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Introduction

With some exceptions, it generally seems to be the case that economies with high levels of
per capita output also have active equity markets. In addition, during historical periods where there
was little government interference with the operation of financial markets, many economies
experienced a large increase in equity market activity as a concomitant of strong real growth.
According to Michie (1987), for example, about 25 percent of capital investment in the United
Kingdom was financed by issuing equity in 1853. By 1913, that figure had risen to 33 percent. For
the United States, Gurley and Shaw (1967, p. 259) report that the “stock of primary securities more
than doubled relative to national wealth and income” in the nineteenth century, although it has
remained relatively constant thereafter.

Cross-country comparisons indicate a similar relationship between equity market activity and
levels of real development. Antje and Jovanovic (1992, Table 2), Demirguc-Kunt and Levine (1993,
Table 4), and Levine and Zervos (1994) all report a positive correlation between the ratio of stock
market capitalization to real output, and real output per capita.! Gurley and Shaw (1967, p. 259)
argue that “primary securities issues approximate 1 or 2 percent of gross national product in the
poorer countries. The ratio generally lies within the range of 10 to 15 percent in wealthier
countries.” These assessments seem consistent with the data in Table 1; while there are some very
significant exceptions there, strong equity market activity is typically associated with high levels of
economic development.

These kinds of observations have led many, including Gurley and Shaw (1955, 1960, 1967),
to argue that the evolution of more sophisticated financial markets is an essential aspect of the
process of economic growth. For example, Gurley and Shaw (1955, p. 515) assert that “devel-

opment . . . is accompanied, too, by the ‘institutionalization of saving and investment’ that diversifies



channels for the flow of loanable funds and multiplies varieties of financial claims.” But why should
this be the case? We believe that the answer to this question is not currently well understood.

There has been significant progress in developing a better theoretical understanding of how
financial markets contribute to the growth process. However, typical contributions to the literature
have the feature that all external finance takes the form of either debt (typically bank loans; see for
instance Greenwood and Jovanovic 1990, Bencivenga and Smith 1991, or Cooley and Smith 1992)
or equity (Levine 1991 and Bencivenga, Smith, and Starr 1994a,b,c) but not both. Our objective
in this paper is to present a framework in which capital formation is financed by issuing both debt
and equity. We then use it to understand how the amount of activity in these markets influ-
ences—and is influenced by—the process of economic development. In doing so, we also consider
a number of related issues. One of these is whether debt and equity markets are substitutes or
complements for financing investment. In addition, we examine how choices among alternative kinds
of investment opportunities change as equity markets evolve. And, we will also take up the topic
of whether—and in what sense—the endogenous evolution of financial market activity as an economy
grows supplies that economy with a more efficient set of capital markets.

In order to consider these issues, we need a model which allows for growth and capital
acc'umulation. In addition, we need a model in which capital investment is financed with external
debt and equity, and in which the development of debt and equity markets is related to the
composition of capital investments. We, therefore, examine an economy in which this investment
is undertaken by a set of agents who require external finance, and in which investment is subject to
a standard costly state verification (CSV) problem. The CSV problem in our economy is very
similar to that in the original CSV literature (for example, Townsend 1979, Diamond 1984, Gale and
Hellwig 1985, and Williamson 1986, 1987), with one exception. In the traditional CSV

environment, investors have access to only a single kind of investment opportunity. We, on the



other hand, give investors access to two kinds of investment technologies, both of which display
stochastic constant returns to scale. One yields a return which is freely observable only by the
initiating investor. The other yields a return which is publicly observable. Under the assumption
that the expected return on the former technology exceeds that on the latter (gross of verification
costs), agents undertaking capital investments face a trade-off. The technology with the unobservable
return is (on average) more productive, but is also subject to a CSV problem. The less productive
project can therefore be used to reduce verification costs. We allow investors to choose any convex
combination of the two technologies.

A static version of this kind of economy is considered in detail by Boyd and Smith (1994d).
They demonstrate that the optimal composition of firm investment depends on the relative expected
returns on the two investment technologies, and on the cost of state verification. Higher verification
costs, ceteris paribus, favor the increased use of the observable return technology. Moreover, as
in the conventional CSV literature, Boyd and Smith (1994d) show that the use of the unobservable
return technology is associated with debt finance. The use of the observable return technology, on
the other hand, enables equity finance to be employed. Hence, under certain conditions, a firm will
have a determinate optimal debt-equity ratio, which depends on the composition of its investments,
on the cost of state verification, and on the distribution of returns on both kinds of investments.

In this paper we embed the model of Boyd and Smith (1994d) in the neoclassical growth
model of Diamond (1965). Since the latter is a two period, overlapping generations model, all of
the results regarding firm investment choices and the optimal debt-equity ratio can be carried over
intact from the static environment into the growth context.

Under the assumption that state verification costs are born in the form of final goods and
services,” we obtain the following results. As an economy moves along a growth path and

accumulates capital, the relative price of capital will fall. Since investment projects produce capitai



while state verification consumes final goods and services, the implication is that investors will see
relative monitoring costs that rise as an economy develops. As a consequence, under weak
conditions investors will tend to employ the observable return capital production technology more
and more intensively as an economy grows. Since the use of the observable return technology is
associated with equity issues, it will therefore often be the case that economic growth is accompanied
by an increased volume of equity market activity, and a falling (aggregate) debt-equity ratio.>
Indeed, we produce examples of economies where, at low levels of development, only the
unobservable return technology is employed and (as in the standard CSV literature) only debt finance
is used. However, as the economy grows, relative monitoring costs increase, and eventually the
observable return technology comes into use to economize on verification. When this occurs, the
economy will start to observe a positive level of activity in equity markets. In an economy of this
type, equity market activity will not occur at all—for fully endogenous reasons—until the economy
attains a critical level of development. Indeed, it is possible to produce examples of economies that
experience no equity market activity at all until a critical level of development is reached, but that
have the property that once equity ma;ket activity begins, its volume is very large. Section 6
illustrates various possibilities with respect to the evolution of equity market activity over time.
Our analysis suggests that a typical pattern of development will be that increases in the level
of per capita output are associated with a greater volume of equity market activity, a lower
(aggregate) ratio of debt-to-equity, and a composition of investment that more heavily favors the
observable return technology. Thus, in less developed economies, investment projects with high
expected returns (not inclusive of verification costs) will be relatively heavily utilized. More mature
economies will tend to make greater use of lower expected return projects, but ones that demand less

frequent verification.



The last observation has the following implication: as economies develop, fewer resources
may be consumed by the necessity of state verification.# Thus, the severity of the CSV problem—as
measured by the cost in final goods and services of its presence—will often be smaller for more than
for less developed economies. It is often argued (for example, by McKinnon 1973 and Shaw 1973)
that less developed economies are less developed because their financial market frictions are more
severe than those of their more developed counterparts. In most of our examples, economies that
are “farther along their growth paths” lose‘ fewer resources due to the presence of the CSV problem
than do less mature economies. In our model this is an endogenous outcome; financial market
frictions can be expected to become less severe as a natural consequence of the development process.
In this sense the natural evolution of financial markets as an economy develops does tend to create
more efficient capital markets.’

Finally, our analysis bears on the issue of whether debt and equity markets are substitutes
or complements. By issuing some equity, firms can make it cheaper to issue debt. This fact makes
it possible for individual firms, and society, to economically employ high return capital production
technologies whose use might otherwise not be feasible. Moreover, our analysis provides a sense
in which debt and equity markets are likely to become more cqmplernentary as economies become
more highly developed. This point is illustrated by example in Section 6.

The remainder of the paper proceeds as follows. Section 1 describes the model, and the
nature of trade in factor markets. Section 2 analyzes firm investment and financing decisions.
Section 3 demonstrates how an optimal set of capital investments can be financed by issuing a
determinate combination of debt and equity. Section 4 considers the evolution of the capital stock
and of financial markets over time in a general equilibrium, while some special topics are taken up
in Section 5. Section 6 presents several numerical examples illustrating our results, and Section 7

concludes.



1. The Model

A. Environment

We consider an economy populated by an infinite sequence of two-period lived, overlapping
generations, plus an initial old generation. Each generation consists of a continuum of agents with
unit mass, and each young generation is identical in its composition.

In particular, agents in each young generation are divided into two types, which we term
borrowers and lenders. All borrowers (lenders) are identical, ex ante, and borrowers (lenders)
constitute a fraction oo € (0,1) (1—«) of the population. Lenders are endowed with one unit of
labor when young, which they supply inelastically, and are retired when old. Borrowers are
endowed with no labor, but they are endowed with access to individual-specific, high return
investment projects, which are described below. All young agents, both borrowers and lenders, are
assumed to be risk neutral and to care only about old period consumption. Thus all young period
income is saved (invested).5

There is a single consumption good at each date, which is produced according to a standard,
commonly available constant returns to scale production function with capital and labor as inputs.
In particular, if K, is the time t capital stock and L, is time t labor input, then production of the final
good is given by F(K,,L). In addition, if k, = K/L, is the capital-labor ratio at t, then fk) =
F(k,,1) is the intensive production function. We maintain standard assumptions on f; that is
f(0) = 0, f'(k) > 0 > f"(k) for all k = 0, and that f satisfies the usual Inada conditions.

Capital is produced at each date from the consumption good using one or more of the
following three technologies. First, there is a;commonly available, nonstochastic linear technology
whereby one unit of current output invested at t yields r > 0 units of capital at t + 1. In addition,
there are two stochastic linear technologies that convert current output into future capital.

Technology o (for observable) produces y units of capital at t + 1 per unit invested at t, where y



is an iid (across agents and across time periods) random variable which is realized at t - 1. We
assume that y € {y,y,,....yn}, and we let p, = prob(y = y,). Obviously 0 < p, < 1 for all n,
and Xp, = 1. Finally, we assume that for any investor the amount of capital yielded by investments
in technology o is publicly observable (at zero cost).

Technology u (for unobservable) is assumed to produce w units of capital at t + 1 per unit
invested at t. w is a continuous, iid (across investors and periods) random variable with cdf G and
pdf g. g is assumed to be continuously di‘fferentiable, and to have support [0,%]. In addition, the
return on investments in technology u can be observed (by any agent other than the initiating
investor) only by bearing a fixed cost of ¥ > 0 units of the current consumption good. Thus a
standard costly state verification (CSV) problem arises for investments in the technology u.

We assume that only borrowers are endowed with access to the investment technologies o
and u. Ownership of these investment opportunities cannot be traded. Moreover, as is typical in
CSV models (with fixed verification costs) we will want to impose an upper bound on the scale at
which any borrower can operate the investment technologies. Thus we let it (i}) be investment in
technology o(u) by a representative borrower at t, and we let i, = i° + i'. Then each borrower faces
the maximum scale of operation constraint i, < q, where q is an exogenously given parameter.
Fin;;llly, we also assume that if > 0 and i{ > O must hold. For future reference, we define 6, =
/i, to be the fraction of total investment done in technology o at t by a represent l;orrower. Clearly
6, € [0,1] must hold.

Define
y =Y py,
n

to be the expected gross return (in units of capital) on investments in technology o, and
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to be the expected gross return (in units of capital), not inclusive of verification costs, on investments
in technology u. We assume that

@l) w>y9>r.

Thus the commonly available technology is relatively unproductive.

Once capital is received, we assume that it is used in production and that it then depreciates
completely. This assumption prevents us from having to worry about capital resale markets. We
also assume that the initial old agents are endowed with K, > O units of capital, per capita. No
agents thereafter are endowed with either capital, or the consumption good.

Since borrowers have no young period income, they must obviously rely on external finance
in order to fund their investments. Lenders can either provide this external finance to borrowers,
or invest in the inferior, commonly available capital production technology, or both. We now

describe how this trade occurs.

B. Trade

Two kinds of trade take place in this economy: capital and labor are rented in competitive
factor markets, and funds are transferred from lenders to borrowers. Here we describe activity in
factor markets; funds transfers are the subject of the next section.

The inherited capital stock (the proceeds of the previous period’s investment) and labor are
both supplied inelastically. Both factors are demanded by competitive producers, and hence are paid
their marginal products. Thus if k, is the aggregate capital-labor ratio at t, «, is the time t real wage

rate, and p, is the time t rental rate for capital, we have

M e = k)



@ e o= fk) — kfi(k) = ak).

Clearly, w'(k,) > 0 holds, for all k,.

2. Financing of Investment

At this point we assume that borrowers obtain external funds by announcing general contracts
specifying how repayments will occur in various contingencies. These contracts should be regarded
as abstract objects; in Section 3 we describe how equilibrium contracts can be supported through the
use of debt and equity markets. We als;'.) assume throughout that borrowers confront no credit
rationing,” or in other words, that the supply of funds by lenders is always at least as great as the
demand for funds by borrowers. The supply of funds by lenders (since lenders save their entire
young period income) is (1 —a)w, at t, while the maximum demand for funds by borrowers is «q.
Hence we assume that
(a2) (I-owk) = aq
for all “relevant” (see below) values of k,. When (a.2) holds, any marginal savings must be invested
in the commonly available technology, yielding r units of capital per unit invested. Thus the
opportunity cost of funds at tis rp,, , since the rental value of the capital obtained at t + 1 is p,;.

All agents are assumed to treat p,,; parametrically.

A. Funding Contracts

A funding contract specifies a quantity of resources that will be transferred to a particular
borrower (i,), as well as how these resources will be allocated among technologies o and u (6,).% In
addition, the contract specifies a set of state contingent repayments. Since the return y is observable,
repayments can always be made contingent on it. However, since the return w can be observed

externally only if monitoring (or verification) occurs, repayments can only meaningfully be made
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contingent on w if state verification occurs. Hence a contact must specify a set of states
A(y)X([0,%] — A(y) = By(y)) in which monitoring will (will not) occur at t + I; this set can
obviously be conditioned on y. In monitoring states, repayment can be made contingent on w. We
let R(w,y) be the promised repayment at t + 1, in units of time t + 1 consumption and per unit
borrowed, if w € A(y). In addition, we let x(y) be the promised repayment at t + 1, in units of
time t -+ 1 consumption and per unit borrowed, if w € B(y). Notice that we have restricted
attention to nonstochastic monitoring.’ Fu;thermore, we assume that the funding contract specifies
a set of agents who are responsible for monitoring (if necessary), so that there is never a necessity
for the duplication of monitoring effort.'°

Funding contracts are assumed to be announced by borrowers, and such contracts are then
either accepted or rejected by lenders. In order to avoid rejection, such contracts must satisfy a set
of constraints, which we now describe.

First, contracts must be feasible or, in other words, specify nonnegative consumption levels

for borrowers. Thus a borrower’s repayment can never exceed his total available resources, or
B.a) RwW)y) = pl0y + (1-6)w]

B.b) xO) < inf p,, By + (1-6)w]
wEB(Y)

must hold. Note that p,,, appears as it does in (3) since investment returns are in units of capital
while repayments are in units of consumption. p,,, gives the relative price of capital in terms of
consumption. Second, contracts must be incentive compatible, so that borrowers must have an
incentive to announce truthfully when a monitoring state has occurred. They will do so iff
repayments are lower in monitoring than in nonmonitoring states. Therefore the incentive constraint

takes the form

@ R(w,y) = x(y), forallw € A(y).
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Finally, since lenders can always invest in the commonly available technology, the expected
repayment—per unit borrowed—must at least equal the opportunity cost of funds (rp,., ;) plus expected
monitoring costs (which without loss of generality we assume are born by lenders). Thus contractual

repayments must satisfy the expected return constraint

®  1Ze | Rwypemdw + Yo, [ xy)emadw i,

WwEA(Y,) n wEB(,)

-7 3P, J gwydw = 1p, ;.
T weAgy)

r is multiplied by p,,., in (5) since r is in units of capital, which has a goods value of p,,, at t + 1.

Borrowers announce funding contract terms to maximize their own expected utility, subject
to the constraints (3)-(5). The expected utility of a borrower, as a function of contract terms, is
simply the expected return on the borrower’s investments, less the expected repayment implied by

the contract. Thus borrowers choose contract terms to maximize

i3 09 + A—6)%] — Y p, j R W,y gwydw — ¥ p, j x,(Y,)g(W)dw
n wEAY,) T weB(y

subject to (3)-(5).
Noting that (5) must hold with equality at an optimum, this problem can be transformed as

follows. Substituting (5)—at equality—into the objective function yields the alternative maximand

05 + (1—-6)%w — tlo,, — v Y. P, j g(w)dw
T ALY

which the borrower seeks to maximize subject to (3)-(5). We now make several observations about

the solution to the borrower’s problem, which are summarized in the following lemma.
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Lemma 1. The solution to the borrower’s problem has

(a) =g

1 -6

t

(b) At(yn) = [O, [xt(yn)/pt+l] - 0tyn]

and

©  RWyW) = pealfy, + (1=0)wk w € A(yy).

The Proof of Lemma 1 appears in Boyd and Smith (1994d).!! Lemma 1 asserts that borrowers

always invest up to their maximum scale of operation. In addition, they repay x,(y,) if it is feasible

to do so, in which case no monitoring occurs. If it is infeasible to repay x(y,) (which occurs iff

w € A(y,), as defined in (b)), then monitoring takes place. Part (c) of the lemma says that if

monitoring occurs, providers of external funding receive the entire net of monitoring cost proceeds

of the borrower’s investments. All of these results mirror standard results in more traditional CSV

environments.

In order to further characterize optimal funding contracts, it will be useful to make the

following transformation. Define

6), zy = {[x¥) o] — Oy }/(1-0); n=1,..

Then Lemma 1 implies that A(y,) = [0,z,) for all n, and in addition it implies that the borrowers’

problem can be reformulated as maximizing
pl89 + (1—0)% — rlq — v ¥, p,G(z,)

subject to

Zn

D Y e j By, + A—6)wlgw)dw + ¥ px(y Il — G(z,)]
n 0 n

- (’Y/q)z pnG(znt) = rpt.(..l'
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‘Rewriting equation (7) as

Zy

T bt X 03,0@) + p0(1-6) Tp, [ wawidw
n n 0

+ Y px Il — Gz — (v/9) ¥, p,G(,) = 1o,

and adding and subtracting Ep,6,y,[1 — G(z,)] from the left-hand side of (7’), we can reformulate

the borrower’s problem as choosing 6, € [0,1] and z,; € [0,%], n = 1, ..., N, to solve the problem
Py max 0y + (1=6)% — 1 — ¥,y p,Gz,)
: n

subject to

Zy

® 09 + 1-6) Yp, f wg(w)dw + (1-60) Y p,z, [l — Gzl — ¥y Y.p.G@E,) =T
n 0 n ]
where ¥, = v/qp,,, is the cost of state verification—measured in units of capital—per unit
invested.
In order to characterize the solution to the problem (P), it will be useful to have the following

result. The proof appears in Boyd and Smith (1994d).

Lemma 2. Define the function Z(6;y) by

Z(6;0) = argmax? (1—6) J wew)dw + (1—-8)2[1 — G@)] — ¥G(@)
z 0

(a) The vector (z,,zy,...,Zy,) solving (P) satisfies z,, < Z(0;¢,,), for all n. (b) Z(O;¥.y) <
Z(0;¥,,,) holds, for all §,. (c) Therefore, z,, < Z(0;y,,) holds, for all n.
Lemma 2 asserts that z, should never exceed the value of z that maximizes a lender’s

expected return (conditional on a choice of 6). Since Z,(f;¥) < 0 holds, it follows that z,, should
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never be chosen to exceed the value of z that maximizes a lender’s expected return, conditional on
6 = 0 holding.

Before characterizing the solution to (P), it will prove convenient to make assumptions
implying that the borrower’s objective function is a concave function of (Z11>Zy15 - .-, Zyyy)» and similarly,
that the constraint set is convex—at least for values of this vector that can conceivably be chosen by
the borrower. In view of Lemma 2, the following assumption implies the satisfaction of both

conditions for all “relevant” values of (z,,,2,,,...,Zy):
(@3) g'(w) =0; forallw € [0,Z(0;¢,, )]

Assumption (a.3) requires that g be nondecreasing for “small” values of w, where “small” means
values less than the largest possible value of the expected return maximizing choice of Zye

In order to describe the solution to (P), it will be useful to proceed in two steps. First, we
arbitrarily fix a value §, € [0,1), and for that value of 6, find the optimal choices (Z11 22 Zy)-
Second, using these choices, we examine the problem of selecting 6, € [0,1] to maximize the
expected utility of a borrower. Thus, in consonance with the first step, we fix §, and consider the

problem
(py max 6y + (I-6)% — 1 — ¢ Y p,G(z,)

subject to (8) and z,, € [0,Z(0;1,,)].'? Letting , denote the Lagrange multiplier associated with
(8), and imposing (a.3), the following conditions are necessary and sufficient for an interior

optimum:

© 2@ )10l — Gzl — ¥, 8E)} = ks 0 = L...N.
Since (a.3) implies that the left-hand side of (9) is strictly increasing in z,,, the N conditions in (9)
imply that z, is independent of n; that is z,, = 2z, = ... = zy holds.”® Suppose we impose

constancy of z, in (8), and define the function z(8;y) by
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z2(0;¢)
(10) 69 + (1-6) [ wgw)dw + (1-0z@:¥){l ~ Glz@:¥)1} — ¥Glz@:¥)] = r
0

and z(0;¥) < Z(0;¥). Thus, 2(0;;¥,,,) is the common value of z,, given 6, and v, that satisfies

the expected return constraint at equality. Then (8) and (9) imply the following result:

an oz, = z(0;¥,,); n=1,.. N

In light of the constancy of z,,, suppose we define the function w(z,8;y) by

z

(12)  w(z,0;¢) = (I—G)J'wg(w)dw + (I-0)z[1-G(@)] — ¥G(2).
0

Then the definition of z(6;y) implies that that function satisfies the condition
(13)  «w[z6:¥%),0;¢1 = r — 69.
The function w, and the determination of z(6;), are depicted in Figure 1. Assumption (a.3) implies
that 7 is a concave function of z for all z < z(0;¢,.,), and
(a4) 70,0;¢,) >0
implies that 7 is increasing at z = 0. In addition, if equation (13) has more than one solution, the
criterion of minimizing expected monitoring costs dictates that the smallest solution to (12;,) is the
relevant one. Thus, since (by assumption) credit is not rationed,
14 = [z0:¥.).0:¢.,]1 > 0
holds, as does z(0;¥,.1) < ZO;¥.y).

We now turn our attention to a representative borrower’s optimal choice of 6,. Upon
substituting (11) into the objective function in (P), we obtain the alternative maximand

09 + (A=6)% — 1 — ¢, ,Glz(6;¥,, )] = H@O;¥,,,)-
Then the optimal choice for the composition of investment, which we denote by 6}, satisfies

6: = argmax H(e;‘lbt-f-l) = T( ).
9€10,1]
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The next section describes the properties of the function T.

B. The Optimal Composition of Investment
We begin by stating conditions under which 6, will and will not take on “extreme” values,

and by describing what these extreme values are. Our first result is

PROPOSITION 1. (@) T(¥s;) < 1§ < 1 holds, for all ,,,. (b) T(¥,,) € (0,r/9) holds if

(15) 9 =W = ¥0..180)z, (7559, ) < Q

and

(16) 9 — W — ¥,18[2(05¥,.012:(0;¥4y) > 0.

The Proof of Proposition 1 appears in Boyd and Smith (1994d). Part (a) of the proposition asserts
that 6; < r/y always holds. It is easy to verify that z(t/9;¢41) = 0 for all ¥, ,, and hence that there
are no monitoring costs for 6, = r/y. Since W > ¥, it is never optimal to increase 6, beyond the
point at which expected monitoring costs are driven to zero. Equations (15) and (16), of course, are
just Hy(@/§3¢141) < 0 < Hy(0;¢,,). Under the conditions stated, H(6;y,, ) has the configuration
depicted in Figur_e 2. It follows that T(¥,,,) € (0,r/).'* Straightforward differentiation of (13)

establishes that equations (15) and (16) are equivalent to the conditions

(15 (W=PIE~-)/F — ¥,1180)] > ¥,,,92(0)

and
(16') {9 - I - "//t+IG[Z(O;‘//t+1)]}¢t+1g[z(0;¢t+l)]

> (W=N{1 — Glz(0;¥+ )] — V1418020059, )T}
When (15) and (16) [or (15') and (16")] are satisfied, 0} satisfies the first-order condition

(17) _¢t+1g[z(0:;'/’t+1)]zl(0t*;‘/’c+1) =W -9
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and the second-order condition

(18) _‘//t+1g[z(0t*;‘p[.}.l)]zll(et*;‘)bH.I) - z/xmg’[z(et*;1//t+1)][z1(9t*;¢t+l)]2 <0
Equation (17) implicitly defines the function T(y,.,), while satisfaction of (18) implies that that

function is differentiable. Implicitly differentiating (17), we obtain
(19 {yglz(0" :¥)1z,,(0"5¢) + ¥g'[z(0* )1z, ;)T (V)

= —g[z(0*;)]z,(0%:0) — Yglz(0*;:)]1z,(0%:¥) — ¥g'[2(0*:1)]z,(6*:%)z,(0%;¥).
Equation (17) implies that z,(9*;) < 0 holds, and it is easy to verify that z,(0*;%) > 0 (see Boyd

and Smith 1994d). Thus we have the following result.

PROPOSITION 2. T'(y,,;) > O holds iff

ACARAN I VeriZa(O; s¥4y)
+ ¢t+1{g'[z(0t*§¢t+1)]/g[z(9t*;¢t+1)}21(9:;IPHI)ZZ(O:;%H) > 0.

(20)

A sufficient condition for (20) is that z,,(67;¥,,,) < O.

We now state a sufficient condition for z,,(8;;¢,.,) < 0 to hold.
12\Ver ¥+l

Lemma 3. z,,(07;¢,+,) = 0 holds if

V=903 — ¥, 18120 ¥, D} = ¥, Gl26, ¥, DKL — GL2(6" 39, )]}
The Proof of Lemma 3 is given by Boyd and Smith (1994d). Lemma 3, of course, gives a suffi-
cient—but far from a necessary—condition for T'(¢,,,) > 0 to hold.

When we do have T'(¥,,,) > O; increases in the cost of state verification result in an
increase in 6} or, in other words, in heavier use of the observable return investment technology.

Thus it is certainly intuitively plausible that T'(,,;) > 0 is the “natural” situation whenever 6; €

0,r/9).
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3. The Use of Debt and Equity

In this section we consider how the firm’s optimal financing contract can be implemented
through the issue of a determinate mix of debt and equity. This discussion summarizes a more
elaborate one in Boyd and Smith (1994d), who also motivate in far more detail the interpretation of
debt and equity given here.

Recall that an optimal funding contract specifies a (per unit) repayment of x(y)att + 1, as
a function of the return on the investment in the observable return technology (y), if monitoring does

not occur. Then, from equation (6),

x () = o [(1=0)206, ;%) + 6yl
in nonmonitoring states. Notice that this payment consists of a component [p, (1 —=60)z(0};¢,, )]
which is not contingent in any way on firm performance, as well as a component [p,,,0ty] which
does depend on that aspect of firm performance which is observable in nonverification states.
Standard terminology in the existing CSV literature suggests that we should think of the first
component as payments to debt-holders (per unit of funding) in such states, while we can then think
of the second, performance related component as payments to equity-holders.

Now consider what happens in a monitoring state. The firm “owes” debt-holders
q(1—6)2(6%;¥+ Doy - If debt-holders receive this amount they do nothing, while if they receive less
than this amount they claim the entire (net of monitoring cost) proceeds of the firm’s investments.
This event can be interpreted as a bankruptcy.

If a bankruptcy occurs, equity-holders receive nothing. If, on the other hand, debt-holders
are fully repaid, equity-holders receive the residual returns on the firm’s investments—q[(1 —8})w +
0tyloes1 — Qo1 (1—0D2(07;% ). Of course, this requires that equity-holders monitor the firm.

Equity-holders cannot, by definition, force a bankruptcy, but there are a number of ways in which
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equity-holders can undertake costly actions to acquire information about the true value of a firm’s
assets.’® Notice that, under this interpretation, debt-holders are “paid first,” while equity-holders
are true residual claimants. Insider owner-managers are subordinate both to owners of debt and
external equity.

With this interpretation of how borrowers implement optimal funding contracts, it is
infeasible to fully repay debt-holders iff [0ty + (1—-0)w] < (1—60)z(6};¢,.,;). This condition is

equivalent to

w < z(6, ¥, — 16, /(1—-6")y.

Defining the function J(8,y;¥) by
J(0,y;¢) = max{0, z(6;¥) — [6/(1-6)ly},

a bankruptcy occurs iff w € [0,J(67.y:¥,,). Ifw € [J(0;,y:¥,, 1,205, ,)), then debt-holders are
fully repaid and equity-holders are responsible for monitoring, while if w > z(6;;¥,,,), no state
verification is required.

Let d, denote the value of the debt issued by a representative borrower at t, and let e, be the
value of the same borrower’s external eciuity. d, and e, are determined by two requirements. First,
d, + e, = q must hold. Second, the expected return to both debt and equity-holders must equal
o As demonstrated by Boyd and Smith (1994d) [see their Proposition 1], equity-holders earn
an expected return of rp,,, iff e, satisfies

e, = (q/r){r = Y P=0)z0¥,)) — J6,Y,i¥i.y)]
@y "
- ;Pnr[J(Gt,y,,;\bﬁ1),0t;tl/t+1]} = E@:¥,.)-
d, = q — e, then gives the value of debt issued by a representative firm. Boyd and Smith further

establish that 0 = E(0;¥,;) < E@sve)) < BT/, = q.
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E gives the amount of equity issued by a typical firm as a function of 6., which is chosen by
the firm, and of y,..;, which is external to the firm. Thus the volume of equity issued depends on
the composition of a firm’s assets 6,, and on its monitoring cost ,,,. It also depends on parameters;
in particular, on the entire distribution of y, and on the productivity of the commonly available
investment technology r.

Boyd and Smith (1994d) show that, whenever E,(6;y) exists, it satisfies E,(0;¢¥) < 0. Thus,
with a fixed composition of investment, h@gher monitoring costs favor the use of debt. E,(6;y) is
harder to sign, when E,; exists, but Boyd anq Smith (1994d) state a variety of conditions sufficient
to ensure that E,(6;¥) > 0, when E, exists. This result indicates that—holding monitoring costs
constant—higher equity levels are associated with a more intensive use of technology o. As
suggested by the standard CSV literature, the use of technology u is associated with debt-finance (and
when 6, = 0, d, = q), while the use of technology o permits some equity finance to be viable in
equilibrium.

At an optimum, of course, 6, = T(y,.), and the volume of equity issued is given by
(22) € = E[TW,, )i¥.,,] = E*W,,)-

The sign of E*/, when it exists, is generally ambiguous. However, a number of numerical examples
calculated by Boyd and Smith (1994d) indicate that E* can typically be expected to be an increasing
function (see also Section 6 below). Thus as monitoring costs rise so—generally—does 6;, along
with the ratio of external equity to debt issued by a representative firm. In Section 6 we explore the

implications of this observation.
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4. Capital Accumulation and the Composition of Investment:

General Equilibrium

A. The Capital Stock

In an equilibrium with no credit rationing, all loan demand by borrowers is met. By
Lemma 1, this demand—in per capita terms—is eq in each period. Any savings in excess of this
amount must be invested in the publicly available capital investment technology. Since per capita
savings is (l—a)w(k) at t, investment- in the low return capital production technology is
(1-a)w(k) — «q,'® and the quantity of capital produced from this technology at t + 1 is
1[(1 —e)w(k) — aql. Of the aq units of funds obtained by borrowers, a fraction 67 = T(Y,, ) is
invested in technology o at t, yielding (on average)  units of capital per unit invested, while 1 —
67 is invested in technology u at t, yielding (on average) W units of capital per unit invested.

Therefore the time t + 1 per capita capital stock, K,,;, is given by
23) Ky = 0q{TWu)¥ + [1 — T )W — 1} + 1l —a)a(k).

Since the aggregate capital-labor ratio at t + 1 is simply k,,, = K,,,/(1—a), the equilibrium law

of motion for {k,} is given by

24) ko = rok) + [/ (1-)]qf{TW)§ + [1 — T )IW — 1}

To further characterize the equilibrium law of motion for k,, recall that ., = v/qo,,, =

v/qf' (k1) = Y(k..,). Clearly ¢ is an increasing function of k., satisfying

limy(k) = 0
k-0

limy(k) = oo.
k>0

Moreover, using this definition of the function ¥, we can rewrite equation (24) as

23 ke = [o/(1-a)lg{W — 1 — (W=9TY(k DI} + rok).
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Given the initial capital-labor ratio k,, equation (25) describes the evolution of the equilibrium
sequence {k;}T .o
Equation (25) is depicted in Figure 3. Apparently,

di, 1 /dk, = re’(K)/{1 + [ed(1—a)Ig(¥ —9)T'(- )" (-)}.

Whenever it is feasible to set 6, anywhere in the interval [0,r/9] (see Section 5), and whenever
T'TY(-)] = 0, as will typically be the case (see Section 6), equation (24) gives k.., as a continuous,

monotonically increasing function of k. We denote this function by k,,, = ®(k).

1. Existence of a Steady State Equilibrium
We now state conditions sufficient to imply that an economy has a nontrivial steady state

equilibrium capital-labor ratio (denoted k%) satisfying (1 —a)w(k%) > aq. To do so, we define k by
k = o [eq/(1-a)].

In addition, define k to be the largest solution to the equation
k — rok) = [o/(1-a)lq(W—T1).

We can then state the following existence result.

PROPOSITION 3. Suppose that it is feasible to set §, anywhere in the interval [0,r/9] for all Yo <

(k) (see Section 5), and that

@.5) Yaq = k(1-o).

Then there exists at least one nontrivial steady state equilibrium capital-labor ratio, &, satisfying
(1-a)w(k) = aq. Moreover, there is at least one asymptotically stable steady state equilibrium if

T'[Y(k)] = Oforallk = k
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The Proof of Proposition 3 appears in the Appendix. The proposition states a condition under which
there exists an asymptotically stable steady state equilibrium that is free from credit rationing. In
Section 6 we exhibit several examples which satisfy the conditions of Proposition 3, as well as one

which does not.

2. Dynamical Equilibria

Figure 3 depicts the evolution of the equilibrium sequence {k,}, under the conditions of
Proposition 3 and under the assumption that T' > 0. Assumption (a.5) implies that, if k, = k,
k.1 = kholds. Therefore, if k, > k is satisfied, {k,} is a monotone increasing sequence, and k, =

k holds at each date. Thus credit is never rationed, and a steady state is asymptotically approached.

B. The Composition of Investment

Suppose that k, € [k,k°) holds, and that T’ > 0. Then {k} is an increasing sequence. It
follows that {y,,,} = {¥(k,,)} is an increasing sequence as well, so that investors perceive
monitoring costs that are rising over time. The reason this occurs is that capital investment projects
yield physical capital, and the goods value of capital is simply its rental rate, f'(k;+1). Ask,,, rises,
the relative price of capital falls. However, monitoring consumes final goods and services.!” Thus
as k., rises, the costs of monitoring rise relative to the value of investment returns. '8

This fact has a strong implication. If T'(¥,,,) = 0 holds (which it does uniformly in our
examples; see Section 6), then {6}} is also an increasing sequence. Thus, as an economy moves
along its growth path, an increasing fraction of investment by borrowers (as well as of social
investment) will take place in technologies that have low (gross of monitoring costs) expected
returns. In other words, the development process will be accompanied by a declining (gross of

verification cost) return on investment, even measuring these returns in units of capital.
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This shift in the composition of investment does allow for the possibility that total resources
copsumed by state verification decline as an economy grows. In particular, resources used in
monitoring in real terms are given by ayG[z(67;¥,,,)], per capita. As k., rises, z(67:¥,,.,) can either
rise or fall; in our examples (Section 6) z(8;;¢,,,) does not increase in the development process as
long as §; > 0. Thus more advanced economies (ones that are “farther along their growth paths”)
will typically use less resources (and a smaller fraction of total resources) in dealing with costs that
arise due to informational frictions. In tbis sense, less developed economies will appear to face
financial market frictions that are more severe than those confronting their better developed
counterparts. However, in the model, this is not because their financial markets are intrinsically

more severely flawed; rather it is a purely endogenous outcome.

C. The Equilibrium Equity Ratio

The equilibrium ratio of equity issued to total external finance is simply e/q = E*(¥,.,)/q-
E™ (when it exists) generally has a theoretically‘ indeterminate sign. However, in a series of
numerical examples, Boyd and Smith (1994d) found that E* seems typically to increase with v, ;.
This finding is confirmed by the examples reported below (Section 6). Thus as our example

economies develop, they appear to employ equity markets in an increasingly heavy way.

5. Some Other Possibilities

The analysis of Sections 2-4 was predicated on two assumptions: (a) that it is feasible to set
6, anywhere in the unit interval, and (b) that §; € (0,r/§). We now briefly describe how the analysis

must be modified when either assumption is violated.
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A. Feasibility
For a given value of y,,,, it is feasible for firms to select a particular value 6, iff that choice
of 6, permits them to offer investors an expected return of at least rp,,,. It is straightforward to

verify that the largest expected return a borrower can offer, as a function of 6, is given by

pt+1{7r[2(0;‘//t+1)’6;1//t+1] + 69} = 0,.1Q0:¥, ).

Then, for any value of 6§ € [0,r/9], it is feasible to offer investors an expected return of rp,,, iff
Q(0;¥,41) = 1 holds.

It is easy to check that the function Q has one of the two configurations depicted in Figure 4.

Case I. Qi(6;¥141) = Oforall & € [0,r/9]. Then Q has the configuration represented in Figure 4a.
In particular, Q is an increasing function, and increases in ¢ shift Q downward. Thus, for low
values of ., (such as y,; in the figure) it is feasible to set 6 anywhere in the unit interval. As y,,,
rises (say to y,), feasibility requires that § = @, hold. Further increases in ¥ reduce the set of
vfeasible choices of 6 even further. Thus, if ¥,,; = ¥3 > y,, feasibility requires that § = ¢, hold.
Finally we note that the set of feasible choices of § is always nonempty, since Q(r/9;¥,.,) > r holds,
for all ¥,,,.

When Q;(6;¥,..;) = 0 holds everywhere, the set of feasible values of 6 is a closed interval.

It is easy to verify that Q,(0;¥,.,) = 0 holds for all @ iff
(26) ¥ = w[Z05¥,. 1.0 1] + ¥, GIZ(0;¢,, D]
Case 2. Q,(0;¥,,,) < Oholds. This case obtains when (26) is violated. Here it is possible to show

that Q necessarily has the “u-shape” depicted in Figure 4b. Again, increases in y,,, reduce the

maximum expected return that a borrower can offer. Thus when y,,; = ¥,, any value of 0 is
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feasible. As v, increases to y,, the feasible set consists of two disjoint intervals, while as y,,,
increases further (say to ), feasibility requires that 6 = §,.

When the feasible set consists of two disjoint intervals, as when y,,, = v, in Figure 4b,
borrowers face a nonconvex constraint set. This nonconvexity can lead to some interesting
dynamical behavior of the debt-equity ratio, as we illustrate in Section 6.

Clearly, the correct formulation of the borrowers’ problem in either Case 1 or Case 2 is that
6, must be chosen to maximize H(0;y,, ), subject to Q(6;¥,,,) = r. It is straightforward to show
that, under the conditions stated in Section 2b, there is some function T such that the optimal choice
of 6 satisfies 6; = T(¥,,,), where T has the properties described there. Thus, in particular, if
T’ = 0 holds whenever assumptions (a) and (b) are satisfied, T' = 0 holds when those conditions

are violated as well.

B. “Corners”
When Q(0;¥,,,) = r holds, it is feasible to set 6, = 0. It is optimal to set §; = 0 at date t

only if
@7 =1 = GlzO:¥e. DI} = {W — r — ¥, Gl2(03¥4 D1}¥1418[2(0 ¥, )]

Since z,(0;¥) = 0, evidently (27) can obtain only when v, .., is relatively small or, equivalently, only
when k., is relatively low. It follows from this observation that we would expect to see 6; = 0
holding, if at all, only for low values of k,,; and k.. This fact raises the following possibility:
6; = 0 may hold at low levels of the current capital stock. However, once the capital stock exceeds
a critical level, 6; > 0 will be satisfied.

Suppose that §; = 0 forall t < T, and that 67 > O thereafter. Since the equilibrium quantity
of equity issued at t is given by E(67;¢,.,), since E(0;¥,.,) = 0, and since E(0;y,,,) > O for all

6 > 0, it follows that an economy with this sequence {0} will have no equity market activity for
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t < T. At T equity markets will become active, and they will remain so at all subsequent dates.
Thus it can easily occur that an economy has no equity market activity until it reaches a critical level
of development and that, thereafter, its equity markets form. Indeed, it is possible that when equity
markets form the level of activity in them becomes very large immediately, so that there is a
dramatic spurt rather than slow growth in measures of equity market activity. We produce examples
illustrating various possibilities of this kind in Section 6.

When Q(0;¥,,,) < r holds, it is not feasible to set §, = 0. In this case there is a minimum
feasible value of 8, denoted by 6,, which satisfies Q@;¥,y;) = r. Then 9‘: = §, must hold, and it
is easy to show that df/dy,,; > 0. In this event, if {k} is an increasing sequence, the set of
feasible choices of § (that is, the interval [6,,r/9]) will shrink over time. We have found no examples
in which 67 = @,.

Finally, it can occur that 6; = r/9. This condition obtains only if

28)  (W=9NE-1)/Wg0) < ¥,

Obviously (28) requires that ¥, (and hence k) be large, and clearly (28) rules out §; = 1/ if
g(0) = 0. Thus only relative developed economies can conceivably experience 8; = r/9; if this ever
occurs, 0° = r/9 will also hold at all subsequent dates. Moreover, clearly T[¥(k] < r/§ will hold

if g(0) is sufficiently small.

C. Remarks

Suppose that Q(0;¥,,;) < r holds at t. Under this condition, if borrowers were constrained
to set = O (or if they had access only to technology u), it would be infeasible for them to operate
their investment projects. Thus access to technology o, along with the use of the equity finance that
is associated with investments in that technology, can permit borrowers (and society) to employ high

return investment projects in a way that would not be possible if only technology u were available.
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Moreover, if 0’{ < r/y, it will be optimal for borrowers to issue some debt to finance their
investments in technology u. The reason it is optimal to issue some debt when * > 0 is that the
use of equity makes it cheaper to issue debt than would be the case if firms were entirely debt
financed. In this sense, debt and equity markets are complementary in the kinds of environments

under consideration here.

6. A Class of Examples

We now present a class of exampleé designed to illustrate how debt and equity market activity
evolve as an economy moves along its growth path. All of our examples are based on the following

triangular distribution for w:

§w; 0<w=< w2
@9 gw) = _
fw—w);, w2 = w < w.
With ¢ = 4/%?, G(W%) = 1 holds, and it is easy to verify that w = Ww/2.

Figure 5 depicts the density function described by equation (29). This density function is
very tractable to use in calculating numerical examples, and it obviously represents a simple, piece-
wise linear approximation to any symmetric unimodal distribution for w. It therefore seems clear
that this is an empirically more plausible distribution to use in generating examples than, say, the
even simpler uniform distribution.

We have assumed previously that g is everywhere differentiable. We have also imposed (a.3)

in many of our derivations. For the density function given in (29), (a.3) is equivalent to
(B0)  ZO¥yyy) < W2

for all “relevant” values of ¥,,,. If (30) holds, then g’ exists for all values of w that are relevant
to a borrower’s decision making. Thus (30) guarantees satisfaction of our assumptions “where they

matter.”
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The following result is proved in Boyd and Smith (1994d).

PROPOSITION 4. Equation (30) holds iff y,,, > W/2.
Since ¥, = ¥(k.,,) is an increasing function of k, ;, Proposition 4 asserts that (30) is satisfied for
sufficiently large values of k,,; (and hence, whenever dk,,,/dk, > 0, for sufficiently large values
of k). Indeed, if T = 0 and
G Y[feq/(1-o)] > W2
then (30) holds for all k, > k. We henceforth maintain the assumption that (31) holds.

For this class of examples, G(w) = ({/2)w? holds for w < W/2. In addition, whenever (&)

is satisfied, the function =(z,0;y) is given by

(B2)  7@6y¥) = (1-0)z — (1-6)({/6)z> — Y(512)z>.

Equations (13) and (32) implicitly define the function z(f;y). Once this function is obtained,
equation (17) implicitly defines T(y,.,). Equation (25) and the definition of y(k,,,) then describe
the equilibrium law of motion for k,, which we trace out and represent diagrammatically for each
of our numerical examples. Finally, once k,,, is obtained for each value of k,, we can compute the
values z, = z[T(Y,,);¥..,] and e/q = E*(,,,) corresponding to each value of the current capital-
labor ratio. This allows us to depict how the equity ratio (e/q) and, by implication, the ratio of
equity to debt, evolves as an economy moves along its growth pzith. In addition, total resources
consumed by monitoring (measured in units of current consumption) at t are simply cyG(z,,). Thus
we can show how the resource loss implied by the existence of the credit market friction changes as
an economy develops. For four of our five examples, {z,} is a monotone decreasing sequence, so
that the resource losses attributable to the CSV problem typically diminish with increased levels of
real activity. This observation gives a sense in which more highly developed economies (ones that

are “farther along their growth paths”) have less severe financial market frictions than their less
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developed counterparts. This can be the case even though the state verification technologies (and
investment opportunities) are identical across different economies.

In order to derive an equilibrium law of motion for k,, it is necessary to spécify a set of
parameters (W,9,r,«,q,y), along with a production function f(k). In each of our examples, we
assume that f(k) = Bk®, with 8 € (0,1). Then a specification of the vector (W,¥,r,c,q,v,8,B) is
adequate to allow us to derive the values k.., ¥(k ), 6, = Tl¥(k, ], and z, = z{T[¥(k,, D]
V(k,,,)} corresponding to each value of lq = k. Appendix B gives the system of equations that
determine these values. We then depict diagrammatically the pairs (k,k,,,) and (z,k,,,) for each
example. Equation (21) then gives e/q for each value of k;; clearly in order to obtain the equity-
ratio it is necessary to specify the entire distribution of y. Thus, in particular, while allocations
depend only on ¥, e,/q depends on the entire vector (¥;,¥,,...,Yn>P1>P2s--+-Px)- This vector must be

specified for each of our numerical examples.?

A. Example 1

For this example we setw = 1.6, § = 1.2 r = 0.6, q = 1, vy = 5/3, « = 0.1268,
B = 1.1, and § = 0.5. For these parameter values, k = 0.07. The upper right-hand quadrant of
Figure 6 depicts the equilibrium law of motion for k, (that is, equation (25)) for this set of parameter
values, and for k, = k. As is apparent from the figure, the equilibrium law of motion gives k..., as
a monotone increasing function of k,. There is a unique asymptotically stable steady state
equilibrium (with no credit rationing); here k* € (0.30, 0.31).

The lower right-hand quadrant of Figure 6 depicts what the equilibrium equity-ratio (e,/q)
would have to be for each current value of k,. For k, = k in this example, e/q = 0.56 would have
to hold. At the nontrivial steady state (k, = k%), the equilibrium equity ratio is 0.72. Moreover, as

is clear from the figure, the equity-ratio increases monotonically as k, rises. Thus increased
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economic development is accompanied by an increase in the level of equity market activity, and also
by an increase in the (aggregate) ratio of equity-to-debt. Clearly, for this example, the equity-debt
ratio can rise dramatically as an economy moves along its growth path.

The upper left-hand quadrant of Figure 6 depicts z, = z{T[y(k..)1;¥(k,, )} as a function of
k1. Since zy(6339,.1) < 0 < 2(8;5¢,,.) holds, it is not obvious a priori how z, will vary with k., ,.
However, for this example, z, declines monotonically as the economy accumulates capital. Thus the
resources lost due to the CSV problem degline as the economy develops.

It is interesting to contrast the behavior of z, with that of Z, = z(0;y,,,). Z, is, of course,
the realization of w that triggers monitoring when 6, = 0, and G(Z,) is the fraction of projects
monitored at t + 1 when §, = 0. Of course in standard single investment project CSV environ-
ments, such as those studied by Gale and Hellwig (1985) and Williamson (1986, 1987), 6, = 0
holds. Since (as is easily shown), z,(0,;¢¥,.,) > 0, if 6, = 0 is exogenously imposed, increases in
k..., necessarily raise Z,, and hence necessarily increase the amount of monitoring that occurs. Thus
those models—when embedded in a growth context—would imply that the real resources consumed
by state verification increase as an economy moves along a growth path. This result—that with fixed
6 economic development leads to a more severe resource loss due to the CSV problem—may be
overturned (as it is in this example) when 6 can be varied in response to increases in y. We take
this observation to be an illustration of the importance of allowing the composition of investment to
be endogenous in models designed to study the role of financial market frictions in influencing capital

accumulation.
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B. Example 2

This example is identical to Example 1, except that § = 1.3.2 A comparison of
Examples 1 and 2 permits us to infer some of the consequences of raising the expected return to in-
vestments in the observable return capital production technology, ceteris paribus.

Figure 7 depicts varijous aspects of an equilibrium for this example. Here an increase in §
shifts the equilibrium law of motion for k, upwards, albeit by a very small amount. This is to be
expected (although see the discussion in Example 3), since we have increased the productivity of one
of the capital investment technologies. Ho;vever, the effect of the increase in § (which increases by
8.3 percent between Examples 1 and 2) for the capital stock is very small; the steady state per capita
capital stock (and capital-labor ratio) rises by about 1.7 percent.

The effect of an increase in § for the equilibrium value of the equity-ratio (e/q) is far more
dramatic. At k, = k = 0.07, e/q = 0.73 for this example, a 30 percent increase relative to
Example 1. At the steady state, e/q = 0.8, an 11 percent increase relative to Example 1. The
reason for this change in the equity-ratio is that higher values of § make technology o more attractive
relative to technology u, ceteris paribus, so that 6; increases at each value of k. (see below). Since
investments in technology o are, typically, associated with the use of equity, the equity-ratio rises
along with §.

The lower left-hand quadrant of Figure 7 depicts this change in the equilibrium value of 6;.
Evidently the effect of an increase in § for 6 is larger at larger values of k, (and hence k,); this
occurs because as k., increases so does y(k,,;). Hence moni?oring costs loom larger at higher
values of k, ., and thus the increased attractiveness of technology o is magnified as k., rises.

The upper left-hand quadrant of Figure 7 shows the effect on z, of the increase in §. As a
comparison of Figures 6 and 7 will indicate, the increase in § has a quite dramatic effect on Z, at all

values of k., and the steady state value of z, (that is, z{T[Y(k)];¥(k%)}) declines by 29 percent
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between Examples 1 and 2 (from about 0.286 to about 0.201). The result is a nearly 50 percent
reduction in the value of resources consumed by monitoring in the steady state. Thus while an
increase in § of slightly over 8 percent has a quite small effect on the steady state capital stock, it
has a huge proportional effect on the quantity of resources consumed due the CSV problem.
Interestingly, this is true even though the change occurred in the technology that is not subject to this

problem.

1. Interest Rate Differentials

The differential between the rate of interest on loans and the rate of interest on deposits is
often employed as a measure of the severity of frictions in financial markets. Interestingly, in our
model economy such a rate differential is not an absolutely reliable measure. Specifically, this
interest rate differential can behave nonmonotonically even when {z,} is monotone decreas-
ing—meaning that the amount of resources consumed by monitoring is monotone decreasing as well.
What appears to be true is that the trend behavior of the loan-deposit rate differential does reflect
the trend behavior of resources used in monitoring. To make these relationships precise, we next
analyze the loan-deposit interest rate differential for the present example.

Payments to debt-holders (which could be loan payments to financial intermediaries) by
nondefaulting borrowers are given by q(1 —6))z(6};¥,,)p..;, while payments per unit of debt issued
are simply q(1—69)z(07;¥ 4 Do /d, = q(1—00)z(05;¥,s Do /Il — (e/q)]. This is a measure of the
average loan rate. The rate of interest received by depositors is rp,,,. Thus the ratio of the two
rates is given by (1—0)z(07;¥,.)/t[1 — (e/9].

The behavior of this ratio for the present example is depicted in Figure 8. Overall, increased
development tends to be associated with a decline in the interest rate differential. However, this

decline is not monotonic so that the loan-deposit rate differential can rise even as the resource loss



34

due to the presence of the CSV problem declines. Although we do not present them here, the results
are qualitatively similar for Examples 1, 3, and 4. However, the magnitude of the nonmonotonicity
in the interest rate differential varies considerably across the different examples. An important topic
for future research is a more systematic analysis of when this interest rate differential does (does not)

adequately represent the extent of financial market frictions.

C. Example 3

The economy of this example is identical to that of Example 2, except that now we setr =
0.7. Here, a comparison of Examples 2 and 3 permits us to examine some of the consequences of
raising the return on the commonly available investment technology, and hence of raising (other
things equal), the opportunity cost of funds to borrowers.

Figure 9 depicts the usual aépects of an equilibrium for this example. One natural conjecture
would be that the increase in r uniformly shifts the equilibrium law of motion for k, upward, since
it improves the productivity of one capital production technology while leaving all others unaltered.
And, indeed, if 6, were fixed this conjecture would be correct. However, a comparison of the lower
left-hand quadrants of Figures 7 and 9 will indicate that the increase in r uniformly raises 6; at each
value of kt; this is a consequence of the fact that borrowers face (ceteris paribus) a higher
opportunity cost of funds. Thus some investment is transferred frdm technology u to technology o,
and this effect operates to shift the equilibrium law of motion for k, downwards.?”> Which effect
dominates is theoretically ambiguous; for this example the equilibrium law of motion shifts
downward with an increase in r for k, € [0.07,0.13) and shifts upward with an increase in r for
k, = 0.13. One result of the increase in r is a higher steady state value of the capital-labor ratio,

which rises from less than 0.31 to in excess of 0.33.
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As a comparison of the lower right-hand quadrants of Figures 7 and 9 will demonstrate, the
increase in r also acts to substantially increase the equity-ratio. Indeed between Examples 2 and 3,
the steady state value of the equity ratio rises by about 11 percent (from 0.8 to 0.89). This, of
course, is a consequence of the increased opportunity cost of funds to borrowers. Finally, an
examination of the upper left-hand quadrants of Figures 7 and 9 indicates that the increase in r (and
the associatéd increase in 6}) again substantially reduces z,—and hence the quantity of resources
consumed by monitoring—at each value of k,,;. Here, then, an increase in the productivity of the
commonly available capital production technology both results in a higher steady state capital stock,
and in fewer resources being lost due to the presence of the CSV problem.

This example also has an interesting feature which is not shared by Examples 1 and 2. In
particular, it is possible to show that Q[0;¥(k,, ;)] < r holds for all relevant values of k,,,. This
fact, in turn, means that it is not feasible for borrowers to offer an expected return of at least rg,,,
at any date if 6, = 0. Such a result indicates the importance of allowing borrowers to make an
endogenous choice of the composition of their investments. If there was only a single investment
opportunity (§, = 0), as in the standard CSV literature, or if 6, was exogenously fixed at some
positive—but low—Ilevel, borrowers would be driven out of capital markets altogether. Here that
does not happen, however, because borrowers can adjust 6, in a way that always permits them to
offer the expected return necessary to obtain funds. As a result, society does not lose the benefit

of the high return investment technologies possessed by borrowers.

D. Example 4
For this example, we set w = 2.5, § = 2.2805,*r = 0.5, q = 1.0, v = 0.8, « = 0.5,

B = 2.0, and 8 = 0.5. For these parameter values, k = 1.0 holds.
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Figure 10 depicts the usual set of equilibrium relationships for k, = k. As in all of the
previous examples, the equilibrium law of motion for k, is a monotone increasing function, and there
is a unique, asymptotically stable steady state equilibrium with no credit rationing. In addition, 6;
declines as k, and k.., increase and z, is a monotonically decreasing function of k1. Thus, as in
all of our examples where §; > 0, capital accumulation is associated with a reduction in the volume
of resources consumed by the presence of the CSV problem. In this sense as our example economies
develop, the evolution of their debt and‘equity markets provides them with a more efficiently
functioning financial system.

A particularly interesting feature of the present example is that, at low values of k, e/q = 0.
More specifically, for k, € [1.0,1.2), e/q = 0 holds. This, of course, is a reflection of the fact
that, for these values, §; = 0 holds as well, so that only technology u is in use. And—as in the usual
CSV environment—firms are 100 percent debt financed. However, once k, = 1.2 holds, k.., and
Y(k,,,) are large enough so that technology o comes into use to economize on monitoring costs,
g; > 0 holds, and so does e/q > 0.

This observation has an interesting implication. Suppose that k, € [k,1.2). Then early in
its development process this economy will have no equity market activity. However, {k.} will be
an increasing sequence, and at some date T > 0, k; will be large enough so that equity markets
begin to be active. These markets will remain active at all subsequent dates, and indeed the steady
state level of the equity ratio for this example (that is, the value of E*[y/(k%)]) is about 0.103. Thus
this economy can undergo a transition from having no equity market activity to a situation where
equity finances a fairly substantial fraction of investment activity. And, for purely endogenous
reasons, equity market activity will not be observed until a critical level of real activity has been

attained.
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This last observation is reminiscent of Gurley and Shaw’s (1955, 1960, 1967) account of the
coevolution of the real and financial sectors of an economy during the growth process. At relatively
low levels of development, only debt-financed and self-financed investments (here investments by
lenders in the commonly available technology) are observed. However, as an economy grows,
7 eventually equity (and other) markets become active. This is certainly a feature of the present
example; a feature that we reemphasize is a property of the economy’s growth path dynamics. It
requires no changes in the cost or availability of any intermediation technologies, or any other
exogenous events.

Example 4 illustrates one possible evolution of equity market activity in the development
process: at some critical level of real activity there is a fairly continuous transition from inactive to
active but small equity markets. Much more discontinuous transitions are also possible, as the next

example demonstrates.

E. Example 5

Often economies display long periods with little or no equity market activity. However, once
equity market activity begins, it sometimes increases dramatically within a short period rather than
growing slowly over time.” Our model can easily replicate this pattern of equity market
development when the set of feasible choices of 8 for borrowers consists of two disjoint intervals for
some range of relative monitoring costs (as discussed in Section 5a). We now illustrate this
possibility with an example.

The present example hasw = 2,9 = 1.1, r =0.96,q =1, vy = 1.4175, « = 0.27,B = 2,
and 8 = 0.5.2 For y,,; = ¥(k..;) < 1.4819, and hence for k,,, < 1.0929, it is feasible to set

8, = O [that is, Q(0;¥,,;) = r holds for all ,,; < 1.4819.] It is easy to verify that, for all y,,, <
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1.4819, (27) holds. Numerical calculations then verify that 6; = O gives the optimal choice of 8 for

borrowers for all such ¢, ;.

When 67 = 0, and when k, = k = 0.1368, the capital-labor ratio evolves according to
(33)  kyy = r(1-B)BK{ + [o/(1-)lq(W—T) = (k).

Since A"![y(1.4819)] = 0.5443 for the parameters of the example, k,,; = A(k) must hold for all
k, € [0.1368,0.5443] = N.

Obviously, §; = 0 holds for all k, € N. Hence e/q = E[Y(k,, )] = E{[\k)]} = 0 holds
for all k, € N as well. Thus whenever k, < 0.5443, there is no equity market activity in this
economy.

It is readily verified that, for the kinds of values of y,,, under consideration, Q has the
configuration depicted in Figure 4b. Thus, for ¢,,; € (1.4819—¢, 1.4819], the set of feasible
choices of 6 consists of two disjoint intervals, as is the case with the intermediate locus in Figure 4b.
When ¢,,,; > 1.4819 holds, it is easy to check that Q(0;¢,,;) < r holds, so that 6, = 6, > 0 must
obtain. (This situation is represented by the lower locus in Figure 4bi) Obviously, then, for ,,, >
1.4819 (k.4 > 1.0929), 67 > 0, and E'[¢(k,, ;)] > 0 must hold as well. Inshort, ifk,,, < 1.0929
there will be no equity market activity, while when k,,; > 1.0929 equity market activity must be
observed. Thus, as in Example 4, there is a critical level of development at which equity markets
become active.

Indeed, for this example, not only do equity markets become active for k.., > 1.0929; they
become very active. Numerical calculations indicate that, for all such k., 67 = T[¥(k..,)] > 6,
holds, so that there is an interior optimum for 6;. The equilibrium choice of 6} corresponding to
each value of k., is shown in the lower left-hand quadrant of Figure 11: evidently, when k,,, >

1.0929, 6; = 0.8531 holds. This observation suggests what Figure 11 confirms, that the equilibrium
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equity ratio is also extremely high whenever equity markets are active. Thus, when this economy
makes the transition to positive levels of equity market activity, it will see e/q go from zero to at
least 0.97. While this example is obviously constructed to be very dramatic with respect to the
evolution of e/q, it does illustrate that equity market activity may begin with a bang rather than with
a slow evolution.

The upper left-hand quadrant of Figure 2 depicts the evolution of {z,} and, hence, of
monitoring costs for this example. Evidently as equity markets become active, there will be a

dramatic decline in z, and, by implication, in the quantity of resources consumed due to the presence

of the CSV problem.

1. The Law of Motion for k,
When k., > 1.0929 holds, 6; = T[y(k,,,)] as before. Hence the law of motion for k, is
given by equation (25). It follows that

AK): k., < 1.0929
®(k); k., > 1.0929

G kg =
For k,,; > 1.0929, &' > 0 holds. Thus the law of motion for k, is given by the monotone locus
in the upper right-hand quadrant of Figure 11.

This example depicts a possibility that did not exist in the previous examples: in particular,
ifk, € (\1(1.0929),971(1.0929)] for any t, then there is no competitive equilibrium. The potential
for nonexistence of equilibrium derives from the nonconvexity of the constraint set for borrowers
implicit in the constraint Q(f;¥,,,) = r. This nonconvexity was not present in the previous
examples. Thus, in particular, if k, € N, and if N(k,) € (A7(1.0929),&71(1.0929)] for any
t—where \* denotes N composed with itself t times—no competitive equilibrium exists. When

Nky) & (N"1(1.0929),$71(1.0929)] for all t, on the other hand, a competitive equilibrium does

exist, and it is easy to show that the set of values ko € N such that a competitive equilibrium exists
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is nonempty for this example. When a competitive equilibrium does exist, {k,} will be a monotone
increasing sequence if k, < k°. However, in general, the existence of an equilibrium can depend
on the value of the initial capital stock k,. When existence depends on k, in this way, it will
typically transpire that all equilibria starting from certain initial conditions will display an abrupt and

dramatic expansion of equity market activity at some point in their evolution.

7. Conclusions

We have developed a model in which capital is produced by investors who make use of two
technologies. One yields a high expected return, gross of monitoring costs, but is subject to a CSV
problem. The other yields a lower expected return, but has the advantage of full public
observability. Investors must make a decision regarding how heavily to utilize each technology.
This decision depends, among other things, on the relative price between capital and the resources
used in state verification.

As an economy moves along its growth path, investors will perceive a relative cost of
monitoring that rises over time. As a result, under conditions that we typically expect to prevail,
less use will be made of the unobservable return, and more use will be made of the observable return
technology. Since investment in the unobservable return technoiogy is generally associated with the
use of debt finance—while the use of the observable return technology is associated with equity—we
also typically expect the ratio of equity finance to rise an economy develops. This intuition is
confirmed by each of our numerical examples.

Moreover, it is possible to produce parameter values such that—at low levels of develop-
ment—there will be no use of equity markets. Equity market activity can be observed for such

parameters only once the economy attains a critical level of real development. Such examples
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support the conclusion of Gurley and Shaw (1960, p. 92) that “the selection of financial assets
evolves in the growth process,” and that the variety of financial claims increases as well.

It is also the case that, in almost all of our numerical examples (and whenever 6; > 0), the
quantity of resources consumed by monitoring declines (in real terms) as an economy develops. In
this context, the evolution of debt and equity markets that occurs during the development process
provides an economy with a more efficiently functioning set of financial markets.

Our analysis provides a sense in which debt and equity markets function as complements
rather than substitutes. A case against the importance of equity markets in financing real
development is often made on the basis that credit markets are close substitutes for equity markets.
Our analysis calls the validity of such arguments into serious question. Indeed, Boyd and Smith
(1994d) produces examples in which, if equity markets are exogenously precluded, it may be
infeasible for borrowers to operate at all. This possibility arises because, in the absence of equity
markets, it may simply be prohibitively expensive to issue debt. When this circumstance arises, the
absence of equity markets would prevent society from employing its most productive capital
production technologies. If this were to occur, it is easy to imagine that there would be large
associated welfare losses.

There are a number of directions along which the current analysis could profitably be
extended. One possible extension would be to give investors some resources of their own, so that
capital investments are not entirely externally financed. Existing results in CSV models which allow
for some internal finance (Bernanke and Gertler 1989 and Boyd and Smith 1994b,c) suggest that the
introduction of these considerations is likely to allow much more scope for volatility as an economy
develops, as well as for multiple steady state equilibria, and hence for development traps. If such
traps can occur, then they might have the feature that some economies “get stuck” in steady state

equilibria with low levels of real activity, and low levels of equity market activity as well.
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Another possible extension would be to allow for more ex ante heterogeneity among
investors. Some empirical evidence suggests that while less developed economies in the aggregate
have less active equity markets than do more developed economies, large firms in LDCs often make
more use of equity markets than do their counterparts in the developed world (Hamid and Singh
1992). It would be interesting to be able to investigate why this is the case.

Finally, it would be natural to introduce money and to analyze the consequences of various
monetary policies for the evolution of debt and equity markets. It is often argued (Tun Wai and
Patrick 1973) that high rates of inflation are detrimental to the development of equity markets. It

would be interesting to analyze this possibility in a modified version of the present model.
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Proof of Proposition 3. When k, = k, all capital investment is done by borrowers. Hence Ky =
Jaq/(1—c) holds. Thus if (a.5) is satisfied, the equilibrium (k,,k,, ;) combination does not lie below
the 45° line when k, = k. In addition, the assumption that it is feasible to select any 8, € [0,r/§]
for all ¥,,; < ¥(k) implies that (25) is continuous for all k, € [k,k]. Moreover, as is readily
verified, (k) < k must hold, so that equation (25) necessarily lies below the 45° line for large
enough values of k.. Thus, by continuity, (25) must cross 45° line at least once (from above),

establishing the existence of the desired value k*. If T'[{/(k)] = O for all k = k holds, the existence

of an asymptotically stable steady state follows from dk,, ,/dk, > 0. O

System of Equations for the Numerical Examples
Equations (13) and (32) imply that z(6;y) is the smallest nonnegative solution to
Al (A-0z — (1-0)(/6)z> — Y({/2)z? =1 — 6%
for each combination (6,y), if such a solution exists. (If there is no such solution for a given pair

(0,¥), then it is infeasible to set § too low. We will exhibit examplés with this property.) Straight-

forward differentiation of (A1) then establishes that

(A2)  z)(0:¥) = {26;¥) — IOzO:P — I}{1 — 6 — YizO:;¥) — (L—6)(/2)[z(B; )12}
In addition, the borrower’s first order condition (17), along with the distributional assumption (29),

implies that an interior optimum satisfies

(A3)  —z,(05¥, ) = W=/32O5¥s Wrsr-
If k, = k holds, credit cannot be rationed. Then for each value of k,, the time t + 1 capital-

labor ratio is given by

A4k, = [/(1-a)Iq¥6; + W(1—6)) — 1] + rw(k).
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In addition, for the class of examples under consideration,

(AS) ¥y = ¥(k,) = vk "/qBB.
For each value of Xk, = k, equations (A1)-(A5) allow us to solve for 67, k.., ¥.;, and z, =
Z(0%3¥41)-

In the calculation of the numerical examples, we always impose k, = k (no credit rationing),
and (31), which implies that (a.3) is satisfied for each value k, = k. In addition, we check that,
given y,,,, 0; corresponds to a global (as opposed to merely a local) maximum of the borrower’s

objective function.
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Footnotes

'Demirguc-Kunt and Levine report a highly significant correlation of 0.55. Their data include
only developing countries.

?Our results would be strengthened if state verification consumed labor effort. However,
letting state verification costs take the form of time leads to a more complicated model. Therefore,
we retain the simpler formulation that verification utilizes final output.

3This statement requires some qualification. Theoretically, the debt-equity ratio can either
increase or decrease as an economy develops. All of our numerical examples (Section 6) indicate
that it increases.

4Again, this is not a theoretically unambiguous result. However, it is an accurate statement
about all of our numerical examples whenever the equity/debt ratio is nonzero.

5Such an outcome does appear to be observed in practice. According to Watson et. al. (1986,
p. 10), “intermediation costs have been sharply reduced (in OECD countries) by the substitution for
bank credits of direct transactions in securities.” In our model, all debt is held by intermediaries,
so that our results are consistent with their observation.

There is no difficulty created by giving lenders more general utility functions and letting
them make a nontrivial consumption-savings decision. However, this adds to notational requirements
without yielding any additional insights. Thus we retain the simpler specification of the text.

"Credit rationing in this context is described by Gale and Hellwig (1985) and Williamson

(1986, 1987).

8Since § > r, a borrower will never invest in the commonly available technology. Also, note

that we are assuming that i, and 6, are observable objects for external investors.

*While this is a real restriction, Boyd and Smith (1994a) have shown that—for realistic

parameter values—the utility gains resulting from stochastic monitoring are negligible.
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0For a further discussion of the issue of duplication of monitoring, see Diamond (1984),
Boyd and Prescott (1986), Williamson (1986), or Krasa and Villamil (1992).

U1t is straightforward to demonstrate that x,(y,) = p,,,0,y, always holds, so that A(y,) is
well-defined. In addition, we might note that Boyd and Smith (1994d) consider a two period
economy where investment projects yield final goods rather than capital. Hence, for them,
P = 1. However, it is easy to check that allowing for general values of p,., does not alter their
results.

"?Lemma 2 implies that appending the latter constraint to the problem (P’) does not affect its
solution. Also, for the present, we assume that it is feasible for a borrower to set 6, anywhere in
the unit interval. Conditions under which this is the case are discussed in Section 5. We also
discuss there what happens when it is not possible to choose 6, arbitrarily.

"This conclusion does not depend on the existence of an interior optimum. The issue of
noninterior optima is discussed in Section 5.

An alternative strategy for guaranteeing the existence of an interior optimum is to assume
that Hy(t/9;v,,,) < 0, as in equation (15), and that H(0;y,,,) < H(t/9;y,.,) holds, while relaxing
(16). The latter condition is equivalent to y,,;G[z(0;¥,,,)] = r(W—%)/9. Under this assumption,
the function H(8;y,,,) has the configuration depicted in Figure 2a. Again, this configuration
guarantees the existence of an interior optimum. Noninterior optima are considered in Section 5.

5For example, equity owners may—as a group—hire outside auditors to ascertain a firm’s
actual value. They may also seek to replace incumbent management when returns are low, even if
the firm can fully repay its debt-holders. Actions of both types consume resources and involve the
acquisition of information about firm performance. In this sense these activities constitute costly

state verification.
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In the formal analysis, we assume that equity-holders, as well as debt-holders, have
coordinated their efforts so as to avoid wasteful, redundant monitoring. This assumption is discussed
in more detail in Boyd and Smith (1994d). It is also necessary to make sure that equity-holders
possess adequate resources to carry out their monitoring responsibilities, when this is called for.
Equity owners always have the requisite resources if they are perfectly diversified, or if equity
ownership is intermediated—say through a mutual fund. Either situation is consistent with our
analysis.

180f course (a.2) implies that this quantity is positive.

*"This chain of reasoning would be strengthened if monitoring consumed labor, whose relative
price is rising over time. However, allowing labor to be employed in state verification would
complicate the determination of factof prices. Therefore, we retain the simpler specification of the
text.

'8This observation does not imply that total resources consumed by monitoring rise as an
economy develops. Total resources (per capita) used in state verification are simply ayGlz(::¢,, )]
This quantity may rise or fall over time; in most of our examples (see Section 6), it falls as an
economy moves (upwards) along its growth path.

Clearly our analysis has the feature that—in the absence of credit rationing—the total quantity
of funds transferred to borrowers is constant. Thus a decline in the cost of funds transfers per unit
of funding extended must translate into a decline in the per capita quantity of resources consumed
by the financial system. We conjecture that, in a model where the quantity of funds transferred is
not constant, economic development can be associated with a decline in costs per unit of funding
extended, but with an increase in the quantity of resources utilized by the financial sector.

Obviously, however, this issue is outside the scope of the present model.



48

PIf k, = k, then k., > Yoq/(l—«) must hold. It follows that Vi = Yk, =
Y[§aq/(1 —a)] also obtains. Therefore (31) guarantees that the condition of Proposition 4 is satisfied.

2Examples constructed in Boyd and Smith (1994d) suggest that increases in the variance of
y, ceteris paribus, tend to increase the equity-ratio.

2'In order to compute e /q, it is necessary to specify the entire distribution of y. Here we
assume that y € {y,,y,}, thaty; = 0.01, y, = 2.39, and that p, = p, = 0.5. Examples computed
in Boyd and Smith (1994d) suggest that e/q is not strongly sensitive to changes in the specification
of the y distribution.

2As in Example 1, y € {y,,y,}. Herey, = 0.01, y, = 2.59, and p, = p; = 0.5.

The same forces are at work in Example 2, but there the change in 8" is not large enough
to shift the equilibrium law of motion downward for any value of k..

“Here y € {y;,y,}, with y, = 0.01, y, = 4.551, and p, = p, = 0.5.

»Korea is an example of the kind of economy we have in mind. From 1982 through 1985,
the ratio of the value of stock market transactions to GDP never exceeded 0.045. In 1986 this ratio
was 0.103; by 1989 it was 0.568. Thus the value of transactions in.these markets relative to GDP
increased by a factor of 12.6 in a four year period. Parenthetically, nominal GDP rose by about
two-thirds over the same period, while the average annual inflation rate never exceeded 7.1 percent.

%6As in the previous examples y € {y1,y2}, with y; = 0.9, y, = 1.9, p, = 0.8, and

pz = 0.2.
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Table 1

Average Market Capitalization®

Country (percentage of GNP)
High-Income Countries

Japan 92

United Kingdom 80

United States 58
Germany, Fed. Rep. of 21

France ] 18

Developing Countries

Jordan 60
Malaysia 58
Chile 27
Korea, Republic of 19
Portugal 10
Zimbabwe 10
Thailand 9
Mexico 8
Brazil 7
Philippines 7
Venezuela 7
India 6
Greece 5
Pakistan 5
Nigeria 4
Columbia 3
Turkey 3
Argentina 2

*Average market capitalization is a five quarter average of the total value of
listed stocks, based on year-end data, assuming constant exponential growth
during the year.

Source: The World Development Report, 1989, Table 7.1
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EQUILIBRIUM LAW OF MOTION FOR kt
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Figure 4.a
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Figure 4.b
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Figure 5

TRIANGULAR DISTRIBUTION
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Figure 8
Interest Rate Differentials
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Example 5 / Figure 11
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