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This appendix discusses the computation of the log-linear decision rules, the
capital grid, the equilibrium debt rule and the ex post capital tax rates in the paper.
The appendix also discusses our computational strategy for evaluating the

implementability constraint.
A. The Decision Rules and the Capital Grid.

Log-linear decision rules are used to initiate the computations for finding the
decision rules which sclve the Ramsey allocation problem. This section shows how
they are computed, and how they are used to construct our grid for the capital
stock. The computational strategy outlined below actually differs somewhat from
the one actually used in the project and explained in complete detail in Chari,
Christiano and Kehoe (1861). The strategy described below, which follows
Christiano (1990), yields numerically identical answers to the one actually used, but

is simpler to present.
Log—Linearized Decision Rules

After substituting out for c(st) from the resource constraint, (2.17)—(2.18) in

the paper can be written as follows:

(A.1) q(kt,kt_i_l,!t,gt,zt) =0,



(A.2) Eh(k,k ¢t

¥+ 1 542 b 4 BB 1 7P 1) KpBpZ] = 0

fort = 1,2,3,... . Here, kt+1 z log k(s ), gt log g(s ), , = log l(st). Equations
(A.1) and (A.2) are the intratemporal and intertemporal first order conditions,
respectively. The functions q and h are replaced by Q and H, the linear
Taylor-series expansions of q and h about the non—stochastic, steady—state values of
their arguments. The non-stochastic version of the problem is obtained by fixing z;
and ét at the unconditional mean of z; and the log of the unconditional mean of
g(st), respectively. The functions Q and H are straightforward to construct given
the parameters of our model. Our log-linear decision rules are found by solving the
analogs of (A.1) and (A.2) with q and h replaced by Q and H.

Specifically, the condition Q(k ) = 0 defines a linear function of

t’ t+1"t’gt""

£ , which can be used to substitute out for t and t in H. Call this new function

t+1
H. Substituting the linear expression, kt 1= %+ alkt + azgt + agz,, into

E[H [k, ,g,,,] gives:

BH(k, Ky g 1% 4 0808 4 1702 )| KpBpz] = Ag + Ak, + Agg, + Mgz,
Here, we exploit thei fact that E[zt 41 | kt’gt’zt] and E[gt +1|kt’gt’zt] are linear
functions of z, and g,. We then use the conditions A0 = Al =A,= A3 = 0 and
Ial,l B| < 1 to determine values for oy, @, G, aq. The log-linearized decision rule

is
(A.3) K(s%) = k(s"™) Mg Pexp{ay, + ag5,).

The ergodic set implied by this decision rule is defined by the maximum (= k ) and



minimum (= k,) values of {gazexp(a0+ a3z)}1/ (1-a) over the four possible

combinations of (g, z).
The Capital Grid

The capital grid is constructed as follows. We first computed the 20 zeros of
Tzo(x): X = cos[m(i—5)/20], i = 1,...,20. The capital grid is composed of k. =
exp{.5[x;(b-a) + (b+a)]},i=1,...,20. Here, a = log (.9k,} and b = log (1.03k).
The lower grid point for capital is only 90% of k { because the high period 1 ex ante
tax rate on capital income leads to a very low period 1 capital stock. In all three of
our model parameterizations, the ergodic set for capital lies strictly in the interior of

the interval [a,b].
B. The Equilibrium Debt Rule and Ex Post Capital Tax Rates.

This section describes our method for computing the equilibrium debt rule.
We also describe the algorithm for computing the ex—post capital tax rates in the
decentralization of the Ramsey allocations in which the return on government debt
is not state—contingent. The ex ante capital tax rates can then be computed by
substituting the ex post capital tax rates into the numerator of (3.10).
Alternatively, the numerator in (3.10) may be computed directly from the solution

to the Ramsey allocation problem using (3.3).

In the decentralization focused on here, Rb(st,st +1) = ﬁb(st) is determined
by (3.2) and the Ramsey allocations. Consequently, from here on we treat it as a
known quantity. We use (3.3) and (3.4) to compute the capital tax rates and the

equilibrium debt rule. Before jumping into the details, we provide a brief sketch of



our procedure.

Fix some point in the state—space: k,5. Let the current date be denoted date
t. Fix the piecewise linear debt rule which determines government debt at the end
of period t+1: b, o = (k1,8 ;). (Here,b(s"*') =b,_ o) Then, the n period
t-+1 household budget constraints, together with the period t intertemporal Euler
equation for capital, (3.3), are used to solve for the n period t+1 capital tax rates
and the end—of—period t debt, bt 41 Doing this for all m k’s in the capital grid and
all n values of s allows us to construct a new piecewise linear function, bt 1=
<p'(kt,st). The equilibrium debt rule we seek is a fixed point ¢ such that ¢ = @-.
The parameters of @ are an nmx1 vector b, which specify the value of p at each of
the nm possible combinations of k,s. Let b’ denote the nm x 1 vector of parameters
of /. It turns out that the map from b to b’ is linear, being characterized by b’ =
Z + Bb, where Z and B are nm = 1 and nm x nm, respectively. Thus, finding the
fixed point that interests us is equivalent to finding a vector b such that b’ = b.
This in turn may be found by solving a set of nm linear equations. Describing the
construction of Z and B is the principle subject of the remainder of this section.
The capital tax rule corresponding to the fixed point ¢ function is denoted by Gt +1
= Okys5y8 4 1)-

We begin by developing a matrix representation of (3.2) and (3.4). Letie
{1,...,nxm} index the (k,s) combinations that we consider and fix some value of i.
The solution to the Ramsey allocation problem, (2.1), (3.1), and the posited ¢
function deliver the n possible values of c, 11 %oty +2_[1+Fk,t +1—6]kt 41-
(I”Tt+1)wt+1£t+1‘ (Here, k1% k(st), ¢, = c(st), Fk,t = Fk(st), T, S 'r(st), Wy =
w(st).) Denote these by the nx1 vector cgi). Let D) denote the nxn diagonal
matrix constructed from the n values of Fk,t +1” § and let 'y(i) denote the nx1

vector with each element equal to Rb b1 Also let the, as yet undetermined, n



values of @ be denoted by the nx1 vector H(i). Then, conditional on state i

1+1
occurring at date t, the date t+1 household budget equation is written

(B.1) cgi) — pd4® + 7(i)b(i),

where b(!) is the as yet unknown value of the debt held at the end of period t.

The value of € kt +10 lt and Uc,t can be computed from the Ramsey

allocation problem. Let the scalar, c:gi), denote U, , — %, fuls, +1|st)[Fk pe1 T
H t+1 b

1-4]. Let 1{)@) denote the 1xn vector composed of the n possible values of
—4(8, 41 Ist)(Fk 41 6). Then, the capital Euler equation is written

(B.2) cgi) _ ¢,(i)0(i)_

For later reference, it is useful to express kt p1382 linearly interpolated

function of the elements of the capital grid, k = (kl,...,km)'. In particular, there is

some j(i) and 0 < w; < 1 such that k = ""kj(i) + (l—wi)kj(i) 11 Denote the 1xm

t+1 1
vector with w; and (1~w,) in the j(i) -th and j(i)+1 ~th locations, and zeros

everywhere else by Gi' Thern, k = Gi]_s. The capital grid is constructed so that

t+1

no k 1> km ork 1 < kl is ever encountered. Consequenily, if j(i} = m, then

t-+ t+
l-wi = 0. Also, w; > 0 for all i.

Substitute out for o) i (B.2) from (B.1) and rearrange, to get

1)) 1.(1) (i
(B.3) o) _ ’ﬁ()[D( ] cg -5 )
LD 1,)




Now write
(B.4) cgi) = dgi) + };(i),

where 1.)(1) denotes the nx1 vector composed of the n values of bt 2

Write the nmx1 vector of as yet undetermined b, , ,’s as

t+1
b= blt)
* (um)
Thus, stacking (B.3) and taking (B.4) into account, we get

[ 4(1) [D(l)]'—lf](l)

(B5) b/ = Z+ 1) [D(l)]—l,r(l) ,

1'b(nm) [Dinm)]-—ll']( nm)
¢(nm) [D (nm ) ]—lv(nm)

where,

'¢(1) [D(l) ]"1d§1) _ Cgl)
Z = 1) pl1)—1, (1)

¢(nm) [D(nmj]—ldgnm) _ cgnm)
5 (8 [p (5m) | —L_(7m)




Next, we show how ﬂ(i) is linearly related to the parameters of the period
t+1 debt rule, go(kt +1% +1), which is parameterized by the nmx1 vector b. Write
(bl, Byees b:ﬁ)" where bj is nx1 for j = 1,...,m. The vector bj denotes the n
values of b, 42 = go(kt 1155 +1) corresponding to each of the n possible values of
for k +1= kj, the j—th point on the capital grid. Now by construction, kt is

St+1

on the capital grid. However, typically k, . , will not be. Instead, as noted

t+

previously, there will be some jand 0 < w < 1 such that k 1= wk + (1~w)k

t+ 41
In this case, ga(kt+1,st+1) = wip(k., t+1) + (1-w)e(k 1t t+1) The n vector of all

possible by | ,'s is just wb + (l—w)b This reasoning and an earlier discussion

i+
leads to the following Iesult.

8.6) bl = [Gielm]b,

where ® denotes the Kronecker product, I, is the mxm identity matrix, and G; was

defined earlier. Substituting this into (B.5), we get
(B.7T} b’ =2 + Bb,

where

,/,(1)[])(1)]""1 6,01 ]
= | 3T (T4 Y

¢(nm) [D(nm)]—-lb(nm)
(nm) [D(nm)]—l (nm ) (Gm®t m)




The fixed point of (B.7) is given by
(B.8) b=(I-B)™
To find 61, simply solve (B.1) using (B.4):
65) @ = pOFYal) 4 50 _ 00
=Wl + [(Gyer,,) - vy,

where ] is 2 1xnm vector with a 1 in the i—th location and zeros elsewhere.
Equation (B.9) for i = 1,...,nm yields a rule for the ex post tax rate on date t+1

capital earnings, O(k,,s,,8, +1). To evaluate this function at points not on the

t:5¢
capital grid, we use linear interpolation.

To compute b and 0(1),...,8(nm) for the baseline model requires nearly 3
minutes of CPU time using MATLAB on 2 DOLCH computer with a 386—chip, 25
Mhz and a math co-processor. When these objects are computed using the
log-linearized decision rule for capital and hours worked, the CPU time is around 50
seconds. (The largest eigenvalue (in an absolute value sense) of B is .97.) One of
the reasons for this substantial reduction in computer time is that the

time-intensive computations involve solving the non-linear equation, (2.17), to

compute equilibrium hours worked.

C. Evaluating the Implementability Constraint.



Our strategy for solving the Ramsey allocation problem solves (2.15)
conditional on a value for A. Given this solution, the objects on the left and the
right sides of the equality in (2.5) can be evaluated. The equality is not be satisfied
for an arbitrary value of A. We repeatedly solve (2.15) for different values of A until
one is found which causes the equality to be satisfied within a specified level of
accuracy. A direct way to evaluate the implementability constraint, (2.5), is by
Monte Carlo simulation. However, this procedure seems inefficient, as it requires a
very large number of simulations to compute the left and right sides of (2.5) to an
acceptable level of accuracy. We therefore adopted the following procedure instead.

Note that b(so) can be computed from the solution to the Ramsey allocation

problem using the date 0 household budget constraint, (1.3). Call this value of the
f
1
steady—state debt rule computed in section B, it is possible to compute a value for

debt b;. At the same time, given that the debt carried out of period 1 satisfies the
the debt carried out of period 0 working backward using the strategy outlined there.
Call this debt level bll:'. This is found by solving the appropriate analogs of (B.1)
and (B.2), with ) = b{, and where 6(1) is the vector of n period 1 capital tax rates
in the decentralization in which government debt returns are not state—contingent
and capital tax rates are. The index i corresponds to the k, s pair which obtains in

period 0. In particular,

(C.1) bP= ‘”(i)[D(i)]—l{dgi) + [GysI_]b} - Cz(i) |
' ¢(i)[D(i ) ]—17( i)

where b is given by (B.7) and G; is a 1xm vector discussed in section B. In (C.1),
1, dl’ D, v, and ¢y have been bolded, in order to differentiated them from their
un~bolded counterparts in equations (B.1) and (B.2). The reason they need to be



differentiated is that the latter are computed using the stationary-state decision
rules for capital and labor, which are active from period 1 on. The bolded objects in
in equation (C.1) are computed using the period 0 capital and hours worked
decisions. When b§ = blf, then the implementability constraint is satisfied. It is
clear that bi - b? = f(]), where f is quite complicated. We solve the Ramsey
allocation problem by finding a A such that f(A) = 0. To evaluate f once when the
log-linearized decision rules are used requires around 70 seconds of CPU time, while
these computations requires around 7 hours using the method underlying the
calculations in the paper. All calculations were done in 386MATLAB using a
DOLCH computer with 386 chip, 25 Mhz and a math co—processor.
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