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1. Introduction

This paper introduces procedures for Bayesian inference in the reduced rank regression

model,
Y = X0 + ZA + E. (1D

This is a multivariate regression, organized with observations by row, and equations by column:
Y is the matrix of dependent variables, X and Z are matrices of explanatory variables, and E is the
matrix of disturbances. The matrix of coefficients, ©, is assumed to have rank g, where q is an
integer less than the number of columns in X or Y. The matrix of coefficients, A, is not assumed
to have reduced rank. Development of asymptotic sampling theory for the reduced rank regression
model began with Anderson (1951) and has continued with Joreskog and Goldberger (1975), Izenman
(1975), Davies and Tso (1982), and Velu (1991). Only Zhou (1993) appears to have addressed finite
sample questions from a frequentist perspective.

Bayesian inference in the model (1) per se appears not to have been taken up in the
literature, although two special cases have received attention. The first is the incomplete simulta-
neous equation model (Dreze 1976; Dreze and Richard 1983; Zellner, Min, and Dallaire 1993). The
second is the cointegration model for vector autoregressions (Bauwens and Lubrano 1993, Kleibergen
and van Dijk 1993). Both cases are detailed subsequently. The contribution of this paper is to
provide a Bayesian treatment of the general model (1) using recently developed computational
procedures, and to suggest a method for inferring q.

The paper begins by deriving posterior distributions and conditional posterior distributions
for two alternative normalizations and a family of reference priors. Section 3 shows how the
conditional posterior distributions may be used in a Gibbs sampling algorithm for the computation

of posterior moments, and discusses questions of convergence and identification. Development to



this point assumes that ¢ = rank (©) is known. This assumption is removed in Section 4, which
shows how to compute predictive odds ratios for alternative values of q. In Section 5 an example
with artificial data illustrates both the convergence properties of the computational algorithm and the
ability of the predictive odds ratio to identify a true model. The paper concludes with an application

of these procedures to inference for the number of factors in an asset pricing model.

2. Prior and Posterior Distributions

In standard notation the multivariate regression model is

Y =X © +2Z A+ E @)

nXL aXp pXL nxk kXL nXL

where Y = [y;] is a matrix of dependent variables, with typical entry y; providing observation i on
variable j; X = [x;] and Z = [z;] are matrices of explanatory variables; and © and A are matrices
of unknown coefficients. Disturbances are independent and identically distributed across observa-
tions; that is, taking E = [e,,...,6]’, then ¢, ~ IIDN(0,Z). Sometimes it is more convenient to
express (2) in “row-stacked form” by taking y = vec(Y), & = vec(0), a = vec(A), and ¢ = vec(E).
Then,

y =0.®X) 0 +1,®Z) a +¢ ¢~NOEIO®IL).
pLx1 kL x1

nL X1

Bayesian inference in this model is straightforward for certain reference priors. For example, given

the improper prior density p(£,0,A) o |E|~®+D2 the log posterior density kernel is

_ [n+L+1

- ]10g]2| - .é_tr[(Y—-XG—ZA)'(Y—Xe—ZA)E“I], 3)

the marginal distribution of © is matricvariate “t”, and the marginal distribution of I is inverted

Wishart [Zellner (1971, Chapter 8)].



2.1 Prior and Unconditional Posterior Distributions
The reduced rank regression model adds to (2) the specification rank (8) = q < max(p,L).
This is equivalent to the parametric specification

Y=X0+ZA+E, 6=V . & @
pXq gXL

with no further rank restrictions on either ¥ or . Given an improper, flat prior distribution for ¥
and @, these matrices are unidentified in the strong sense that a posterior distribution for their
elements does not exist. This paper employs two alternative normalizations that identify ¥ and ®.
For each normalization proper reference priors for all parameters are then introduced.

In Normalization 1, ® = [Iq|§)*], and the reference prior is

N —

|Z|~®+2+Dexp [~ tr§2“] exp [— 122- (tr@*'4>*+t1"1f"1f+trA'A):| .

Thus, the reference prior is the product of an independent inverted Wishart distribution for T with
¥ degrees of freedom and matrix parameter S, and independent N(0,7~2) shrinkage priors for each

element of &* and ¥. The log of the posterior density kernel is then

[L+g+n+1

. ]log|E| - %tr(Yl—X\II—ZAI)’(YI—-X\I'—ZAI)E“ 6)

— tr(Y,—X¥ —ZA,)) (Y,—-X¥d*—ZA,)T!
- % tr(Y, ~X¥d*—ZA,) (Y, —X¥d*—ZA,)T2 — % tr(SEY)

- ; (tré*'@*+tr¥ ' ¥ +trA’A)

where Y = [YlanlenXs]’ A = [A [A,], and

kXq kxs
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sXq sXs

(s = L—q). Of course there are ({;) variants of this normalization. A reordering of the equations
leaves the model unchanged, but if the reordering changes the variables included in Y, (equivalently,
Y,) then the normalization is affected and so is the posterior distribution of ©.

Rearrangement of the equations for Y, and Y, in normalization 1 leads to

Y, = X¥ + ZA, + E,
where

E =[EJEJ~

aXq aXs

The second block of equations is the incomplete simultaneous equation model, for which Bayesian
inference was taken up in Dreze (1976) and Dreze and Richard (1983). For earlier treatments by
maximum likelihood see Anderson and Rubin (1949, 1950) and Koopmans (1950).

In Normalization 2, ¥' = [I|¥*], and the reference prior is |I|-C+z*D2
exp[—(1/2)trSE ~Yexp[— (2/2)(tr® '@ +tr¥*'T*+trA’'A)]. The log of the posterior density kernel
is

L+v+n+1
—[——-—27———]10g|2l )

—_;. t{[S + (Y—X,&—X,T*&—ZA)' (Y —X,® —X,¥*& —ZA)|E)

- -722- (trd' @+ ¥v*'¥*+trA’A)



where X = [X,_ xq | X5,xJ@ = p—q). Here, reorganizing the columns of X can affect the normaliza-
tion and the implied posterior distribution of ©.

Normalization 2 is convenient for inference in a cointegrated vector autoregression:
I

Y=X ¢ + ZA + E.
\Ir*

Given an L-component vector time series {y,}, row t of Y is Ay;, row t of X is y._,, and row t of
Zis [Ay,_y,...,A¢{_p]. The cointegrating vectors are the columns of ¥, and & provides the loading
factors (Engle and Granger 1987). Bayesian inference in this context has been taken up by Bauwens
and Lubrano (1993) and Kleibergen and van Dijk (1993).

The posterior distributions indicated by (6) and (7) are intractable: the multiplicative
interaction of ¥ and & precludes analytical expressions for posterior moments or marginal densities
of the parameters. The approach here is to provide a straightforward numerical method for the
computation of posterior moments that may be used in a variety of applications. The key to this

approach is the relative simplicity of some conditional posterior distributions.

2.2 Conditional Posterior Distributions

The respective conditional posterior distributions I|(®,¥,A,X)Y), Al@,¥.L.X)Y),
®[(¥,ALX,)Y), and ¥($,A,L,X,Y) are all members of the multivariate normal family. This
remains true when @ is replaced by &* (Normalization 1) or ¥ is replaced by ¥* (Normalization
2). Here we discuss these distributions, beginning with the simplest. Mathematical details are
deferred to Appendix A. Throughout, let © = ¥® and Y* = Y ~ ZA.

Conditional distribution of E. Given ®, ¥, and A, the log conditional posterior density

kernel for X is

_ [L+g+n+1

. ]1ogl>31 - L uts + (rs—xey(r-x0)E-1.



The conditional distribution of ¥ is therefore inverted Wishart,
Z[(®,%,AX)Y) ~ IW[n + 2, S + (Y*—X0O)'(Y*—XO)] ®

[Zellner (1971, pp. 395-99)].
Conditional distribution of A. Given &, ¥, and E, the log conditional posterior density

kernel for A is

- [%] tr[(Y —XO—ZA) (Y —XO—ZA)L"] — [.’22.] trA'A

the same as that for a multivariate regression model with dependent variable matrix Y — X6,

explanatory variable matrix Z, and the shrinkage prior. Hence

vec(A)|(®,¥,2,X,Y) ©®

~ N{Z7! @ Z'Z+ I, ] [Z7! ® Z'Z]vec(d), [E™! ® Z'Z+721, ]~}

where A = (Z'Z)"'Z'(Y-X0O).
Conditional distribution of ®. In Normalization 2 the log conditional posterior density

kernel for @ is

—% t[(Y*—XTB) (Y*~XTF)E-] ~ .’Zf trd'd

of the same form as (3) for the multivariate regression model with X replaced by X¥ and © by &,

and ZA omitted, plus the shrinkage prior. Hence

vec(®) | (¥,Z,Y*,X) (10)
~ N{Z7' ® (T'X'XY) + I ' [E7! ® (¥'X'X¥)]vec(d),

(£ @ (¥X'XP)+ )Y

where & = (¥'X'X¥) "1 ¥'X'Y*,



Conditional distribution of ¥. Given &, construct the L. X L nonsingular matrix
C = [qf | <1>°],
Lxq Lxs

where &* is the Moore-Penrose generalized inverse of & (so that $®* = I,) and the columns of &*

and ®° are orthogonal. Postmultiplication of (4) by C leaves
[Y*®+|Y*®°] = [X¥[0] + [E®*|E®. (10)

The effect of this transformation is to “strip” @ from the right-hand side of (4) leaving ¥ in the
position of a coefficient matrix. However, the new system is not a multivariate regression, since
there are restrictions on the coefficients of the last s = L — q equations in the system. It is instead
a set of seemingly unrelated regressions, with L known. It is well known that the conditional
posterior distribution of the coefficients is multivariate normal in this situation, and general expres-
sions [for example, Zeliner (1971, Section 8.5)] apply. Appendix A2 derives the more compact

Iresult specific to (10), for the case 72 = 0,
vec(¥)|(®,2,X,Y*) ~ Nlvec(¥), EH! @ X'x)1,
¥ = 6[@* + L EMY
where £ denotes the partitioning of £~ = (C'EC~! into its first g and last s = L — q rows and
columns, and © = (X'X)"!X'Y*. Note that in the special case T, = 0, L2 = £, = £12 = 0 a5
well, and (10) follows directly from the subsystem
Y*®* = X¥ + E®*
which is a multivariate regression. Reintroducing the shrinkage prior for ¥(2 > 0)
vec(¥)[(8,E,Y*,X) (11)

~ N{E"M ® X'X) + L vec(d), [EY) ® X'X) + L.



Conditional distribution of ®*. The log posterior density kernel is immediate from (6).

Appendix A3 shows that for 72 = 0,
vec(®*) | (¥,L,X,Y*) ~ Nlvec(®%), €)1 @ (¥'X'X¥)1] (12)
é* — (‘P-IXIX-\I,)—I\P-IXIY’:EI2(222)—1 —_ 212(222)—1 + (‘I"X'X‘I’)_I‘I"X'Y;.
(Consideration of the special case Z;, = 0 again provides some insight into the result.) For 77 > 0,
vec(d®*) | ¥,2,X,Y*) ~ N{E?)™!' ® (¥'X'X¥)7! + Pl I vec@*),
(@)™ ® (TXXE)™ + Pl JI )
Conditional distribution of ¥*. Beginning from the log posterior density kernel indicated

by (7) and assuming 7> = 0, Appendix A4 derives
vee(¥*) | (®,2,X,Y*) ~ Nivec(¥*), EH! @ (XiX,) ] (15)
¥* = O, (2% + TUEN Y — 6,

where 8, = (X;X,)~'X:Y* and 0,, = (X!X,)"'X!X,. For 2 > 0,

vec(T*) [ (&,2,X, %) ~ N{EM ™ © XX~ + Lyl tvec(¥*),

[N @ XY™ + Plyp_g] )

3. Computation of Posterior Moments and Densities

In this work a Gibbs sampling algorithm [Gelfand and Smith (1990)] is used to produce
sequences of drawings from the parameter space that are neither independently nor identically
distributed, but converge in distribution to the posterior distribution whose log kernel density is either
(6) or (7). Consistent with the discussion of Section 2.2 adopt the following notation and groupings

of parameters:



A = vec(®) or A; = vec(®*)

A, = vec(¥) or A, = vec(¥¥)

A; = vec(A)
Ay = veclt(®)
N = (AN

The algorithm is easy to construct. Begin with arbitrary initial values ¥ for ¥, A® for

A, and Z for I in the support of the prior distribution. Then forj = 1, 2, ...

() Given ¥6-D, AG-D, and £6-D, draw &9 from the distribution (10) or $*@ from (12);

(i) Given &9, AG-D, and Z6-, draw ¥ from the distribution (11) or ¥*® from (15).

(iii) Given &0, ¥9, and £6-Y, draw A® from the distribution (9);

(iv) Given 89, ¥® and AP draw I® from the distribution (8):
These four steps constitute a single pass of the Gibbs sampier. After each pass a function of interest
g(A9) can be computed, and after m passes m™! E‘};lg()\"") provides a numerical approximation to

E[g(\)]. This section takes up the justification for this procedure.

3.1 Convergence and Numerical Approximation

Weak sufficient conditions for convergence of the Gibbs sampler are provided by Tierney
(1991, 1994). Roberts and Smith (1992) provide conditions that are stronger but often much easier
to verify in econometric models. That is the case here.

Let p(M\) denote the posterior density of the parameter vector A. Roberts and Smith (1992)

show that if

(1) p(\) is lower semicontinuous at 0;

(2 [ M)\, is locally bounded (j = 1,2,3,4);
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(3) the support of p(\) is connected;

@ E[gN)] = f g\)p(\)dX is convergent;

then,

m '3 g0\9) a5, ElgOl.

i=1 g

Condition (1) requires that for all A with p(\) > 0, there exists an open neighborhood
Ny D Aand ¢ > O such that for allX € N,, p(\) = ¢ > 0. This condition is easily verified by
inspection of the log posterior density kernel (6) or (7).

The posterior density kernel is the product of the bounded likelihood function for ¥, &, A,
and ¥, and independent prior distributions for each group of parameters. Hence condition (2) is
satisfied. Proper prior distributions for ¥ and & are important here. For example, if the prior
distribution for ®* were flat, then conditional on rank (¥) < q condition (2) would be violated.
This has been documented in some detail by Kleibergen and van Dijk (1991) in simultaneous
equation models. While condition (2) is satisfied for 7> > 0, as a practical matter it is natural to
suspect that convergence of the Gibbs sampler could be slow if 72 is small.

Condition (3) is obviously satisfied. If the prior distribution is proper and the product of
|g(\)| and the likelihood function is uniformly bounded, then condition (4) is satisfied. This will
be the case for the functions of interest introduced in Section 4 and used in the examples in Sections

S and 6.

3.2 Evaluation of numerical accuracy
A compelling advantage of Monte Carlo integration methods in general is that accuracy may
be assessed through a central limit theorem [for example, Geweke (1989, Theorem 2)]. In the case

of the Gibbs sampler this strategy is complicated by the fact that the process {A®} is neither
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independently nor identically distributed. The limiting distribution of m'2(g,, — E[g(\)]) is known
to be normal under several sets of assumptions. Some require that the support of A be bounded and
therefore do not apply to our problem. Others [for example, Nummelin (1984, Corollary 7.3)]
pertain to bounded g(\), and consequently apply to the computation of posterior probabilities but not
posterior expectations of parameters. Even in these cases there are no subsidiary results supporting
estimation of the variance of the limiting distribution. The strategy adopted here is to employ an
estimated variance that would be appropriate if {A?} were a serially correlated but identically
distributed process, and then make certain checks for internal consistency.

Under the assumption that {A\®} is identically distributed and serially correlated the
approximation of E{g(\)] is equivalent to the classical problem of mean estimation in time series
analysis. A full development is given in Geweke (1991) and is only outlined here. Given that g(A\®)
has finite mean and variance, §, = m_IE‘}ng(}\G)) - § = E[g(\)]. Under weak conditions
[Hannan 1970, Section 2.2)] the spectral density S(w) of gA®) exists; and m'2(g_—§) = N[0,S(0)]
[Hannan 1970, Theorem 4.11)]. If §m(w) is a consistent (in m) estimator of S(w), then the accuracy
of §, as an approximation of § may be assessed by the numerical standard error (NSE)
[m"lﬁm(O)] 12 Many consistent estimators of S(0) are available.

Especially in the absence of a central limit theorem that pertains to all g(A), and of a
demonstrated consistent estimator of the variance term in the limiting normal distribution, it is
important to assess the adequacy of the computed NSE’s. In the work reported here that is done by
repeating the computations with different initial conditions and a different seed for the random
number generator. It was always the case that differences in computed posterior moments were

consistent with computed NSE’s and the assumption of normality.
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4. Predictive Odds Ratios for Alternative Ranks

To this point we have proceeded as if q were known. In most applications this will not be
true and so analysis to this point is conditional. For example, in a cointegrated vector autoregression
q = rank(©) is the number of cointegrating vectors, whose value is often the object of the research.
Another example in which the value of q is central is presented in Section 6.

When q is unknown, the analysis may be carried out for several alternative values of q, and
one may then compare the performance of the different models. In general, the computation of
Bayes factors is difficult in a numerical approach, because standard Monte Carlo methods do not
yield the necessary integrals as a byproduct. Here we outline a general method for obtaining
predictive factors for model comparison, presented fully in Geweke (1994). Chib (1994) has
described a procedure specific to the Gibbs sampler that should be well suited to the approach taken
in Sections 2 and 3, as well.

Denote by y, row s of Y, by x, row s of X, by Y, the first s rows of Y, and by X the first
s rows of X. Given normalization j(j = 1,2) and rank(8) = q (“model jq”) let N;; denote the vector
of parameters for the model. Then we may denote the conditional density y,| (X45Mjg) under normal-
ization j and rank(©) = q by f;(¥,|x,,A;). Let the prior probability of model j be Pjq and denote the
prior density fo(A;p). Let

t

qut()\quYt’X() = H qu(Yllxv)\jq)

s=1
denote the partial likelihood through observation t. Then conditional on model jq, Y,, and X,, the

posterior density for A, is

ijt()‘quYvXQ = t}qO()‘jq)I"thO‘quYt’Xt)/f t3110()‘1\1)qut()‘jqIYt’Xt)d)‘jq'
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The predictive likelihood for observations u + 1 through t, given model jq and observations
1 through u, is

foo = [ PiasOql Yo X T %N 16)

s=u+l
The predictive Bayes factor in favor of model jq versus model j'q’ for observations u + 1 through
t is Bl = Blu/Biqu and the predictive odds ratio is PRED!yy = PigBlau/DyiqBlique These
decompositions are widely known, but direct numerical approximation of the integral in (16) is
difficult for t/u large, because the function of interest IT;_, , 1£;,,(¥, | %:,A;o) is then highly concentrated
relative to the more disperse posterior density pjq,(Ajq| Yy, Xy)-
A further decomposition facilitates this computation and provides useful diagnostic tools.

Suppose u = §; < §; < ... < s, =t. Expanding (16), recalling that jqu,o()\quy’o,xlo)d)\jq =1,

and adopting the notational convention I, ., £ (¥, x,,qu) = 1, we have

m
B = LI .. (17)

=1
(The result may be verified by expansion of the product followed by cancellations.) By choosing
a sequence of s, such that s, — s,_, is not too large, the function of interest I, 1500 1%:00)

may be made sufficiently diffuse relative to the posterior density p;,,, (Nl Y, »X,,_) that

Sg—-1

s, 3¢
qu"'l l; H t:iq;(Y,Ix,,qu):I = f p.i‘l’e-lo‘quY’z-x’X’z—x) [ H qu,(y,lx,,qu)] g

=3,_,+1 s=8pp+1
can be well approximated by Monte Carlo methods. (Geweke 1994 provides additional details on
the increase in numerical efficiency provided by this decomposition.)

The particular choice s, — s,_, = 1 provides a complete decomposition of the predictive

likelihood. Then (17) is of interest as a model diagnostic: an unusually low value of pi:_, indicates
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that observation s, is improbable conditional on model jq and the previous observations. There is

a corresponding decomposition of the Bayes factor
m m
Bt ..., =f /o, = % s = A
Bigliaw = Biav/Bqu ,Hl @ftsr- B, ) = 11 Biliatser
= =1

5. Some Numerical Evidence

To illustrate the use of predictive odds ratios to provide evidence about alternative ranks,
we present results using artificial data before turning to an application in the next section. In this
illustration, n = 332 observations from a system with L = 12 dependent variables and p = 7
covariates, were generated. The values of n, L, and p match those in the application in the next
section. The coefficient matrix © is indicated in Table 1; it has rank ¢ = 3. The disturbances are
normally distributed with mean 0, and variance matrix ¥ also indicated in Table 1. The first
covariate is an intercept, and the remaining covariates are normally distributed with mean 0, and
variance matrix indicated in Table 1.

Two experiments illustrate the properties of the predictive odds ratio. In both experiments
the prior probability of each of the 14 models (jq; j = 1,2; q = 1,...,7) is the same, and the value
of the prior parameter o = 1. Similar results were obtained for @ = 1073. In both experiments all
numerical approximations to predictive densities were computed using 1,000 iterations of the Gibbs
sampler preceded by a burn-in of 100 itérations. More iterations (up to 10,000) and a longer Gurn-
in (up to 1,000 iterations) had no effects on posterior moments, up to numerical standard error
computed as described in Geweke (1991).

In the first experiment, five independent subsamples of the data consisting of 48 observa-
tions each were used to examine the behavior of the predictive odds ratio in small samples. The first

u = 25 observations of each sample were used to form the posterior distribution, and observations
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u + 1 = 26 through t = 48 were used to form the predictive density. This predictive density was
computed using the complete decomposition (17): s, = 26, s, = 27, ..., s, = 8,3 = 48. Thus, as
a byproduct of this experiment we have available predictive odds ratios using the posterior density
formed from the first 25 observations, and predictive densities from observations 26 through t(t =
26,...48). The predictive odds ratios may be transformed into predictive probabilities for the 14
models (normalizations j = 1,2 and ranks q = 1,...,7) in the obvious way.

The results of the first experiment are presented in Table 2. For each of the five samples,
posterior probabilities for predictive densities with 2, 5, 10, and 23 observations, respectively, are
presented. For the 14 models (two normalizations and seven ranks) marginal predictive probabilities
for the two normalizations and for the seven ranks, are given. (Predictive probabilities for ranks
conditional on normalization, not shown, are similar to the presented marginal predictive probabilities
for ranks, in every case.)

The predictive probabilities for the normalizations vary considerably with the dates entering
into the predictive density, but overall there is no tendency to favor one normalization over another.
This outcome cannot be deduced, but it is plausible. The alternative normalizations, together with
their respective shrinkage priors, constituted different prior distributions for the coefficient matrix
©. It is reasonable to anticipate that the differences in the prior distributions are minor and should
be dominated by the 25 observations in the posterior distribution. This appears to be the case.

The rank q = 1 model receives negligible predictive probability, even with only two
observations in the predictive density. The predictive probability of the rank q = 2 model drops
quickly as observations are added to the predictive density. The predictive probability of the
population model, q = 3, rises from less than 0.5 with two observations in the predictive density,
to more than 0.95 with 23 observations, and is modal in four of the five cases with five observations

in the predictive density. This increased predictive probability comes at the expense of larger values
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of g. As the number of observations in the predictive density increases, predictive probability for
q = 4 becomes monotone decreasing in q, as well as small. This documents the well-known
consistency of Bayesian model selection (Schwarz 1978).

The second experiment explores the effects of choosing alternative sample sizes, u, for the
predictive density. Sample sizes of u = 24, 48, 96, 192, and 288 for the posterior density were
considered, together with predictive densities incorporating t — u = 24, 48, 120, and 240 observa-
tions as permitted by the sample, as well as t = 332 in every case. Table 3 displays the results of
this experiment, using the same format as Table 2. Once again, neither normalization is dominated
by the other in predictive probability. For posterior distributions with u = 24 and u = 48 observa-
tions the limiting behavior of the predictive probabilities for all alternative ranks q is evident as t —
u increases. For u = 96, 192, or 288, the models ¢ = 1 and q = 2 receive negligible predictive
probability. But while ¢ = 3 is modal when u = 96, the limiting concentration of predictive
probabilities on q = 3 is not evident in any of these three cases.

These results are consistent with the asymptotic behavior of posterior odds ratios. Suppose
u is fixed, while t — u— -» co. Then the results of Schwarz (1978) apply: predictive probability
must concentrate on g = 3. Log predictive odds ratios will be proportional asymptotically to t —
u for g = 3, and proportional asymptotically to log(t—u) for q = 3, so models with q < 3 are ruled
out well before those with ¢ > 3. On the other hand, suppose t — u is fixed while u— > co. Then
the posterior distributions for © and I collapse to points, which are the same for ¢ = 3. The
limiting distribution of the predictive probability for ranks q = 1, 2, and 3 is nondegenerate, while
the predictive probabilities for ranks q = 4, 5, 6, and 7 become identical to the predictive probability

for rank q = 3.
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6. Application to a Capital Asset Pricing Model

This paper concludes with an application to an asset pricing model. The objective in this
application is to find exact predictive probabilities for the rank of the coefficient matrix, which is the

number of factors in the asset pricing model.

6.1 The Model

Let R, denote the realized return on asset i in period t, for some collection of assets i = 1,
..., nand periodst = 1, ..., T. Let z, denote a p-dimensional vector of information available in
period t, including the risk-free rate of return. Assume that the expectation of the returns conditional

on the information z,_, is linear in z,_;:
Ry =diz,_, + v, E@|z_-)=0i=1,.nt=1,.T).

Assume further, as is typically done in the asset pricing literature, that (u,...,u,) ~ IIDN(0,T).

In matrix notation,
R=ZA+ U (18)

where R has element R;, in row t and column i, Z' = [z,,...,2z;_,1, A = [,,...5,], and U has element
Uu;, in row t and column i. With the obvious change in notation, this is (1) without the additional
matrix of explanatory variables “Z” of that equation.

A k-factor asset pricing model may be expressed

-~ 4 -~ -~
ER;|z-1) = ERul|z-) + Y BuERu—Ralz-) (G = L,...mt = 1,....T) 19
h=1

where the Ry, are returns on k unobserved hedge portfolios, and R, is the return on a portfolio
uncorrelated with the hedge. Gibbons and Ferson (1985) show, using an iterated expectations

argument, that (19) implies rank (A) = q in (18). So long as ¢ < min(n,p) this places a restriction
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on A of exactly the same form as (4) for © (where once again the matrix of variables “Z” in the
earlier equation does not appear).

Gibbons and Ferson (1985) express the rank restriction
A = [A*|A*C]. (20)

This makes the further assumption that the first k columns of A are linearly independent, which is
also implied by normalization 1. They test the restriction (20) using asymptotic sampling theory for
maximum likelihood estimators and find that a one-factor model cannot be rejected. Ferson and
Harvey (1991) develop a similar model which leads to the same restrictions in a multivariate
regression model for returns. They use monthly data on returns. Applying a multi-step procedure,

they also conclude in favor of a one-factor model.

6.2 Data and Priors

The data consist of 332 monthly observations on returns and information, from May 1959
through December 1986. The returns pertain to 12 portfolios of securities of New York Stock
Exchange listed firms, grouped by two-digit standard industrial classifications. The 12 portfolios are
described in Table 4. The vector of information z, consists of six proxies for the economic risks that
influence security returns, plus an intercept. The six variables are also described in Table 4. The
data are the same used in Ferson and Harvey (1991) and were graciously supplied by the authors.
Further description and details of construction may be found in Ferson and Harvey (1991).

All results presented here pertain to a prior distribution with 72 = p = 1and § = L
Variants on this prior distribution (7 = » = 0.01, S = 0.011, and 72 = p = 10, $ = 10I) produce

no substantial changes in the results.
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6.3 Results

Two sets of results are presented, in Tables 5 and 6 respectively. The first set uses a
rolling sequence of data sets. Each set is four years (48 observations) long, with the first two years
used to provide the posterior density and the last two years the predictive density. The second set
uses the entire sample, with varying divisions of data between the posterior and predictive densities.

The results strongly support a small number of factors: often q = 1, but for some
subperiods there is evidence of ¢ > 1. A striking feature of the result is that normalization 1 is
strongly preferred to normalization 2.

In Table 5, the evidence is consistent with q = 1 except for three subperiods: 5/69-4/70,
5/71-4/73, and 5/79-4/81. In the first two of these periods the modal predictive probability is
q = 2, and only in the latter subperiod is there any substantial evidence for ¢ > 2. In interpreting
Table 6, it is important to keep in mind the point noted at the end of Section 5: when the sample
period is long and the predictive period is short, predictive probabilities do not discriminate well
among models that have been overfit. Given this consideration the results in Table 6 are consistent
with those in Table 5: the evidence favors ¢ = 1 for most subperiods, and q > 1 during 5/71-4/73
and 5/79-4/81 accounts for substantial departures from q = 1. The support for ¢ = 1 is consistent
with many investigations of the number of factors in asset pricing models, for example, Gibbons and
Ferson (1985).

When q = 1 each column of the coefficient matrix is proportional to the first column in
normalization 1, and each row of the coefficient matrix is proportional to the first row in normaliza-
tion 2. The first column of the coefficient matrix corresponds to the coefficients for the first
portfolio, in this application, whereas the first row corresponds to the intercept. Theory suggests
that the intercept term should be negligible, and empirical results (Ferson and Harvey 1991, Table 6)

support this prediction. Thus, normalization 2 imposes a structure inconsistent with the theory. In
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Table 5, except for 5/71-4/73, every 24-month predictive period favors normalization 1 by a
predictive odds ratio of at least 70:1, and every 12-month predictive period favors it by at least 4:1.
These very high predictive odds ratios support the theory. In Table 6 the results are more mixed,
but with the exception of the bottom panel predictive densities not involving the 5/71-4/73 period
favor normalization 1.

More detailed examination of the modal predictive probabilities for subperiods shows that
using 5/69-4/71 as the sample period, the modal predictive probability shifts gradually fromq = 1
to q = 2 over the period 1/71-3/73. Using 5/77-4/79 as the sample period, the modal predictive
probability moves sharply from q = 1to g = 2 in 1/80. Events during these periods could provide
a focus for determining the causes of the shifts apparent in Table 5. More generally, a model with

regime shifts or time-varying parameters might be appropriate.
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Appendix A:

Conditional Posterior Distributions in the Reduced Rank Regression Model

The reduced rank regression model is

Y=X0©+Z A E=XYVY & +E; vecE) ~NO, I ® L).

XL nXp pXL nXk kXL axL pXq gXL

This appendix derives distributions for £, &, and ¥, respectively, conditional on the other parameter
groups, at the limit points = 72 = 0, § = 0, of the prior distributions described in Section 2. This
reduces notational clutter, and reintroduction of the proper priors (z > 0, 7 > 0, S p.d.) is

straightforward. All derivations begin from the expression

_[n+15+1]1°slzl - l(Y*-XT8) (Y- XVHE] @b

where Y* =Y — ZA. This is the log of each proper conditional posterior density function kernel,

subject to any normalizations.

Al. Posterior Distribution of & and X Conditional on ¥

Let X = X¥, and write (Al) in the form

- [“*‘5“]loglzl = L wore—%ay ore—za)

This is the log posterior density kernel for the parameters of the multivariate regression model, with

prior density p(£,®) o« |L|~®*Y2 [Zellner (1971, pp. 225-27)]. Consequently,

Z|(¥,8,X,Y*) ~ IW(S,T—q) (A2)

vec(®) | (¥,2,X,Y*) ~ N(vec(®), L @ X'X)™Y),

where & = X'X)~1X'Y* = (¥'X'X¥)"'X'XY*and S = (Y*—X$)'(Y*—X$) = Y*'Y* — Y*Xb.
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A2, Posterior Distribution of ¥ Conditional on ® and £

From (Al) the conditional log posterior density kernel is

- % [(Y*—X¥®)' (Y*—XT®)T 1. (A3)

Construct the L X L, nonsingular matrix C = [@{quéﬁx,](s = L—q) as follows. Denote the

singular value decomposition [Press e al., (1986, pp. 52-64)] of &,

Vl
& =U DIO]V = u'p|o | ¥
gqXL gXqlgxq gqXs|]LXL V2
sXL

where U and V are orthonormal and D is a diagonal matrix whose diagonal elements are strictly
positive with probability one. Then the Moore-Penrose generalized inverse [Theil (1971, pp.
268-70)] of @ is

$* = V/ D! U, andlet & =V,; &d+ = L, 3% = o+'8° = 0.
LXq Lxq 9%4 4%q LXs qXs

Now re-express the log conditional posterior density kernel (A3) as
—% {r[C'~1C! (¥ —X¥®) (Y ~X¥&)]CC-1E~]
= —% tr[(Y*C—X¥&C)' (Y*C~-X¥&C)(C'ZC)™ Y]
which is that for the model
[Yil¥3] = Y*[@*|€°] = [X¥|0] + [E2*|E] = [X¥|0] + [E,|E,l. (A4)

If we define §7;, = vec(Y?}), Fioy = vec(Y3), &y = vec(E)), &p = vec(®), ¥ = vec(¥), then

$a I ® X g
Ol = [‘1 ]¢ + [,“’] =Zy + & va@ =L®IL
Yo 0
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where £ = C'ZC. The conditional posterior distribution of ¥ is normal with variance
[ZE @ Lz = €)' @ XX
where Z'! denotes the first q rows and columns of £-!. The mean of this normal distribution is
V=1ENT e X0NTZ'ET ® Ly* (AS)
= [EH-! @ X' E! ® X, + E2 © Xt
= [, ® X)Xl + {{EMHTE © XXX},

If we take T = (£**)~'L™ then the second summand in (AS) is

(X,X)_IX’ Zl y;+j71j
J=

X'X) —Ix E S;(;*'quj
A =

Hence ¢ = vec(¥), with

\i, = (XIX)-—IX/[?;_'_?;T:] = (XIX)—IXI[Y*§+ + Y*@OEZI(EII)—I]
- é[@-*- + ¢0§21(§11)—1]

where © = (X'X)"1X'Y*.
A3. Posterior Distribution of $* Conditional on ¥ and
From (Al), the log of the conditional posterior density kernel is

-—% tr[(V*—K)' (Y*~K&)Z-Y] (A6)

where X = X¥ and & = [1,|®*], with *: q X s(s = L—q). Rewrite the term Y* — X& in (A6),

Y* - X8 = [Y: IY;] — [X|X8¥] = [YI=X| Y]] — [0|X&%] = [¥}| Y] — [0]X&*].

nXq nXs
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Denote §¢) = vec(Y}), Yoy = vec(Ys), ¢* = vec(®*). Then the log kernel (A6) may be expressed

1 Jo| | O ey Jo| | O
2T | |y [I ®f<]¢* EOLI LT lLe || @
Yo : Yo *

0
Z= I, ® X|(°

Then (A7) implies that, conditional on T and ¥, ¢* ~ N(¢,V) with

Let

V=[ZC!'® DI =1 ®XNET2® L)1, @ ! = 2 @ X'X]!
- (222)—1 ® (‘I,IXIX\I,)—I

where £?2 denotes the last s rows and columns of £~!. The conditional mean is

=™ e ExXnZe e | ®
Yo

= [(222)—1 ® (‘I"X'X‘P’)—l][o:m ® )"(I)S;'(‘l) + (222 ® }"(I)y'zz)]
= [E2)7 ©@ XROTK, + L © DKy,
Reorganizing this expression as $*(¢* = vec($*)),
b = XBTKTEED + Y3
= (¥'X'X¥)" W' X(Y]-XP)ZRER)-! + (T'X'X¥)"W'X'Y,
= (‘P'X’X\P)“‘P'X’YIE”(E”)“ — 212(222)—1 + (‘I"X'X‘I’)-I‘I"X'Y;.
When @ is normalized in this way (A2) no longer applies; instead,

| (¥,8,X,Y*) ~ IW(S,n)

with § = (Y*-X¥&)'(Y*—X¥®d).
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A4. Posterior Distribution of ¥* Conditional on ® and &

When ¥' = [[ |[¥*'], let X = [XlnquinxJ(r = p—q) and write (A4) as
[Y311Y5] = [Y*@+-X,|Y*8% = [X,¥*|0] + [E®*|Ed] = X, ¥*|0] + [E,|E,].

(Note Y, is defined differently here than in Section A2.) If we define Yy = vec(¥D, o =

vec(Yy), &y = vec(Ey, &y = vec(E,), y* = vec(¥*), then

T = I:I“ ® XZ} y* + [e:a)] =Zy* + €, var) =L ® L

Y 0

where £ = A'LA. The conditional posterior distribution for y* is normal with variance
[Z’E ® DZI! = ENH™' @ XXy

The mean of this normal distribution is
P =[EMT e XX)TNZ'E! © L.

Following the same manipulations as with (AS5), obtain
¥* = (X;XQ"‘X;[Y*@* -X, + Y*q,ogzlo'ju)—l] — éz[q,+ + @ogzl(iu)—l] — ém

where 0, = (X}X,)"X;Y* and 6,; = (X4X,)~'X!X,.
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Appendix B:

Applying Shrinkage Priors in the Reduced Rank Regression Model

Given a flat prior, conditional posterior distributions for y and ¢ are of the form

N r, A & B

mnX1l mXm nX

Given a normal prior distribution N(0,7721,,), the conditional posterior distribution is normal with
precision A™! ® B~! + 72, and mean [A~! ® B~1+7_]"1(A~! ® B~)r. Direct inversion of
the posterior precision matrix requires on the order of (mn)® floating point operations.

Let A and B have respective diagonalizations A = CAC' and B = EME’. Computation
of these diagonalizations requires on the order of m* + n® floating point operations. Posterior

precision is

COEA™® M '+7L)(C' ® E)
and its inverse,

(C® BYA™'® M-I+ ) {(C' ® E')

involves trivial computations.
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Table 1

Parameters for Generation of Artificial Data*

Coefficient Matrix ©

1.00 .00 .00 2.00 -1.00 .00 .00 .00 .00 .00 1.00 —1.00
.00 1.00 .00 .00 .00 -3.00 2.00 .00 00 00 -1.00 3.00
.00 .00 1.00 .00 .00 .00 .00 3.00 -3.00 4.00 2.00 2.00

1.00 .00 .00 200 ~1.00 .00 .00 .00 .00 .00 1.00 —-1.00
.00 1.00 .00 .00 .00 -3.00 2.00 .00 .00 .00 -1.00 3.00
.00 1.00 .00 .00 00 -3.00 2.00 .00 .00 00 -1.00 3.00
.00 .00 1.00 .00 .00 .00 .00 3.00 -3.00 4.00 2.00 2.00

Disturbance Variance Matrix
1.473
—.346 .650
.530 A73 0 1.197
-.165 -.029 036 1.027
.363 .146 564 —.004 1.730
-.147 -~-.094 185 271 471 1.114
.011 .017 .088 —.094 -—.331 -.409 546
—.673 096 —.470 137 —-.007 -.131 274 1.407
—.015 129 414 -.036 -—.059 -—.535 553 332 1.027
-.212 -.018 .110 336 —.138 127 234 118 248  1.462
—.159 -.087 -.174 .071 .659 076 -.107 300 .032 .010 524
-.077 -.001 .088 -—.134 233 274 -.108 -.132 -—-.118 .043_ .081 130
Covariate Variance Matrix
.630
.396 .839
-.300 281  1.535
—.125 -.033 264 .269
.256 606 —.161 -—.456 1.572
217 .509 .666 393 —.192  1.178

*The coefficient matrix was chosen directly. Note that the product of the first three columns and the first three rows determines the
matrix. The disturbance variance matrix was generated by forming a 12 X 12 matrix A of independent N(0,0.3) variates, and then
taking & = A’A: thus E(¢) = 1.080, and E(oy) = 0, [E(;")}'"? = 0.312. Similarly the covariate variance matrix V was generated
by forming a 7 X 7 matrix B of independent N(0,0.42) variates, and taking V to be the last six rows and columns of B’B: thus
E(vy) = 1.120, E(vy) = 0, and [E(v;)]** = 0.423.



Table 2

Predictive Probabilities: Artifical Data

Observations Normalization Rank(q)

Post. Pred. 1 2 1 2 3 4 5 6 7
1-25 26-27 508 .492 .000 .007 .083 .099 .239 .378 .194
1-25 26-30 .566 434 .000 .000 .18 .300 .178 .285 .051
1-25 26-35 520 .480 .000 .000 .386 .285 .095 .207 .027
1-25 26-48 .293 707 .000 .000 .990 .005 .004 .000 .000
49-73 74-75 519 481 000 .013 392 .140 .226 .127 .102
49-73 74-78 534 .466 .000 .000 .421 .187 .219 .085 .087
49-73 74-83 379 .621 .000 .000 .712 .181 .092 .009 .005
49-73 74-96 731 269 .000 .000 .988 .011 .001 .000 .000
97-121 122-123 .592 408 .000 .023 .302 .257 .156 .159 .103
97-121 122-126 .638 362 .000 .000 .302 .201 .094 .281 .121
97-121 122-131 .602 .398 .000 .000 .580 .136 .069 .137 .078
97-121 122-144 105 .895 .000 .000 955 .037 .005 .003 .000
145-169 170-171 .527 473 .000 .069 .481 .161 .086 .108 .0%94
145-169 170-174 .706 294 000 .001 .733 .065 .045 .080 .076
145-169  170-179 578 422 .000 .000 .765 .075 .020 .085 .055
145-169 170-192 .996 .004 .000 .000 .996 .002 .001 .000 .000
193-217 218-219 .403 .597 .000 .027 .386 .347 .110 .076 .054
193-217 218-222 331 .669 .000 .001 .905 .070 .019 .004 .001
193-217  218-227 499 501 .000 .000 .715 .213 .064 .007 .001

193-217  218-240 176 .824 .000 .000 .972 .027 .001 .000 .000




Table 3

Predictive Probabilities: Artificial Data

Observations Normalization Rank(q)

Post. Pred. 1 2 1 2 3 4 5 6 7
1-24 25-48 .285 715 .000 .000 .991 .004 .004 .001 .000
1-24 25-96 256 744 .000 .000 .999 .001 .000 .000 .000
1-24 25-144 403 .597 .000 .000 1.000 .000 .000 .000 .000
1-24 25-240 .260 .740 .000 .000 1.000 .000 .000 .000 .000
1-24 25-332 183 817 .000 .000 1.000 .000 .000 .000 .000
1-48 49-72 .783 217 .000 .000 966 .032 .000 .000 .000
1-48 49-120 552 448 .000 .000 .973 .023 .004 .000 .000
1-48 49-168 510 .490 .000 .000 985 .015 .001 .000 .00O
1-48 49-268 .505 .495 .000 .000 .944 .039 .016 .000 .000
1-48 49-332 426 574 .000 .000 1.000 .000 .000 .000 .000
1-96 97-120 .568 432 000 .000 .739 .143 .100 .014 .004
1-96 97-168 545 455 .000 .000 .924 .061 .014 .001 .000
1-96 97-216 .617 383 .000 .000 .634 .155 .208 .001 .001
1-96 97-332 .675 325 .000 .000 .882 .118 .000 .000 .00O
1-192 193-216 511 489 .000 .000 .080 .133 .170 .182 .434
1-192 193-264 795 205 .000 .000 .341 .285 .157 .054 .164
1-192 193-312 719 281 .000 .000 .128 .251 .449 .101 .071
1-192 193-332 .497 .503 .000 .000 .091 .182 .433 .120 .174
1-288 289-312 472 .573 .000 .000 .229 .253 .217 .187 .114
1-288 289-332 .165 .835 .000 .000 .120 .138 .303 .282 .155




Table 4

Data Used in Example

Portfolio

Number Two-Digit SIC Codes Industry Name

1 13, 29 Petroleum

2 60-69 Finance/Real Estate

3 25, 30, 36-37, 50, 55, 57 Consumer Durables

4 10, 12, 14, 24, 26, 28, 33 Basic Industries

5 1, 20, 21, 54 Food/Tobacco

6 15-17, 32, 52 Construction

7 34-35, 38 Capital Goods

8 40-42, 44, 45, 47 Transportation

9 46, 48, 49 Utilities

10 22-23, 31, 51, 53, 56,59 Textiles/Trade

11 72-73, 75, 80, 82, 89 Services

12 27, 58, 70, 78-79 Leisure _
Covariates

. Value-weighted NYSE index return less 1-month Treasury
bill return.

. Monthly real per capita growth of personal consumption
expenditures for nondurable goods, seasonally adjusted.

. Monthly return of corporate bonds rated Baa by Moody’s
Investor Services less the long-term U.S. government bond
return (CRSP).

. Change in the difference between the average monthly yield
of a 10-year Treasury bond and a 3-month Treasury bill.

. Unexpected inflation rate: the difference between the actual
and the forecasted inflation rate, formed from a time-series
model for percentage changes in the CPI for all urban
consumers, not seasonally adjusted.

. 1-month Treasury bill return less the monthly rate of
inflation, as measured by the CPI.



Table 5

Predictive Probabilities: Asset Pricing Model

Observations Normalization Rank(q)

Post. Pred. 1 2 1 2 3 4 5 6 7
5/59-4/61  5/61-4/62 968 .032 953 .047 .000 .000 .000 .000 .000
5/59-4/61 5/61-4/63 994 .006 983 .017 .000 .000 .000 .000 .000
5/61-4/63  5/63-4/64 1.000 .000 929 .070 .001 .000 .000 .000 .000
5/61-4/63  5/63-4/65 1.000 .000 1.000 .000 .000 .000 .000 .000 .000
5/63-4/65  5/65-4/66 .832 .168 968 .032 .000 .000 .000 .000 .000
5/63-4/65  5/65-4/67 .986 .014 999  .001 .000 .000 .000 .000 .000
5/65-4/67  5/67-4/68 .656 344 985 .015 .000 .000 .000 .000 .000
5/65-4/67  5/67-4/69 995 .005 1.000 .000 .000 .000 .000 .000 .000
5/67-4/69  5/69-4/70 1.000 .000 .094 903 002 .000 .000 .000 .000
5/67-4/69  5/69-4/71 1.000 .000 998 .002 .000 .000 .000 .000 .000
5/69-4/71  5/71-4/72 .583 417 J71 226 .003 .000 .000 .000 .000
5/69-4/71  5/71-4/73 .760 .240 331 669 .000 .000 .000 .000 .000
5/71-4/73  5/73-4/74 1.000 .000 1.000 .000 .000 .000 .000 .000 .000
S5/71-4/73  5/73-4/75 1.000 .000 1.000 .000 .000 .000 .000 .000 .000
5/73-4/75  5/75-4/76 997 .003 997 003 000 .000 .000 .000 .000
5/73-4175  5/75-4/77 1.000 .000 999 .000 .000 .000 .000 .000 .000
5/75-4/77  5/77-4/78 958 .042 1.000 .000 .000 .000 .000 .000 .000
5/75-4/77  5/77-4/79 993 .007 1.000 .000 .000 .000 .000 .000 .000
5/77-4/79  5/79-4/80 1.000 .000 .087 909 .005 .000 .000 .000 .000
5/77-4/79  5/79-4/81 1.000 .000 .012 576 413 .000 .000 .000 .000
5/79-4/81  5/81-4/82 .988 012 991 .009 .000 .000 .000 .000 .000
5/79-4/81  5/81-4/83 1.000 .000 1.0000 .000 .000 .000 .000 .000 .000
5/81-4/83  5/83-4/84 1.000 .000 1.000 .000 .000 .000 .000 .000 .000
5/81-4/83  5/83-4/85 1.000 .000 1.000 000 .000 .000 .000 .000 .000




Table 6

Predictive Probabilities: Asset Pricing Model

Observations Normalization Rank(q)

Post. Pred. 1 2 1 2 3 4 5 6 7
5/59-4/61 5/61-4/65 997  .003 997 .003 .000 .000 .000 .000 .000
5/59-4/61 5/61-4/69 996  .004 998 .002 .000 .000 .000 .000 .000
5/59-4/61 5/61-4/73 983  .017 1.000 .000 .000 .000 .000 .000 .000
5/59-4/61 5/61-4/81 967  .033 988 012 .000 .000 .000 .000 .000
5/59-4/61 5/61-12/86 921 .079 929 071 .000 .000 .000 .000 .000
5/59-4/63  5/63-4/67 996  .004 681 277 .037 .000 .000 .000 .000
5/59-4/63  5/63-4/71 589 411 990 .010 .000 .000 .000 .000 .000
5/59-4/63  5/63-4/75 021 979 988 .012 .000 .000 .000 .000 .000
5/59-4/63  5/63-4/85 966  .033 444 555 000 .000 .000 .000 .000
5/59-4/63  5/63-12/86 284 716 766 234 000 .000 .000 .000 .000
5/59-4/67 5/67-4/71 007 .993 999 .000 .000 .000 .000 .000 .000
5/59-4/67 5/61-4/75 .000  1.000 1.000 .000 .000 .000 .000 .000 .000
5/59-4/67 5/67-4/79 000 1.000 1.000 .000 .000 .000 .000 .000 .000
5/59-4/67 5/67-12/86 004 996 996 .004 .000 .000 .000 .000 .000
5/59-4/71 5/71-4/75 366  .634 638 .316 .029 .016 .000 .001 .000
5/59-4/71 5/71-4/79 395 .605 622 .368 .007 .002 .000 .000 .000
5/59-4/71  5/71-4/83 980  .020 054 938 .004 .004 .000 .000 .000
5/59-4/71 5/71-12/86 931  .069 073 909 .009 .009 .000 .000 .000
5/59-4/75  5/75-4/79 833 .167 716 .195 .039 .022 .024 .004 .001
5/59-4/75  5/75-4/83 899 101 614 311 .015 .022 .031 .001 .005
5/59-4/75 5/75-12/86 746 253 .105 .481 .081 .078 .209 .009 .038
5/59-4/79  5/79-4/83 233 767 028 .132 067 .154 .378 .038 .204
5/59-4/79  5/79-12/86 198 .802 .001 .035 .083 .074 .589 .031 .186




