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I. The Structure of the "One Period" Incentive Problem 

Consider the fol lowing incentive problem: Given some action q = (q 2,q 2). Choose a function 

u: Q -> R 2 that solves 

(2) u(p) > u 

(3) u(p) < u. 

Here g(p:q|,q 2) is the density function of prices given that actions (q,.q 2) are chosen. For notalional 

simplicity let g(p) denote g(p;q,,q 2) and let g'(p) denote g(p:qj,q 2). Finally let 

(1.2) f(p) • g(p)/g'(p). 

We wi l l say the density functions g(p) and g'(p) satisfy the (discrete) monotone likelihood ratio 

property if the ratio f(p) is monotone (increasing or decreasing) in p. Now drop the constant term 

Tt, from the objective function, let K = n,(q(,q2) - Tt,(q l,q 2) denote the one shot gain from deviating 

from q,. Let X denote the lagrange multiplier on the incentive constraint. (It is important to note that 

X is a constant. In particular it is not a function of p.) Assuming the incentive constraint binds we 

can rewrite (1.1) as 

(1.3) max f u(p)[g(p) + X(g(p) - g'(p))]dp - Xk 

subject to u(p) > u and u(p) < u. 

Mult iply and divide the objective function by g'(p) and drop the constant term to obtain 

(1-1) 

subject to 

(I) T C ^ . q . J + ( u(p)g(p;q,,q2) > 7t,(q;,q2) + / u(p)g(p;q;,q2)dp 

subject to u(p) e [u.uj. Let D(p. X) = [f(p) + X(f(p) - 1) 



Now consider several cases 

Case A. f(p) is Monotone Increasing in p 

Clearly D(p,X) is monotone increasing in p. For any fixed X. let p(X) solve D(p,X) = 0. Then 

we have 

a. for p < p(X). D(p,X) < 0, 

b. for p > p(X), D(p,X) > 0. 

Now since g ' is a density function g'(p) > 0 for all p. Intuitively for each p we are choosing some 

number u(p) in [u,u] to solve 

(1.5) max u(p)D(pA)g'(p). 
u(p) 

This is a linear maximization problem, so the solution is clearly 

a. set u(p) as large as possible if D(p,A)g'(p) is positive, 

b. set u(p) as small as possible if D(p,A.)g'(p) is negative. 

c. set u(p) to anything in [u.u] if D(p./.)g'(p) is zero. 

Thus 

(1.6) u(p) = 
u for p > p(X) 

u for p < p(X) 

liquation (1.6) tells us the form of the optimal value function u(p) for any given X. To complete the 

solution we must choose the trigger price p so that the incentive constraint binds with equality. Since 

the support of the density functions is [0,1 J, substituting (1.6) into the incentive constraint gives 

(1.7) u j g(p)dp + u J g(p)dp 
p i, 

u | g'(p)dp + u ( g'(p)dp = k 



or [uG(p) + u(l - G(p))] - [uG'(p) + Q(l - G(p))] = k. or 

(1.8) (u-u)(G'(p) - G(p)) = k. 

One of the possible multiple solutions of (1.8) is the optimal trigger price p. 

Case B. f(p) Monotone Decreasing in p 

The same logic implies 

u for p > p(A) 
u(p) = 

u for p < p(A) 

and p solves (u-u)(G'(p) - G(p)) = k. 

Case C. f(p) is Neither Monotone Increasing or Decreasing 

This case is somewhat complicated. For example, suppose graph of D(p,X) is as in Figure I. 

So that 

a. D(p,/t) > 0 for p 6 [0. p(k)] U [p{X), I], 

b. D(p,X) < 0 for p 6 [p^X), p2(X)). 

The same logic then implies the optimal value function u(p) has the form 

u for p € [p,(A.), p2(X)] 
u(p) = 

u for p e [0. p,(A.) u p2(X.), 1] 

We then need to solve for p, and p 2 . 

An Example 

Consider the A - P - S example which has g(p) = 2p, g'(p) = 2 - 2p. k = 6, u = 22, u = 38. First 

note that 

f ,p, = rt» - P 
g (P) 



is monolone increasing in p so we are in Case A . Thus from (1.6) 

u(p) 
38 for p > p 

22 for p < p 

and p must solve the analogue of (1.8). Some G('p) = p 2 and G'(p) and 2p - p 2 we have p solves 

16(2p-2p 2) = 6, which is equivalent to p 2 - p + 3/16 = 0 which has solutions p = 1/4 and p = 3/4. 

By inspection, the objective function is maximized at p = 1/4 and minimized at p = 3/4. It is easy 

to check that the maximized value of (I.I) for this example is 38 while the minimized value is 22. 

II. Some Useful Facts about B(W) 

Recall the definitions: 

Definition. A n action profile q and value function u(p) is admissible with respeet to a set W if 

a. the value function u(p) assigns payoffs in W, 

b. for each player i the action q, is optimal given q_( when continuation payoffs are assigned 

Definition. The set B(W) - (E(q.u) |(q,u) is admissible with respect to W}. For any fixed action 

vector q let us also define B (W|q ) = {E(q,u) |(q,u) is admissible with respect to W ) . 

That is. B ( W | q ) is the set of all payoffs that can be generated when the action vector is 

constrained to be some fixed q in S. Of course by definition B(W) is simply the union of al l these 

by u. That is. for each i, E i(q i,q_ i,u) > E^qj.q.j.u) all q{ e Sj where F.,(q,u) = ( ^ ( q ) + 

ju(p)g(pq)dp|. 

little sets B ( W | q ) for q 6 S. That is 

(2.1) B (W) = U B ( W | q ) . 
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A . Simplifying B(W) for Throwing Out Irrelevant Actions 

N o w in the A - P - S example there are nine possible pairs of actions say q 1 for i = 1 9. So 

S = {q',...,q9}. However, we wi l l show that only 3 of these actions say q \ q 2 , and q 3 can ever be 

played in a sequential equilibrium and thus we conclude B ( W ) = B (W|q ' ) u B ( W | q : ) u B(W|q*) . 

Consider the A - P - S example. The expected payoff matrix is 

b b 

15. 45 0. 21 0, 0 

<h 21 0 22, 22 21. 0 

c 3 0, o 0, 21 45. 15 

Let V denote the set of present discounted values of the sequential equilibria 

A . Let J = co{n(q)|q e S} denote the convex hull of the payoffs in the stage game. Let I = 

{(V | ,v 2) lv, > 21} denote the set of payoffs greater than or equal to the value of being 

minimaxed forever. Since any equilibrium must have feasible, individually rational 

payoffs we know 

(2.1) V c (J n I) = co{(21,39), (21.21). (39,21)}. 

B. Convexity of B(W | q) 

We wi l l later use the following fact: 

(2.2) For any convex set W the set B (W q) is convex. The proof immediately follows since the 

incentive constraints on admissible pairs are linear in u. Let (q,ua) and (q,uh) be two pairs 

which are admissible with respect to the convex set W . Then for any X in (0,1) we need to 

show 

a. (q. hi* + (I -X)ub) is admissible with respect to W , 
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b. E(q, hia( I -X)u b ) = XE(q.u:') + (1 -X)E(q,u b ) . 

Consider player l*s incentive constraints under u and u' 

(2.3) n,(q„q_,) + / ua(p)g(p;q,,q_,)dp > TC,(qJ,q_,) + / ua(p)g(p;q;.q_,)dp 

(2.4) T t / q , ^ . , ) + / u h(p)g(p:q„q_,)dp > TC.Cq^q.,) + f uh(p)g(p;q;.q_,)dp. 

Mult ip ly ing (2.3) by X and (2.4) by (1-A.) we see the player I's incentive constraints under u = Xua + 

(\-X)ub are also satisfied and that E(q.u) = XE(q,u:') + ( l -X)E(q ,u b ) . 

B. I claim it is obvious that only the diagonal actions 

(3.2) q 1 = (a,,b,), q 2 = (a 2,b 2), q? = (a,,b?) 

wi l l ever be played in a sequential equilibrium. 

To see this note that for any off-diagonal pair of actions at least one player can obtain a one 

shot gain of at least 21. For such an action to be part of any sequential equil ibrium we must be able 

to punish this deviation by at least 21. By (2.1) the most the present discounted value of payoffs can 

be in any sequential equilibrium is 39 while the lowest it can be is 21. Thus the most we can ever 

' 'punish" a player (i.e., the greatest difference between the best and the worst feasible individually 

rational payoffs) is 18. Therefore V must be contained in the convex hull of payoffs resulting from 

q 1 , q 2 , and q \ 

(3.3) V c k = co{7t(q)|q e (q'.q 2,q 3)) = co{(15,45), (22,22). (45.15)} 

and 

(3.4) B(W) = B (W|q ' ) u B (W|q 2 ) u B (W|q 3 ) . 
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C. Compute the Edges of the Pareto Frontier 

From the graph of the set of feasible payoffs it is clear that the Pareto frontier of this game 

is co{(45,15), (15,45)). Let us guess that the discount factor is high enough so that some points on 

the Pareto frontier can be the result of sequential equilibria. Let us find that extreme points of this 

set. Since the game is symmetric these points wi l l be some (a,B), (B,a) pair. Since they lie on the 

frontier a + 8 = 60. Since V = B (V) there is some pair (q.u) that is admissible with respect to V that 

supports them. Consider the point (a,B). 

By definition the pair (q.u) supports (a.B) must have a u that assigns points in V and have 

B(q,u) = (a.B). Since (a,6) is on the edge of V between rc(q') and n(q 2) and since F(q.u) is a convex 

combination of 7t(q) and values of u we know q be q 1 or q 2 and u(p) must be in coj ( t t .60-a), 

( 60 -a ,a ) [. Thus a must solve 

(2.6) 21 + / u,(p)g(p;a,,b,)dp < 15 + / u^pjgtp-.q^dp 

(2.7) u,(p) e [a ,60-a] . 

Since f(p) - g(p;q')/g(p;a 2.b,) = p/1 - p is monotone increasing in p the results of Section I 

i m p l \ 

subject to 

p < p 
U|(P) = 

6 0 - a p > p 

Substituting this into the incentive constraint and solving gives p_ = 1/4 or p_ = 3/4. The root 3/4 

minimize (2.5) and gives a = 22 and B = 38. 
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Claim B(Tlq') = W,. Where q 1 = (a„b,) 

Consider the incentive constraints for (q',u) with u = (u,,u 2). For I to play a, instead of a 2 

we need 

(4.1) 15 + f u l(p)g(p;a„a,,b,)dp > 21 + f u,(p)g(p;a2,b,)dp. 

For 1 to play a, instead of a 3 we need 

(4.2) 15 + / u,(p)g(p:a1,b,)dp > 0 + / u,(p)g(p;a3,b,)dp. 

For 2 to play b, instead of b 2 we need 

(4.3) 45 + / u 2(p)g(p;a„b,)dp «> 21 + / u 2(p)g(p;a„b 2)dp. 

For 2 to play b, instead of b-, we need 

(4.4) 45 + / u 2(p)g(p;a„b,)dp > 0 + f u 2(p)g(p;a„b 3)dp. 

First, I claim for any u 2 which assigns payoffs in the feasible set (I u J) constraints (4.3) and 

(4.4) are automatically satisfied. The reason is that for each of these the one shot loss from deviating 

to either b 2 or b, is at least 24 (= 45-21) while the maximum reward to deviating is at most 18 (= 

39-21). 

Next. I claim (4.2) is redundant given (4.1). Since the density under (a 2.b,) and under (a,,b,) 

are the same the right side of (4.1) is strictly larger (i.e.. by 21 units) than the right side of (4.2). 

Thus if u, satisfies (4.1) it certainly satisfies (4.2). 

Hence we have reduced the four incentive constraints to a single one, namely (4.1) and we 

can use the results of Section I. Let us first find what the maximum value that player I's payoff can 

be for some (q';u,.u 2) that is in B (T |q ' ) . By the above argument this problem is the fol lowing: 

(4.5) max 15 + f u,(p)2pdp 



subject to 15 + ju,(p)2pdp > 21 + Ju,(p)(2-2p)dp and u,(p) e [22,38]. We have already shown in 

that the optimal u, has 

22 p < 3/4 
u,(p) = 

38 p > 3/4 

and the resulting value of the objective is 26 (= l/2[ 15+37]). N o w to trace out the values of player 

2's payoff we vary how we set u2(p) subject to the requirement that (u,(p), u(p)) lies in coT. The 

largest value of player 2's payoff is clearly attained at the edge where u,(p) + u2(p) = 60. At this 

edge 2's payoff is l/2[45 + (60-37)] = 34. Thus (26, 34) is the northeast corner of B (T |q ' ) . It is 

the point in B(T jq ' ) that is maximal for player 1 and player 2. 

To find the southeast corner we choose u 2 so as to minimize player 2's payoffs subject to 

(u,,u2) e coT. Clearly the minimizing u, sets u2(p) = 22 for all p. The resulting payoff for 2 is 

33.5 (= l/2[45+22]) thus (26,33.5) is the southeast corner. 

To find the northwest corner we first choose u, to solve the same problem in (4.5) with the 

max replaced with a min. The resulting u, has 

38 if p < 1/4 
(4.6) u,(p) = 

22 i f p > 1/4 

The resulting value for l 's payoffs is 22 = l/2[ 15+29]. [Recall thai 29 is the value of Ju,(p)2pdp 

with U| given by (4.6).] To find the value for player 2 at this point we choose u 2 to maximize 2\s 

payoffs subject to the constraint that (u,.u2) e coT. The largest such value is attained at the edge of 

the feasible set where u,(p) + u2(p) = 60. Given this form for u 2 we compute player 2's payoffs to 

be 38 = 1/2(45 + [60-29]). Thus (22,38) is the northwest corner. 

To find the southwest corner of B (T |q ' ) we choose u, to minimize 1 's payoff thus u, is given 

by (4.6) and the value of l ' s payoff is 22. We then minimize 2's payoffs by choosing u 2 subject to 
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constraint (u 1,u 2) e coT. Clearly such a u2(p) = 22 for all p. The resulting value of 2's payoffs is 

33.5 = l/2[45+22]. Thus (22, 33.5) is the southwest corner. 

Thus we have shown that the extreme points of B (T |q ' ) are given by 

(4.7) {(26,34). (26.33.5), (22,38), (22,33.5)}. 

Then from our results in Section II we know B(T jq ' ) is a convex set. [Really we know 

B(coTjq ' ) is convex and we use the "bang bang" result that B(coT|q ' ) = B (T |q ' ) . | Thus B (T |q ' ) 

is the convex hull of the four points in (4.7) and thus B(T jq ' ) equals the W , given in Figure 2. By 

symmetry B (T |q 2 ) equals the W , given in Figure 3. 

Claim B(T/q2) = W2. Finally we need to show B(T |q 2 ) with q 2 = (a 2,b 2) is the set W 2 in Figure 2. 

This set is particularly easy to compute because q 2 is a Nash equilibrium of the one shot game. Since 

q 2 is a Nash equilibrium we know TC,(a,.b2) > 7t|(aj,b2) for & = a, or a, and 7t,(a2,b2) > Jt 2(a 2,b|) for 

b| = b, or b v 

Clearly if we add some constant to both pairs of these inequalities they still hold true. Thus 

any (q2,u,,U2) pair with the functions (u,(p). u2(p)) set equal to some constants (t|,t2) € coT is 

admissible. Thus B(T |q 2 ) includes all points of the form l/2([22,22] + [t^t,]) for (t,,t,) e coT. This 

implies B (T |q 2 ) c W 2 . 

To show B (T |q 2 ) W 2 consider any admissible pair (q 2,u,,u 2) with u = (u,,u 2) possibly 

nonconstant. By definition of admissibility (t,,t2) = Ju(p)g(p;q2) e coT. Consider some new pair of 

constant functions (uj(p), u2(p)) with uj(p) = t, and u2(p) - t2. This new pair (q 2;uj,u 2) is admissible 

and by construction has the same value as (q 2,u,.u 2) namely E(q 2,u) = F.(q2,u')- Thus B(T|q") = W, . 

Since by construction T = ext V we are done. Since W = B(T) = B(ext V ) = B (V) = V . 


