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A.

Introduction

Application of the stock adjustment model to the study of inventory
behavior frequently produces parameter estimates which I1mply implausibly
low speeds of adjustment of actual to target inventories. For example,
Feldstein and Auerbach's estimated parameters [1976] imply that firms
take almost 19 years to close 95 percent of the gap between actual and
desired inventory stocks. Application of the stock adjustment model o
other sareas--for example, money demand--also yields Implausibly low esti- -
mates of speeds of adjustment.

One explanation of these anomaioﬁs results is that they reflect the
effects of temporal aggregation bias (for other explanations, see
Eichenbaum [198%] and Goodfriend [1985)). The stock adjustment litera-
ture typieally assumes that the interval of +time separating economic
declsions corresponds to the interval 5f time separating the observations
available to the econometrician.  Zellner [1968] and Mundlak {1961]
showed theoretically that 1f this is longer than appropriate, then the
econometriclan could be led to understate the speed of adjustment. This
18 consistent with the experience of Bryan [1967)}, who applied the stock
adjustment model to bank demand for excess reserves. Bryan found that
when the model was applied to weekly data, the estimated time to close 95
percent of the gep between desired and excess reserves was 5.2 weeks.
When the model was applied to monthly time aggregated data, the 95 per-
cent c¢losure time was estimated to be 28.T7 months. Bryan's results,
which can only be due to temporal aggregation blas, reinforce the view
that tempeoral aggregation could account entirely for the anomalous re-

sults reported by Feldstein and Auerbach [1976].



We propose to investigate empirically whether temporal aggregation
blas can account for the slow speeds of adjustment typically found in
studles of inventory behavior. We plan to do this by estimating a con-
tinuous time verslon of the stock adjustment model, and to compare the
speed of adjustment implied by the perameter estimates with those re-
ported in the literature., We plan to formulate a general equilibrium
model of employment, inventories, and output which Implies a continuous
time version of the stock adjustment model studied in the literature. In
this way, we will have an explicit ecordomic rationale for the stock ad-
Justment model.

In addition to shedding light on the anomalous findings in the stock
adjustment literature, we expect that cur project will make several other
contribﬁtions as well. First, we will supply a completely worked example
of estimating a ratlonal expectations equilibrium m&del in continuous
time. We hope that other researchers will find this useful in applying
conbinuocus time estimation technigues. Second, if the evidence suggestis
that the continucus time model _performs better than a dlscrete time
egquivalent, then we plan t; perform a formal non-nested test of the con-
tinuous time nmodel versus the discrete time model. Non-nested testing in
the empirical/macroeconomics/time series context 1s In its infanecy, and
we think it would be useful if more of this were done. (See Singleton
[198%] for a contribution.) Third, we plan to use the model to provide a
concrete example of some of the pitfalls of interpreting moviné average
representations obtained by estimating time series models unrestricted by

economic thecory. 1In doing so, we will be illustrating points made at the

theoretical level by Hansen and Sargent [1982].




Section B presents an example of the kind of model we pliﬁhio formu~

- late and estimate., There it 1s shown in what sense the model implies the
stock adjustment model studied in the literature. Alsco, we indicate how
we plan to carry out non-nested testing. In Section C we show how we
plan to estimate the parameters of the model. In Gection D we indlcate
how we plan to go about illustrating the pitfalls of interpreting moving

average representations obtained from unrestricted time series models.

B. The Model
We consider a model of employment, inventories, and output which is
similar to the general eguilibrium model of employment that appears in
Sargent [1979 Chapter XVI, Section 3]. As shown below, the model implies
g continuous time version of the stock adjustment eguation for invgnto-
ries that appear in the literature.
We assume a representative household which chooses {s(t),N(t);

t » 0} to maximize

(18) By [ e {alerster) - Ss(ten) Zonleen) Jar,
subject to
(1b) P{t)s(t) = n{t) + =lt).
Here,
Et = linear least squares projection operator, conditicnal on

time t information set,

u(t) = disturbance to marginal utility of consumption, with
second moment properties specified in Section C below,
s(t) = consumption of the one commodity,
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w(t) = lump sum dividend earnings of the household, denominated
in labor units, and

positive constants.

.
¥
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Solving (1) yields the following inverse demand function:
(2) P(t) = -As(%) + u(t).

The representative firm's profit fdnction is

(3) = J’: T Tn(seclde,
where
(3) () = P(e)a(e) - W(s) = 2s(t)-eT(8)]? - w(£)I(t) - § 1(s)2,

In (3b), P(t)s(t) represents total revenues at time ¢, and N(t) is the
wage bill incurred in producing time % output, Q(t). The third term to
the right of the equality in (3b) reflects the idea that there are costs,
denominated iﬁ units of labor, allowlng inventories to deviate from some
proportion of sales. (See, e.g., Blanchard [1983, p. 378].) Finally,
the last two terms in (3b) represent costs of bolding inventories.
There, v(t) represents a disturbance to the marginal cost of holding
inventories., Its second moment properties are described in Secition C.

We assume the following production functlon for Q(t):

(L) Q(e) = [2n(e)]*?




In (3) and (4), r, a, b, ¢, and e are positive constants. The link be-

tween current production, inventories, and sales is given by
(5) Q(t) = s(t) + DI(t).
Substituting (4) and (5) into (3b), we get
(3b)'  w(t) = P(£)s(t) - 2[s(t)+DI(t)]? ~ s(t)-cI(t)]?
2 2
- v(t)1(%) --Z-I(t)e.

The objective of the represeﬁtative firm at time ¢t is to choose
DI{t+t), Q{t+t), and s{t+t); T » 0 to maximize (3) subject to (L), {5),
(13), I(t} given, and beliefs about the law of motion of aggregate
s{t). In a ratlional expectationas equilibrium, these beliefs are self.
fulfilling. Sargent [1979, p. 375] describes a simple procedure for
finding rational expectations eguilibria in the linear guadratic, dis-
crete time context. The discussion in Hansen and Sargent [1980] spells
out precisely how Sargent's solution procedure [1979] can be modified to
accommodate our continuous time setup. Briefly, the frocedure is as

follows. Write

-t

(6) F{I(t),pI(t),s(t),v(t},P(t),t] = ™ “n(t),

where n(t) is defined in (3b)'. Then, the objective of the firm at time

t 1ls to

(1) meximize E, jg F(I(t+t),DI{t+1),8(t+),v(t+r),P(t+1),1)de
DI{t+1),s(t+T)
T * 0




subject to I(t) given. The solution to this problem is simplified by
exploiting the property to certeinty equivalence, Accordingly, we first
solve a certainty version of (7) in which future random variables have
been replaced by thelr conditional mean. Then we use a continuous time
version of the Wiener-Kolmogorov forecasting formula $o express the con-
ditional expectations 1n terms of observed varlables. Standard control
theory resulis inform us that if boundary conditions can be ignored, then

the optimal path for I(t) and s{t) satisfies the following conditions:

(8)  gifey = 0

ar aF

(8v) 3Tty ~ D 3DI(t)

These imply respectively:
(9a) P(t) -~ (a+b)s(t) - aDI(t) + beI(t) =0
{9v) aDaI(t) - raDI{t) - (c2b+e)I(t) + aDs(t) + (eb-rals(t) = v(t)

In rational expectations equilibrium, P(%) must satisfy (2).

Substituting this into (%a) and rearranging

_ L
a+b+A

(10) 8(t) = (So)DI(t) + (oer)T(t) + (

ey oy Ju(t).

It is convenient to collapse (9b) and (10) into one differential equation
in I{t). Substituting for s(t) and Ds{t) in (9b) from (10) get

(112)  {pP-rD-x}u(e) = BB Au(s)s TEEED y(y)],

where

(11b) k= 2+Db * Arbele(a+d)+ral + el

al(b+a) L a+h+A




Alternatively,

{122) (D~A) ID-(r=-2)1T(t) =

a Z ':+; A () - .(_E;_M)_[—;"-(bc-ra)"‘D]u(t)s

where

{12b) A =-%-r + [k +-%r2]1/2.

8ince k > 0, 1t follows from (12b) that A > O is real. Moreover, it is

egsy to verify that r - A =-;=r - [x +%r2]1/2 < 0. (To see this, con-
sider f(k) =%r - [k +%;r2]l/2 and note that £(0) = 0, and £'(k) < 0O

for k » 0.) Solving the stable root (r-)) backward and unstable root

(A) forward in (12a), get

a+b <+ A

(13_) | DI(t) = (r-A)I(t) - —a(ora) j':e‘“Etv(tn)dr

1 ®
[ e

b+ A,
o0

aa.+b:3-A+ A f e_}‘TEtu(t+'r)d'r

0
=% - ()] ! eMTE u(rr)dr

T E, [%{ cb-ra)+D]ul(t+r)dr

= {r-A)I(t) -

1l
b+a.u(t)+b+a

Substituting {13) intc (10},

be - al(r—)) 1 -AT
(1%) 8(t) = 5~ I(t) + 5% Io e "B v(t+r)dr

8
= {o+A){a+b+A)

J e'MEt [%( cb=-ra)+D]ult+r)dr
0

tarn R




The solution to the certainty equivalent version of (7) is given by
{13) and {14). The solution to the stochastic problem is complete ‘once
the forecasting problems in (13) and (14) have been solved. We do this
in Section C. First, we derive the stock adjustment model implicit (13)
and (1%).

Let I*{t) be the level of industrywide inventories such that if I(t)
= I*%(t), then DI{t) = 0. I*(t) is tsken to be the time %t level of '"de-

sired” or "target" inventories. By (13},

_a+b + A

(15) 1) = ety

[ Mg y(t+r)dr
o t

1 T =ity (1
= Tr=x) (b+AT IO e Et[;(cb-ra)+D]u{t+-r)d-r

Substituting (15) into (13), we get the stock adjustment model:
(16) DI{t) = a(I*(t)-I(t)),

where o = (A-r) > 0.

We require g measure of "speed of adjustment" which can be compared
with similar measures in the literature. In order to make this concept
precise we imagine, counterfactually, that movements in I¥(z) can be
ignored over an interval te(t,5+l), i.e., I¥(¢) = I¥ for T e (t,8+1). In

this case, the solution to (16) is

¥ - I(t+l) = e (I%-1(%)),

or, after adding I{t) - I;;* to both sides,

(17) 1(t+1) - I(t) = (1-e” ") (T2-1(t)).




Thus, the amount of a given gap between target inventories, Ig, and I(t)
that is closed in one period is T = 1 - e™% = [I(t+1)-I(t)]/[I#-I(%)].
OQur intention is to obtain an estimete of T by Jointly estimating the
perameters of the model, Our plan is %o compare our estimate of T with
those reported In the literature, For example, Feldstein and Auerbach's
estimate of T is ,06 [1976 p. 366], which implies that firms only reduce
6 percent of a gap between actual and desired inventories in one quar-
ter, As they emphasize, their estimate of the speed of adjustment is
implausibly low.

The theoretical argument advanced in Zellner [1968] draws attention
to the possibility that Feldstein and Auerbach's anomalous results are
due %o temporal aggregation bilas. They make the assumption that the
interval of time separating the economic decisions of agents is one guar-
ter, whereas it seems plausible that declisions of‘ thé repregentative
agént are in fact made over a finer interval. If this is the case, and
the agent makes decislons in contlnmuous time, then our estimate of the
speed of adjustment will not be distorted by temporal aggregation bias.

If Zellner's conjécture is confirmed, then we plan to proceed one
step further and carry out a formal hypothesis fest of the null hypothe-
8is that the continucus time model is true, against the discrete time
alternative. The test we have in mind is a Cox-type test [1961] con-
structed %o take into account our vector ftime series context. In sepa-
rate work, we hope to generalize this to the vector case, ({(Other work,
such as that of Pesaran and Deaton [1978], doces not apply to the time
serles context. Walker [1967} developes the theory for the scalar time

series context.) Even if the latter effort fails, we can still compute
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the Cox statistic and present it as a model diagnostic statistic. The

ceomputations required for this are described and aprlied in Christianc

{1984},

The Reduced Form of the Model

We assume that u(t) and {v(t)} are covariance stationary with the

following continuous time Wold representation:

u(t) b, . d; . ${D) 0 sl(t)
(18) -
v(t) h, d, 0 ${(D) e, (t)
vhere g(t) = Ial(t),ez(t)}T is the continuocus time vector of linear least

squares Innovations in u(t), vw(t) with Ee(t)e(t-1)" = §(¢)v, where § is
the Dirac delta function. Also, P and ¢ are rational pelynomials in the
time derivative operator D, and are assumed to be analytic in the (open)
right half of the complex plane. Further restrictions will be placed on
P and ¢ below.

The forecasting problems in {13) and {(14) have the following solu-

tions, as proved in Hansen and Sargent [1980]:

(19) [ &7, [X(cb-ra)+plultsr)dr =
o]
F(D)e, (8) + {[Xcb-ra)n ]+d.} = + Z(cb 2L 4 Lo ﬁlt
El a'C--I‘B.l 17 % acuralz a.t:—z‘ﬂ..A
L =AT h d
=6t D
(200 f me sendcs] D1xeld) e () + (B + (Kig + Lo,

where

~[2(cb-ra) +D] y( D)+ [Z(cb-ra) Al p(1)
D -2

F(D) =
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Substituting (19) and (20) into (13) and (14), and rearranging ylelds

I{t)
{21a) ( ) = f + gt + Cc{D)elt)
s(t)

wvhere, f and g are 2 x 1 element vectors whose elements are functions of

a, b, C, &, A, T, hl, h2, dl, &20 Also,

Cll(D) = (b+A)F[!1(jfgr_x)]
€ (D) = - a(§+z;?ni(ﬁ_l)](+¢(gi;¢(x))
(21b) - |
Cp (D) = (EraTiaroraY) Sory FD) + 57%£§Q¥"K
D - 22 '
0pp(D) = (ghp) lgmpmy (=2 B2RO0A)

22

It is easy to verify that there are no restrictions across the elements
of £, g, and C{D).

We do not have observations on {I{t),s{t}}, but on {I{t),s{%)},vwhere

g(t) iz =s{t) averaged over the unit interval. In order for our statisti-

cal model +to make sense, we require that {I(t),s{t)} be a physically

realizable stochastic process,. This places restrictlons on ¢ and § in

{18), which we now discuss. Realizabllity of {I(t),s(t)} reguires:

1lim cll(s) = lim 012(3) = 0

[8]+e 8] >

Um e, (s)] <=, 1im [c  (s)] < =.

|s] > o] e
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Examination of {21b) reveals that the latter imply the following restric-

tions on ¢ and :

m+1
TO + Y].D + ses + Tm-!-lD - T(D)

m-1. m a(D)
ao + ulD + ese & am_lD + D

$(D) =

(22)
n
60 + le + ses + anD

+ 81D + wees + BD—

L 8(m)
n g{D}?

¢(D) = o=

+
1 D

B
vhere m, n » 0. (Earlier, we imposed the restriction that ols) = 0 imp-
lies Re(s) < 0, B(s) = 0 implies Re(s) < 0.) Since Yp» Ygep» 20d § are
permitted to be non-zero in the above expressions, u(t) and vw(t) are
permitted to be non-realizsble stochastic processes. This in turn gives
rise to the posaibility that s(t) and P(t) are not realizable (see, for
example, (2) and.(lo)). In interpreting this note, in any case, s{t),
P(t), u{t), and v(t) are realizable after they have been integrated over
an arbitrarily short interval.

The extensive cross—-equation restrictions between the rows of c{D),
in addition to the rational form of C{D}, can be expected--after some
additional restrictions—--to result in the model's parameters being iden-
tified from discrete data {see, Hansen and Sargent [1983] and Christiano

[1982]).

D. Computing the Frequency Domain Approximation to the Likelihood Function

The objective of this section 1is to provide & computationally conve-
nient strategy for evaluating the frequency domain approximstion to the
likelihood of {¥(+t),t=1,...,T} where ¥(t) = (I(t),g(t))T. We assume that
inventories I(t), are measured point-in-time and at the beginning of the

sampling interval. Consequently,




{23) B(t) = fl s(t+r)d.
0

In addition, we make the simplifying assumption that all roots of poly-
nomials are distinect. Finally, the discussion below assumes that {¥(t)}
is covariance stationary and has é. zero mean. Equation (21a) indicates
that this assumption is approximately satisfied if {¥(t)} is the distur-
bance iIn a least square regression of ¥(t) on a constant and linear
trend,

The outline of this section is as follows. First, we derive an
expression for the contlinuous time spectral density of Y(t) =

(I(t),s(t))T. We denote this by sy(im), where we(-w,+e) and $2 = .1,

1]

Define S:}-(im) as the spectral density of Y(t) = (I(t),_s-{t))T at fre-
quency ws In the second part of this secticn, we obiain 8}- from SY and
recover the covariance function of Y(t) from s;. Denote +this by

R;('r) = E_f(t)Y(t--r)T. The R;(-r) function at integer values of t is then
used to compute the spectral density of {Y(t),t=0,£1,%2,+¢+}. We denote
this by Sg:(e_im), where we(-w,7). The third and final part of this sec-
tion shows how to combine {Y(t),t=1,...,T} and S%to compute the fre-

quency domain approximation to the likelihood function.

1. The Continuous Time Spectral Density of {¥(t)}

We begin by providing computationally convenient expressicns

for F(D) and [-¢(D)+¢(A)]/(D-A). HNote:

_ x{(D} YD) =1y g DF Y=Yy &g Ja(D)

(24) ¢(D) = <75 e

N [Tm+1D+Ym— m+lam-1] *
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Write

(2ba)  a(D) = (D=p,} ... (D-p)),

and suppose that p, # Py for i # J, py* r — A for all i, Then (2k)

can be written In partial fractions expansion form as follows:

m B
E —d + |y Dy =y o m>{
(258.) ¢(D) - (J=l D-Pj) [ m+1 m ‘m+l m—l)
Yo tYD m=
Here,
{25D) 3 m J =21, eea, m {if m > 0)
I (p;~p,)
k=1 9 °
k]
Using (25), it is straightforward to verify that
T )
_—) - ¥ m>Q
(26) _ Q(D) - é( A) = 4=1 l—pj D-pj m+1
D=A '71 =
We now turn to F{D). Note:
(27a)  (D-x)w(D) = {Bok)8(D)
8D
(D-1)8(D) - & B(D)D - (-8 +§ .5 B, _,18(D)

g{D)

* 8§D+ (-x8 +8 -8 8 .),

where

{27v) K

--%(cb-ra)
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Then,
n A
4
o1 D—uj) + 8,0+ (_K6n+6n—l_snsn-1) n>0
(28a) (b-x) (D) =
GO(D—K) n=0
where
{p,-)&(u,)
= _..J_——...—&.——-J—
(28b) A.j n J = l, esey 11 (if n > 0)
n (u,-u)
k=1 J K
k#)

(28c} g{D) = (D-py} .o (D—un).

Here, we agsume that Hy # “J iri#], ui¢ T~ A, ui# pJ for all 1,

3+ Finally,

n A )
L1 ,l_{,‘j)( Diujn - 8, n>0

-4 n=0
o

(29) F(D) =

Substituting (26) and (29) into (21) and rearranging, we get

() .
{30a) a(D)B(D)[D-(r—A)I( )= C(D)e(t)
8{t)

where,




(300)

and

{30c)

Here,

(304)

vhere

(30e)

Also,

(301)

- 16 =

- 1 n A
5.0 = G ‘f‘fg knl(D- )] - 8,8(D)}a(p)

k#]

€ ,(0) = _a_;(f;;_ﬁ_ﬂ 8(D){ 2_13. kr:l(D P} ~Ypap (D)}
K#]

EQI(D) = -a.—-l-;%_-l-_ﬁ-(D - :—c)ﬁ'n(D) + ;TI'—-:I 8(D}a(D) [D-(r-r}]

b
2,,(0) = (20 - 2E (n)

_ & (D} 312(9)
¢(p) =

g .. (D) 022(1))
i~ - . ~ n+m+1
¢{D) = C,+ cln + S .
. 0 0
c:1+m+:l. = s 0

n
b+A J

BJ o1}

det F(D) = [D-(r—?\)lG(D}u(D)BfD)a(b+A) Z e
y k=1

k#J



Define

1]

Er(t)¥(t=1)"

(=, +ow),

RY(T)

SY(B)

(31)

+o0 s
J RY(r)e-T dr,

where 8 = iy, me(-m,+m). It is well known that

¥(s)va(-s)T

(32a) SY(B) = —8(s)6l-8) °*

where
(32b) 8(s) = als)g(s)[s-(r-1)]

m
= It (g_

n
Y I (S—uj){S—(r-l)],
J=1

Py s
if m, n > 0. (The modification to (32b) for the‘caée n=0orm=20
is obvious.)

The continucus time spectral density of Y(%) at fregquency
we{=m,+m) is SY(im). If & *0, so that- s(t) is a generalized
stochastic process, then RY(r), te{~w,+m), defined by (31}, is a

generalized function.

The partial fractions expansion of Sy(s) is

_ B(s)vE(-s)t
(320)  Syle) = =gTevel=sr

E(s)vE(-8)T - Egvaie(s)e(-a)T

oo

= 8(8)0(-8) + C,VC,
2 WJ % W? T
=] —+] —= ¢ vE ,
j=1 8Ty =1 vy 2




where -
T
3(rJ)V5(—rJ)

(32p) "4 = ) ( y )' J =1, eeey &

~2r. @I (r,-r )({-r -r

Jk=1 J 'k J k
k#]
g=m+n+ 1

{32e)

(rl"'°’r£) = (pl,...,pm,ul,...pn,r-l).

The Spectral Density of Unit Sampled {¥{t)}

Qur first step is to obiain an‘expression for Sgﬁim), the spec-
tral density of the continucus +time {?Tt)} process at frequency
we(=w,+=)., We +then deduce the covariance function of Y(t) from
Sf,and use it to compute the spectral density of sampled ¥(t). The
latter is denoted by S%(z) for z=e-im, wel-7,7). .

In operator notation, the link between Y(t) and Y{t) is the

following:
1 0
(33) Y(t) = . 4 T(t).
] eD-l
D
Consequently,
1 0 1 0 1
(38)  sls) = s -
0 e =1 0 e %_1
- B .
[ 11 12
8% (s) 8% (s)
21 22
i 85 (s) 87 (s)
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Similarly, define 5 = [séjl. Then, from (3l)

2
[}

S%l(s)

-5
s3°(s) (2=

MT\E
2
"

(35)

s%l(s) = s%""(__s)

22 =81 B1, .22
822(a) = (b (h) 8%(s).

We seek now to recover B; from ﬁ;. In doing so, we make use

of the fact that %; and Sf are related as follows:

+o
(36) sxis) = [ Bi{r)e_srdt,

where 8 = iw, we{-w,+=), Write Ry = Eﬁijlg By = [S%J], 8, = [Siql:
Wk= Iw::j];k=l, evaey 2. ThED.,
22 22
8 -8 4 W £ W
(37) s2%(s) = () 1 2+ T =4
Y 8 -8 5= s—r‘j j+1-3-rj

e3.1, 7% Sy
+ P ES g%y,

+
22
. ®

-
O

(r)e” de,
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for s = iw. The H%g function that solves (37) is

("
-1 r
% (e d1)(e I W22y 8" T < 1.
3=1 v !
8
(38)  RP(0) = < e[y,
L W2 r r.T
) '%{er(f-l)-(E—e e d +e(l_T)rJ} 0< <1l
J=l r
J
Rf{-r) T < 0.

\.
That (38) solves (37) may be verified by checking that (38) satisfies

(37) and taﬁing into account the fact that the inverse Fourler transform

is unique, Nexi,

bt J=1 77§ i=1 J
+@
- j-n R%?(r) 8T
s 2 w2l L w§2
57 () = (55 L ;:%:1.+le """a}
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for s = iw. The unique R%? and R%; functions that solve this are
. -r
L J =r
12,1~
lewj ( ?'.i e e
1 ot (1-7)r
(39) R:jli-e('r) =ﬁ Y -I,-]:-{W?(e ‘j-l)+W§1(e 1)} o<t
J=1 73
Lﬁ%l(—'r) T <0
r L 11 ]:“j rj‘t
Y Wf e “-1)e T3>0
J=1 d
(40) 2l (1) =<
&R%Q(—r) T < 0.

We summarize our results about R_f as Tollows:

) . I
(41a) RA0) = (lewj) + O Ve,

L _
(b1b) Byl1) = lewﬂe T =1, 2, see
where

ki 2L Ty 1)

3 3F & -
(41c) ﬁj = r "

Wl L(e 9.1) Wl 2 (r 41-e 9)

3T i 200




-wjl WSL? %(e J)
(k14) i-?d = o v ,
wfl 1ol Wt 2xle Jo1)(e 1)
J -r
3 _

for J =1, seey 2
Now, the spectral density of {¥(t),5t=1,+1,+2,...} 1is defined

by

(2)  8z) = zaftf)z

for z = e-im, we{~m,m)+ BSubstituting (k1) into (k2)}, get

(L43a) S%(Z) = M(z) + M(z™5)T - K,

where

(43)  M(z) = ——i——-
3=1 53

l-e Yz

% T
(¥3¢) K= ] (R + W) - B{0).

Equation (43) represents a simple formula for obtalning S% from
V-defined after (18)-~-and the parameters of C(D), defined In (21).
First, one obtains the A's, B's, p's, and u's defined in (25) and
(28). These are then used to compute the W's and r's in (32). Then
the W's are modified to get the #W's and W's. With these objects in

hand, the S%(e-im) function can be evaluated at any desired fre-

quency wel{-m,%)}.
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3. The Frequency Domain Approximation to The Likelihood Function

We assume that T observations, Y{1), ..., Z(T} are available.
Up to an additive constant, the frequency domain approximstion to
the log of the Gaussian likelihood function of this sample is glven
by

-imJ

1 T d
{Lh) £=-3 } log det [S?(e Y]

=1

T =-im
1 4, T,
-3 letrace [8§(e ) I(mj}],

“ﬁ = g%l,j = 1, esey; Te The computation of s%-was described in

Section 2 above. The expression I(w) is a function of the data

only.
W) T = 3 )T,
vhere H denotes the Hermetian transform and
(45b)  Tw) = %ﬂu;mﬂ
t=1
The expression in (LLi) is maximized over the vector of free
perameters:
L = (a,b,c,e,A,r,ﬁo,...,Sn,BO,...,Bn_l,
LR A R PP PO

Given a value for r, one computes £ In the following sequence of

s8teps:




8tep
Step

Step

Btep

Btep

Step

Btep

Step

Step

L:
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Compute A from r, &, b, A, ¢, e using (11} and (12).

Compute p,, e, py fTOm a5 eeey @ using (2La).

m-1
compu'be Bl 3 LN N Bm from 'fo 3 we ey Tm'i‘l a-nd. pl s ses gy pm 18—
ing (25b).

Compute i, »es, u, from B, ..., B, _, using (28e).

: Compute Al’ sesy Ap from a, ¢, b, r, Uy sses Ups

6 cragy Gu U.Bing (281)).

0?
Compute Wi, ..., W, from (rl,...,rl) = (pl,...,pm,
ul,...,un,r-x), £=m+n+1, ¢, using (30) and (32b).
Compute W a ﬁ}, J =1y eeey & from Wl, casy WE’ Tys sesy Tp
using (hle) and (h1d).

_imk

Evaluate 8%{e ) at W = k=1, ses, T, from

ﬁ&, ﬁ}, Fys 3 =1, eees 2, 8, Vg, using (30e), (b41a2), and
(13).

Substitute S%-into ({L4). Also use I computed from (L5a).
In evaluating (44), one would want to exploit the symmetry
properties of s% and I. In addition, 1f I{0) = O, then

frequency z;ro should be omitted in order to avolid £ being

unbounded ahove.

E. The Sampled Representation of {¥(t)}

This section describes algorithms for computing two kinds of time

series representation for {¥(t),t=0,t1,%#2,...3}. The first produces a

set (K ,W,0%) that satisfy

(L6Ea)

{161B)

Y

s&(z) = x*(z) " WH(zet w2 Tix T (2~ 1 T

det K+(z) = 0 implies lzl > 1
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{L6c) det W (z) =0 implies Izl > 1

(L64) K'(z) = I+ KIz + aee ¥ K;zp

(L6e} wh(z) = 1 + WI Z F eee + W;zq.

Here, XK'{z) and W'(z) are 2 x 2 matrix polynomials in z and ot isa2x2
positlive semidefinite matrix. The matrix polynomial S%(Z) iz defined in
(h3). Conditions under which a (K+,W+,Q+) exists and is unique are dis-
cussed in Hannan [1969].
. + +

This section alsc presents an algorithm for obtaining (¢ ,6+,V )
where
et "HT

-~ o+
(472) sé{z) _ Clz)v
¥ 8" (z) o' (z71)

(UTb)  6'(z) = 0 implies |z| > 1

(47c)  det T'(z) = 0 implles |z| > 1

n

(474) 0¥ (2) = 1+ 672 + vuu + e;zp

-

(4Te) & (z)

~+
I+ Clz + eee +

&z,
q
*+ : ohl
Here, @ (z) is a scalar polynomial in z and T (z) is a 2 x 2 matrix poly-
nomial in z, while vt is positive semidefinite. Hannan [1970, Chapter 3]
discusses the existence and uniqueness of (0,8 ,v'). Sufficient condi-
tions are that SY{iw) igs a positive matrix for almost all y ¢ (—w,+m).

The first part of +this sectlion describes the caleculation of

(x",w",27). We then consider the calculation of (67,3 ,v').




1.

Caleulating (K W ,a")

Below we show how to compute (K+ ,W+ ,9+). The strategy Involves
first obtaining Kt using a technigue suggested by Phillips [1959].
We then find W' and @ using methods described in Whittle [1983] or
Rozanov [1963].

Write
(L8) M(z) = U(z)"~v(z),

where U(z) and V{(z) are {(as yet unknown) square, finite-ordered
polynomial metrices in non-negative powers of =z. The expression
M(z) is defined in (43b). Substituting from (L43b) into (48), and

premultiplying by U(z), get

2 1
{k49) Uz) § —d— = ¥(2),
J=1 1 - r,.z
d
. r
where ry=e ‘j, J =1, eee, &+ Multiply both sides of (k9) by +the

scalar polynomial (l—?&z):

ulz) (W +(1-r. z) 1} ———é:r—} = (1-;kz)V(z),
j=1 1 -r,z
14k 4

=1, seey L« Evaluating this expression at z = ?El for each k

gives
3 _
(50)  UlFHE = o,

k=1, see, %« Using the result in (30f), note that Wj has rank 1

for all j. (Note: det E(rk) =0, K =1, eeey Lo
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Expression (50) for k 1, «ee, & represents at most 2¢ inde-
pendent equations. Consequently, we can determine as many as 22

parameters for U{z). Write

¢
(52) U(Z) = I + Ulz + s + Ucz

Here, ¢ = %ﬁ if 2 is even and c = %{z+1) if ¢ is odd. Consider the
even case first. In this case, there are 2¢ unknown parameters in
U(z}, so that a necessary condition for (50) to determine U(z) is

satisfied. Suppose now that £ is odd. 1In this case, ﬁ(z) contains
e = 28 + 2 parameters--iwo more than we can hope to solve for using
(50). 1If, for example, we arbitrarily set the left column of U, to
zero, then a necessary condition for {(50) to determine the remaining
parameter of U(z) is satisfied. 1In éhe remainder of this section,
we assume that sufficient conditions for (50) té uniquely identify
U(z) are satisfied. 1In this case, {(50) represents a set of linear
equations in the unknown elements of U(z) and can readily be solved.

With the matrix U(z) in hand, V(z) in (49) is easy to com-

pute. Write

g U{z)®
(54) v(z) = ] —d-
J=1 1 - rJ

The fact that U(le)ﬂj is the zero matrix indicstes that the scalar

polynomial 1 - r,z cancels with every element of U(z)W,, for

J J
J =1, eevy 2. Therefore, V(z) is a matrix polyncmial of order
¢ -~ 1. Taking this into account and expanding the right hand side

in {54), get
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c-1 f_ 3 k
Vo # V2 + eee #V 1z o= (T+Upz+ec+U 2) [ W, | (F2)7].

0 1 1 1l 31 Jk:O J
Matching coefficients:
k 2
(55) v. = Ju, IW.(¥ )(k“s), K =0, 1, ase, c =1
k g=0 * 1=1 3

where U, = I. Using the given U(z) and V(z) matrices, substitute

from (48) into (L3a) to get
(56)  8H3) = u(z)"W(z) + v(zH TG T - k.

Pre- and post-multiplying by U(z) and U{z~1)T respectively get

d - - - -
(570 w2)syz)u(z™) " = v(2)uz™H T + uz)v(z™HT - ule)xuzh)T
= G(z).
For example, when ¢ = 3 so that ¢ = 2,
2. Tl T2
(58a) G(z) = Gy + Gz + G 27 + Giz7 + Gz,
where
T LT 7 T T
Gy = Vo + VU] + Vo + U V] - [K+U1KU1+U2KUE]
T T T
(58b) G, =V, + U Vo + U V) - [UlK+UeKU1]
T @
G,=U W.-".).
2 23=1 J

Obviously, we can identify K (z) = U{z). The objects

W+(z) and Q" are then found as the solution to the following matrix

factorization problem:

(59) wiiz)a w2 T = a(a).
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It is easlily confirmed +that SY{im) positive for almost all
we(=w,+=) guarantees that G(e—im) is positive for almost all
we{-%,7). Results in Hannan [1970, Chapter 3] then guarantee that
the factorization in (59), together with the conditions (LkEe) and
{L6e) with @ = ¢, is unique. Algorithms described by Whittle [1983]
or Rozanov [1963] may be used to solve (59). (Whittle rules out det
a(1) = 0.)

Consider the case n = m = Yo = 85 = 1» Y, =Yy =6 = 0,
8o that 2 = 3and ¢ = 2, This case, because p = q = 2 in (46),

neatly 3illustrates some effects of sampling and averaging from a

continuocus time process. In the present case, (30f) becomes

a{D) A(D) [D=(r-a)]
(A-pl}a(b+A)

det &(D) =
Therefore, premultiplying (30a) by E(D)*l = B(D)*/det B(D), we get

e{t).

(60) (A—pl)aGb+A)5(D)a ¥(t)

Here, C(D)* denotes the adjoint matrixz of J(D). Thus, in this case,
{Y(t)} is & pure vector second order autoregression in continuous
time. Sempled and averaged {Y(t)}, denoted by {¥(t),t=0,t1,+2,...}
on the other hand, is a discrete time ARMA(2,2) process. One moving
average term is due to sampling and the cther to averaging.
The following ﬁumerical example 1illustrates the points

made above. We assume the parameterization studied in section F, in
which n = m =y, = § =1, v, =Y, = & =0, 80 that {60) 1is the

relevant representation. The following contlnuous time parameteri-

zation was chosen:
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[I+A1D+A2D2]Y(t) = ¢g(t),

where

A1=|:11.23 5.5'E|, A2 =[13.906 o)
286 2.0 STL 0

Ee(t)a(t)T=[9 18].
18 17

Also, det (I+A s+A232) = 0 implies 8 = -.1, -.5, or -.812.

1
Using the calculations described 1n +this section, the

representation for {¥(t),t=0,1,+2,...} is:

+

(I+K{L+K;L2)Y(t) = (I+W1L+W;L2)u(t)

where

K;: =[-.814 -8.776 |, K; =[o u.931
-.003 -1.141 0 .318

+

w*l'= 209 -9.035|, W= [_17.25 -2.620
1.982 -.290 | -1.113 -.169

Eu(t)u(t) = 9+=[ 16.870 -111.068].
~111.068  T788L.s5T
Also, the roots of det K'(z) are 1.105, 1.649, 2.252 and the roots
of det W (z) are .6kl + 3.9351i.

This example illﬁstrates some of the comments on ldentifi-
cation made above. In particular, the sampled VARMA (2,2) represen-
tation for {¥(t)} is not identified without the indicated zero re-
gtrictions on K;. Without these restrictions (but imposing

+ +

KO = Wb = I) there is a two dimensional infinity of ways of choosing
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+ +
Ki‘l Wi!
+

that the null spaces of K

i = 1, 2 which satisfy (46). This can be seen by noting
5 and W; have a non-empoty intersectlon and
then applying the argument in Hannan (1969 p. 22k, second to last

paragraph] .

2. Calculating (0,8 ')

Obtaining (e+,ff+ ,V+) 'is straightforward. One method of
doing thls 18 %o execute the calculations Just described and set
87 (z) = det K'(z), & (2) = [adjoint(k*(2))]¥*(z). This (indirect)
procedure suffers from the shortcoming that sufficient conditions
for the existence and uniqueness of U(z} in {52} are difficult to
establish, even though we know that S}-r—(im) is positive for almost
all w ¢ (—w,+m), The latter is sufficient for the calculations
' described below to work.

Define

2
(61) 0'(z) = 1 (1-F,2)
J=1

Multiplying S-% in (L3a) by 6+(z)6+(z-1), get

2 L
(62)  &"(2)sl(z)e"zh) = 6Tz [ B 1 (1-F2) + e¥(2)

¥ J=1 Y k=1

k#]
L L

LW 1 -Fa™) - o' (a)xe™(z™h)

3=]_ k=1
k*l
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say, where G{(z) = G(z_l)T. The matrix polynomial G(z} will be of

order £ & v* are found with the properties
e -
63) T = e,

{47c), and (4T7e}. A sufficient condition for the solution to {63)
to exist and be unique is that Sy(im) be positive for almost =211

ge{~w,+m},

F. Parameter Identification and Estimation With AR(1) Disturbances
In this section we assume n =m = YO = 50 =1, yls 72= 51 = Q,

In this case, (30) becomes
(6ha)  o(0) (5]} = (G,+E p+Ep%el),

where o(s) = (s+a0)(s+30)[s—(r-l)l and

. 1% %8g
{(6hb) g, =
ay(a,be-(r-1)) aybes,
a+ b+ A a+b + A
9 9
(Bhe) g, =
1 be )
-&ql(du- E—J + GO— (r=2) -a.q2 [ be
a + b+ A a+o+ AP0 =
0 0
(6hd) T, =
2 1l - aql —a.q_2 .
a + b+ A a+bhb+ A
B

In (64),
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- 1
P ;{cb—ra) - By

(6he)  q,= (e + Db + A)

(a+8, ) (o+A) = a(o+a]Uira T

Write (1) = Ee(s), (D) = €(D)6‘51= I+ B0+ G % Here,

~ q_lbc(ﬁo—qa) + o,o(r—l) q_l(ao-so)(a+b+A)
(65a)  C) = E%Y) | Y]

Bo% 8a%0

(bc)Eqi(Bo-ao) + bcaOBO(r—x)[bc(uO-Bo)-aaOBOI qibc(uofpo) + By (r=A-cy)

(a.-l-_b+A)Boao(r—A) 30a0(r—k)
B 0 0
T =
(65b) 2
(1-aq1)bcfs0 + a[qlbc—(r—l)]uo —Bo(l-aql) - aq,
(a.+b+A)Boa0(r-l) Bouo(r—l)

~
Ed

Because +the upper row of Ce

parameters in ¢(p). The scalar polynomial 8(D) supplies three more.

contains zeroes, there are six

Finally, there are three parameters in ¥V = E 2(6)E()T. Thus, the con-
tinuous time Wold representation of {Y(t)} has twelve "reduced form"
parameters. There is no aliasing Identification problem in the present
case because the poles of the spectrum of {Y¥(t}} (e.g., —uo,—BO,r-}\) are
real. Consequently, the necessary and sufficient condition for parameter
identification is +that the mapping from the structural parameters %o

~ ~

B, 51, 82, ¥ nave a unigue inverse in the space of admissible structural

parameters. The structural parameters are

Vool

E= (3-,b’csesAsr:BO:aoavllavlza 25
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S8ince there are 11 of them, a necessary condition for them to be identi-
fied is met. Unfortunately, since the reduced form parameters are not
independent, identification dces not occur,.

The restrictions of the model imply +that no more than 9 of the

~ ~r
d

12 reduced form parameters of 8, ¢, 02, T are free to vary indepen-
dently. There are two ways to see this. One is to recall from (60) that
in the present case, {Y(t)} has a pure vector second order autoregressive
representation in continuous time. In that equation, there are at most
six identifiable autoregressive parameters and three varlance-covariance
terms. {(Of the eight autoregressive parameters, two are zeroc.) An al-
ternative way to see this is to study (65). Simple algebra yields:

~i1
(66a) q,be = [cl So-l]ao(r-k)

{Bo—ao)

~12
Cl Boao(r'-?k)

(66b) q, (a+b+a) = =——
0”0

~

22
BO[ao(r-l)Ce

Bo—%

+1] -

-

(66c) aq, =

Dividing (66c) into {66a)} and (66b) respectively yields,

aki
_ ICl Bo-llao(r—h)

(67) =
a ~22
BOIuO(r-A)c2 +1]
~12
(6 arbra T ForV

8, ~
~P2
Boluo(r-l)cz +1]



According to (6Le),

+
Lo g+ (r-a-B (TR 1)q 8
(67c) r = .
(ﬂﬂ_. 1lg.a + 1
a - ey
By (66c) and (6Ta-b), the parameters r, 233 EL:;Efi—& can be recovered

uniquely from

w22 a1l . 412

C2 2 Cl ? cl » C‘O: Boa”(r—l)o

~

gel and the botiom row of ﬁl are determined from g and

We maintain that 02
the remaining elements of 5i and Eé. This is seen as follows:

~ (a.+8.}(r=1) - B.a ~11
oz 0" 20 0%
(688.) Cl = BOC!O(I'—A) - Cl » .

' ~oq (Eijbcql(ﬁo-ao) + (%SQGOBO + (r-l)[(%;ﬂ(ao-so)-aoso]
(68b) €= a+b+h
EZs

(22)beq (B -a) - (r-M)ay8, + (22)18,(ay=(r-2)) + ay(r-2)]

[E'?]:Tté) B lr=)

ey P (1-aq, ) (22)8+ lagbe-(r-2)]a,
¢ 2 (a+b+A) (r-3)
s BT

) (EE)BO + qle(uD_BO) - (r-l)ao

a+t+b+A
—

)Byag{r=n)

Equations (68b) and (68c) are cbtained by dividing the numerator and

denominator terms of the corresponding elements in (65) by a. Note
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that everything in the right hand sides of (68) can be obtained from
the roots of 6, eguations {66) and (67}, and fro 3%1, ﬁie, 622.

Thus, the twelve elements of 8, E, ¥ are spanned by the

following nine element vector:

be a+b+th _ ¥ & o
(69) (uo ’Boﬂk-r!g—h,_—h_a‘—’rlvll ,vla ’Vea)‘

This vector is restricted by the conditions that all its elements,
except perhaps Vy,, be positive. The restriction on Vio is

vllv22 - V?_z > 0. The implications for the vector in (69) are as

follows. TFirst, (12b) =and the line thereafter show that )\ > 0,
r - A< 0. Also, r, (befa) > 0, (a+b+A)/a > 1. Finally, [vi,j] is

positive semi-definite. Consider the vector T':

- “ be a+b+A
(TO) T = (aO,BO,A—P,a 3T$F)L113L223L12)1

~ ~r

where the flrst seven elements are restricted to he non-negative and
~F 2 Lard

_ B S 2. .p
Vip = D10 Vio ™ Dpgliggs Vo = Dpg* Lose

shows that if 35 80, A =T can be identifled, then the whole of T

is identified. Unfortunately, identlfiability of T is tenuocus when

The preceding discussion

we drop the assumption that Gy s BO’ A - r are identified. The basic
difficulty is that there are six ways to allocate the labels

" 0", "—BO," and "X - r" to the roots of 8(s). This in turn cre-

ates the posaibility that corresponding to a given T, there are five

other points in R’ which give rise %o +the same values for

~

8(s), 61, 52, ¥V as does T. These five points differ from T in their

~

implied values for g., 8., A — T, be a+b+ A

0* P 2 ° Y s e Conditional on

the asslgned values of %y BO’ and A - r, the latter three are
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-,
uniquely chosen to satisfy (66c) and (67). If perameter identifi-
cation is to obtain at f, there must be some way to rmle out all
five alternatives to ', It may be shown that the restrictions im-
plied by (68) are of no help in. this respect. On the other hand,
a + b + A

the restrictions (bec/a) » 0, ~———a—— > 1, and r >0, not "too"

large, may do the Job. Consider the following example:

T = (.ooaho,.00761,6.06,102.,hh.e,.01,Lll,L22,L12)

Values have not been assigned +o Li,j’ i, J = 1, 2 since these are

not relevant to the discussion. The given parameters imply
51 ={211.522 -3L.83LL{, 6% =} 0 0
212.616 38.9635 -49.7959  20.L1Th

9(s) = -.000388 + .0972s + 6.0785> + s°.

The five other parameterizations which give rise to this reduced
form are

1’ L22' L12)

11°RppR1p)

)

(.00761,6.06,.00840,-,0135,-.00223 ,~3,.T1L65,L
{.008k0,6.06,.00761,~.0135,-.00223,-3.506,L
(.00761,.00840,6.06,-T4.3,-28.0,-1.997T, Liqobpnly o

{(6.06,.00840,.00761,~Th.3,-28.0 -Th.0936,L )

1’ 22 12

(6.06,.00761,.008h0,102,&&.2,101.558,Lll,Lzz,Ll2).

Among the ahove five alternatives, all but the fifth are inconsis-
tent with the a priori restrictions. On the other hand, the fifth

parameterization implies an extremely large discount rate: 10155.8

percent, This parameterization, which is observationally eguivalent

to T, mey therefore be ruled out as implausible.
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A modification to the procedure in Section D 1s reguired
in order toc evaluate the frequency domain approximation to the like-
lihood function at & value of Te In particular, replace steps 1

through 6 with the following:

Step 1: Compute vll’ Vla, V22 from Liy, DLoj, Dope
Btep 2: Set ry = ~ags Tp = =fp, ry3 = r - Ao

~ ~

Step 3: Compute 51, 52 from {65), and set 53= 0.

&r, )7 ,)"
S8tep L4: Compute W,j = 3

“2r, I {r,-r M-r,-r.)
Jgsp B 1

,-J = l, sowy 3.

k#]
lUsing the W's in step b,
T
3 W 3 W
(71) s (s) =] —b+ ] i
7 §=1 ®%5 s=1 3

Expression (71) is (32a) with £ = 3. To finish evaluating the like-

lihood function, proceed with Steps T, 8, and 9 in Section D.

G. Temporal Aggregation Bias

In this section we deshribe an algorithm for computing the
probability limit of the estimator of an econometrician who understands
that the dataz are generated by the model of Section B, but who mistakenly
agsumes that the economy evolves in discrete time, with a timing Interval
equal %o the data sa.ﬁpling interval. We assume that the data are gener-
ated by the continuous time mecdel, and denote their spectral density
by S%(eim,z;), w € (0,21). The parameter vector ; is defined after (LSb)

and si is defined in (h43).
¥
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The econometrician posits that the inventory-sales dsta are

generated as the solution to the following problem:

(12) max

2
{84egoToege1t gm0

a
By zoaj{Pt+jst+j“§[st+3+zt+3‘It+3-1

b 2 _
2E3t+j }

e 2
t+JIt+J—§It+J}’
subject to It given. All variables are defined as before. The only new
variable is B, the unit interval discount factor, which is expected to
lie in the unit interval.,

The first order necessary conditlons corresponding to 8, and

Ti4+7 respectively, are

a-be a L
(73a) 8, = (a+b+A)I s+ b+ ATt-1 Ta T o ra %
2
(73Db) gal . - la(1+B)+bcve]I, + aI, . + gas . - (a-be)s, = v .

In (73) we have made use of P, = —As; + .

Substituting (73a) into (73b) and rearranging, get

_1 8 +b + A ra—bc ga
(The) (1-aL)(1- ABL)It+1 Balbol(c+l)+A] a+tbrh "t~ atora Yee1t tI
(Thov) A b= &+ b+ A rBa2+(a-bc)2 (a+be+e+ )]
%8 " Balblc+l)+All a+brh Ba

and ]Al < 1. The sclution to (Thka)} which solves (72) is




- ho -=

_ A8
t = Mgy " Balblc+1)+A] .

lag ]

(15) ZOEt{(a—bc)—B&L-ll(As)iut+

i

a +b + A It 1
~ Falblesii+a] B izo(“” BivViss

= AT Mabe) [(a-be)r-al
t-1 ~ alole+l)+A] t = al[blc+l)+A]

- i
izl(ks) Etut+i

(a+b+A) A E (AB)iE

T alblc+l)+A] Viag®
alblec+l)+A 120 Lttt

As in the continuous time case, given a time series rodel for
LV (75) and (73a) imply a time series representation for Yy =

(Itvst)T‘ This in turn implies & spectral density, Se(eim,a), for

"

we (0,2r)., (The superscript "e" denotes "econometrician®.) Here, &
denotes s vector of parameters which 1lncludes g, a, b, ¢, &, A, and the
parameters of the statistical representation of {ut,vt}.

Define
g(z) = P lim &

The above PFlim is computed on the assumption that the data are generated
by the continuous time model, with parameter values ;. Here, ET ig the
(misspecified) maximum likelihood estimator of fZ. Asymptotically, this
is equivalent with the following frequency domain estimator:

-1

log det [5%(e  9,2)]
1

(77)

He-1rd

: 1, 1
ET = argmax E{— Es

il -1iw
I trace [s%(e I, M1(u )1,
=1

0|

J
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where Wy ='2%l, J =1, vee, T, and I is defined in (4S). It can be shown

that Plim ET 1s the argmax of (T7) as T + « with I replaced by the true

spectrum of the data, which is S%. Thus,

R 2%
(18)  &(z) = aremax {- [ 1log det [s°(e™,g)ldu
£ 8]
2n e, -iw =14, ~ip '
- [ trace[s (e SE) S;(e s2) 1duw}

0

In (77) and (78) the maximization is carried out over the range of admis-
g8ible values of E.

Qur objective is to compute E(C) for a wvarliety of values of .
In each case, we plan to compare the speed of sadjustment implled by ¢z
with that implied by E(;). The difference is due to temporal aggregation
bies.

As an illustration, we considér the case'iﬁ which u. and Vg
have AR(1l) representations and fail %o be Granger caused by each other,
or any other model varisble, This is the discrete time version of the

model considered in Seection . Accordingly, suppose

Uy T Wy T ey
(79a)

Vi T PVt Bt

_ T
where 1u| <1, |p| < 1. Also, € = (elt’eat) is a ‘yector white noise
with
Q =0

(7T9p) E € €y o -
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Substituting from (79a) into (T5),
(80} I, = Al + hu, + gy,

where

1 AB
B = STe(ermywaT M a-be)+[(a-bedr-al 2500

o lavbea)a 1
& = ~ alblc+l)+A] 1-xgp"

Equations (73a), (79s}, and (80) imply

(1-pE) (1-pL}{(2-AL) I, = h(1-pL)e

(1-pL) (1-uL) (l-)\L)st

- 1l
a+b+A

{(1-pL) {1=(a~be)h+{ah-A)L] €;
+ g(l—uL)[bc—a+aL152t}
Writing this in matrix form,
g
(81a) (l-pL)(l-uL)(l—lL)( )= (co+clL+c2L2)st,

where
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h g
0
1-{a-be)h g{be-a)}
a+b+ A a +b + A
-hp -8u
(81c} c, =
(ab-2) - pli-(a-be)h] gla-p(be-a)]
L a+ b+ A a+Dh+ A
) ]
(81d) C, =
-p ah-i) -gpa _
La + b + A a +b + A

In order %o obtaln an identifiable reduced form, compute

(L) = C(L)Cal and § = C0 Q Cg. The Wold representation of (It’st) then

possesses 12 non-zero reduced form parameters. However, only nine of
these are free %o vary independently. This is fewer than the number of

structural perameters of the problem:

e = (Bsasbac,e,A:u=paﬂ )-

11°%28% 5

-

Like in the continuous time case, only nine of these reduced form param-
eters are free to vary Iindependently. This will be proved in the discus-
sion that follows.

Consider the following nine element parameter vector:

be a+b+A ~ ~
% PRV )

a ’ a M1 22’912)'

r = (uapsls

The admissible region for T 1s P, where
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P = {xeR: x g 0k=1,2,3; |x,| <1, 1 =1,2,3,6;

2
X420, i=4,7,8; x5>1; xsz-x9>0}.

We will show that for all T ¢ P, the mapping from T to 8(L), El’ 5é, 8
has a locally unigue inverse in P. We will also show that given (L),

ﬂi, 62, § in the range of the mapping T e P + {6(L),¥ ¢}, there are

172
no more than six isclated elements in the associated inverse mepping that

belong to P. For any given o(L), 81,

determining how many elements of the inverse mapping belong to P. If

Eé, 4, we provide an algorithm for

there is only one, then the model is said to be gleobally identified =t

8(L), C., 52, 8.

Note first that

~11 ~12
. Cl Cl _ 0 0
c., = C, =
1 * 2 *
~21 22 21 22
C; e ¢ %
where
&t = n(a~be)(y-p) - u
~(an-2) (22 -1 )+p{1-(a-be)n] (22 —1)+[1-p(2E -1)][1-(a-be)n]
521 = a P a H 8
1 [{a+b+a) /a]
512 = h{p-p){a+b+A)

C-° = =(a+p) + h{p-u){a-be)
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p(::-‘i - 1)(ah=1A) + ul(a-be)n-1]

621 =
2 [(atb+A)/a]
'622 = ha{p-p) + pi

There are six weys to infer g, 5, A from the coefficients of o(L)

= (1-pL)(1-pL){(1-AL). TFor every such way, 1t is possible to

be a+b+ A

uniquely infer Fal » B, as we ghow below. First, note

2
522 - pA
ah =
-p
E%l +ou
a~bcth =
( ) ¥ -p
i
(a+b+A)h =
u-p
Consequently,
6'12
a+b+ A 1
8 22
1L
ve_, Gt
a, 2
%

Next taking into account the formula for h, note that

el

Hence,

1]

+ 2Bhkn - (1 - -?—)Z\-l]luj

bc b+A
l(l - — I+ —E‘ + ——a—]a.h[/_

,}\Ml\ 4.&\,\ Lio'-"- bad ¥o+ﬁ l-i %L Lloc. ‘o&hl@?&@!’)
4+ alioes)

P
il
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b+ A

Bince—~for the given values of :\,‘ ., p-—ah, and E-c-are
identified, it follows that g8 is toco. In fact, p, p and A are
locally identifiable from (L) = (1-pL){1-pL){(1-AL). This estab-
lishes that all T e P are locally identifiable from the reduced
form coefficients 6(L), 522, ﬁ'il, 5%2 and {.

It is of 1interest to note that 3, (L) and 8 do not
permit Inferring more than the nine elements of T. To see this,
note that Eil, Eie, and '521 are exact functions of the remaining
elements of G and of 6(L).

We have shown local, bubt not gleobal, idepntification. In
fact, global identification does not obtain for all T ¢ P. It is
straightforward to check global identification for any particular
1 52 (8 can be
ignored). Then compute the six different ways of a.lioca’.t.ing the

I «P. First, execute the mapping I + o(L), ©

labels "u," "p," and "A" to the roots of 6(L). Then compute the

+
P’-——-—:—j—l}- ’ %"-, and 8 using the formulas

assoclated slx values of
provided above. The result will be six vectors in R9, where one
of these iz by construction the T g P we started out with. If
none of the alternatives to T belong to P, then global identifica-
tion obtains at the point T ¢ P.

At this point, the sources of temporal aggregation bias
in estimates of speed of adjustment are clear., The restrictions
implied for the continuous and discrete time Wold representation
by the contlinuous and discrete version, respectively, are simi-
lar. However, the continucus time model loses the property of

being a pure AR{2) process upon sampling the data and averaging
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sales, This sampling and averaging fesults in the continuous and
discrete models having different implications for measured data.
The experiment outlined in this section can be undertaken in such
a way as to lsolate the contributions to blas of sampling and of

averaging.

The Effect of Averagling on Covarlances

In a recent paper, Blinder [1984] studies the so-called produc-
tion smoothing model of. iInventories and sales. 1In that model, the short
run productlion function is concave and the underlying shocks are domi-
nated by a serially uncorrelated demand shock, The model of this paper,
with the variance of vw{t) small and u(t) serially uncorrelated, has
thege prope;ties. The short run preoduction functlon c¢learly is concave,

since (with b=0) it takes the form
Hw) = 2[mal’

where z is a function of the existing stock of inventories. (Note that
the degree of concavity in ¥is inversely related to the size of a., The
variable z is guaranteed %to be positive if the stock of inventories is st
a level where the marginal product of inventories is positive.)

The production smoothing model has the Impiication, according
to Blinder, that the covariance of sales, s{t), and inventory investment,
DI(t), is negative. In this model, inventories act as a buffer to smooth
production in the face of disturbances to sales. Blinder observes that
the covariance of measured sales and investment is in fact positive, thus
contradicting the implication of the production smoothing model. Blinder

argues that the model can be reconciled with the data Wy Ilntroducing the
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iy .

right kind of serial correlation in wu{t} (it needs & "hump shaped”
moving average representation), or by raising the variance on the produc-—
tion shock, vw(t) . The analysis of this paper suggest a third possibil-
ity, namely that the positive covariance between measured sales and In-
vestment is an artifact of averaging. (A fifth possibility, not dis-—
cussed here, is b large and positive,)

Recall that measured sales, 8(t), are related to actual sales,
s(t), by s(t) = } s(t+t)dt. Similarly, measured investment, I{(t+l} -~
I(t), 1is relateg to actual investment by the averaging operator:
I(t+1) - 1I(t) = } DI(t+T)dt. It seems in principle possible that
Cov(DI(t), s(t))0< 0 and Cov{I{t+1l) - I(t), =(%)) > 0. To see this,
consider two random veriables, x. and y., and suppose that Cov(xt,yt) <

0, but that Cov(xt,yt_r) is large and positive for tv = tl. Then it is

1 1 - ' 1
the case that Cov(E{xt+xt+l), 2(yt+3rt+l)) Cov(xt,yt) + =Covi{x

2 g1Vt
+ %Cov(xt,yt+l) > 0. Evidently, the condition required for averaging to

reverse the sign of a covarlance is s special one., It requireé that the
contemporaneous covariance and lagged covariance be oppeosite in sign.

In a (failed) attempt to find an example of the case
Cov(s(t),DI{t)) < 0 and Cov(s(t),I(t+1)-I(t)) > O we considered the fol-

lowing model:
Dx(t) = ax(t} + elt),

where

s(t) 211 %12

X.(t) = A ’
DI(t) 0 a

22




e{t) <0

Iz white, and LT

Now, BT{t)t(t-7)T = eATVe.r(Yt

- kg

1 =1, 2. then,

a T a.T
12 (e F22 _e 117y

&o07%11

o2t

), where

a

2 12

1
22,
Var(Yt) =

%0

-k

1
(Ea

22 )

2& (all+a22

2&22{a11+a

%10

Here, k = Thus,

852 " %11

Ccovis(t), DI(t))

) 28,

22 22

in particular,

812

Yar(DI(t))

Now,

Cov{s{t), I(Lt+1)

1
= E [ s{t+1)dx
0

Covis(t+r

Qe

= (————J1~—) var
22 ll

var(I(t+1) - I(&))

= 2 Var(DI{v)}[

2a,,la v

1

2a22

I{t))

1
{ pI{t+v)dy
0

Y, DI{t+v)]drdy

a a

11

22 e -1-a

-1-a
22
1-1
22
a
e

(Dm)){{ i1y

211

22




- 50 -
where
-8,
Cov(s(%},DI{%)} _ 12
var(DIilt)) 2, * 8y
Define
= . Cov(s(t),1(t+1)-1(t))
Var{I{t+1)-I(t)) :
Then,
&
11
- e =1-a 8 2
-2-‘ a ia 2ol 11](8.22] -8y}
227%11 e 221 o 11
22
11 1 .2
- (—22 (2 Y31 %t R Y ez | (tu
a,. -2 1 1 i 2 a 8 __w& *
22 11 E + -ﬁ- 8.224' 'I;T' 8.22+ saae 11 22 11

If it were possible to choose a;, and a,, 8o that {p/p) < 0, then we'd
have an example in which averaging produces a switch in the sign of =
covariance, Unfortunately, this seems not to be possible, at least for

extreme values of aqq and 2o The following resulia may be confirmed:

3.22+0==> +> 1

w»lol

--n = -E o0
8o+ > 5 >

a .+ 0 = %—+ positive constant

11

We do not have an analytie result for the case all+ LY However, numer-

icel simulations suggest that in this case (p/p) + a positive constant.
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Interpreting Fundamental Moving Average Representations

A current widespread practice 1s to compute and report the
fundamental moving average representation of unconstrained estimated
digcrete time vector ARMA models. Frequently, errors in this representa-
tion ("innovations") are interpreted as surprise shocks to the utility or
production functions of agents. 1In addition, the moving average coeffi-
cients are interpreted as reflecting the transmission mechanisms whereby
these surprises dynamically 1Influence the variables observable %o the
econometrician,

A basic difficulty essociated with the above procedure wes
pointed out by Hansen and Sargent [1982]. They note that dynamic eco-
nomic theory does not always imply that the innovaticons in the gampled
data observed by the econometrician coincide with s‘r;oéks to techhology
and preferences.. A divergence can arise for two reasons. Filrst, assum-
ing a correct model timing specification, the model may imply a2 nonfunda-
mental representation. In this case, the innovations are a =square
sumable linear comblnation of shocks o technology and preferences going
into the infinite past. (See Hansen and Sargent [1980, ftn. 12} for a
simple illustration of this possibility.) The second potential source of
divergence arises 1if agents are making decisions over a finer interval
than the data sampling interval, for example, in continucus time. In
this case the first possibility mentioned above can also arise {e.g.,
detC{D) in (21) may not be invertible). However, even when this does not
occur, there can be a divergence between the innovaticns in the dlscrete
time sampled representation and the continuous time disturbances to pref-

erences and technology. In addition, the discrete time nmoving average
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coefficients may deviate sharply froﬁ resemblingﬁg"séépled version of the
continuous time moving average representation.

We propase to supply evidence on the empirical Iimportance of
both of the above difficulties in the context of ocur bivariate model of
inventories ‘and sales. As a byproduct of the estimation we plan %o carry
out, we can compute the moving average representation that appears in
operator form in (21), evaluated at the estimated parameter values. We
plan to compare this wlth the moving average coefficients of the funda-
mental representation of sampled averages from our continucus time
model, Finally, we plan %o use discrete time data on sales and invento-—
ries to estlmate the one step ahead prediction errors that sagents are
making in continuous time {Hansen and Sargent [1982]) describe projection
procedures for doing this}. We will compare these with the innovations
computed from our discrete time fundamental sample reéresentation.

As an example, consider the case n =m = 8g =8 =1, 8§ = 8p =
8§, = 0, which was studied in Section F.

There we report

o(D)

y{t)

« b

[ £(0)E(s-n)dr,
[a)

where

£. (1)
=(F1(T))= lﬂxle"m'o'r +aeBaTan e(r-l)T, t > 0,
2

and




-5(-30) (A

1 (30-‘305(301-:'-1) -

1
. -5(-—80) ] A
2 (ao-Bo)(Boﬂ'—hT . AS

1
1 - B(r-2) = (Aa
ff—l+ao)(r—k—ﬂo) 42
3
Where Ai are two element row vectors, i, J = 1, 2, Note that £;(0) = 0

and £,(0) # 0. This is an implication of the fact that I(t) is, and s(t)
is not, differentiable, In addition to {f{t)}, it is also of interest to
compute {f(t)}, the moving average representation of [Y(t)}, where

I(t)

“Y(t) = .
1 _
I s{t+1)dr
0

The function {f(<t)} is defined by

[ Flo)e(t-1)dx,
-1

T(t)

wheare

-f('r) = *
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Straightforward calculations show that

(o =% ~a_T _ -85 -8 T
A‘LE(l ea °]e o, Ag(]' : ]e o
() o
{(r-a)
+ Ag(l—ek_r ]e(r—k)f >0
?é(f) ={
-ao(r+l) —ao(r+l)
2rl-e 2rl-e
e A
(r-a)}(+1)
¢ Rt ] -1<¢1%0

It is easy to verify that £(-1) = 0, and thet T,(.) is

differentiable for all T > -1, However, [ f{t)e{t-t)dt is not the
-1 .

fundamental representation for {Y(t)}. To get this requires first

factorizing the spectral density of {¥(t)}, which is
S?(s) = G(s)SY(s)G(-s)T,

vhere By(s) is the spectral density of {¥(t)} and

1 Q .
g(s) = .

3
0 e - 1

s
It appears that this factorization 1is difficult %o =accomplish,

since G(8) is not rational. If inventories were measured end-of-
period, rather than beginning of period, then the problem van-

ishes. To see this, suppose that the data are ¥(t)}, where

¥(t) = a(-D)y(e).
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In this case, [G DJG(D)/B(D ]e(t) f S(T)g(t—T)dT, where

o)

El(r) = fl(t)

[l

gole) = [ f(r-k)dk,

o

for v » 0. This is a fundamental representation for (¥(t)y.
A number of normalization questions arise when comparing
matrix continuous time and discrete time moving average represent-

ations. To see this, suppose
=
¥(t) = f f(t)elt-rddr
¥(t) = I <, u(t=-3).
J=0
The first model is that of {y(t),t real}, while the second is that
of {¥{t),t integer}. Since the above representations involve
products of moving averages and errors, there 1is considerable
latitude in how t+t0 measure these, while leaving the model sub-
stantively unaffected. Before undertaking comparisons of objects

like {£(t),t»0} and {Cj,j=0,l,2,...}, some "natural” normelization

for these must be found.
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