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ABSTRACT

In the specification of linear regression models it is common to indicate a list of candidate variables from
which a subset enters the model with nonzero coefficients. This paper interprets this specification as a
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posterior probabilities for all possible subsets of regressors. The methods are illustrated using some
standard data sets.
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1. Introducticn

The purpose of this paper is to propose and illustrate a new technique for an old and
recurring problem, that of variable selection in linear regression. Loosely speaking, the task
is to find the subsets of a prespecified set of potential covariates that best describe a
dependent variable. Model selection and stepwise procedures address this problem; see
Miller (1990) for a review and comprehensive bibliography of these procedures. This paper
takes an explicitly subjective Bayesian view both of linear regression and the selection
problem. The linear regression model is a predictive device -- its parameters are artificial,
not real. As in Mitchell and Beauchamp (1988), prior distributions of parameters may be
regarded as frequencies within a population of equally credible prediction experts. This
explicitly includes the probability that a coefficient is zero, which is the proportion of
experts who would omit the corresponding variable from the model.

This subjectivist interpretation carries with it no presumption of conjugacy in the
priors. Just the opposite is true: prior information rarely establishes the link between
coefficients and disturbance variance that is essential to methods exploiting conjugacy
(Poirier, 1985). This paper proposes an independent prior distribution for each coefficient
that is a mixture of a point tnass at zero and a possibly truncated univariate normal
distribution. These distributions are completely subjective, relying on no preprocessing of
the data or other methods that destroy the independence of the prior information and the
stochastic terms in the model. Through a series of examples, the paper illustrates that
elicitation of prior distributions in this family is a natural procedure for a subjective
Bayesian.

The problem of Baycsiaﬁ choice of regressors dates at least to Lempers (1971). The
procedures described here further develop model choice as described by Stewart (1987) and
inequality constraints as approached in Geweke (1986). This work is most closely related
to George and McCulloch (1993, hereafter GM) and Raftery, Madigan and Hoeting (1993,
hereafter RMH). It differs from one or both of these approaches in five respects. First, the
present paper employs independent subjective priors for the coefficients in general and
allows sign constraints in particular. Both GM and RMH require prior distributions that
are natural conjugate or near natural conjugate and de not permit sign constraints. RMH
uses only data based independent priors; GM discusses both subjective and semi-automatic
priors and permits prior dependence across coefficients. Second, this paper introduces
methods for substantially more accurate assessment of small posterior model probabilities
than in either GM or RMH. Third, the algorithm proposed here provides simulation-
consistent approximations to all model probabilities, whereas RMH, through its application




of the Occam’s window algorithm of Madigan and Raftery (1994) does not. Fourth, the
prior distributions used in this paper include the possibility that variables are literally
excluded from the model, whereas GM for technical reasons utilizes absolutely continuous
prior cumulative distribution functions. Finally, this paper avoids a computational shortcut
utilized by GM that entails assuming that certain coefficients are known a priori to be equal
to their least squares estimates. (Both GM and this paper use the Gibbs sampling algorithm
to carry out the computations. To solve the technical problems associated with a nonzero
probability that coefficients are zero, a different version of the algorithm is employed here.)
Finally, the paper introduces methods for more accurate assessment of very small posterior
model probabilities.

The cost of these innovations is an algorithm that is likely slower than either GM or
RMH. For fewer than twenty regressors these differences are negligible, but for larger
models the procedures in GM and RMH should provide significant practical advantages.

Prior and posterior distributions, and the computational algorithm, are outlined in the
next section. Construction of prior distributions and several aspects of the posterior are
illustrated in Section 3 through two of the examples used in GM; this also affords some
comparisons of the performance of the two procedures. The last section surnmarizes and
discusses some possible extensions of this work.

2. Variable selection

This section considers the standard regression variable selection problem, with proper,
informative prior distributions for all parameters. In the standard problem, " out of &
parameters each have a nonzere coefficient with prior probability 1, while there is positive
probability that any combination of coefficients of the remaining k-%" variables have
coefficients equal 10 zero. Thus if by “model” is meant a specific combination of
coefficients whose posterior probability of being nonzero is positive, there are 2**
alternative models entertained by the prior distribution.

Here we treat in detail a simple but frequently arising instance of the standard selection
problem. First, the regression model is linear in coefficients. Second, disturbances are
normally distributed. Third, in the prior distribution all parameters are mutually
independent, and for k~&’ of the coefficients there is positive prior probability that the
coefficient is zero; even more specifically, we develop the method for coefficient prior
distributions that are mixtures of normal or truncated normal distributions, and discrete




mass at the point 0. These latter two assumptions may be weakened; discussion of
productive directions for weakening is deferred to the final section.

2.1 Prior and posterior distributions
In standard notation
y=XB+g, &~N(0,0%L,) (2.1)
where ¥ is an nx1 vector of observations on a dependent variable and X is an nxk
matrix of n corresponding observations on & covariates. The likelihood function is

L(B.0)= 0" cxp[-(y ~XB) (y - x;s)/zol]

=g™ cxp[—(y —Xb) {y - Xb)/Zoz]cxp[—(ﬁ ~b) X'X(5 - b)/ZGJ:} (22)
where b=(X’X)" X’y denotes the solution of the classic least squares problem. The k
covariates include all of the regressors considered for inclusion in the modei. Excluding a
regressor means that the corresponding coefficient is zero in (2.1). It does not entail
reducing the dimension of X, which would render the distinction between the models

meaningless as discussed by Poirier (1985, p. 712).

The investigator’s prior distributions for each of the coefficients and the parameter &
* are mutually independent. With prior probability p,, §; = 0; conditional on S, # 0 the prior

distribution of S, is N(gi, 1‘,2) possibly truncated to the intervat (1,,,):
dﬂi(ﬁi) = E‘d Hi(ﬁ)

ezl ol 28 o 2L enf - e

where IT,(-) denotes the prior c.d.f. of B;; H(x)=0 if x<0 and H(x)=1 if x20;
I(x)=1if xeS and I,(x)=0ifxeS; ®(-) is the c.d.f. of the standard normal
distribution; 0 < 7, <e0; —e0 S 4, S 1, <oo; and —oe < B, <oo. The prior distribution of &

(2.3)

is of the standard form,
vatfo® ~ 2 (v). 24
The prior distribution is therefore proper and informative but nonconjugate. We
choose this form because it is relatively easy to elicit one’s subjective prior distribution

about the coefficients in this form, yet the computational problem remains fairly simple.
(Ilustrations of prior construction are provided in Section 3.) The prior distribution is
trivially coherent: i.e., the prior distributions of nested models can be obtained as resirictions
on each other.

The posterior distribution may be expressed up to a constant by combining (2.2), (2.3)
and (2.4) in the usual way, but this expression is not particularly useful either for




performing the computations or understanding the relation between the prior and posterior
distributions. Instead we move directly to some more informative conditional distributions
and the computational method based on them.

2.2 Computation

The computational procedure employed here is a Gibbs sampler with complete
blocking. A value for each coefficient §; is drawn in turn from its distribution conditional

on B, {£+# j) and o, and a value for ¢ is drawn conditional on . In the algorithm the
Gibbs sampler moves from any point in the support of 8 and & to any nondegenerate
neighborhood of any other point in the support with positive probability in one step.
Convergence of the continuous state Markov chain induced by the Gibbs sampler to the
posterior distribution may therefore be demonstrated following the argument of Tierney

(1991).
The conditional distributions involved in the algorithm are simple. Given S, (£ # j)
and o, define z, =y, —Zwﬁ,x,._,. The conditional distribution of 8, follows from the

simplified model
z,=Bx, + &, g ~ (0 6*) (i=L...n).
The likelihood function kernel is

exal-Z. (o -B) [2°]

Conditional on S; = 0 the value of the kernel is
exp[-—Z:;1 z / 20‘2]. 2.5
Conditional on 8, # 0 the corresponding kernel density for B, is

°"P[‘Z:.1 (2 =B, )2/ 2“2]
ool -l -8 )] o 5,-8 )
=exp{—2:_!(z,.—bxﬁ)z/ZGZ]exp[ )/ ﬁ ,8 /21']
.(2n“”‘r;1[¢[(vj / ] [ -8, / ]]
(where b=Y" x,z ,/2 %7 and @’ 0'2/2 XD

= cxp[—z:_l (z,. - bx,;,-)2 /202]exp[— (ﬁ - E_,.)z / ZOf]cxp[-(bz/Zan + é‘j /2’5? —-ﬁ-i / 20‘3)]




eayreaf(v-p)fo)-ofla, -8 s ]] 1,08) o

(where o = (aJ"' + 1}2)-1 and Bj = of(w*’*b+ 7;2&))
If the normal prior distribution for ; is not truncated (i.e., A j = oo, V; =+oo) then
conditional on f§,(¢# j),cand 8, #0, B, ~ N(E j,of) -- the standard result for a normal

prior mean when variance is known. If the normal prior distribution is truncated, then
conditional distribution is 3, ~ N(B J.,of) truncated to the interval (JL m vj), OF

B;~TNy,)(B1n%)- @7

To remove the conditioningon 8, =0 or f; #0 it is necessary to integrate (2.6) over
f; and compare this expression to (2.5) The integration yields

exp[—zi z, —bx, 2/2cr"]exp[—(:!;vz/zcu2 +ﬁ2,/21'? —BZ-/ZO'.Z)](O'./T-)
{ollo-B)/e-ol, B Wollo -2 /o] -offr, - )/ ]}

Thus the conditional Bayes factor in favor of 8; # 0, versus 8, =0, is

BF = cxp[z? -3 (z-bx) : /20"] e:u:p[—(b’/Z.co2 +83 /27 - B /20?)](0; /%)
{el(v,-B)e]-o{2,-B)olel(v,-8,)/5]-ol( -8/ ]} 1,.(8)

=exp[B;, 202 - B[22/ o (v, - B, ) o] - 2l(2, - B ).}
{ollo-a)/e]-ofln-8 )5 ]

To draw B, from its conditional distribution the conditional posterior probability that
3, =0 is computed from the conditional Bayes factor (2.8):

—_ _E 7
Pi= P, +(1 Jp )BF @9

Based on a comparison of this probability with a drawing from the uniform distribution on
[0, 1], the choice B, =0 or §; # 0 is made. If §; # O then 3, is drawn from (2.7).

(2.8




Conditional on all j,,
|20 +(5-%P) (r-XB) | fo* ~ (v +m)

The Gibbs sampling computational algorithm proceeds in the usual way. After an
initial value for (B, ) is drawn from the prior distribution, the parameters £,,5,,....5,,0
are drawn in succession from their respective conditional posterior distributions. In most
applications a key objective is determination of the posterior probability of each of the
2("4.) models. This could be done in the obvious way, by recording an indicator variable
for the model corresponding to the non-zero ; at the end of each iteration. More accurate
approximations may be based on (2.9), however, using conditioning of the kind discussed
in Gelfand and Smith (1990). In each step of each iteration, record the value p; for the
model corresponding to ;=0 and §,(£ # j) either zero or non-zero as is the case in the
conditional distribution for ;. Similarly record the value (1-p,) for the model
corresponding to B, #0 and the values of B,(£#j). In similar fashion, posterior
expectations of functions of interest of the parameter vector (8, &) may be approximated
more efficiently by drawing a value for §; # 0 whether S, is set to zero in the Markov chain
or not, and weighting by the probability p ; for the function with 8, =0 and by (1 -p j) for
the function with B, # 0. (One could pursue this strategy for additional steps to achieve
even more accurate assessment of small model probabilities, but the number of
computations required increases exponentially with the number of steps.)

2.3 Computational efficiency

Since the Gibbs sampling algorithm described here employs complete blocking, the
degree of serial correlation in the Monte Carlo Markov chain generated by the Gibbs
sampler will depend on the degree of multicollinearity in the correlation matrix of the
regressors (Geweke, 1992), If all sample correlation coefficients were zero, then the draw
from the Gibbs sampler would be serially uncorrelated. However such a situation would be
exceptional. Indeed, the most interesting and difficult cases -- the ones for which
proceeding to a formal analysis of the kind described here is most compelling -- are
precisely those in which there is a high degree of collinearity among regressors. Experience
with the algorithm indicates that the higher the ratio of the largest to smallest eigenvalues of
the sample correlation matrix of the regressors, the more iterations will be required to
achieve the same degree of numerical accuracy. For small regression problems the
algorithm is fast: using code for which little optimization has been undertaken, 10°
iterations for a 5-regressor model requires about 40 seconds on a Sun 10/51 with




untruncated normal priors and about 75 seconds with truncated normal priors. Execution
time appears to be roughly proportional to the cube of the number of regressors, so
computation time for larger models can be much longer.

3. Examples

We now take up two specific examples of variable selection in regression. The
examples are also considered in George and McCulloch (1993). The objectives in these
examples are to demonstrate a convenient method for the formulation of subjective priors,
illustrate the numerical accuracy of the procedure, and study the relation between prior and
posterior distributions in this model. The first example further illustrates the imposition of
sign constraints for the coefficients of some regressors.

3.1 The happiness data

These data were collected from 39 employed MBA students in a class at the University
of Chicago Graduate School of Business. Five variables were recorded: y, = Happiness,
recorded on a 10-point scale with 1 representing a suicidal state, 5§ a feeling of “just
muddling along” and 10 a euphoric state; x, = Money, measured by family income in
thousands of dollars; x,, = Sex, measured by 0 or 1 with 1 being a satisfactory level of
sexnal activity; x,; = Love, with 1 indicating loneliness and isolation, 2 a set of secure
relationships, and 3 a deep feeling of belonging and caring in a family or community; x, =
Work, recorded on a 5-point scale with 1 indicating that the individual is seeking other
employment, 3 that the individual’s job is “OK”, and 5 indicating that the job is enjoyable.
The linear regression model is

=B+ 2:_1ﬁ a1 Xy + €
a specific instance of (2.1).

For this example, consider specification of a prior distribution that reflects the belief
that each regressor may be a substantively significant determinant of Happiness, or it may
not enter the model at all. We assume that each regressor coefficient is nonnegative, and
employ a half-normal prior (4, =0, =+e) with B, =0. We interpret “substantially
significant determinant” to mean that a major change in the regressor in question, Ax,,
ought to bring about a major change in the dependent variable, Ay,. We then set the
parameter 7, of the half-normal distributions, 7, = 7; = Ay, [Ax;. For the results here
major change in Happiness was set at Ay, =4; in Money at Ax, = 50; in Sex at Ax,, =.5;




in Love at Ax,, =1; and in Work at Ax,, =2. The mapping from “substantially significant
determinant” to the 7, is itself subjective, and we present resuits for 7, =.57; and 7; =27;
as well as for 7, = z';. For the intercept term we choose a full normal prior with
B, =0 and 7, =9, reflecting uncertainty about the inclusion of various combinations of x,
in the model. For the standard deviation of £,, ¢ =2.5, based on a prior mean of 5 for the
standard deviation of y, and a prior mean of .75 for the multiple correlation coefficient;
v=.01. . .

Different prior beliefs will, of course, lead to other choices for the 7;. For instance, if it

is thought that a certain regressor may either be a substantially insignificant determinant of
Happiness or it may not enter the model at all, then the comresponding 7; would be smaller

and its value may be set employing the same kind of reasoning about marginal effects. As
in George and McCulloch (1993, p. 883) the idea is to support f3; that are different from 0,
but not so large as to dilute support for realistic values with support for unrealistically large
values. The scaling procedures of Mitchell and Beauchamp (1588) accomplish much the
same objective. The procedure followed here is that suggested by Berger (1988).

For illustrative purposes we take as a base prior probability that each variable is
excluded from the model, p. =.5 (j=2,...,5); the intercept 3, is always included ( p,=0).
- To study the relation between the prior and posterior distributions, we also consider D, =2
(j=2,...,5) and p,=8 (/ =2,...5), always maintaining p =0.

Summaries of the happiness data and prior distribution are provided in Table 1.
Collinearity among regressors is modest. Posterior probabilities of alternative models are
presented in Table 2. These results are obtained using the methods described in Section 2,
with m =10’ iterations of the Gibbs sampling algorithm. Computation time was about 75
seconds on a Sun 10/51. The numerical accuracy of these results was assessed in two
ways. The first uses the numerical standard error and relative numerical efficiency
discussed in Geweke (1992) for the Gibbs sampling algorithm. Relative numerical
efficiency, in turn, may be expressed in terms of an i.i.d.-equivalent number of iterations,
m’: that is, the numerical accuracy achieved for m iterations of the Gibbs sampling
algorithm is the same as that for m" hypothetical i.i.d. drawings from the posterior. Thus,
for a posterior probability p, presented in Table 2 the numerical standard error is
[E J(1 -D; ) /m‘ ]W. In Table 2 m" ranges from 1,250 to 25,000 for the .57, priors; from
960 to 24,000 for the 7; priors; and from 570 to 24,000 for the 27; priors. The lower
bound on numerical accuracy is higher for small values of the 7;, because the smaller values
reduce the collinearity in the posterior precision matrix for §, thereby reducing serial
correlation in the Gibbs sampler and increasing computational efficiency.




The second method for assessing numerical accuracy is based on the observation that
for the same values of the prior standard deviations ¥;, changing commeon values of the D,

(j=2,...5) from one common value to another will not affect the relative posterior

probability of those models with the same number of regressors. For example, the posterior
probability of all 2-variable models conditional on the model containing two variables and
T, = r; should be the same whether 2, =2, P =5 or P, =.8. These conditional
probabilities ~- simply the ratio of entries for specific models to the entry in the “2
regressors” row of the same columns of Table 2 -- are indeed equal to within the tolerance
indicated by the i.i.d.-equivalent number of iterations m’.

Regardless of the particular prior distribution the models with regressors Love alone
(x,), Love and Work (x,, and x,,) or Love, Work and Money (x,;, X, and x,;) have total
posterior probability at least two-thirds and often much more. Three systematic effects of

the prior distributions on the posterior probabilities of the alternative models are evident.
First, increases in 2, the prior probability that ﬁj ={), favor smaller models. Second,

increases in ; also favor smaller models. This is due to the fact that the values of the 7;
are all fairly large compared to the mass of the likelihood function (compare the 7, and
least squares coefficients in Table 1). As the 7, increase over this range, the Bayes factors

corresponding to models with large numbers of regressors decrease relative to those for
models with smaller numbers of regressors, and the magnitude of the prior density
decreases in the region of the mass of the likelihood function. In the limit, as all 7; — oo,
all posterior probability becomes concentrated on the model with no regressors, consistent
with Lindley’s paradox (Bartlett, 1957; Lindley, 1957). For these data and the range of
;s employed the effect is to move the model probability from the Love-Work-Money
model to the Love-Work model to the Love model.

Our results are only indirectly comparable with those of George and McCulloch
(1993). Even the likelihood function is not the same, since (as discussed in the
introduction) they do not account for uncertainty about the intercept. However, results are
broadly consistent. Both their results and ours favor the Love model among all one-variable
models, the Love-Work model among ail two-variable models, and the Love-Work-Money
model among all three-variable models. The approach taken here has some tendency to
favor smaller models than does the George-McCulloch approach, but differences are not

great.

3.2 The Hald data

These data are presented in Draper and Smith (1981) and are often used to illustrate
techniques for selective regressors. The five variabies are y, = Heat produced in the




hardening of cement (in calories per gram), x, = percentage of input composed of
tricalcium aluminate, x

., = percentage of input composed of tricalcium silicate,
X;; =percentage of input composed of tetracalcium alumino ferrite, and x,, = percentage of

input composed of dicalcium silicate. There are only 13 observations in the data set.
For this example full normal priors centered at ﬁ_ij =0 were employed for all

coefficients. The parameters 1:; were constructed in the same way as in the previous
example, taking Ay, =20° as a major change in the dependent variable. Major changes in
regressor variables were set to one-half their range in the data set:
Ax, =10, Ax,, =22.5,Ax, =8.5, and Ax,, =27. Alternative values of the 7; were set
accordingly and once again either p, =2 or p, =5o0r P, =38 for all j=2,...,5. A
summary of the r; and of the data is provided in Table 3. Collinearity in the regressors is
quite high, with the ratio of largest to smallest eigenvalues of the correlation matrix
exceeding 10°.

Posterior probabilities for alternative models are presented in Table 4 in the same
format as were the results for the Happiness data in Table 2. In view of the ill-conditioned
data, computations employed 10° iterations of the Gibbs sampling algorithm, 10 times more
than for the Happiness data. Computation timne was proportionately longer, about 750
seconds on a Sun 10/51. The number of i.i.d.-equivalent iterations m’, for purposes of

judging numerical accuracy, ranged from m" =2,000 tom” =15,000 for priors with
7; =517, from m" =580 tom =13,000 for priors with 7; =7}, and from m' =30to

m* = 6,000 when 7, =27,. The explanation for the effect of 7; onm" is the same as for
the happiness data, but the magnitude is larger because of the greater collinearity of the
covariates.

Overall the favored models incorporate x, and x,; x;,, X, and x,,; X, X,,, and x,,; or
all four regressors. Between them these four models always account for at least 80% of the
posterior probability, and in some cases close to 100%. The qualitative effects of changing
the p ,or the 7; are the same as in the Happiness data for the same reasons. However the
sensitivity of the posterior model probabilities to changes in the prior is much greater, as
one would expect both from the conditioning of the regressor moment matrix and the small
sample size.

George and McCulloch also find posterior model probabilities sensitive to their prior
distribution, but in most other respects their resuits differ from ours. In general, their
methods produce models with small numbers of regressors, producing probability .44 of no
regressors in one case, and never producing a probability greater than .02 for the model with

all four regressors. Their most probable two-variable model is the same as ours. They are
unable to discriminate among the three-regressor models (X;,, X5, %3 ), (X;1,%,5.%,,) and
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(x0%20 %, .}, whereas the results in Table 4 place relatively less posterior probability on

(xu’xiz‘xu)'
4. Summary and Extensions

This paper has proposed a family of nonconjugate priors for subjective Bayesian
treatment of variable selection and model comparison in linear regression. Since priors for
different coefficients are independent the investigator can consider one coefficient at a time.
This investigator is, however, forced to think explicitly about plausible magnitudes for each
coefficient conditional on the corresponding regressor appearing in the model. Sign
restrictions and other limitations on support are easily accommodated.

In experiments with two models having five regressors each, it was found that priors
interact with data in an understandable way: e.g., increased probability of variable exclusion
leads to smaller models, as do increasingly diffuse priors for coefficients of included
variables. The computational efficiency of the Gibbs sampling computational algorithm is
largely a function of collinearity in the posterior distribution of the coefficients: e.g., the
more ill-conditioned the covariate sample correlation matrix the less efficient the algorithm;
the greater the prior precision of coefficients of included variable the more efficient the
algorithm.

In all the examples considered the posterior distribution changes in important ways in
response to reasonable changes in the prior distribution. This fact underscores the
importance of choosing prior distributions carefully, and should make subjective Bayesians
even more wary of “automatic” procedures that seek to avoid explicit specification of
priors. Only in small models with many observations -- many more than employed in the
examples taken up here -- will the posterior be robust to reasonable changes in the prior.
But given many observations investigators generally enlarge the number of models
considered, thus perpetuating sensitivity to the prior distribution.

Several extensions to these developments are natural and would involve no problems
beyond normal technical difficulties in implementation. Following West (1984), Geweke
(1993), Diebolt and Robert (1994), and others, the assumption that disturbances are normal
may be weakened through appropriate use of mixture models. Nor is the procedure limited
to truncated normal prior distributions for coefficients of included variables: since the Gibbs
sampling algorithm is fully blocked essentially arbitrary prior distributions may be specified
for each coefficient with no serious technical impediment. Extension of the methods

proposed here to multivariate regression models in general and vector autoregressions in




particular is also straightforward. Second, the procedures developed here can be extended
readily to the problem of contingent variable selection in which a regressor enters the model
only if other regressors also enter. This includes the choice of one model from an ordered
or semi-ordered sequence of models, for example choosing the length(s) of distributed
lag(s) in time series regression. Finally, using the fully blocked Gibbs sampling algorithm
one could adapt the algorithm of this paper to variable selection and sign restrictions in
essentially any model for which the posterior distribution can be expressed in closed form;
whether the algorithm would still be fast enough to be practical is an open question.
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Table 1

Happiness data
Least squares Least squares Prior
Variable Definition coefficient standard error standard deviation
1 Money 00958 00521 .08
2 Sex -.149 419 8.00
3 Love 1.92 295 4.00
4 Wak AT6 199 200
Covariate sample correlation matrix,
1.000 307 126 068
1.000 047 -316
1.000 386
1.000
Eigenvalues of covariate sample correlation matrix
A405 7356 1,3468 1477
Table 2
Model posterior probabilities, Happiness data with half-normal priors
B, = P(ﬁ,- = 0) 02 0.5 08
T ST T 21, ST, T 27, 57 T 27
0 regressors
é
3 0025 0098 0317 0271 0893 .1867 Jd763 3394 5368
4
1 regressor 0025 0098 0317 L0271 0893 1867 1763 3394 5368
12
H 0013 0247 0352 0315 0552 0574 0554 0455 0377
22,22 0007 0013 0021 0018 0027 0033 0033 0027 0021
34 J230 2561 4318 A130 5556 6212 6309 5693 4296
2 regressors 13687 2561 4138 4130 5556 6212 6309 5603 4206

1,23 0024 0024 0015 0014 0013 0007 0007 0003 .0001
{iﬁ 6079 5815 4601 4709 3109 1706 1708 0812  .0302
234 0617 0591 0048 0494 0300 0173 0173 0089 0032
3 regressors £721 6431 5175 5217 3431 1886 J892 0905 0334

1234 A887 0911 0370 0381 0120 0034 0036 0008 0001

All models have strictly positive posterior probability. Empty cells indicate posterior probability Iess than
107,




Table 3

Hald data
Least squares Least squares Prior
Variable Definition coefficient standard error standard deviation 7,
1 % Tricalcium alurninate 1.55 745 20
2 % Tricalcium silicate 510 F24 .89
3 % Tetracalcium alumino ferrite 102 755 21
4 % dicalcium silicate -144 ;709 74
Covariate sample correlation matiix
1.000 229 -824 -245
1.000 -.139 -973
1.000 030
L0
Eigenvalues of covariate sample correlation matrix
001624 1865 1576 2.236
Table 4
Model posterior probabilities, Hald data with full normal priors
p,=P(B,=0) 02 0.5 08
T St T 21 ST, 1) 21, .51; T; 21,
0 regressors
1
2
3
4
1 regressor 0001
1§ 0836 2018 .2882 A468 5881 5834 8007 8589 7460
1
é:g D343 0497 0146 (1317 0001 0084 .1680
24
34 D004 0009 L0008
2 regressors 0936 2061 3383 4468 6028 (7161 8008 8673 9137
123 1969 (1873 .1301 2306 .1350 0062 079 0505 0212
134 £001  006s 0052 0057 0381 . 0008 0119
124 As504 2748 3097 Jd746 1967 (1605 0749 0755 0514
234 0004 0001
3 regressors 3474 4687 4954 4052 3383 2648 JB28 1268 0843
1234 5590 3252 .1664 1480 0589 .0191 0165 0059 0017

All models have strictly positive posterior probability. Empty cells indicate posterior probability less than

107,






