppose that u(t)
and v(t) are the sum of a covariance stationary component, as given by equa-
tion (18) and a linear function of time and seasonal dummies. Then the equi-
librium laws of motion will have two components. The first component will be
the law of motion given in the text. The second component will be a deter-
ministic function of time and seasonal dummies. There are no restrictions
across the two components. These claims are established in Christiano and
Eichenbaum [1985]. There are alternative ways to generate trend growth in
inventories and sales. For example, the equilibrium laws of motlon for s(t)
and I{t) will inherit any unit roots in the VAR for u(t) and v(t). The fact
that we choose to wWork with deterministic time trends does not necessarily
reflect the view that this is the only reasonable model of trend growth for
our variables. Instead it reflects the fact that almost the entire empirical
literature that we wish to address assumes the existence of deterministic time
trends.

°In models where the timing interval is finer than the data sampling
interval, estimates of the AR and MA parameters can be sensitive to the scale
in which the data are measured. This contrasts with the case in which the
timing interval coinecides with the data sampling interval. . In the latter
case, multiplying the data by a constant scalar affects only the innovation
variances but not the AR and MA parameters. To check that our continuous time
speed of adjustment estimate is robust to a change of scale, we divided the
data by 100 and reestimated the model parameters. The results were virtually

unchanged.




**The upper bound of the ninety percent confidence interval for ¢ in
the annual model is 1.01. This implies that firms never reach their target
inventory level. This is why the reported upper bound of the ninety percent

confidence interval for Td in the annual model is =.

11
We noted in section 2 that this assumption is frequently made in

the inventory literature.

12These were computed by maximizing the frequency domain approximi-
zation to Gaussian likellhood function in which the periodogram was replaced
by the spectral density function implied by the reduced forﬁ parameters in
Table 2, The justification for calling the resulting numbers probability
limits is given in Christiano [1984] where this technique is applied in an-
other context.

"*Li and McLeod [1981] derive the distribution for their test sta-
tistlie under the assumption that the mocdel bheing estimated is an unconstrained
vector ARMA with independent, identically distributed disturbances. They show
that BP(k) has an asymptotic chi-sguare distribution on k-2 degrees of
freedom, where m is the number of equations in the vector ARMA model and ¢ is
the number of AR and MA parameters. - We assume that the appropriate meodifica-
tion regarding the number of degrees of freedom, in our problem, is obtained
by replacing ¢ by n.

"*See for example, Blinder [19861, Eichenbaum [1984], Macecini and

Rossana [1984] and the references in McCallum [1984].
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