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1. I n t r o d u c t i o n 

Among appl ied economists, there is a general agreement that, for many pract ical prob

lems, it is necessary to go beyond analyt ical ly tractable models to confront the theory wi th 

the data. For this reason, there has been a surge in the development of numerical meth

ods designed to compute equi l ibr ia in problems that do not allow for analyt ical solutions. 

To date, the big trade-off has been computing t ime versus accuracy of the solut ion. For 

example, some numerical methods rely on approximating nonlinear decision functions by 

linear funct ions. 1 L i t t le computer time is required for calculat ing linear decision functions. 

However, in some cases, the true decision functions are highly nonlinear, and, therefore, 

linear approximations are inaccurate. 2 

In this paper, I describe a method that is widely used in engineering applications 

such as structural analysis and aerodynamic design. The advantage of the method, often 

referred to as the finite element method, is that it narrows the computat ional t ime and 

accuracy trade-off. To demonstrate this, I apply the finite element method to the stochastic 

growth model studied by Taylor and Uh l ig (1990). 3 Taylor and Uh l ig compare a variety 

of different algori thms. 4 They find that none of the methods that they appl ied performed 

well in al l respects, and i l lustrate, through a battery of tests, the need for improved, less 

computer-intensive methods. 

Of course, adding one more method to the list in Taylor and Uh l ig (1990) does not 

change their main conclusion. They argue that researchers should not bl indly apply numer

ical methods. It is necessary that the economic problem dictate which numerical procedure 

should be appl ied. For the growth example, I demonstrate that the finite element method 

works extremely well when applied to a case with an analyt ical solution. For cases that 

do not have an analyt ical solution, I show that the method yields simi lar decision func

tions to discretized dynamic programming in a fraction of the comput ing time. F ina l ly , 

I show that the method can also be appl ied to problems wi th inequality constraints. In 

the growth example, inequality constraints arise from the assumption that investment is 

1 See Kydland and Prescott (1982) for an example. 
2 Linear approximations are also inaccurate in models with large shocks. Braun and McGrattan (1993), 

who consider very large fiscal shocks, use a finite element approximation such as that discussed here. 
3 My purpose here is to describe the method by way of simple examples. For a general treatment of 

the finite element method, see Hughes (1987) or Reddy (1992). 
4 Computational methods were the subject of a conference held at the Federal Reserve Bank of M in 

neapolis in 1988. The result of the meeting was a collection of papers which includes Taylor and 
Uhlig (1990) in volume 8 of the Journal of Business and Economic Statistics. 
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positive for all realizations of the capital stock and the shock to technology. Thus , this 

article is intended to alert practit ioners to a method that, for certain problems, is fast and 

accurate. 

A s a warm-up exercise, I first apply the finite element method to a simple textbook 

example. Th is is done in section 2. In section 3, I apply the method to the stochastic 

growth model. Concluding remarks are given in section 4. 

2. A s i m p l e e x a m p l e 

Let me start wi th a simple example. Consider the following differential equation: 

^ + / ( x ) = 0, / (0 ) = 1. (1) 

I am interested in finding the function f(x) defined on the interval [0,1] which solves the 

differential equation in (1). It turns out that the exact solution to the problem is the 

exponential funct ion, f(x) = exp(—z). Suppose, however, that I do not know the exact 

solution and want some approximate solution that is "close" to the exact solut ion. Let 

fh(x) be one approximate solution and assume that fh(0) = 1. Because fh is approximate, 

^ ^ 4- fh{x) is not necessarily equal to 0 for al l x in [0,1]. Thus , I need some concept of 

"close." I also need to choose the space of functions in which the approximations, fh, lie. 

In the case of finite element methods, "close" means that the approximate solution 

satisfies the weak formulation of the problem in (1): 

( ^ 4 + A » ) ) ^ - 0 , / * ( 0 ) = 1 (2) 

w(x) is a weighting function that satisfies (a) w(0) = 0 and (b) ^[w'{x)]2dx < oo. 5 In 

the version of the finite element method that I use here, the functions fh(x) and w(x) are 

assumed to be piecewise l inear, e.g. 

n n 

A*) = = J > a / V a ( z ) (3) 
a = l a = l 

where 
X a _ l < X < xa 

Na(x)={ x a < x < x a + 1 (4) 

0, elsewhere 

5 The restrictions on w and fh ensure integrability of the weak formulation and satisfaction of the 
boundary constraints. See Reddy (1992) for a discussion of boundary constraints. 
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and fi, . . . , fn and u>i, . . . wn are constants. The functions Na(x), a = 1 , . . . n, are called 

shape functions or basis functions. If the exact solution to the problem is nonlinear, it is 

necessary to use a sufficient number of grid points (or nodes) to resolve the nonlinearit ies. 

Alternatively, higher order polynomials can be used in place of the linear basis funct ions, 

Na(x), and require fewer grid points for resolving nonlinearities. 

In figure 1, I display a typical shape function Na(x). Notice that Na(x) is equal to 

zero for al l x except those that lie in the intervals (or 'elements' in the language of the 

finite element method): [ x „ - i , x a ] and [ x a , x a + i ] . In figure 2, I display all of the shape 

functions on [0,1]. Notice that they overlap each other. In figure 3, I display a piecewise 

linear approximat ion, fh(x). For the interval [ x a , x a + i ] , fh(x) is given by a weighted sum 

of the functions Na(x) and Na+i(x), i.e., faNa(x) + / f l + i J V 0 + 1 ( x ) . Note that in the first 

interval, I must enforce the boundary condit ion, fh(0) = 1, and the restr ict ion on the 

weighting function u>(0) = 0. Since iVi(O) = 1 and AT2(0) = 0, the approximate funct ion 

at x = 0 is equal to f\, and the weighting matr ix at x = 0 is equal to w\. Therefore, to 

impose the boundary condit ion, I set / i = 1 and W\ = 0. 

If I substitute the approximations in (3) into the weak form of the problem given by 

(2), I have an equation that depends on the constants of the approximate solut ion, / = 

[1» / 2 , h, fn]' and the coefficients of the weighting function w = [0, w2, w3, ..., wn], 

namely 

w1 I (NdN/dx + NN')fdx = 0 (5) 
Jo 

where JV = [Ni(x), N2(x),..., Nn(x)] and dN/dx is a vector of first derivatives of the 

basis functions. Since w and / are vectors of constants, they can be brought outside of the 

integral. Assuming that (5) holds for any arbitrary weights, w, it must be the case that 

1 dN' 
Na(x)(^-+N')fdx = 0, a = 2,...n. (6) 

/o a x 

In (6), I have n — 1 equations and the n — 1 unknowns in / . I can solve these equations to 

determine the finite element approximation to / ( x ) . 

Consider the following simple examples. F i rs t , assume that there is one element and 

nodes at 0 and 1. In this case, Ni(x) = 1 - x and = x on [0,1]. Therefore, the 

integral in (5) is 

r n . f1 f x - l + ( l - x ) 2 1 
[° W^J0 [ - x + x d - x ) 

- x + (1 - x)x 
9 

X + X " 

1 

h 
dx=0 (7) 



or, after integration, 

[0 w2] 
r 1 2 • [ 1 1 

f I 
3 6 . 

The equation in (7) must be satisfied for any arbitrary but nonzero value for w2. Thus , 

the approximate solution for the one element case has fh(l) = f2 — 0.4. The exact 

solution is at x = 1 is / ( l ) = 0.37. For the second example, assume that there are two 

elements wi th nodes at 0, 0.5 and 1. By the definition of the basis functions in (4), I 

have Ni(x) = 1 - 2x, N2(x) = 2x, N3(x) = 0 on the interval [0,0.5] and N^x) = 0, 

N2(x) = 2 — 2x, Nz(x) = 2x — 1 on the interval [0.5,1]. After carry ing out the integration 

in (5) for this case, I have 

= 0. 

If this equation is to be satisfied for arbi t rary values of u;2 and wz, then f2 and fz must 

satisfy 
1/3 7/12 

r - l / 3 7/12 0 r 1 1 
0 w2 wz] - 5 / 1 2 1/3 7/12 h 

0 - 5 / 1 2 2 /3 h 

' 5 / 1 2 ] 
0 

The constants that satisfy these two equations are f2 = 0.6 and fz = 0.37. Note that the 

exact solution at x = 0.5 is / (0.5) = 0.61 and the exact solution at x = 1 is / ( l ) = 0.37. 

The integral in (2) can also be calculated numerically. For example, i f Gaussian 

quadrature is used, then the integral of a funct ion g(x) over the interval [a, b] is given by 

rb i* 

J a i=i 

for m-point quadrature where ~/i is the weight given to the function at the point x,-.6 In 

the next section, I compute the integrals using Gauss-Legendre quadrature. 

3 . T h e s t o c h a s t i c g r o w t h m o d e l 

In this section, I apply the finite element method to a simple but widely used example 

in economics: the stochastic growth model. I consider three specific examples. For the first 

example, I choose a parameterization that allows for an analyt ical solution to the problem. 

6 See Press, et. al. (1986) for simple algorithms that calculate the weights, 7 , , and abscissas, x,-, 
t = 1 , . . . , m with inputs a, b, and m. 
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This example serves as a test case for evaluating the accuracy of the algori thm. The second 

example is an example f rom Taylor and Uhl ig (1990). Since no analyt ical solution exists 

for the parameterizations that they consider, I compare the results for the second example 

with the results reported in Taylor and Uh l ig (1990). The third example is one studied by 

Chr is t iano and Fisher (1993) who impose nonnegativity constraints on investment. 

3.1. Statement of the problem 

Let ct be consumption and kt be the capital stock at date t. Agents are assumed to 

maximize expected ut i l i ty: 

0 < 0 < 1, r > 0 (8) 

subject to the following resource constraint 

Ct + kt — (1 - S)kt-i = 9tkf_1, k-i given 

and nonnegativity constraints ct > 0, kt > 0 at all dates t. The term kt — (\ — 8)kt-\ 

is investment at date t. Note that 8 of the stock depreciates between dates f — 1 and t. 

The term 9tk°_1 is the output produced with kt-i units of the capital stock i f the level of 

technology is given by 9t. For this example, I assume that the level of technology varies 

over t ime and the process for 9t is given by 

ln#t = pln9t-i + et 

where et is a serially uncorrelated, normally distr ibuted random variable wi th mean zero 

and variance o\. 

The first order condit ions for the opt imizat ion problem in (8) imply that the fol lowing 

equations must be satisfied by the opt imal decision functions for all values of k and 9: 

R(k,9;c) = c(k,9)~T - (3 f c(~k,Oy^aOk0-1 + 1 - S)f(e)de = 0, c(0,9) = 0 (9) 
J —oo 

where 

k = 9kQ + (l -8)k-c(k,9), 

9 = 0exp(e). 

and / (e ) is the normal density function. The objective is to find the consumption function 

c such that residual R(k, 9; c) in equation (9) is approximately equal to zero for al l values 

of k and 9. Th i s is done in the next section. 

E 
1 —r 

1 - r 
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3.2. Solution method 

In this section, I describe how to apply a finite element method to the problem of 

section 3.1. A s I noted in section 2, two choices must be made. I must decide on the space 

of functions from which I choose an approximation to the consumption funct ion (ch). I 

must also decide on a concept of "close" when seeking functions that approximately satisfy 

the first order conditions in (9). 

For the functions, I choose from the space of piecewise bi l inear functions. If the gr id 

over the capital stock and the technology shock is rectangular, then each element can 

defined as a rectangular interval over k and 9. Consumpt ion on element e is defined to be 

-£4 ,^ , (4 , * ) (io) 

where Aft . , j = 1 , . . . 4 are functions to be defined below and c (

e

; ) , j = 1 , . . . 4 are constants. 

The consumption funct ion, unlike the function of section 2, is defined over two dimensions. 7 

In section 2, the functions on any element e are defined as a weighted sum of two linear 

functions. Here, the funct ion on element e is a weighted sum of four functions. 

In figure 4, I display a typical rectangular gr id. The gr id is div ided into smaller 

rectangles called elements. The elements are marked by encircled numbers. Each point 

on the gr id , or node, is numbered. When referring to the nodes of a part icular element, 

it is convenient to refer to the local nodes, which are marked 1 through 4 and appear 

in parentheses in figure 4. To calculate consumption for element 3 of the example gr id 

in figure 4, I need to know the values of the constants c^.j and the functions i V ^ f c , #), 

j = 1,2,3,4 defined on the rectangle wi th (global) nodes 3, 4, 7, and 8. Assume that 

the rectangle for element e is [ke,ke] x [Oe,0~e]. The functions A ^ f c , 0), j = 1,2,3,4 are 

assumed to be bi l inear functions and are defined as follows 

N'(k,9) = ± --le -
<"v ;

 k

e - k * oe-ee 

k - ke ee - e 
NUk,6) = - e 

<J)V ;

 k - k e 9 -6e 

Are ( M ) = . ^ Z i l 
(3)V ' k - k e 9 -9e 

«>v ' ;

 k

e - k e 9 -9e 

7 From the two dimensional it is easy to see how higher dimensions can be handled. 
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The subscript on N denotes the local node and the superscript denotes the element. Note 

that the bi l inear function N'l)(k,0) is equal to 1 at (ke,0e) and 0 at all other local nodes 

in element e. In general, the function JViJ. is equal to 1 at local node j and zero at al l 

other local nodes in element e. W i t h JVX» and the constants c ^ , j = 1,2,3,4 that are to 

be computed, I can calculate consumption for any point in element e. 

I have defined the basis or shape functions for a typical element. I can also define them 

over the entire domain. Suppose that node a is at the intersection of four elements marked 

Cl j ^2) ^3) a n ( i e 4- Since a is at the intersection of the four elements, it is a local node 

for each. Suppose that global node a is also local node (j) for element ej, j = 1,2,3,4. 

Define Na(k,0) as follows: on element ej, Na(k,0) is equal to Nj^k^O), j = 1,2,3,4 and 

everywhere else Na(k,0) is equal to 0. Suppose, for example, that a = 6 in figure 4. Node 

6 is local node (1) for element 5, local node (2) for element 4, local node (3) for element 

1, and local node (4) for element 2. Thus , I set Ci = 5, t% = 4, t% = 1, and e 4 = 2. In 

this case, Ne(k, 0) is equal to N*1} on element 5, JV*L on element 4, N*3) on element 1, N?4) 

on element 2, and 0 everywhere else. In figure 5, I display Na(k,0) for a typical node a. 

Its shape is l ike that of a pyramid. The function is positive for values of (k, 0) in the four 

elements surrounding node a and zero elsewhere. A t a, Na(k,0) is equal to 1. 

The approximate consumption function can also be defined over the entire domain, 

e.g., 
n 

cH(k,0) = Y/caNa(k,0) (11) 

where n is the total number of (global) nodes and ca is the value of consumption at node a. 

Note that the constants c a , a = 1,. . . n , in equation (11) are related to the constants c* ; ) , 

j = 1,2,3,4 in equation (10). Consider the mesh of figure 4 as an example. The constant 

c 3

2 ) for the local node number 2 in element 3 is equal to the constant c 4 which is the value 

of consumption at the global node number 4. 

The constants, c a , a = 1 , . . . n, of the approximate solution in equation (11) are chosen 

to satisfy the weak form of the problem, 

fk fe 
/ / w(k,0)R{k,0;ch)dkd0 = O 

Jo Je_ 

where w(k,0) is a piecewise bil inear weighting function that satisfies w(O,0) = 0 for al l 

0 > 0. If the weak form of the problem is to be satisfied for an arbitrary weighting funct ion, 
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then the problem is to find constants c„ at all nodes a for which the capital stock is nonzero. 

That is, the main computat ional task is to find the unknown constants ca such that 

I Na(k,9)R{k,9; ch)dkdd = 0, for all a e A. (12) 

The set A includes al l nodes except those at the k = 0 boundary. Let c be a vector w i th 

elements ca,a E A and denote the system of equations in (12) by H(c) = 0. If the part i t ion 

on [0,k] has n* points and the part i t ion on [0,9] has ng points (i.e., n = m x ng), then the 

set A has (n* — l)ng elements. Thus, the set of equations given by H(c) = 0 is a system 

of (rik — l)ng equations with (rik — l)rtg unknowns. 

In the example of section 2, a l inear system of equations is solved to compute the 

approximate solution. In the growth example, I have a system of nonlinear equations to 

solve, i.e., H(c) = 0. If I use a Newton-Raphson algori thm to find the vector c which 

satisfies the nonlinear system of equations, then I choose some ini t ia l guess, say en, and 

iterate as follows: 

c i + 1 = ce-J(ce)-1H(c() (13) 

where ci is the guess of c at iteration £ and J is the Jacobian of H. The element 

of J is the derivative of the zth equation in H wi th respect to the j ' th element of c. The 

iterations in (13) require algorithms to compute x in Ax = b for A = J(c), b = H(c). In 

most cases, A is sparse. Thus, if the application has many state variables, the matr ix A 

can be stored in compressed form for more efficient storage. 

Integration is required to compute both the residual, R, in (9) and the system of 

equations, H, of the weak formulation of the problem. To calculate the integral in R, 

I first substitute the expressions for next period's capital and technology (k,8) into the 

integrand. The integrand is, thus, a function of current capi ta l , k, current technology, 9, 

and the innovation in technology, e. Therefore, for each value of (k,9), I can compute the 

integral in (9) by Gaussian quadrature. To do this, I need to choose a finite interval for 

e and the number of points at which I evaluate the integrand. G iven R(k,9;ch), I can 

compute the elements of H(c). Notice, however, that for a typical element of H(c), the 

integrand is nonzero for only a small part of the domain. Take, for example, the element 

of H associated wi th node a. In this case, I only have to integrate over the 4 elements that 

surround node a because Na(k, 9) is zero for all other values of capital and the technology 

shock. 

1 
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In the Append ix , I describe the main steps of the algor i thm in more deta i l . 8 In 

specifying the algor i thm for the growth example, I assume that certain parameters are 

given. F i rs t , I need a parameterization of the ut i l i ty and product ion functions, i.e. choices 

of 0, 8, r, p, a, and at. I also need to specify the grid over the capital stock and the 

technology shock, i.e., choices of k, 9, and 9 and part i t ions over [0,k] and [0,9]. Let k 

= [0, k2, kz, • • •, knk] be a part i t ion for the capital stock and let 0 = [0\,02,... ,9n,] be a 

part i t ion for the technology shock. 9 For each (ki,9j) pair , i = 2 , . . . ,fljfc, j = 1 , . . . ,ne, I 

need an in i t ia l guess for consumption, c(ki, 0j). For integration, I need to choose an interval 

for the innovations in technology, c, and the number of points to be used for Gaussian 

quadrature when computing integrals in (9) and (12). For comput ing the integral in (9), 

assume that [e, e] is the interval and that m( points are used in quadrature. For computing 

the integral in (12), I assume that a different number of quadrature points can be used 

for each element. Let m * ^ denote the number of quadrature points used for integration 

wi th respect to the capital stock, k, on element e. Similar ly, let me,e denote the number 

of quadrature points for integration with respect to the technology shock, 0, on element e. 

In the next two sections, I i l lustrate the performance of the finite element method 

wi th two specific parameterizations. The first is a test case, for which we have a known 

solution. The second is an example studied by Taylor and Uh l ig (1990). 

3.3. A test case 

If I assume that the capital stock fully depreciates each period (i.e., 8 = 1) and that 

the ut i l i ty function is logari thmic (i.e., r = 1), then I can obtain an analyt ical solution to 

the problem stated in section 3.1. The decision function for consumption when 6=1 and 

r = 1 is given by 

c(kt-u0t) = ( l - 0a)9tkf_,. 

Investment, in this case, is 0a9tk°_i. Therefore, in this economy, the level of the capital 

stock tends to the value of ( / 3 a ) ] / ( 1 - Q ) for smal l values of a(. 

To obtain the finite element approximation of the consumption funct ion, I need to 

specify the model and algorithmic parameters. Let /S = 0.95, a = 0.33, p = 0.95, and 

a( = 0.1. Th is choice implies that e is in the interval [-0.288,0.288] approximately 99.6 

8 The appendix and codes written in Fortran 77 are available from the author upon request. 
9 The subscripts on k and 9 index nodes in the partition of the grid. Time subscripts are not needed 

here because the solutions are time-invariant. 
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percent of the time and that 8 is in the interval [0.744,1.345] approximately 99.6 percent 

of the t ime. I use these estimates to set [e,e] and [8,8]. For the upper bound on capital , I 
_ i _ 

set A: = 8X~" or 1.56 which is the max imum sustainable capital stock for 8 = 8. 

To i l lustrate how the approximation changes as I change the gr id, I report results for 

two part i t ions of the gr id over the capital stocks and technology shocks. I first assume 

that k = [0, 0.01, 0.1, 0.5, 1.0, 1.56] and 8 = [0.744, 1, 1.345], which implies that there are 

10 elements. The second part i t ion is given by k = [0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0, 

1.25, 1.56] and 8 = [0.744, 0.9, 1, 1.15, 1.345]. In the second case, there are 36 elements. 

For both part i t ions, I set the number of quadrature points for integration wi th respect 

to the capital stock and the technology shock equal to 3 in each element, i.e., m$it = 3, 

mk,e = 3 for all e. For integration over e, I set the number of quadrature points, m(, equal 

to 10. In both cases, the in i t ia l guess for the consumption function is the l inear-quadratic 

approximat ion, i.e., 

ca = 8ak° - (0.119 + 0.33fca + O.1771n(0 a)) 

for al l a such that ka > 0, where ka is the level of capital stock at node a and 8a is the 

technology shock at node a. I set ca equal to 0 at all nodes a on the k = 0 boundary. I 

assume that the iterations in (13) are converged when ||c/+i — cV|| < l e - 5 where ||x|| is 

the vector norm equal to (X3"=i 

Star t ing from the l inear-quadratic solut ion, the computat ion of the 10-element ap

proximat ion takes approximately 0.075 seconds and convergence is achieved in 4 steps of 

the Newton-Raphson a lgor i thm. 1 0 The per-iteration computat ion time (excluding input-

output overhead) is approximately 0.016 seconds. In the 36-element case, convergence is 

achieved in 4 iterations of (13) with 0.32 seconds for the entire computat ion. The per-

iteration computat ion t ime is approximately 0.08 seconds. In figure 6, I plot the exact 

solut ion, the finite element approximation with 10 elements, and the finite approxima

t ion wi th 36 elements for 8 = 1.15. The exact solution is given by the sol id line, the 

36-element approximation is given by the dashed line and the 10-element approximat ion 

is given by the scatter plot with '+ ' . Notice that i n both cases, it is difficult to dist inguish 

the approximation from the exact solution. 

3.4. An example from Taylor and Uhlig (1990) 

1 0 A l l computation times reported in this paper are based on runs of Fortran code on a Silicon Graphics 
Indigo R-4000. 
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In the examples of Taylor and Uh l ig (1990), the rate of depreciation is equal to zero 

(i.e., 6 = 0) and no analyt ical solutions exist. In this section, I consider their 'case 2' which 

has 6 = 0, r = 1.5, = 0.95, a = 0.33, p = 0.95, and ae — 0.1. I assume that the upper 

bound for the capital stock is k = 25. In the interval [0,5], the part i t ion is given by [0, .01, 

.05, .13, .29, .51, 1.15, 2.43, 5], which puts a cluster of points where the gradient is large. 

Nodes between 5 and 25 are equally spaced wi th part i t ion length equal to 2.5. Therefore, 

the number of points for the gr id on k is 17. The part i t ion for the technology shock is 

given by 0 = [.4, .7, 1, 1.3, 1.6]. I set the number of quadrature points for integration 

with respect to the capital stock and the technology shock equal to 3 in each element, i.e., 

Tne,e = 3, rrik,e = 3 for all e. For integration over e, I set the number of quadrature points, 

m(, equal to 10. For the ini t ial consumption funct ion, I use .I4(8k° + 1 — 8). Th is in i t ia l 

guess assumes that a constant fraction of output is used for consumption and a constant 

fraction is used for the purchase of new capital . The fraction 0.14 is chosen because it 

implies that the correct marginal propensity to consume when at is smal l . I assume that 

the iterations in (13) are converged when | |cV + i — C(\\ < l e - 5 where is the vector norm 

equal to ( £ " = 1 x})^/n. 

In figure 7, I plot both the finite element approximation and the approximation from 

Coleman's (1990) method which is reported in Taylor and Uh l ig (1990). Coleman's approx

imation is given by the points marked '+ ' . Each curve is a finite-element approximation for 

consumption as a function of capital and some fixed level of the technology shock. Values 

of the technology shock are displayed next to the curves. Notice that each of these curves 

coincides wi th the solution of Coleman. Taylor and Uh l ig (1990) report a computational 

time of 110 seconds for Coleman who ran a For t ran code on an A m d a h l 5890-300. For the 

finite element approximat ion, the computat ional time is 1.32 seconds wi th 7 iterations in 

(13). The per-iteration computat ion time is approximately 0.18 seconds. 

3.5. An example with inequality constraints 

If there are inequality constraints that b ind for certain values of the capital stock 

and the technology shock, the algorithm as described in section 3.3 wi l l not enforce the 

constraints. Suppose for example, that investment cannot fall below zero. Then, the 

solution to the problem of section 3.1 must satisfy 

c ( * , - i , * , ) < (14) 

Can we modify the problem or the algori thm so that the solution satisfies (14)? 
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T h e approach that I take here is to modify the problem. In part icular, I replace the 

objective function of (8) by 

* f E ^ { ^ - T [ ( c i - W - i ) , + l(e»-«i^1),D}|*-i|1 0 < / ? < l , r > 0 (8') 
•£=0 J 

Notice that I have included a penalty function of the form x 3 + | x 3 | which is equal to 0 for 

values of x less than 0 and 2x 3 for nonnegative values of x . 1 1 If the constraint is violated 

and investment is negative, then there is a loss in uti l ity. The larger is consumption relative 

to income, the larger is the penalty. 

The size of the penalty is determined by the value of the parameter for 7 . To compute 

the opt imal decision funct ion, I solve a sequence of opt imizat ion problems, each indexed 

by a different penalty parameter. In other words, I first choose a sequence 7'*', such as {1, 

10, 10 2 , 1 0 3 , . . . } , which has 7 ' ^ —* 00 . For each parameter in the sequence, I calculate the 

finite element approximat ion. I stop when the constraint in (14) is approximately satisfied 

for a l l values of capital and technology, e.g., c(k,9) — 8kQ < f, for al l k and 9, where £ is 

the tolerance parameter. 

There are two main advantages of the penalty functions over the method that is 

appl ied by Chr is t iano and Fisher (1993). F i rs t , wi th the approach that I use here, I do not 

compute the points at which the constraint binds. Chr ist iano and Fisher (1993) assume 

that at some level of the capital stock, k, the constraint is binding and it is b inding at all 

levels of the stock above k. In comput ing the consumption funct ion, they use the fact that 

some k exists and impose the constraint in (14) at all levels of the capital stock above k. 

Thus , they have to find the value of k where the constraint binds. However, in problems 

wi th more than one continuous state variable, it is difficult to keep track of the regions 

where the constraints b ind. The second advantage of the approach taken here is that I do 

not have to calculate the Lagrange mult ipl iers associated with the constraints in (14). 

For an example, consider the parameterization of the model used by Chr is t iano and 

Fisher (1993). In their case, they assume that 0 = 1 . 0 3 " 2 5 , 6 = 0.02, a = 0.3, r = 

1, and that 0t is independently and identical ly distr ibuted. The technology shock, 0t, 

takes on the value exp(.22) wi th probabi l i ty 1/2 and exp(—.22) with probabi l i ty 1/2. 

In figure 8, I plot the finite element approximations for the investment funct ion for the 

unconstrained and constrained problems. Notice that the constrained and unconstrained 

1 1 See Fletcher (1987) for more details on penalty functions. 
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solutions are approximately the same at levels of capital stocks where the constraint doesn't 

b ind. For the constrained problem, equation (14) satisfied to wi th in 5 x l 0 - 5 . For both 

the constrained and unconstrained problems, the interval for the capital stock is taken 

to be [15,51] w i th subintervals of length 1. Figure 8 should be compared to figure 8 of 

Chr ist iano and Fisher. Bo th figures show the constraint b inding around k = 34. Bo th 

have the constrained investment equation for 8 = exp(.22) ly ing below the unconstrained 

equation. If plotted together, it would be difficult to dist inguish the solution reported here 

from that reported in Chr is t iano and Fisher. 

4 . C o n c l u s i o n 

Th is paper describes the finite element method by way of several examples. I show 

that the method is easy to apply and, for examples such as the stochastic growth method, 

gives accurate solutions wi th in a second or two on a desktop computer. I also show how 

inequality constraints can be handled by redefining the opt imizat ion problem wi th penalty 

functions. 
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Figure 1. Shape function for node a, Na(x). 
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Figure 2. A l l of the shape functions, Na(x), a = 1 , . . . nnodes. 
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Figure 3. A piecewise linear funct ion, fh(x). 
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Figure 5. Shape function for node a, Na(k,6). 
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

Figure 6. Decision functions for test case. (The solid l ine is the exact 
solut ion, the dashed line is the 36-element approximat ion, and the 
points marked '+ ' are the 10-element approximation.) 

F igure 7. Consumpt ion functions for the stochastic growth model. 
(Each line corresponds to a different value of 6. Points marked by ' + ' 
are Coleman's (1990) solution.) 

17 



1.4 r-

1.2 • 

1 -

0.8 -

0.6 • 

0.4 • 

0.2 • 

0 -

-0.2 -

unconstrained, theta=exp(.22) 

constrained. theta=exp(.22) 

constrained, theta=exp(-.22) 

unconstrained, theta=exp(-.22) 

-0.4 
30 35 40 45 50 55 

Figure 8. Investment equations for constrained and unconstrained 
problems. 
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