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ABSTRACT

Forecasts are routinely revised, and these revisions are often the subject of informal
analysis and discussion. This paper argues 1) that forecast revisions are analyzed because
they help forecasters and forecast users to evaluate forecasts and forecasting procedures,
and 2) that these analyses can be sharpened by using the forecasting model to
systematically express its forecast revision as the sum of components identified with
specific subsets of new information, such as data revisions and forecast errors. An
algorithm for this purpose is explained and illustrated.
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Forecasters in economics and other disciplines frequently forecast the same
event more than once, as time passes and information relevant to the event accumulates.
Since the newly accumulated information — consisting mainly of revisions of old data and
releases of new data — often changes the forecast, the forecaster frequently generates a
sequence of forecast revisions. The revisions, in turn, raise questions about why the
forecast changed, or, more specifically, about which pieces of new information were
primarily respomsible for particular changes in the forecast. Attempts to answer those
questions are, in the broadest sense, forecast revision analysis.

The purpose of forecast revision analysis is to improve our understanding of
forecasts, forecasting procedures, and the actual systems that are being forecasted. It
does this by helping to reveal the properties of the forecasting procedure, especially its
dynamic properties.

Although forecast revision analysis is a useful and fairly common activiiy,
published accounts of a systematic method for providing explanations of forecast revisions
appear to be nonexistent. This paper proposes, discusses, and illustrates an accounting
framework that should be & useful and practical first step toward a complete methodology
for forecast revision analysis. The core of the procedure is fairly simple and proceeds
roughly as follows: At time t+k, the set of information accumulated since the time-~t
forecast is partitioned into subsets. Then a series of data sets is constructed, each one of
which augments the information set used in the time—t forecast by some subset (or union
of subsets) from the partition of new information. The model is then used to compute a
forecast for each of these artificial data sets, and the resulting forecasts are examined to
see which subsets of information had the biggest impact in changing the forecast of each
variable at each horizon of interest.

This kind of an accounting scheme can provide information useful to both
forecasters and forecast users. The first section of the paper briefly discusses why
forecasts are revised and why these revisions are analyzed. The second section uses an

economic forecasting model to illustrate how a specific accounting procedure has already



been used to provide useful and sometimes surprising information. The third section
describes how the accounting scheme can be generalized for use in a wide variety of

forecasting contexts.

THE ROLE OF A FORECAST REVISION ALGORITHM
Forecast revision analysis is a common activity whose purpose is to give insights into
forecasts, into the properties of forecasting procedures, and possibly, into the properties of
the forecasted systems. However, existing examples of forecast revision analysis appear to
be ad hoc and informal. An algorithm that would automatically decompose a model’s
forecast revision into components identified with the direct and interactive effects of the
members of a detailed partition of the set of new information would make forecast revision

analysis both easier and more informative.

Forecasts are frequently revised

Forecasts often change as the information set they are based on is revised or enlarged over
time. To put this in formal terms, assume that an analyst forecasts a vector Yt' That is,
at each date {, the analyst assembles an information set It and uses it to estimate some

parameters of the probability distribution of Y k =1,2,...,K. For each k, let tX

t+k t+k
be an nx1 vector containing estimates based on It of n parameters of the probability
distribution of Y, e (Typically X, 1k will include at least a measure of central

tendency, such as the mean or mode, of each component of Y and not uncommonly

t+k’
some second moment information is also included.)

After h periods, 1<h<K, an updated information set It Lh is compiled and a
new forecast, i +hXt +k is computed for all k such that h<k<h+X. This means that for
all k such that h<k<K, one can compute the forecast revisions (; , . X; .9 +k)' When
the forecasts are taken directly from a formal statistical model and the set of new
information (I, +h/1t) contains anything that affects the model, it is almost certain that

the revision to at least some component at some horizon is nonzero. When the forecasts




are constructed by an analyst who subjectively adjusts the forecasts of a formal model,

however, revisions may occur less frequently. (See Caton 1987.)

Analyzing the revisions is useful

It is clear that forecasts are revised fairly frequently. It is less clear why we want
explanations of forecast revisions. If we have an optimal forecast in our hands today, one
that we wholeheartedly believe to contain a true and complete description of the
conditional (on It) probability distribution of all future events that interest us, why
should we care about how it came to be? Today’s optimal forecast is sufficient for making
today’s decisions; yesterday’s forecast should be of concern only to historians. In fact,
however, forecasters, journalists, and forecast users all pay attention to forecast revisions.
(See Todd (1989) for documentation of this phenomenon for economic forecasts.)

We reason that if forecast users believe that the forecast they receive accurately
describes the conditional probability distribution of future events, then they will not care
about forecast revision analysis. We observe, by contrast, that forecast revision analysis
occurs. An obvious conclusion, and probably the main reason why forecast revisions are
analyzed, is that forecast users dom’t regard the forecasts they receive as irue and
completc descriptions of the conditional probability distribution of future events. Instead,
forecast users perceive a variety of suboptimal forecasts competing for their attention.
They must decide what weight to attach to each one. Forecast revision analysis is one
natural way to satisfy forecast users’ needs for information about a forecast and the
procedure used to create it.

Although the above discussion of the role of forecast revision analysis could be
extended (see Todd 1988 and 1989), it is adequate to justify atfention to methods for
providing forecast revision analyses. There appear to be rational reasons for forecast users
to demand and forecasters to provide explanations of forecast revisions. We observe that,
in fact, forecast revisions are analyzed. We will now see how forecast revision analysis can

be performed by an automatic, comprehensive, model-based algorithm.




AN EXAMPLE OF AN AUTOMATIC FORECAST REVISION ANALYSIS

To illustrate the results of a forecast revision algorithm, consider a vector autoregressive
model used at the Federal Reserve Bank of Minneapolis. It forecasts monthly values of
seven key U.S. macroeconomic variables—the Dallas Federal Reserve Bank’s index of the
foreign exchange value of the U.S. dollar (DOLLAR), Standard and Poor’s index of 500
stock prices (SP500), the interest rate on three—month U.S. treasury bills (TBILL), real
gross national product (GNP), the GNP deflator (DEFL), the change in business
inventories (CBI), and the Federal Reserve Board’s measure of the monetary base (MB).
(Monthly values for some of these series are created by interpolation. See Amirizadeh
(1985} for how this is done and Todd (1989} for complications this causes in forecast
revision analysis.) The model can stand alone but also acts as the core sector in a large
macroeconomic model. (See Litterman (1984) for a description of both the core model
and the larger model.)

When a revised forecast is computed from this model, a forecast revision
algorithm is used to partition the set of new information (accumulated since the previous
forecast ) into 15 subsets. Seven subsets contain information on data revisions (revised
estimates, available only after the previous forecast was made, of the values of data used
in making the previous forecast). Seven other subsets contain information on newly
released data. The 15th subset is a catchall for a variety of miscellaneous factors affecting
the forecast.

Table 1 shows the standard format used for reporting the algorithm’s
decompositions of the model’s forecast revisions. The initial forecast in this example was
made in September 1987, based on data through July 1987 for GNP, DEFL, and CBI and
through August 1987 for the other variables. The subsequent forecast was made in March
1988, based on revised and new data through January 1988 for GNP, DEFL, and CBI and
through February 1988 for the others. The table analyzes percentage point changes in




forecasts of the levels of the variables in December 1988, except for TBILL (basis point
units) and CBI ($billion units).

To see the decomposition of the revision in a particular variable’s forecast {for
example, GNP), find the column corresponding to that variable (column four) and read
down. The first row shows the variable’s total forecast revision for December 1988 (-1.09
percentage points). The next three rows give a gross decomposition of the total revision
into effects attributed to data revisions (+1.70 percentage points), newly released data
(—2.77 percentage points), and miscellaneous factors (~0.02 percentage points).

The next block of rows further decomposes the total data revision effect into
effects attributed to each variable’s data revision. The first row of column four in this
block, for example, attributes ~0.02 percentage points out of the total 41.70 percentage
point effect of data revisions on the GNP forecast, to revisions in the data om the
exchange value of the U.S. doilar.

The final block decomposes the total effect of the newly released data into the
effects attributed to each variable. The third row of column four in this block, for
example, says that fundamental forces affecting the GNP deflator contributed +0.29 of
the total —2.77 percentage point effect of new data on the GNP forecast for December
1988.

In many ways the results in Table 1 are typical for this model’s forecast
revisions. Surprises in the new data are usually more important than data revisions, but
data revision effects are far from trivial. The information summarized by the
miscellaneous factors is trivial. In the lower blocks, diagonal elements generally
dominate. This reflects the fact that in this model a variable’s own revisiong and the part
of its forecast errors attributed to itself usually account for most of its forecast revisions.

Table 1 shows some less common results too. Most prominent are some strong
cross—variable effects attributed to new data on SP500. Considering that the October
1987 stock market crash intervened between the initial and subsequent forecasts, these

strong effects are understandable. The algorithm says that the stock market crash itself




cut the forecasts of December 1988 GNP, MB, and TBILL by 2.75 percent, 0.57 percent,
and 57.16 basis points, respectively.

Table 1 also illustrates some of the benefits of forecast revision analysis. The
large effect attributed to GNP revisions highlights the importance of data revisions in
general. In a concerted effort by several economists at the Minneapolis Federal Reserve
Bank to unravel why the forecast of GNP had not been depressed more by the stock
market crash, this factor had not been considered until the algorithm was used to produce
Table 1. The table also helped rank competing explanations. For example, the fall in
interest rates in late 1987 had been proposed as an explanation for why the model’s GNP
forecast had changed by only —1.09 percent. However, the table shows that errors in
forecasting late 1987 interest rates had a trivial effect (-+0.04 percent) on the revision of

the GNP forecast for December 1088,

THE SPECIFIC ALGORITHM BEHIND THE EXAMPLE
Table 1 was produced by a computer—based algorithm that contains the forecasting model
and requires as inpuf mainly the old and new data sets and the dates at which the old and
new forecasts were computed.

The algorithm constructs the subsets of data revisions used in Table 1 in a very
gsimple manner. There is one of these subsets for each variable in the model, and each one
contains all of the revisions to the recent values of a particular variable. (The cutoff
between "recent" and older revisions is made by examining the revisions to each series
and subjectively selecting the most recent date before which the revisions all appear to be
trivial. If a comservative approach is desired and speed of the algorithm is not an issue,
the cutoff can be pushed back in time arbitrarily far.) For example, the subset on GNP
data revisions contains all the most up-to-date revisions to the GNP data used in the
previous forecast, and nothing else. (This scheme for handling revisions implicitly
assumes that a) revisions are independent across variables and b) it is not interesting to

distinguish among revisions at different lags for a given variable. If these assumptions are




not reasonable in a particular forecast revision analysis, they could be changed, as
discussed in Section III.)

The algorithm comstructs the subsets of newly released data by a more
elaborate procedure. First, to isolate what is really new, the new data are converted into
the form of forecast errors. Second, to assign these forecast errors to 2 well-defined
underlying cause, auxiliary assumptions are built irto the algorithm to unravel the
correlations among the components of the forecast error vectors.

The process of converting the new data into forecast error vectors is only a bit
complicated, primarily because the algorithm requires a sequence of one-step—ahead error
vectors rather than a mixture of one— to j-step—ahead (j>1) error vectors. Because the
effects of data revisions have already been assigned to other subsets, the computation of
the sequence of one—step—ahead error vectors uses only the revised values of all data. It
begins by reestimating the model’s coefficients using the revised data through t, the time
of the previous forecast. These coefficients and the revised data through t are used to

forecast X and then the one—step—ahead error vector for t+1 is computed. Next the

t+1°
coefficients are reestimated through t+1 and a forecast and forecast error vector are
computed for t+2. This process continues iteratively until a one-step—ahead forecast
error vector for time t+h has been computed.

One way to proceed at this point would be as in the case of the data revisions:
Assume that each variable’s one-step—ahead forecasi errors are independent of the
one-step~ahead errors made in forecasting the others and simply assign each variable’s
one-step—ahead forecast errors to itself. This is not likely to be reasonable, however. The
point of having a multivariate model, after all, is that the analyst believes that the
variables affect one another. If so, a one-step—ahead error in forecasting one variable may
contribute to one-step-ahead errors in forecasting all the others, and vice versa. Some

scheme is needed to unravel this mutual interdependence of the forecast errors.

There is no unique way to devise the necessary unraveling, however. It can

only be done by adding auxiliary assumptions to the model. (In economics, this




unraveling is referred to as identifving the model and is quite controversial. I shall avoid
the term "identifying" here, though, because of its different meanings in economics, time
series analysis, and engineering.)

In the forecast revision algorithm used at the Minneapolis Federal Reserve
Bank, the unraveling assumptions take the form of a causal chain imposed upon the
components of the one-step—ahead forecast error vectors. (Analysts who prefer other sets
of assumptions may wish to change this part of the algorithm for their own applications,
but the causal chain suffices for illustrating the procedure.) Briefly, a causal order
running from DOLLAR to SP500 to TBILL to MB to DEFL to CBI to GNP is imposed
on the one-step—ahead errors. Then, the covariance matrix ¥ of the components of the
one-step—ahead errors, computed from the recursive residual vectors generated when the
model is estimated via the Kalman filter, is used to decompose the series of
one—step—-ahead forecast error vectors.

The unraveling begins, in each forecast error vector, by attributing 100 percent
of the component corresponding to DOLLAR (the first variable in the causal chain) to
fundamental forces that determine exchange rates. In addition, these exchange rate
determinants are held responsible for a part of each other component. Those additional
parts are computed by projecting each of the other components onto the DOLLAR
component, using a population regression coefficient computed from . At this stage, the
DOLLAR component of each one—step—ahead forecast error has been unraveled, but only
the doliar’s own forecast error has been completely assigned to an underlying cause.

In each one—step—-ahead forecast error vector, the remaining unexplained
portion of the next variable in the chain—SP500—is then assigned to fundamental forces
affecting stock prices. In addition, parts of the forecast error components of variables
lower in the chain are also assigned to the SP500 forces, again via projections based on

population regression coefficients computed for ¥. (See Hakkio and Morris 1984 or Doan

1988, pp. 8-9, for details.)



This process continues down the chain until all the components of the
one—step—ahead error vectors have been decomposed into one or more parts, each assigned
to underlying factors determining one of the model’s variables. This completes the
construction of the seven subsets of information contained in newly released data.

The 15th subset is a collection of miscellaneous information. It consists
primarily of distant data revisions (mainly induced by small changes in the seasonal
adjustment of distant time periods) and slight data—induced changes in the "priors" of the
Bayesian procedure used to estimate the model (see Doan, Litterman, and Sims 1984).

Given these 15 subsets of new information, the forecast revision algorithm next
computes each one’s incremental contribution to the forecast revision. The data revision
subsets are ordered DOLLAR, SP5060, TBILL, MB, DEFL, CBI, and GNP. So are the
seven subsets of the information contained in newly released data. (These orderings could
also be different from each other or from the ordering used in the causal chain discussed
above. In linear models with fairly stable coefficients, such as the model used here, the
ordering of the subsets at this stage of the algorithm doesn't affect the results much.)

The algorithm first proceeds through the data revision subsets. It compares the
original forecast with a forecast based on the original data set modified by revisions in the
DOLLAR data. (To do this, it reestimates the model’s coefficients and then reforecasts.)
The difference between the two forecasts—for every horizon and in each variable—is
attributed to revisions in the data on DOLLAR. Next, the algorithm adds revisioms to
both SP500 and DOLLAR to the original data set. The model is reestimated, a new
forecast is computed, and the differences between this forecast and the one based on the
addition of just the DOLLAR revisions are attributed to SP500. This continues through
the subset of data revisions attributed to GNP. At that point, the total effect of data
revisions has been decomposed into seven parts, one for each variable.

The algorithm must also proceed through the seven subsets of information from
newly released data. Recall that the new data cover the period from t through t+h, the

date of the reviscd forecast. The algorithm first computes a forecast of t+h+1 to t+K
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based on the revised data through t plus the forecasted "data" for t+1 to t+h. This
forecasted data is obtained by reestimating the model, with fully revised data, through t
and then forecasting t+1 through t+h. In principle, the forecast of t+h+1 to t+K based
on this combination of revised and forecasted data through t-+h should be the same as the
final forecast of t-Fh+1 to t+4K made in the part of the algorithm that analyzed data
revisions. This is because the forecasted data for t+1 through t-+h contain no surprises
that would cause the Kalman filter to revise the model’s coefficients. In practice, minor
discrepancies arise, due to miscellaneous factors (distant data revisions ignored by the
data revision analysis, data—based revisions to "priors" induced by reestimating through
t+h instead of t). In this way, processing of the subset of miscellaneous information is
interposed between processing of subsets on data revisions and subsets on newly released
data.

From the baseline just introduced—a model estimated through t+h on revised
data through t plus forecasted data through t+h—analysis of the newly released data
proceeds. First the parts of the t+1 to t+h forecast errors attributed to DOLLAR are
added to the data base used in the baseline. (Recall that the components assigned to
DOLLAR include parts of the one-step—ahead errors in forecasting the other six variables,
as well as all of the one—step—ahead errors in forecasting DOLLAR. So the data on all
seven variables are changed in this step.) The model is reestimated through t+h and a
new forecast of t+h+1 io t+K is computed. The difference between this forecast and the
baseline forecast is attributed to DOLLAR.

Next the data set is further augmented by adding the parts of the t+1 to t+h
one-step—ahead forecast errors atiributed to SP500. Again the model is reestimated and
reforecasted, and the incremental changes are assigned to SP500. This process repeats
through GNP, when the data set is identical to the full new set of data, the forecast

equals the fully revised forecast, and the decomposition of forecast errors is complete.
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A GENERAL ALGORITHM FOR FORECAST REVISION ANALYSIS
In principle, algorithms like the one used in the previous section can be developed to
automatically and comprehensively analyze most forecast revisions, or at least those
based, exactly or approximately, on formal forecasting models. The informativeness of
the algorithm is limited mainly by the richness of the assumptions——such as the causal
chain in the examples above—used to partition the set of new information into subsets.
These assumptions vary from one forecasting model or procedure to another, so [ present
a description of how to construct an algorithm for a generic, model-based forecast and an

arbitrary partition of the set of new information.

A general algorithm
As in the examples of Section II, the first stage in the algorithm is to partition the set of

new information, I into disjoint subsets W= 1,2,...,m. {The W' may be scalars

t-{-l/ It’
or vectors, depending on how finely the analyst wishes to conduct the analysis.) Then,
the forecasting model is used to compute the effects of each subset in the partition of new
information. Consider the forecast of the ith component of Xt 4k 38 an exact function of
the information it is based on, so that the revision between the forecasts at times { and

t-+h can be expressed as an exact function of the new and old information, or

2 m)A

X, oW ;It

_ 1
B3 bk T 65, 64k = Bhik(W

The general algorithm proceeds, in the spirit of a Taylor series expansion, by
approximating g by the sum of higher and higher orders of interactive effects among the
subsets, up to a finite limit.

To compute a first order analysis of the effect of each subset of new information

on the forecast revision, let d j be (It +h /1 t) if j=0 and be the null set otherwise. Then let
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m

El{ghik(wlndl_ﬁ;...;wmnd 1)

Xtk =2 m-sit

4055 4k Tt
~ Bpip(®:8;.0:1)} + R(1).

h

In this equation, each term in brackets shows how the forecast of the it component of X

at horizon t+k would have changed if the old information set It had been augmented by

th

just the s~ subset of new information, s = 1,2,...,m. Note that this can be computed

without deriving the function Bhik: All that is required is to run the forecasting procedure

th subset,

twice, once with the original dataset and once with a dataset augmented by the s
of new information. The sum in the expression above is the part of the total revision
explained by first order effects, with R(1) as the first order residual.

A second order analysis could be computed by decomposing R{1) into a sum of
second order effects and a new residual, R{2). The individual second order effects would
be computed by forming all pairs (wi,wj), itj. For each of these pairs, subtract a forecast
based on It from a forecast based on It augmented by the unicn of wi and wj. From this
difference, subtract the first order effects associated with wi and w'] The remainder is the
second order effect attributed to the interaction of Wi and wj. The total change would
then be expressed as the sum of the first order effects plus the sum of the second order
effects plus R(2).

The analysis could be extended to third order by examining all {riples, net of
their first and second order effects, and so on for higher orders up to m, for which all new
information is used as a single subset and the residual is identically zero. Alternatively,
the analysis might be truncated short of order m, under the assumption that the residual
was small and further efforts to decompose it were not worthwhile. Whatever the chosen
order, the analysis would also be done, typically simultaneously, for all components of X
and all forecast horizons of interest. The result would be a decomposition of each revision

in the forecast into components attributed to the direct and interactive effects of the
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subsets of new information. This completes the description of the general forecast revision

analysis algorithm.

Some comments on partitioning the set of new information

Since the subsets of new information are the building blocks of the forecast revision
algorithm, the method of partitioning the set of new information strongly influences the
amount and quality of information that the forecast revision algorithm provides.
Unfortunately, it is difficult to give general advice on how to construct the partition. The
optimal partition will depend on both the nature of the forecasting procedure and the
interests and beliefs of the forecaster and forecast users.

To illustrate the partitioning concept, comsider partitioning the set of data
revisions. Let tzt—j be a pxl data vector containing estimates made at time t of the
values that the p variables took on at time t—j, j = 0,1,2,.... In particular, let f.zt—j
contain the most recent estimates available from official statistical agencies at time t.

Suppose that I, contains ,Z,, [Z, ,, ... .2, , where data before t, either are unavailable
11 RN A A | i tO 0

or are not used in preparing the forecasts. (Many U.S. macroeconomic forecasters seem 1o
use to > 1948, for example.) Then at time t+h the set of new information will contain a
subset of data revisions, namely R = {ri,t—j’ fori=12,..pand j= 0,1,2,...,t0—t}, where
e = G +hZi,t—j - tzi, t—j) is the revision of the i*! component of Z for time period t-j.
The question of how to treat the elements of R in the forecast revision analysis
will depend in part on what the forecast users want from the analysis. If, for example, the
forecast users don’t care ahout the details of how data revisions affected the forecast, then
it might be adequate to treat all of R as a single one of the wk. That is, all data revisions
would be treated collectively, as one indivisible piece of new information. If the users are
interested in the details of how data revisions affected the forecast, then one could assume
that each element of R is a separate, independent piece of new information. This means
that each 5 4 could be set equal to an Wk. Alternatively, the T -] elements could be
grouped into nonoverlapping unions, such as by taking unions over the i components and
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treating as one indivisible piece of new information all the revisions to all the components
of Z at time t—j, for each j.

The treatment of R may also depend on what information the forecaster can
supply about how to partition R. For example, the forecaster may believe that the
elements of R are correlated, being themselves the effects of a smaller set of fundamental
data measurement corrections, which we can call R* = {r’;, r;, e 4 r;;} Then each r?
could be set equal to an Wk. To do this, the forecaster would have to explain both how to
recover R* from R and how to functionally relate the elements of R to the clements of R*.
In every case, the approach depends on auxiliary assumptions used to establish mappings
between a set of observed changes and an underlying set of primitive, independent causes.

As noted previously, economists refer to such assumptions as identifying
assumptions. Because this term has other meanings in other fields, the term unraveling
assumptions has been used in this paper.

Because the forecast revision algorithm freats each subset of the partition of
new information as an independent cause of the revision, unraveling assumptions are
essential for interpreting the results of the algorithm. Much of the economics literature
on this topic focuses on relating the forecast errors to an underlying set of theoretically
meaningful disturbances. These techniques could be used to apply this paper’s algorithm
to an econometric model. As the above example shows, however, for forecast revision
analysis it is also useful to apply unraveling assumptions to other components of the set of
new information, such as data revisions, changes in exogenous variables, and changes in
subjective adjustments. When this is not possible, analysis of the part of the forecast
revision attributed to these components may not be very informative.

Although the forecast revision algorithm requires some unraveling assumptions
to partition the set of new information, it does not depend on any particular type. That
is important given the controversies, at least in economics, about which assumptions are
appropriate. Two forecasters who disagree about unraveling assumptions will probably

also disagree about forecast revision analyses, because their differing assumptions will
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result in different partitions. Given their respective partitions, however, they can both

use the general algorithm outlined above.

Other practical considerations

A wide variety of model-based forecasting procedures are in use. The convenience and
usefulness of the general algorithm is likely to vary among the various types of forecasting
procedures. Some of the complications are forecasts made by combining a pure model
forecast with subjective adjustments made by the human analyst, forecasts based on
models with exogenous variables (whose own forecasts are produced outside the model),
and forecasts revised after a change in the units in which data are measured. Todd {1989)
discusses how to adapt the general method presented here to address those complications.

It is also worth noting that the convenience of the forecast revision algorithm
will depend on the complexity of the forecasting model. The algorithm requires the whole
forecasting procedure to be repeated many times on a variety of datasets. If the
forecasting model was reestimated between the old and new forecasts, then the algorithm
requires reestimating it for each of those datasets as well. This can be quite demanding
for large models with complicated estimation procedures. Furthermore, the order of the
expansion required to make the residual a relatively small component may be large for
models with high order nonlinearities.

By contrast, a linear model like the one used in Section II can be reestimated
quickly {e.g., via a Kalman filter) and encounters nonlinearities only to the extent that
new data are multiplied by revised coefficients. A first order expansion is thus easier to
compute and more likely to have a small residual for a linear model.

A careful reader may have noticed, in fact, that the forecast revision analyses
described in Section IT do not exactly conform to the general algorithm. The Section II
algorithm did not even compute the first—order expansion of the general algorithm.
Instead of computing each subset’s individual effect relative to a baseline forecast

computed from just the old database, the Section II algorithm ordered the subsets and
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computed each one’s incremental effect relative to a forecast computed from the old
dataset augmented by all previous subsets in the order. (See Todd 1988 for more details.)
Because the models are linear with coefficients that have been changing only very slowly
over time, the mapping from the set of new plus old information to the forecast revision is
nearly linear. As a resuli, the modified algorithm, which is somewhat simpler to program,
closely approximates the first order terms of the general algorithm. Use of the general
algorithm would change the results shown in the text tables by no more than a few tenths

of a percentage point.

CONCLUDING REMARKS
An algorithm for organizing the analysis of forecast revisions has been abstractly defined
and concretely illustrated. Although use of the algorithm requires that an analyst use
statistical reasoming and modeling theory to partition the set of new information, the
algorithm itself is essentially an accounting framework that adapts to a wide variety of
models and theories. The algorithm can be programmed to conveniently and cheaply
provide detailed information above forecast revisions, and a version of the algorithm is in
use at the Federal Reserve Bank of Minneapolis. This algorithm, or something like it,

could be tsed routinely to help organize the inevitable discussions of forecasts and forecast

Tevisions.
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Table 1. An explanation of the revised forecast for December 1988*

Forecast Variables

TBILL
SP (basis CBI
DOLLAR 500 DEFL GNP MB pts.) (§ bils.)

Change in Forecast —4.57 -30.04 —2.01 -1.08 -1.24 -101.88 -9.61
(%, except as noted)

Breakdown by Reason for Change
(% pts., except as noted)

Revisions in Old Data -0.55 0.27 -0.49 1.70 -0.59 2.86 -1.97
Structural Shocks -3.81 -29.98 -1.50 ~2.77 -0.58 -105.72 -7.33
Miscellaneous Factors .21 —0.33 —0.02 =05.02  -0.07 0.98 —0.31

Breakdown by Variable Changed for Each Reason
(% pts., except as noted)

Revisions in Old Data

DOLLAR .65 -0.09 0.01 .02 0.03 419 0.06
SP 500 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEFL 0.03 0.27 -0.37 0.0 -0.01 -1.58 0.11
GNP -0.02 —0.13 -0.01 1.71 0.08 3.68 0.49
MB 0.09 0.25 -0.12 -0.04 .68 3.64 —.88
TRILL 0.00 0.00 0.00 0.00 0.00 0.02 0.00
CBI 0.00 .02 0.00 0.00 0.01 0.18 -1.76
Structural Shocks
DCLLAR —3.01 0.87 ~0.04 0.01 0.12 3.18 0.45
SP500 ~0.30 -32.18 0.12 2.7 -=-0.57 -57.16 -5.68
DEFL .07 0.80 -1.50 .29 0.00 -5.85 0.67
GNP : 0.00 0.02 £.00 -0.15 -0.01 —0.42 -0.04
MB 0.00 0.00 0.00  =0.01 -0.06 =0.01 -0.06
TBILL 0.02 0.48 ~0.08 0.04 -0.05 -—44.08 -0.24
CBI 0.00 0.00 0.00 -{.19 0.00 -0.37 —2.43

*The followinlg order of variables was used to identify the model: Dollar, SP500, TBILL, MB, DEFL,
CBI, and GNP.




Table 2

An Alternative Explanation of the
Monthly Core Model’s Revised Forecast for December 1988*

Forecast Variables

T-BillChange in
Exchange S&P {basis Invents.
Index 50Deflator GNPBase pts.) (8 bils.)

Change in Forecast —4.57 -30.04 -2.01 -1.09 ~-1.24 -101.88 -9.61
(%, except as noted)

Breakdown by Reason for Change
(% pts., except as noted)

Revisions in Old Data -0.55 0.27 -05.49 1.70 -0.59 2.86 -1.97
Structural Shocks -3.81 -20.88 -1.50 -2.77 -0.58 -105.72 -7.33
Miscellaneous Factors -0.21 -0.33 -0.02 —0.02 -0.07 0.98 ~{.31

Breakdowsn by Variable Changed for Each Reason
(% pts., except as noted)
Revision in Old Data

Dallas Exchange Index-3.44  0.3% 0.02 -0.02 0.14 22.44 0.50
Standard & Poor’s Index-0.31 -31.66 0.09 -2.87 -=0.31 -101.64 -5H.45

GNP Deflatof.08 0.82-1.51 0.16 -0.01 ~7.18 0.11

GNRO .01 0.01 -0.22 0.08 3.69 0.49

Monetary Bas#.09 0.25-0.12 .04 -0.68 —-3.64 —{.88

3-Month T-Bill Rate0.00 0.00 0.00 0.00 0.00 0.02 0.00 )
Monthly Change in Business 0.00 -0.02 0.00 0.00-0.01 g.18 176
Inventories

Structural Shocks

Dallas Exchange Index-3.44 0.3 0.02 -0.02 014 22.44 0.50
Standard & Poor’s Index—0.31 -31.68 0.08 =2.67 -0.31-101.64 —5.45
GNP Deflatof.08 0.82 -1.51 0.16 -0.01 -7.18 0.61 :

GNI0 0.01 0.01 -0.22 -0.01 -0.43 -0.23

Monetary Bas®.00 0.06 -0.08 -0.06 -0.40 -3.93 —0.59

3-Month T-Bill Ratel.14 0.380 0.03 (.04 0.01 1495 0.01
Monthly Change in Business 0.00 0.00 0.00  0.00 0.00 -0.03 -2.18
Inventories

*The following order of variables was used to identify the model: Dollar, S&P 500, T-BILL, MB,
DEFL, CBI, and GNP. '
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