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This paper illustrates the application of a certain class of
time series model to macroeconomics.;j One motivation for this
application is our suspicion that existing large-scale macroeconometric
models represent, to an extent not admitted in the statistical theory
applied to them, "measurement without theory."

In one sense, this idea is an extension of one put forward
years ago by T. C. Liu {1960 ], when he argued that econometric
models might, when only really reliable a priori restrictions were
applied to them, turn out most often to be underidentified. Not only
do we mistrust many of the zero-rgstrictions on coefficients in these
models, we also consider to be unreliable both the restriction that
their residuals be serially uncorrelated and the a priori classifica-
tion of variables into strictly exogencus and endogencus categories.
Thus, instead of Liu's conclusion that one ought to turn attention
to direct estimation of reduced forms of these ﬁodels, we concluée
that one ought to consider estimation of general representations of
the variables in the models as vector stochastic processes.

In part, our intentlon to explore alternatives to conventional
structural macroeconometric models stems from our sympathy with
Koopmans' judgments about the theoretical foundations of those models:

In general the state of macroeconomic theory is
unsatisfactory. There are too many reasonable alterna-

tives among which presently available observations of

apggregate time series cannot easily discriminate. A

greater stock of relevant observations could be collected
and brought to bear if the basic assumptions of dynamic

lThe same class of models we apply here may have other applications
in economics and has, at least in part, appeared in other disciplines
as well., See Priestley, Rao, and Tong (1974).



economics were made about behavior of individual firms
and consumers, and the implications then traced through
to the aggregates, a task involving direct observation
and model construction. There is also a need to intro-
duce explicitly the random elements which reduce the
reliability and degree of explicitness of prediction into
the more distant future.

Now, just as when those words were written, very little of the
a priori theory embodied in macroeconometric models is based
explicitly on models of the behavior of individuals. Now, just as
then, very little of the theory embodied in such models is explicitly
stochastic. - There is generally not even an attempt to justify the
restrictions on serial correlation properties of residuals imposed
in estimating such models on the basis of explicit economic theory.
Many of the equations of such models, though formally identified by
zero-restrictions on their coefficients, are, in fact, little more
than attempts to capture certain statistical regularities in the
sample period. The Phillips curve is a prime example of an empirical
relationship that was initially incorporated in macroeconometric models
without there first being a model of the individual behavior giving
rise to the relationship. Another example is the common practice of
using "capital utilization" indexes to adjust the measured capital
stock before estimating an aggregate Cobb-Douglas production function.
This practice is 1iIn spite of the fact that an optimizing firm with
a Cobb-Douglas production function always uses all of its capital,
and that no microtheory leading to an aggregate production function

2/

with utilization-adjusted capital has been put forward.™

2The public's expectations about future exogenous and endogenous
variables are important arguments in many macroeconomic schedules
including the Phillips curve, consumption schedule, investment -/
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The fact that we question the assumptions ordinarily used
in interpreting large econometric models does not mean that we
necessarily regard the fitted equations themselves as useless.
They probably do capture important statistical regularities, gnd in
the empirical work reported below we aim at little more than this
ourselves. The purpose of the kind of work we will be presenting
is to explore the possibility that important statistical regularities
are missed by existing largescale models,éf and also to see whether
a class of models with a small intersection with the class of over-
identified simultaneous equations models is capable of fitting the
data approximately as well. This latter result would suggest that
a good fit of standard models to the data should not be treated as
strong\evidence for the overidentifying restrictions they embody.

The models we estimate are certainly not "unrestricted" models.
Even to explain the behavior of the main components of GNP, wages,
prices, and unemployment, a model needs about ten equations, and
many existing models contain several orders of magnitude more than

that. Cyclical interactions among macroeccnomic wvariables probably

2 (continued)

schedule, and various asset demand schedules. In practice, most
econometric models has posited that the public's expectations of a
given variable are formed as distributed lags on the own wvariable
itself, thus invoking the identifying restriction that the public
ignores other variables in forming its forecasts. These restrictions
are imposed in spite of the fact that the models themselves contain
complicated dynamic interactions among variables that a priori lead
one to suspect that it would be optimal to forecast a given variable
by taking into account values of many other endogenous and exogenous
variables., The zero identifying restrictions imposed on. expectations

generating mechanisms are thus not deduced from an appeal to optimizing

behavior or any other economic theory we are aware of. Neither are
the "unit sum" identifying restrictions that are usually imposed on
expectations generators, as Lucas [1972 ] has emphasized.

3This seems pretty clear already, in fact, from the werk by
Nelson [ 1972] and Cocper and Nelson [1975 ].
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commonly involve lags of eight or more quarters. A ten—equationm,
tenth-order autoregression of general form (ten lags of each of ten
variables in each equation) leaves zero degrees of freedom, approx-
imately, in U.S. postwar data.

Rather than reduce the dimensionality of our models by ?estricting
particular equations a priori, as in the standard methodology, we
proceed by imposing simplifying conditions which are symmetric in
the variables. The intuition behind the particular restrictions we
examine, leading to what we call "index" models, seems to us close
to the intuition underlying the descriptive analysis of business cycles
conducted by the National Bureau of Ecoﬁomic Research and described
by Koopmans [1947) in his review of Burms and Mitchell as follows:

The notion of a reference cycle itself implies the
assumption of an essentially one-dimensional basic pattern
of cyclical fluctuation, a background pattern around which
the movements of individual variables are arranged in a
manner dependent on their specific nature as well as on
accidental circumstances. (There is a similarity here with
Spearman's psychological hypothesis of a single mental
factar common to all abilities.) This 'one-dimensional
hypothesis may be a good first approximation, in the same
gsense in which the assumption of ¢ircular motion provides a
good first approximation to the orbits of planets. It must
be regarded, however, as an assumption of the "Kepler stage,"
based on observation of many series without reference to
the underlying economic behavior of individuals.

We shall describe two related statistical models for representing the

one-index (and more generally k-index) notion described by Koopmans.
The first is an "unobservable index" model which is a natural counter-
part of the standard factor analysis model alluded to by Koopmans in
which the underlying factors are unobservable. The model is a
frequency domain version of the factor analysis model and can be

implemented by combining spectral analysis and factor analysis. The



second model is an "observable index" model in which the underlying
factors are observable.

Their attractiveness as statistical devices for restricting
the dimensionality of vector time series models is not the only
feature which draws us toward experimenting with index models. Certain
theoretical macroeconomic models can be cast in index-model form.
These include a class of models pioneered by Robert E. Lucas, Jr. [1975]
as well as simple macroeconomic models which seem to us to reflect
the pattern of quantitative thinking about the business cycle of many
macroeconomists, "Keynesian'" as well as "Monetarist'. Thus, it would
be -a mistake to reggrd the techniques that we describe as being
useful solely for pursuing measurement without theory. AEconomic
models leading to index-model forms are discussed in more detail

below.

The general form of index models

Index models all satisfy an equation of the form
1) y =a¥*z +u,
where y the vector of observed dependent variables is nxl , u
the vector of residuals is nxl , 2z the vector of indexes is
kxl with k << n , and a the vector of lag distributions relating
z to y is therefore nxk. In (A) all three of y, 2z, and u
are stochastic processes, and the notation "#" stands for convolution,
I

defined by a*z(t) = I a(s)z(t-s) . We always take a '"one-sided",

5=—0

i.e. a(s) =0 for s < Q.
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The kinds of economic theory which lead to index medels do
not in general contain implications about the properties of the
residuals u other than that they should be small. Of course
i{f there are no restrictions on the properties of u , any vector
time series vy can be written in the form (1) ~ and for arbitrary
choice of z, a, and ¢ . The expression (1) can simply be treated
as the definition of u . However, by asserting that (1) "fits well',
in the sense that the variance of each element Uy of u 1is small
relative to the variance of the corresponding element Yy of v,
regardless of how vy is differenced or filtered i/, we obtain an
hypothesis with content.

For empirical work, it is convenient to use still stronger
hypotheses about the properties of u . If z is some linear
combination c¢*x of observable variables x (which may include
current and past y's) then it is natural to hypothesize that (1)
contains only current values of y , lagged values of y , and
strictly exogenous variables, as is ordinarily assumed in modeling
simultaneous equation systems. By this assumption we mean that
any elements of the vector of observables x which are not lagged
values of y are uncorrelated with u at all leads and lags.
Further, it is natufal to assume that (1) is complete in the sense
that it determines current y uniquely from current and past values
of x an@ u. Let us write =z in two pieces, [XOJ , and divide
¢ correspondingly into [c0 cl]. Then substituting ckx for =z

in (1) we obtain

4This is equivalent to requiring that the i'th diagonal element
of S be large relative to the i'th diagonal element of 5§ at
all f¥equencies. Consideration of the effect of time aggreggtion
suggests that this "good fit" criterion should not be applied to
the highest frequencies. We will not pursue this subtopic in this
paper, though it is important for applications.
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2) | (I—a*cl)*y = a*co*xo +u .

The requirements we have imposed to this point amount to asserting
that X, and u are uncorrelated at a;l leads and lggs and that
(I—a*cl) has an inverse under convolution.

If z is not a function of observable x's, it is natural to
assume that z and u aré orthogonal, i.e. that z and u are
wncorrelated at all leads and lags.

Whether or not =z 1s observable, identification requires further
restrictions. We take as natural the one that individual elements
u, and uj of the process u be orthogonal to one another, even

i

though each u, may itself be autocorrelated, This amounts to
requiring that dependence on the indexes accounts for all the observed
cross—relations among the series.

We have called the former of these two specifications the
"observable index model', and the latter the "unobservable index
model". Though the two specifications are in general distinct models,
when either one "fits well", then both must fit well. This follows
because as the variance of the residuals ui in (1) shrinks relative
to the variances of the index terms ai*z , both types of specification
amount to asserting that y differs only slightly from a singular
process with rank equal to the length of the vector =z .

To be more precise, suppose we write

3) S =35 &' +3a5 _+5 &' +s ,
y z uz uz u

where Sy and Sz are spectral density matrices, Suz is the cross-
spectral density matrix of u with z , and & is the Fourier
transform of a . Then if the model "fits well" in the sense we
have been giving thét phrase, Su has its diagonal elementé alll

small relative to the diagonal elements of észﬁ' . But this implies
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that 5Szu + Suzé' has small diagonal elements relative to the
diagonal elements of asza' as well. Since in either type of index
model we can normalize Sz to be the identity, we can always match
the dominant ﬁszé' term using either type of index model. The
differences between the two models will be in the "small” terms.

As will be illustrated in the section to follow, economic theory
does not easily generate strict characterizations of the residuals
in these models. Economic theories may, however, suggest that an
index model with indexes of a certain nature should fit well. Because
this kind of assertion does not effectively distinguish observable
from unobservable index models, we will ourselves omit that distinction

in the next section.



Economic Interpretation of Index Models

The NBER's framework for analysis of business cycles is perhaps
the most prominent example of work in macroeconomics that fits
comfortably within‘the index model framework, but it is not the
only such example. In this section we give several examples of
jndex models in macroeconomics.

To take the simplest example first, consider the following
multiplier-accelerator model for determining GNP (Y) and its majorx

components, consumption C, investment I, and government purchases, G:

Y(t) = C(t) + L(t) + G(t)
C(t) = b*Y(t) + ul(t)

4)
I(t) = m*Y(t) + uz(t)
G(t) = r*Y(t) + u3(t)

Here b, m, and r are one-sided (on the past and present), square
summable sequences, while ul(t), uz(t) apd u3(t) are stochaétic
error processes. In the model (4), any subset of these variables
(Y, G, C, 1) forms a one-index model. (If all four variables are
included, the presence of the national income identity makes the
process singular.)

Note that because we interpret these equations as asserting
a "good fit", they are not, like the equations of a standard simul-
taneous equations médel, unaltered by changes in the choice of left-
hand-side variable. The equations are to be interpreted as implying
that the left-hand-side variable has substantially larger variance
than the residual, and that interpretation may not remain viable if

the equation is renormalized.
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Any model which like (4) has a relatively small number of
lagged or exogenous variables appearing in more than omne equation
is in the form of an index model. By this standard, many existing
econometric business cycle models may not be very far from the form
of an observable index model, if the number of indexes is taken
fairly large (more than two or three).éj

Now suppose we add to (4) a set of sectoral price equations,

5 = £ kP + g *Y 4+ v, j=1l,¢ 00
) _I)J i gJ J"J ’ +q

and a definition of the aggregate price index

6) p= £d w P .

=0 33

The system formed by (5) and (6) asserts that the pattern of movement
of sectoral prices is well explained by the history of aggregate
output and an aggregate price index. The system (4), (5), with {6)
substituted into (5), forms a two-index model. Furthermore, the
subset of real variables explained by (4) involves conly one index.
Only by adding prices té the system do we incur the need for a
second index.

Of course in reality the aggregate price level may well feed
back into the determination of real variables. Let us examine what
happens to this simple system when we include explicitly supply and
demand for money and the possibility of interest rate effects on the

real subsystem:

5Of course many econometric models do have a rich supply of strictly
exogenous variables -- expecially models of relatively small sectors of
the economy. Such models might f£all in the form (2), with y being
only one component of x , but if such a model is identified by exclusion
restrictions, without restrictions on lag length or serial correlation,
it appears that it is unlikely to fit the form (2). This is a rela-

tively subtle question whose detalled treatment we leave to another
occasion.
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M= kl*P + kZ*Y + k3*R + e (demand for money)
= g * *y - x
7) M s, P+ S, Y + 84 R+ e, (supply of money)
I = m*Y + mz*R + u, (replacing investment equation of (4)).

1

Here the supply and demand for money equations are temporarily normal-
ized on M, but our interpretation will depend heavily on which
variables are in fact well exﬁlained by the money demand and supply
interaction.

There are several ways our original simple two-index system, with
one real and one nominal index, might be rationalized. If R (the
inferest rate) does not enter the investment equation (m2=0), then
supply and demand for money are just a pair of equations for recursively
determining R and M, and can be omitted from the system. Alternatively,
R might have very small variance, either because it is fixed by the
supply equation (a pegged interest rate policy) or because it is fixed
by the demand equation (a highly interest-elastic demand for money, or
liquidity trap). Either of these situations in effect makes money
supply passive relative to the real subsystem. In these cases, by
merging the "small" term m,*R with u

2

real, one nominal index structure.

9» W will preserve the one

In general, however, with m, non-zeroc the one real, one nominal

2
index structure will not hold. We might, for example, solve the demand
and supply of money for R 1n terms of Y and P . If the resulting

equation fits well, we could use it to substitute an expression in terms

of Y and P for R in the investment equation. We would thereby

generate a two index model with a real and a2 nominal index, bﬁt it
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would no longer be true that the real sector of the model depended
only on the real index. Another possibility is that the supply
equation fixes M , subject to relatively small variance. If demand
for money were interest-inelastic (k3* 0), the supply and demand

for money might then determine P as a function of Y . In that

case we could substitute an expression in terms of Y for the nominal
index P and obtain a one-index model.

One final possibility to.note is that the money supply rule might
fix the price level. Then P would effectively dfop out of the system,
but R would remain as a second index. We would have a two-index model,
with one index being R , the other Y . A single index would explain
the price vector, but two indexes would be required for the reﬁl sub-

~

system.

6/

This discussion could be elaborated further.™~ We will arrest
it here, observing what we have established so far —- that simple
Keynesian models may take on an index-model form, that dichotomous
models may take on a "one real, one nominal index'" form, and that
Keynesian models with interest-elastic investment do not suggest that
a two-index model will show one real and one purely nominal index.

We now turn to models of the class constructed by Robert E. Lucas,

which fit quite naturally into the index model framework, and predict

a one-real index, one-nominal index pattern. Lucas's model substan-

- tially improves on the preceding models by providing an éxplicit

behavioral interpretation of the model's dynamics. His model is

"Keynesian" in the sense that it accounts for the presence of aggregate-

6We could, for example, add a supply of output system.
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demand induced inflation-output or money-output correlations, but it is
"monetarist' in the sense that it predicts the same one real index, one
purely nominal index pattern that characterizes our dichotomous
models and in its policy implications.

In Lucas's model, movements in apggregate demand interact with
a stable structure of industry or market supply schedules to produce
persistent fluctuations in real economic activity. These persistent
fluctuations occur even though suppliers respond only to perceived
movements in relative prices and form their perceptions rationally.
The essential thing in Lucas's setup is the assumption that nominal
aggregate demand is not immediately observable, though agents are
assumed to understand its probability law. The notion that aggregate
demand is not immediately observable is what gives the model the
capacity to generate persistent (serially correlated) movements in

real activity even where agents are ratiomal.

A version of Lucas's model can be written

k(n -n ) + b.* =1....
Yie T ¢4 (nt nt) b, Eip 2 i=1,...,N

8)

L

fl

%(n -n n * 1=
dj (nt nt) + qn, + hj A i=l,...,M

jt

Here <c¢ b

, , d., and H, are each one-sided functions while q is a scalar.
i 1" ] J

The yi's are measures of real economic activity such as real output or

employment in particular industries or aggregates of industries. The Pjt's

are prices of particular commodities or aggregates of commodities. The

variate n, is nominal aggregate demand, while ﬁt 1s the public's

expectation of n formed as the linear least squares projection of

n, on some information set 6 . According to the model, real variables

respond only to the unexpected part of no, namely n_ - ﬁt' A fore-

seen increase in nt causes only the price variables to respond, leaving.
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real quantities unaffected. The model thus incorporates the natural

rate hypothesis. The variates ¢ and v, are second-order stationary

it - jt

random variables with properties to be specified shortly.
To complete the model, we must specify the Information set 8 .
We assume that the public does not have current readings on the variate

nt , but does have readings on current and past values of an (sx1)

vector X, of variates correlated with the n preocess. The vector x

may include n,_g for s greater than some minimal "perception delay'

6 > 1., Furthermore, the public is assumed to know the cross-covariogram

E{nt- xt_T} T=0,1+1,+2,...,;

it also knows the first moments of the {(n, x) process. The public forms

~

n as the linear least squares projection of n_ on the spaced

spanned by {x_, }. We have the decomposition

e eopreee

o0

= -+ = -
9) n, jzo ijt—j u, = o, + U,

where the vj's are conformable to X, and where by construction

E . =0 for all j > 0; that is, the residuals in the least

u x
L t=]
squares regressions are orthogonal to the regressors.

Notice that because X, does not in general contain all lagged
n's , the least squares orthogonality condition does not imply that-
u is serially uncorrelated. Thus, u itself will in general be
éerially correlated, so that the model prediéts aggregate-demand-
induced, serially correlated movements in the yi's even where

ci(s) =0 for s#0, all 1. I/

7 Some economists have dismissed earlier versions of Lucas's
natural-rate/rational-expectations models because they did not provide
an endogenous explanation of how aggregate-demand-induced fluctuations
in output could persist (e.g., Hall [1975]). If n for all s > 1
are 1included in X, the u's that appear in (9) "S(contizagﬁ)_ -
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The system (8) is evidently in the form of a two-index model. Further,

~

if we take one index to be n_ — n

" e the real subsystem is by itself a one-

index model. The second index is required only if we add prices to the
system.—a-

Now if we try to complete the specificagipn of the system (8) so that
it becomes exactly an ''observable' or "unobservable" index model, we run
into some difficulties. Since the model depends on eceonomic agents' not
being able teo observe n_, an unobservable-index framework is perhaps
most natural. But recall that the restrictions imposed on this class of
models include that the stochastic processes u and z be uncorrelated
with each other. In the spirit of a rational expectations formulation, we
ought to suppose that economic agents can obgserve the variables y and p

which enter our model, and that these variables form a sub-vector of the

vector x on which ﬁt ig based. If this is so, it requires strong and

arbitrary side restrictions to avoid the conclusion that ﬁt and u_ should
be correlated. To justify the strict form of unobservable-index model which

we fit below requires, in the context of Lucas's model, that u 1is a set of

+
measurement errors bedeviling econometricians but not the public.

To make (8) an observable-index model, we must assume that econometricians
can directly measure n_, even though the public cannot. To justify this
assumption we nmeed to suppose either that the historical data on which model-

fitting is based are not contemporaneously available to the public, orx that

7 continued are serially uncorrelated. By making the n's contemporaneously
unobservable, Lucas achieved the restriction on information sets necessary to
make serially correlated forecasting errors coexist with rational agents. Then
nominal aggregate demand can generate serially correlated movements in outputs

even though it is only the public's errors in forecasting nominal aggregate
demand th cause outputs to respon .

?here is a possible exception worth noting. It is possible that n -fi
and fi, collapse to a single index. This could occur not only if forecastg

are perfect (ﬁt=nt) but also if, e.g., forecasts of n are based on lagged

values of n, only. t
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to the extent they avre available the public does not find it worth-
while to use them, These assumptions are of course as implausible
a priori as those required to justify the unobservable-index formu-
Jation.

Finally in both specifications the requirement that the ui's be
mutually uncorrelated has no foundation in Lucas's theory.

Despite its explicit recognition of uncerteinty in modeling behavior,
Lucas's theory actually generates behavioral equations without residuals.
As with most-gl macroeconomic theory then, we must tack on residuals
to obtain empirically usable models, and the theory is silent about the
nature of the residuals.

All of the economic models that we have studied here take as a primitive
concept the notion of a one-dimensional "nominal aggregate demand' (or
"reference cycle phase' in the jargon of the NBER). This section is
intended to indicate how index models seem to be a natural statistical
setting in which to study such macroeconomic models. However, none
of the models studied here derives the existence of a one~dimensional
driving process for the business cycle from more primitive assumptions.
At this stage of development, the hypothesis that a low-order index model
may fit the data well is thus in the category of an attractive empirical

working hypothesis, with support in tradition, 1f not in logiec,

9
One class of exceptions that we are aware of occurs where an

exact model with no errors relates certain spot prices with forward
prices. If the forward prices are "rational" linear least squares
projections of future prices on a (large) information set O _, but

the economist models those expectations as "rational" linear least
squares forecasts based on an information set ©_' that is strictly
included in ©,_, there emerges a set of strong ofthogonality restrictions
on the error in the structural equation. Shiller's work [1972] on the
term structure is the original example from this class of setups; Fama's
article [1975] is another such example. Notice how the argument hinges
critically on having an exact theory to begin with.
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Alternative characterizations of the models.

A vector stochastic process which is coveriance-stationary
can be given the form of an unobservable—-index model if and only
if its spectral density (a matrix-valued function, the Fourier trans-

form of the autocovariance function) can be written in the form
10) Sy=LL' + vV,

where Sy’ L and V are all matrix-valued functions of frequency
() on (-7, m), with L nxk and V diagonal with positive
elements on the diagonal. That the unobservable-index-model form

implies the representation (10) is not hard to see. Equation (10)

follows directly from (3), the assumption that u and z are orthogomal

(so Sz = 0) and the fact that the positive definite matrix Sz
appearing in (3) can be factored into the form Sz = WW' . Thus
L=aW and V= Su . It'is apparent from (10) that the separate
components of L = aW are not identified,.so that to identify a
we must make some arbitrary normalization of Sz. We take Sz = 1.
Showing that the existence of a representation in the form (10)
implies that y can be given an index~model representation is a some-
what subtler task, and will not be undertaken here. We cannot simply
set a=1L , because L may not be the Fourier transform of a one-
sided function. Yet even if L is not the Fourier transform of a

one~sided function, under certain regularity conditions a one-sgided

a exists such that a a' =L L', In fact there are in general several

such a's, and to identify a uniquely we require a further identi-

fying restriction, namely that a*z be the moving-average representation
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of the process x = a*zlo/

The foregoing identification or normalization problems create
serious practical difficulties 1n estimation of a . However, it is
a great advantage of the unobservable-index formulation that, by
estimating LL' without attempting to identify a , we can test
the fit of the model without any need to impose the complicated identi-
fying normalizations. The equation (10) is exactly the model of factor
analysis, with the difference that the equation is a decomposition
of the spectral density matrix at each frequency instead of being a
decomposition of a single covariance matrix. Since estimates of S
over frequency bands which are far enough apart are independent under
their asymptotic distributions, we can apply the factor analysis model
independently at each frequency. Except for slight complications
arising from the fact that SY is complex and conjugate-symmetric,
not real and symmetric, estimation methods and statistical tests
developed in the factor analysis literature carry over directly to
the unobservable-index model, |

A covagiance—stationary vector stochastic process y“lL/ has an

observable-index representation, with z = c¢*y for some ¢, if and

only 1f its moving average representation can be written in the form

11) y = (I +a*y)*D*e ,
10
If x = a*z , . then given any one—sxded square_ summable
k ¥ k function b such that |b[ , X = a*b*b~l#z and

%z has the identity as its spectral density matrix. By re-
quiring that a(o)z be the vector of one-step-ahead forecast errors
in x, we fix ¢ wuniquely up to multiplication by a fixed unitary
matrix, and a*z becomes "the' working average representation of
X . See Rozanov [1967] for a rigorous discussion of these notions.

Strictly speaking we are considering only linearly regular
processes (i.e. processes with no deficiencies to component).
See Rozanov [1947] for a definition of linear regularity.
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where o and <¥' are each one-sided nxk matrix-valued fumetions,
and D ié a diagonal matrix-valued function. To see that (ll).
follows from our original specification (2), recall that we are
now considering the case of no exeogenous variables x , so that 9
in (2) is empty, and ¢y and ¢ are the same thing. We required

that (I—a*cl) has a one-sided inverse under convolution, so that we

can write
-1
12) y = (I-a*c) “*u .

The vector process u itself has a moving average representation
of the form u = D*e , where e 1is a vector white noise process
and D 1s a diagonal matrix-valued function. Substituting this

representation inte (12) yields

13) y = (1-a¥c) Lopre |

which is the moving average representation of y.lg/

Now €he fact that (I-a¥*c) has & one-sided inverse implies that
(l-c*a) alsc has a one-sided inverse.lé/ Then it is easy to verify
that (I—a"‘t:)_1 =1 + a*(l—c*a)—l*c. Substituting this expression
for (I-a*c)-l in (13) gives us an expression exactly in the form

»

{11), with a =¢ and (1—c*a)-1*c =y 14/ namely

14) y = (I + a*(l-c*a) Thc)*Dxe

12For the purlst, this follows from the fact that current and

past y and current and past u span the same Hilbert space, under
the covariance inner product, and hence must have representations
in terms of the same fundamental white noise.

13

The Fourier transform of l-c*a , 1-ca , 1s the determinant
of I-ac , which in turn must be bounded away from zero in the lower
half-plane for I-a*c to have a one-sided inverse. But 1-ca bounded
away from zero in the lower half-plane guarantees that l-c*a has

a one-sided inverse.

14Where y does not have an autoregressive representation, (11)
may hold without the existence of any regression of the form ().
9ince such cases can in a sense be approximated arbitrarily well by
cases in which an equation like (2) does exist, it seems natural to
include these cases as observable-index models._



From (11) we find the spectral density of y to be given by

15) 5, = [Dl2 +aéD+D'8'a"+aéDD'6’ .

Equation (15) asserts that y's spectral density is the sum of a
diagonal matrix and a matrix of rank 2k . Could it be then that
observable-index models of rank k are equivalent to unobservable-
index models of rank 2k ? The answer is no. If 6'5' # JA , where

A is scalar, the singular matrix added to |5[2 in (15) will generally
have negative roots as well as positive roots. Even under the condition

-~ -~

D'§' =a A, it can be shown that the unobservable-index models which

15/

can be generated from (15) are a very narrow class.—-

An interesting question for further research arises here: 1Is
there an attractive index model specification which would genetrate

the general case of
16) ‘ Sy =V+M ,

where V 1s diagonal with positive elements on the diagonal and

M is an arbitrary (except for the requirement that Sy remain
positive definite) conjugate-symmetric matrix of rank k ? Such

a general specification would probably allow use of the convenient
factor-analytic—-like methods which apply to the unobservable~index
model, would cover both observable-index and unobservable-index models
as special cases, and would probably avoid the all-too-common result
that estimation of the unobservable-index model shows maximum likeli-

hood at a point where V is singular.

5Again, the reader must be referred elsewhere (Sims, 1975)
for the detailed arguments. The gist of this argument is that

" if D'’ =ar , A scalar, then &*D is one-sided only under strong

side conditions.
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~ Causal Orderings in Index Models

In the degenerate case of u= 0 in (1) "causal orderings" in
the sense of Granger can be characterized entirely in terms of the
parameters a . In this case it is likely that many pairs of vari-

ables cannot be ordered. It is well known that y does not

cause x © in Granger's semse if and only if the linear least

squares projection of Yy, on x is a one-sided distributed lag.léj
If a, and aj both have one-sided inverses under convolution, then
¥y = ai*ajrl*yj and yj = aj*ai_l*yi . Thus each of the two variables
is exogenous in a (perfectly fitting) onesided distributed lag regres-
sion with the other variable on the left, and no one-way ordering is
possible. More generally a and/or aj may not have one-sided
inverses, in which case orderings may exist.

When we add error terms to the model, with the properties natural
to the observable and unobservable cases, the a's no longer characterize
causal orderings. The coefficients in the projection-of y, on some
subset of variables ¥ dincluded in the vector y , 1s given by
R.Y—l*RYYi where RY is the autocovariance function of Y and

RYy is the cross-covariance function of Y with Vys respectively.
1

In the case of an unobservable index model, under the identifying

assumption that 2z and u are orthogonal, one requires restrictions

on the serial correlation properties of the u's , relating them to

the a's , in order to restrict RY and RYy enough to generate a
i

causal ordering. To the extent that the economics of the model i1s

16 .
Y does not cause x in Granger's sense if, given values of

all other variables in the system (including x) at times before t
knowledge of values of y at times before t cannot improve our
forecast of x(t) . This notion is discussed in more detail in the
paper by Sims in this volume.
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embodied in its systematic component, economic characteristics of
the model cannot imply a causal ordering.lzl

In the case of observable-index models with no exogenous vari-
ables, a certain limited class of causal orderings may be character-
ized by restrictions on a and c¢. It is well known that Granger
causal orderings on linearly regular covariance-stationary vector
processes are characterized by block triangularity conditions on
the moving average representation. (See Sims (1972)). 1In particular,

Yy does not Granger—cause Y, ( ¥, is causally prior to Y1 in

Granger's sense) if and only if in the joint moving average repre-
Ay A |

iA A J* e , A can be chosen to be zero.
2l 22

fyl}
sentation Lyz = 21

- Looking now at the expression (14) for the moving average representation

of an observable-index model, we see that if y d1s partitioned into

¥4
y = {yﬂi and a and ¢ are partitioned conformably, there are two
2
simple conditions on a and ¢ generating block triangularity with
= 0 = _ o 18/ . _
A21 = Q: a, = 0 or Cl =0 . With a, = 0, the indexes do not

affect Yo » 80 that the elements of y, are mutually orthogonal.
Further, any subvector of Yy is causally prior to the remainder of
the y wvector, so that Yy 1z not only causally prior as a block,
but each element of Yy is separately causally prior. With ¢y = o,

none of the elements of Y1 enter any of the indexes and ¥y, can

l7John Geweke [1975blhas given a condition for ekogeneity of

A in an unobservable-index system which, like the a, = 0 condition
ol an observable-index system discussed below, implies that all elements
of ¥y are exogenous in all other equations of the system, including the
other equations in the y,-block. Geweke's condition also implies that

1
the residuals from regressions of ¥ on vy form an unobservable-
index model of the same order as the origina} model.

18

formable to t%e partition of y into 1{ , not the "¢," which
appeared earlier when we discussed models” 2 contalning exdgenous
variable:. x .

The "c,'" here is the first elemen[?of the partition of ¢ con-
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therefore be regarded as "passive". The elements of y, are related

to each other only threough their common dependence on Yy

Some further comparative properties of the models.

An unobservable-index model retains its form if a subset of
elements of y is used in place of y itself. In fact, invariance
of estimated a's and of fit of the model to omission of variables
from the system is a property which might be used to test the unob-
servable-index specification. In an observable-index model on the
other hand, only purely passive variables (yj's with c¢. = 0) can be

ommitted from the model without invalidating the index-model specification.

An observable-index model of given order has twice as many
independently specified lag distributions as an unobservable-index
model of the same order, since the a parameters appear in corres-
ponding positions in both models while the ¢ parameters appear only
in observable-index models. This might at first appeér to conflict
with the limiting equivalence of the two specifications, for the
same order k , as perfect fit is approached. However, the paradox
only reflects the fact that in the limit as a perfect fit is
approached c is no longer identified, as the same estimate of =z
can be constructed from a variety of linear combinations of current
and past y . Where the fit of the model is in fact very tight, one
should either use the unobservable-index specification or impose a

fixed form on ¢ a priori.
If we estimate equation (2), passed through the filter D_l ,

as a constrained autoregression, we obviously have an autoregressive

representation of y immediately at hand. This is important for
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preparing forecasts and in some kinds of model-testing. Estimating
the unobservable-index model does not lead directly to an autoregressive
form, and is in this respect less convenient. Further, estimating

(2) leads directly to estimates of a and of historical values of

z , which is important for interpreting the wmodel. Estimates of a
and of historical =z's are harder to obtain with unobservable index
models. On the other hand, we have already noted that it is possible
with the unobservable index model to test the fit of the model with-
out estimating a or 2z , and this is much easier computationally
than fitting the observable index model of corresponding order.

Observable-index and unobservable-index models are equivalent

only in a narrow class of special cases. One case of this type is
wvhere some component of the vector u in (12) is identically zero,
z 1is scalar, and the corresponding component of a has a one-sided
inverse. Taking this special component of y to be ¥y, » we have
then =z = al—l*yl , making the model an observable-index model,

but at the same time a degenerate case of an unchservable-index

model. If u 1is a full rank process, the two kinds of model coincide
only in a narrow class of cases, e.g. if ai(s) = Aial(s), all 1,

19
s , ci(s) = lici(s) , all i, s, and ey has a one-sided inverse.*—/

19
This result, together with some others characterizing the

relation of index-models to standard simultaneous—equation models,
is proved in Sims [ 1975].
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Extimation and testing for the uncbservable-index model

The unobservable index model can be estimated and tested by using
sultable generalizations of the maximum likelihood method of estimating
the standard factor analysis model, described by Joreskog [1967) and
Lawley and Maxwell [1963129/. Passing to the notation of Lawley and

Maxwell, let

i

s,(w) = C a) = L,

It

S, =C=1LL"+V
y

aa' + 8§

CTu
and remember that there is a 3-tuple (C, L, V) at each we[0O,7].
Assuming that the (nxl) y, Pprocess is normally distributed implies

that ;(uﬂ the finite-Fourier transform of y , evaluated at w,

has a complex normal probability distribution, asymptotically:

fiyic) = — Cexp (-y(w)'C iy (w).

mc]
Supposing that we have m independent observations on ;(w) , Say
;, (w),...,§m(w) with common covariance matrix C , the likelihood

function is

m
~ - l - _l-..
L(C;¥ 5005y ) = ——— exp (- £y (0)'C "y (w))
1 m 1Tnmlclm 1=1 i i
with log likelihood
an 1n1.(c;§l,...,§m) = -m{n 1n = + ln|C| + tr sc™hy
where
1 7o~
S==~ I y (w)y, (W .
L i i

2OJohn Geweke [1975alhas shown how the computational techniques
for the real factor analysis model can be adapted for application to
the frequency domain factor analysis model. The computations reported
below were made using Geweke's original one-index computer program
amended by Paul A. Anderson to handle k indexes. See Geweke [197531
for a more detailed discussion of the techniques described in the text.
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Maximization of the log likelihood function (17) is equivalent to

minimization of

t = lnjC| + tr sc™t

With € unrestricted, the maximum likelihood estimate of C 1is
S. Under the frequency domain factor analysis model, estimation is
carried out under the restriction € = LL" + V, so that the function

minimized is

(18) Eg = In|LL'+V| + tr S(LL' + wt,

where the minimization is with respect to L and V.

The null hypothesis that k factors can account for the covari-
ation of y at a given frequency (or band of frequencies) can be
tested by using a likelihood ratio test._ The relevant statistic is
(19) R = 2(1l - 12)
where Rl is the value attained by the log-likelihood functien
unrestricted and 10 is the value attained by the log likelihood
function under the k-index restriction. On the null hypothesis, R
is distributed as chi-square with %-{(n—k)2 - {(n+k)} degrees of
freedom. ‘In practice a small sample correction suggested by Bartlett
(see, e.g., Lawley and Maxwell [p. 23]) is used to adjust R.

It should be remembered that the chi-square tests are asymptotically
valid only if there occur no boundary solutions in which over some
band V(w) = 0 for some variable. We do encounter some such boundary
solutions. Consequently, the formal test statistics should be inter-
preted with some circumspection.

In addition to the formal hypothesis test of the k-index model,

it is useful to construct the coherence

_[L@L'(w]ii _ a(wa' (W)ii _ Sy(w)ii-[Sy(w)]ii
20) coh, (w) [Cw)]ii = Sy(w)ii ) Sy(M);i
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which tells the proportion of the variance in y; at frequency w
that can be accounted for by the k indexes. We also report the
overall coherence defined by

fa(w)a' (w)ii

oW
21) Teoh; = —Feyii °

W

where both a(w) and Sy(w) have been recolored by multiplying by
the inverse Fourier transform of the filters used to whiten the
variables. It is possible for the likelihood ratio test {) to call
for rejection of a k-index model and yet for the model to explain a
large propertion of the variance in some or all of the n yi's .

As we have noted, economic theories leading to index modéls seen

to assert only that a one-index model will deliver "high" coherence
for many interesting aggregate time series.

In practice, the tests of and summary statistics for the k-
index model were calculated as follows. First the n variables in
y, were whitened by computing univariate autoregressions with linear
trends included;!;/ The residuals from these regressions were taken
as the whitened values of y . For series of length T , Vthe Fourier.

transform of the (nxl) whitened vector Ve o

T iw, t
I y.e ] s

ylw) =
J 1 ¢

t

was calculated at the frequencies

o 2mi I
g = 7

2y <3 < (1/2]

21The procedure described here is asymptotically valid only if
the order of the estimated autoregression in the first step is held
fixed while sample size increases. Lf the estimated prewhitening
autoregressions are richly parameterized, results are biased. Our
prevhitening regressions were short, and re-estimates using standardized,
arbitrarily chosen prewhitening filters on all series did not alter
results.
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where [x] means the greatest integer less than or equal to x .
Then across a band of m w,'s , the cross spectral matrix of the

3

whitened y's was estimated as
22) S. =% ¢ oy)y' (w)

Y W s J J
where J is the set of j's included in the band. ?or purposes of
the formal likelihood ratio test of the k-index model, (22) was
used to estimate SY across a nuyber of disjoint frequency bgnds.
For each band, the maximum likelihood estimates of LL' and V' are:
obtained, and the likelihood ratio test (1%9) and ccherence (20)
éémputed.‘ Whef;m f nonoverlépping freqﬁency bands are stuhied,
the likelihood ratios at the different bands can be summed. Since
it is the sum of r asymptotically independent Xz(.S(n—k)z-n—k)
variates, the sum is asymptotically chi-square with .Sr[(n—k)z—n-k]
degrees of freedom. This summary statistic can be used to test
the overall fit of the model.

By way of deriving a representation of the medel in the time
domain, the vector autoregressive representation for the y process
implied by the k-index model can be derived as follows. First,
caleulate the Fourier transform y(w) as above, and then smooth
using a moving average across frequencies to estimate the cross spectral
ﬁatrix Sy at a number of frequency points. (This differs from the
above procedure used in testing the k-index model in that we now do
not use nonoverlapping frequency bands. The asymptotic independence
of the estimates of Sy at different bands, which is important for

hypothesis testing, I1s lost at the gain of being able to estimate the
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cross spectral matrix at more frequencies.,) Next, at each frequency
calculate the maximum likelihood estimates of LL' and V for k

indexes to obtain

ak LL' + V .

The estimate S; is then "recolored" using the transfer functions
implied by the filters used to whiten each Vi
To obtain the matrix of cross covariances of y under the k-

-~

k
index restriction, we calculate the inverse Fourler transform of Sy :

~k 1 k -iw.s
Ry (s) = o jEJ Sy(wj)e
(nxn) {nxn)

where J indexes the set of frequencies at which the cross sgpectral
matrix is calculated, and ﬁ;(s) is an (nxn) matrix of estimated
covariances at lag s wunder the k-index restriction. Using the
elements of ﬁ;(s) as estimates of the population covariances, the

n  vector autoregression can be calculated by entering the appropriate
elements of ﬁy(s) in the usual formula for the projection of a random

variéble Z ona (1xb) random vector X:

P(Z|X) = XEE'D]™Y [Ex'z]

1xb bxb {(bxl)

We have not yet used this procedure to estimate vector autoregressions
under the k-index hfpothesis.‘ We intend to use such vector autoregres—
sions to generate forecasts ana residuals. The procedure can be thought
of as a way of estimating a vector autoregression under a restriction

on the dimensionality of the parameter space. Since vector autoregres-~
sions of even low order typlcally have very many parameters, some such

restriction seems useful in order to proceed with estimationm.
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Some Sample Coherences

By way of summarizing some of the raw facts we are seeking to
account for, Table 1 reports coherenceEEV for pairs of variables among
the following fourteen quarterly aggregates for the U.S. over the period
1950.1-1970.1IV. Moody's Baa index (RBaa), the log of real GNP, the rate
on 91-day Treasury bills (RTB), the log of the GNP deflator (P), the log
of a straight-time wage index in manufacturing (w), the log of the money
supply as measured by currency plus demand deposits (M1), the log of
total federal and state and local government purchases (G), the federal
and state local government deficit, the civilian unemployment rate {(Un),
the log of residential construction, the change in the log ﬁf the stock
of‘inventories, plant and equipment investment (PL & EQPT), total con-
sumption (cons), and corporate profits plus inventory valuation adjust-—
ment. Each series was prewhitened by computing an autoregression with

five own lags with a linear trend and constant included. The residuals

from those regressions were then used to compute the cross spectragéjWe

22
“/The coherence between series i and j at frequency w is
defined as '
2
S {w), '

Sy 4y 8y

; 2 . R )
and is analogous to an R statistic, telling the proportion of the
variance in series i that can be accounted for by series j at the frequency w.

23,
3 This procedure bilases the usual asymptotic distribution theory

for the frequency domain estimates, unless thé order of the initial auto-
regressions is reqarded as increasing with sample size much more slowly than
the number of non-overlapping frequency bands at which spectral estimates
are computed. Our separate fifth-order fitted univariate prewhitening
filters are too flexible to make the required property of negligible sampling
variability in the fitted univariate filters plausible. However, repetition
of some of the main calculations with lower-order whitening filters, chosen
a priori, showed no important alterations in the results. Had we been aware
of this problem from the start, we certainly would have used something like
fixed (1—.956)2 prewhitening filter on all quarterly series, e.g., rather
than filtered fifth-order autoregressions.
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used Parzen's algorithm for estimating the cross spectrum as the Fourier
transform of the cross covariogram. A Parzen window was used with 24
being the maximum lag used in the cross covariograms. For a sample size
of 100 and this maximal lag, the use of the Parzen window implies the

asymptotic confidence intervals around the coherence as summarized in

Table 2. These were calculated using the method described by Jenkins
and Watts [1968].

Many of the coherences in Table 1 are low, even at the business
cycle frequencies. For example, the coherence of the GNP deflator with
reai GNP is low aﬁ the business cycle frequencies, never getting much -
above .3 at the business cycle frequencies. The coherences with money
are interesting. In particular, notice that the coherence of money with
some measures of real activity like unemploymerit and real GNP are substan-
tially higher than are the coherences of money with the GNP deflator or
the wage index.

Table la records the coherences between palrs of various
monthly series we will be studying. Table 3 contains 95 percent confi-
dence intervals for the coherences for the monthly data.

Overall, the coherences display some tendency to be highest at
the low frequency components, perhaps giving some support to the concept
of the business cycle as a set of correlated low frequency movements in
a variety of aggregate variables. On the other ﬁand, the coherences
j1lustrate again Granger and Newbold's [1974] point that once own serial
correlation is eliminated, economic time series are not all that highly

correlated.

Estimated Uncbservable Index Models
For quarterly time series extending over the period 19501-
19701V, we have fit the unobservable index model to several subsets of

the following macroeconomic variables: the official unemployment rate,
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real GNP, the GNP deflator, residential construction, plant and equipment
investment, total consumption, inventory investment, corporate profits _

plus inventory valuation adjustment, an index of the straight time wage

in manufacturing, and the money supply (currency plus demand deposits).
0f these variables, the GNP deflator and wagé index are nominal qﬁanti—
ties; corporate profits is not deflated, but is a variable whose variance
ié-probably vary 1argely dominated by movements in its real component;
the money supply is a potential contributor to variations in nominal
aggregate demand; while the.remaining variables are all deflated and ’
thus are supposed to be measures of real economic activity.

The period consists of 89 quarterly observations. The filtered
series were filled out with enough zeroes to bring the series up to 100
observations, so that pericdogram ordinates were calculateq at the 51
frequencies wj = 2vj/T, j=0, 1, ..., 50. TFor the purpose of hypothesis
'testingﬁyy the periodogram vector was averaged over the following four
nonoverlapping bands: wj = 2n3j/T, j=1, ..., 113 3i=12, ..., 23; j=27,
«vo 37; 3=38, ..., 48. These four bands are centered at periodicities
of 16 2/3 quarters, 5.88 quarters, 3.125 quarters, and 2.33.quarters:
respectively. The first band ranges over periodicities of from ;00 to
9.09 quarters, and thus is the band in which the frequencies composing

the business cycle lie. We have omitted from the bands the seasonal

periodicities of four and two quarters and also one freqdency on either.

24 ' A
ﬂjOver a band of m periodogram ordinates at frequencies

“3 = 2mj /T, we form Sy according to (1l); i.e.,
= = W, v,
S, = @ Ly®y vy (W)
where y(w,) is the (9x1) vector of periodogram ordinates of the whitened

3

y's at wj. Since the rank of y(wj) y'(wj) is one, the rank of Sy is at
most m. Our computations reguire Sy to be invertible, which requires

taking m > 9. This consideration explains why we have used only four
nonoverldgping bands, since we have only S0 periodegram ordinates.
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side of the seasonal. This accounts for the missing ordinates j=24, 25,
26, and j=49, 50.

Unobservable index models were fit to the five sets of variables
listed in Table 4. Summaries of the results are contained in Tables 5

through 14. Set 1 includes six real variables (if we count corporate

profits as a real variable) plus the GNP deflator. Since there is

ohly one price variable, we might expect that this should be described
well by a one-index model. The summary statistics in Tables 5 and 6

show that a one-index model fits pretty well. The over—all chi-square-
statistic attains of marginal significance value of .17 for the one-index
model, though the marginal significance value is only .054 for the chi-
square statistic at the business cycle frequencies. The coherences with
the one-index are high at the business cycle frequencies for all variables
except the GNP deflator, residential construction, and consumption. Its
high coherence with GRP, unemployment,‘and corporate profits indicates
that the one-index seems to be a measure of overall business activity.
Notice that in the two-index model, the multiple coherence of GNP deflator
remains low. Introducing the second index results in‘substantial increases
in the multiple coherence for residential construction, plant and equip-
ment investment, and real GNP, indicating that there seems to be a

second real index. With the second index included, the marginal significance

level at the business cycle frequencies climbs to .13,

Set 2 includes inventory investment in aadition ta the seven
variables in Set 1. The one-index model performs almost as well as it
did in Set 1, with marginal significance levels for the chi-square
statistic being .045 at the business cycle frequencies and .12 overall.

The coherences with the one index follow the same pattern for all variables
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as in Set 1, with inventory investment having a coherence of .5
overall with the one index. Adding a second index causes the
marginal significance level to rise to .17 at the business cycle
frequencies and causes substantial increases in: the multiple
coherences for the GNP deflator and inventory investment. The
coherences for residential construction and consumption remain low,
It seems that there is a nominal factor with which the GNP deflator
and inventory investment are both correlated.

The third set adds the money-wage index to the variables in
Set 2. A one-index model again does well with a marginal confidence
level of .11 at the business cycle frequencies. 'The second index
again raises the coherence for the GNP deflator and inventories,
and to a much lesser extent the money—-wage index. Notice that the
money wage retains a low coherence even with two indexes included.

The fourth set includes the money supply along with the GNP
deflator and a set of our real variables. Here a one-index model
attains a marginal significance level of .037 at the business cycle
frequencies. Actually, if the money supply is thought of as an
important contributor to nominal aggregate demand, Lucas's model
predicts that adding the money supply to a set of N real ana one
price variables will result in a deterioration in the adequacy of
the one-unobservable-index modzl. That is because the money supply
itself has predictable and unpredictable parts, is thus correlated

with both the u and n of our equations (21) and (22) —- that
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1s, it is correlated with both the real and the nominal factors. 5o a
two-index model ought to be required. Notice that while the marginal
significance level for the two-index model climbs to .11, the second

index contributes to substantial increases in the multiple coherences

for the GNP deflator and inventory investment, with a much more modest
increase in the coherence for money. The money supply does not seem to

"hominal" index. When a

be extremely highly correlated with our second
third index is added, however, the coherence for the money supply does
rise drastically, as does the coherence for residential construction.
There seems to be a credit-crunch index linking these two, perhaps
réflecting the workings of interest rate ceilings.

Set 5‘excludes inventory investment but includes money. Now a
one-index model achieves a marginal significance of .109 at the buéiness—
cycle frequencies. Adding a second index leaves the multiple coherence
of the GNP deflator low, but raises that for money and residential
construction. This pattern is consistent with the results for Set 4.

It is noteworthy that a one-index model delivers high coherence
for unemployment, GNP, plant and equipment investment, and corporate
prbfits, and that the coherences for consumption and residential construc-
tion with the first index are quite low. This finding is consistent
with casual observations that residential construction ana consumption
both behaved 1n a stabilizing or acyclical fashion during most post war
business cycles,

We have also estimated index models for sets of monthly data

extending over the period 1950.1-1970. Table 15 shows three sets of
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variables to be studied here. The data are average weekly hours,
layoffs, manhours, the overall unemployment rate, the indsutrial produc~
tion index, retail sales, net business formation, new orders for durables,
an industrial materials price index, the wholesale price index, and the
money supply (demand deposits plus currency). Of these variables, two
are price indexes; one-~the money supply--is a variate widely alleged to
ﬁelp determine nominal aggregate demand; retail sales and new orders for
durables are undeflated and thus are nominal measures of activity; the
remaining variables are deflated and so correspond to .-measures of real
economic activity. The period consists of 26__ observations which we
extended to 288 observations by filling out with zeroces. We calculated
the periodogram ordinates at the 145 frequencies 273i/T, 3=0, 1, ...,
144, For the purpose of hypothesis testing the periodogram vector y{(w)
of the whitened vector Y, was averaged over the followiné six nonover-
lapping bands: wj=2nj/T, i=1, ..., 22; j=26, ..., 46; j=50, ..., 70;
i=74, ..., 94; j=98, ..., 118; j=122, ..., 1l42. These six bands are
centered at periodicities of __, _, _, __, __, and ___ months, respec-
tively. The first band ranges over frequencies from __ months to
months, and thus 1is the band composing the business cycle. We have
omitted the seasonal periodicities and also several ordinates on each
side of the seasonal periocdicities. This accounts for the missing
ordinates j=23, 24, 25, 47, 48, 49, 71, 72, 73, 95, 96, 97, 119, 120,
121, 143, and 144, |

The results are summarized in Tables 16-21. Set.l includes
all the variables except money. The one-index model bears very low
marginal significance levels. However, it delivers high coherences for

all of the real variables except business formation, moderate cocherences
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for retall sales and new orders, and low coherences for the price
indexes. Adding a second index raises the marginal significance
levels, though they are still quite low. But adding the second index
results in high multiple coherences for the two prices, and retail
sales and new orders as well. The coherences for the other real
variables reﬁain about as they were with one-index. This pattern
of coherences, with most real variables attaining high coherence
with a single index, nominal variates attaining high coherence with
the addition of a second index, is roughly consistent with the
existence of neutral fluctuations in price level -- non-zero N,

in our version of the Lucas model. |

Set 2 deletes the materials price index from Set 1. The pattern
of results is identical with that of Set 1.

Set 3 adds money to the variables in Set 1. The pattern of
results is the same as in Set 1, with money having low coherence with
" both the first and second indexes. As before, the second factor seems
to be nominal one, but one with which money is ﬂot highly correlated.

Several features that run through these results are worth com—
menting on. First, there is the association of the GNP deflator and
inventory investment with a second index in our quarterly models.

As mentioned, thls seems to be an anomaly if the second index is
purely nominal.

Second, there is the very loose association of the money Supply
with both the reai and nominal factors in both the quarterly and monthly

results. This finding is probably surprising according to monistic
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theories of nominal aggregate demand. Yet the suspicion that the
money supply is not a good measure of nominal aggregate demand ——’
and that probably no single good meésure is available-—is precisely
the intuition underlying Lucas's model.

Third, there seems to be an index with which the money supply
and residential construcfion are both coherent.

Fourth, there is low coherence of consumption and residential
construction with the first index that éccounts for most of the
variation in measures of aggregate economic activity, such as real
GNP and the unemployment rate.

The overall impression is one in which low order index models
do fit the data well. Even according to the chi-square test statistics,
one~ or two-index models do a good job of describing the quarterly
data. There does seem to be a tendency for the two main indexes in
the fitted models to look like a "real business cycle" index and a

“neutral price level change" index.
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Table 1 (continued)
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Tabis 1a — GRAPHS OF COHERENCE OF ECONORMC VARIABLES
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"Teble 12 {continued)

NEW IND : S&P
ORD MAT'L - 500
DUR PRICE PIULC WP STOCKS

Net g
Business : ;

Formations y !
i ) ; i . ‘ )
' " | 5 N =' : o o :
'\W\./ \f\—-r’\j T e Mo A

New QOrders of

| 3 ; :

Durable Goods \/\/\/\ .
; : ' U\’ s Loy : :
2 i VAN A
A VW e T

tndustrial - 1 . L 1
Materials : . e ,
Prices .

Ratio of _ - . k
Price to AL |
Unit Labor Cost , e j

Wholesale : ' | *
Price - ;
Index | i

A it g =



Table 1a {continued)
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Table 2

Ninety-Five Percent Confidence Intervals with
89 Observations and 24 Frequency Points¥*

Coherence " Lower Limit Upper Limit Width
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#Calculated for a Parzen window using the method described by Jenkins
and Warts [ }.




Table 3

Ninety-Five Percent Confidence Intervals with
267 Observations and 24 Frequency Points¥

Coherence Lower Limit Upper Limit
. 050 C n.000 .237
.100 001 .313
+150 . .011  .376
«200 .030 | $031
250 . 057 W481
«300 .090 527
. 350 , .128 570
400 171 612
+ 450 219  «651
« 500 270 688
+550 .326 724
«500 « IR6 .758
+«650 o 449 ' , 792
«700 516 .B24
« 750 .588 «855
800 | .662 | .886
. 850 T4l ;916
«900 ‘ _ +R24 944
« 950 .910 «973

*Calculated for a Perzen window using method described by Jenkins and Watts.



Table 4

Quarterly Sets

Un GNP GNP Defl. Res. Constr. P1 & E Invent. Cons. Corp'ﬁ
X X X X X X X
X X X X X X X X
X X X X X | X X X
X X X X X X X X
X X X X X - X X

|



Tabhle 5 Set 1

One Noise Test Marginal Two Noise Test Marginal
Statisties Significance Statisties Significance
Bands(1) x?(zg) Level x2(18) Level
1-11 42,18 054 24,78 .13
12-23 29.57 436 10.58 _ .91
27-37 36.18 .168 15.08 .66
38-48 22.42 .802 10.02 .93
. 1 ' 2

Overall x (116)=130.35 .171 X (72 }=60.46 .83

Test

riil
Periodogram ordinates were calculated at the angular frequencies = wj = —?1 s

T =100, § = 0, 1,..., 50,

Periodicity of jth frequency = % quarters. The frequency bands correspond ‘to

the following periodicities:

I Periodicity
(quarteps)
1-11 100-0.09
12-23 _ 8.33-4.35
27-37 ' 3.70-2.70
38-48 2,63-2,08

The seasonal frequencies j = 25, 50 and the adjacent frequencies ] = 24, 26
and § = 49 were omitted from the bands used to compute the spectral decom-

position and the k-noise-test statistics.



r T——

P02 NF vark CXPLLINEN By

FREAUENCY'

.120021
T L3500RT
JHeNnpP ]
LABNQPT
NVE2aLL

= —

B - Ta PR

PNFEMP OT
HVTTN
55194
LRASNT

-90R37‘_-‘gl_ :

. 73947

’

PRI q? VAR EXPLAINES My

FRrLAUCNCY

120071
_.3500PT

H400P]

«RHEOOPT
OVFRALL

VA, N, ot
yNge ov
A5 T4
+hTAJS
TFALA
« 1BHSA

«9%193

/

COoMuny FACTOLS

var, N0,
LRPEALANP
.ﬂQQ?l
1.0000
AN
253197
«PAREL7

CNwany FacTnrs

. _VA.D. M6,

LEeFal aND
1.0000
12000
«913R7
10600
« 99947

2

2

VA2, NN,
LAGNODEF
o ?L154
+1ATARA
LT 4
LPT2T0

25071

VA2, MO,
LOMBPDFFL
« 208
63”17
BARIGA
JaaunlA

o Pt}

Table & Set 1

vao, M. 4

LPES CONST
-19"-’1“ .
«RAR3NUAE =]
cRLZ2PLF =N}
157287

e 2ARNTL

vao, Mo, IA

LOES rONST
JBT44LD
W 13RGT
LA79275-q)
L6213

whflh]

van, NO,
LeL+EnoT
262N
«STTAS
L4N957
1.0000

LTNGLL

waL, MNN,
LeL+EneT
.7006A7
sHARENG
«"N3995
1.60000

L, 7997%

S

S

-

VAR, MO, A
LCANS
.11A8R
70838701
.51232r-02

.63903c-02

«AN1S3F-n]

val, NG, A
LCANS
.2A1A%
«T771205.01
57231F.01
50540501

.15A14

0274

yaa, mo. Y

{ CODoeTye

- .QLASQ ._,,/

. 79705

J50n45

L25675% . L.
.a26a] |

/

i
i

WaR._MD, 7
LCORP«TVA
Pl e W
1.0000 ... 0—
30691
G31AG




Table 7 Set 2

One Noise Test Marginal Two Nolse Test Marginal
Statistics Significance Statistics Significance
Bandsf{]) x?(&l) Level X2(2$ Level
1-11 57.50 045 34,75 177
12-23 32.68 .820 13.64 .9590
27-37 53.35 .094 27.04 .516
38-48 41.66 LAhA2 . 25.60 .595
2 2
Overall x“(164)=185.18 .123 %X (112)=101.03 .762
Test
n

Periodograh ordinates were calculated at the angular frequencies = wj = —Ti ,
T=100, § =0, 1,..., 50.

Periodicity of jth frequency = % quarters. The frequency bands correspoend to

the following pericdicities:

R Periodieity
{quarters)
1-11 100~0.09
12-23 A 8.33-4.35
27=-137 3.70~2.70
38-48 2.63-2.08

The seasonal frequencies j = 25, 50 and the adjacent frequencies j = 24, 26
and j = 49 were omitted from the bands used to compute the spectral decom-

position and the k-noise-test statistics.
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Table 9 Sat 3

One Noise Test Marginal Two Noise Test Marginal.
Statistics Significance Statistics Significance

Bands(i) ngﬁl) - Level xz(AQ) Level

12-23 34,83 . 740 23.27 .984

27-37 54.53 077 42,55 .362
l38—&8 41.31 . 457 . 29.24 . 895

' 2 2
Overall % (164)=182.97 .148 %" (160)=131.05 954
Test '
2%

Periodogram ordinates were calculated at the angular frequencies = wj = _Ti ,
T =100, =0, 1,..., 50.

Periodicity of jth frequency = I quarters. The frequency bands correspond to

the following periodicities: )
. | Periodicity
{quarters)
1-11 100-0.09
12-23 _ 8.33-4.35
27-37 3.70-2.70
38-48 : 2.63-2.08

‘The seasonal frequencies j = 25, 50 and the adjacent frequencies j = 24, 26
and 3 = 49 were omitted from the bands used to compute the spectral decom-

position and the k-noise-test statistics.
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Table 11 Set 4

One Noise Test Marginal Two Noise Test Marginal Three Noise Test Marginal
Statistics Significance Statistics Significance Statistics S{ignificance
Bands({) x2(55) Level , Xz(ho) Level x?&g7) Level
1-11 . 75.08 .037 _ 51.06 113 24.81 .585
. 12-23 40.21 933 20.71 . .995 11.16 .997
27-37 60.84 274 30.09 .873 16.03 .952
38-48 60.96 .270 41.90 .188 28.92 .365
2 2 2
Overall X~ (20)=1237.08 .204 X“{160)=143.76 .817 x“(108)=80.92 .976
Test
21
Periodogram ordinates were calculated at the angular frequencies = wj = _Ti ,

T =100, 3 = 0, Li..es 50.

Periodicity of jth frequency = %-quarters. The frequency bands correspond to

the following perfodicities:

R Periodicity v
. (quarters)
1-11 - | 100-0,09
12-23 © 8.33-64.35
27-37 3.70-2.70
38-48 2.63-2.08

The seasonal frequencies j = 25, 50 and the adjacent frequencies 1 = 24, 26
and j = 49 were omitted from the bands used to compute the spectral decom—

position and the k-noise-test statistics.
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Table 13 Set 3
One Noise Test Marginal Two Noise Test Marginal Three Noise Test Marginal
Statistics Significance Statistics Significance Statistics Significance
Bands (i) X2(41) Level X2(28) Level : X?ﬁl?) Level
1-11 52.43 C.109 29,45 . 390 . 15.51 .558
12-23 35.64 707 1l6.61 .956 8.01 966
271-37 43.61 .361 21.50 . 804 10.11 . 899
33~48 41.62 Jab4 27.06 «515 19.35 .309
2 ' 2 . 2 :
Overall X"(164)=173.29 254 X" (112)=94.62 .881 X {68 7=52.98 .910-
Test '

27

Periodogram ordinates were calculated at the angular frequencies = wj = _Ti ’

T=100, § =0, 1,..., 30.

Periodicity of jth frequency = %-quarters. The frequency bands correspond to

the following ﬁetiodicities:

—4i

1-11
12-23
27-37

38-48

Periodicit

(quarters)
100-0.09

8.33-4.35

3,70-2.70Q

2.63-2.08

The seasonal frequencies j = 25, 50 and the adjacent frequencies j = 24, 26

and j = 49 were omitted from the bands used to compute the spectral decom-

position and the k-noise-test statistics.
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Table 15
Monthly Sets

Av. Ind. Ret. Net New Ord. 1Ind. Mat.
Set Hrs. Layoff Manhour Unempl. Prod. Sales Bus. Form Dur. Prices Wholesale
1 X X X X X X X X X X
2 X X X X X X X X X
3 X X X X X X X X X X

!l—u



Table 16 Set 1

One-Index Test Marginal Two~Index Test Marginal Three-Index Test Marginal

Statistics Significance Statistics Significance Statistics Significance
Bands (i) x2(71) Level x?(SA) Level x2(39) Level
1-22 155.47 .000 83.85 .006 51.01 .094
26-46 98.63 ’ .017 . 59. 82 : .273 35.80 .617
50-10 107.37 .003 - 64.71 .151 42,69 .316
74-94 85.24 .119 59.50 282 ' 36.08 ' o . 604
98-118 79.17 .237_ © 57.22 .357 | 38.67 L485
122~142 65.67 +657 45.16 <799 _ 29,89 .853
Overall 2 7 2 ) 2
Test x (426)=591.55 .000 X (324)f370.26 .039 X (234)=234.13 485

Periodogram ordinates were calculated at the angdlar frequencies wj = 2nj/T,
T =288, j =0, 1, ..., l44. o

Periodicity of jth frequency = T/j quarters.. Seasonal frequencies and adjacent

frequencies were omitted from bands used to compile test statistics.
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Table 18 Set 2

One-Index Test Marginal Two~Index Test Marginal Three~Index Test Marginal
Scatistics . Significance Statistics Significance Statistices Significance
Bands(}) x2(55) Level x2(40) Level 227 Level
1-22 113.56 .000 63.12 .011 31.26 - 260
26-46 78.38 021 47.45 ©.195 24,68 .592
50-10 89.10 .002 51.35 »108 31.01 271
74-94 61.14 .265 7.06 1.00 ‘ - 21.16 - .779
98118 63.65 .198 43.13 .339 ‘ 25.08 .570
122-142 51.46 .611 36.64 7.622 23.14 .678
overall ) ) )
Test X" (330)=457.30 - .000 X" (240)=248.74 .336 x (162)=156.33 .611

Periodogram ordinates were calculated at the angular frequencles wj = 273/T,

T =288, j =0, 1, ..., 144,

Perjiodicity of jth frequency = T/j quarters. Seasonal frequencies and adjacent

frequencies were omitted from bands used to compile test statistics.
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Table 20 Set 3

Periodogram ordinates were calculated at the angular frequencies wj = 273/T,

One-~Index Test Marginal Two-Index Test
Statistics Significance Statistics
Bands{i) x2(89) Level ‘12(70)
1-22 181.07 .000 117.45
26-46 1109.39 .Q70 70.87
50-10 124.92 .007 82.55
- 74-94 91.76 .399 67.05
98~118 85.55 .584 63.35
122-142 86.40 .558 63.64
Overall 2 2
Test x (534)=679.08 .000 ¥ (420)=464.91

T =288, § =0, 1, ..., 144,

Periodicity of jth frequency = T/j quarters. Seasonal frequencies and adjacent

Three-Index Test

Marginal
Significance

Level

Marginal
Significance Statistics
Level _12(53)
.000 84.17
L4648 44.54
.145 57.14
.578 40.30
.700 42.67
691 43.03
064 x*(318)=312.26

frequencies were omitted from bands used to compile test statistics.

.004
777
.324
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844

.834

.580
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Example of an application of observable-index models.

In the example we are about to discuss, an observable-index
model is fit to a fiée—variable system of quarterly data on money
(M1), a price index, a "demand-pressure’ variable (ratio of un-
filled orders for durable goods to shipments), the unemployment

25/

rate, and wage index.™ The sample period is 1949III - 19711V,
deliberately chosen to allow a substantial period of out-of-sample
projections.

The equation actually estimated is obtained by inverting (13)

to yield

23) D—l*(I—a#c)*y = g

We have taken c(s) = 0 for s > 2, D"l(s) =0 for s > 2,

and D—l*a(s) =0 for s > 3. These are just limits on lengths
of lag of the type necessary in any dynamic modeling. They make
(23) a constrained fifth order autoregression. To keep the estima-
tion process relatively simple, we take af(0) = 0, though as we
shall see the data seem mot to support this ceonvenient assumption.
We have used only one-index versions of the model. Obviously a

and ¢ can be multiplied and divided by the same constant without

25 Precise definitions and sources for the data are as follows:
M: Currency plus demand deposits, FRB data bank series #94, (Source:
Business Statistics, 1973). Price, P: Implicit price deflation for
nonterm business product, FRB series #156 demand pressure, C:
{(unfilled orders for durable goods)/(total shipments). (Source:
Business Statistics, 1973). Unemployment, U: unemployment rate
(total), FRB series #150. Wage, W: employee compensation is non-
farm business product, FRB series #251 (Series description:
Business Conditions Digest, June, 1972). The latter four series
were originally chosen as rough approximations to four series
appearing in the "price" and 'wage' equations of the FRB model.
Particularly in the case of C, this approximation was even rougher
than intended, as the corresponding variable in the FRB model is
(unfilled orders of producers durables)/(shipments of producer's
durables).
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there is a non-trivial subclass of index models which cannot be
normalized this way. However normalizations which do not, like
this one, bring in unwanted restrictions, are difficult to implement.géj

Some of the conclusions developed in the medel seem solid, in
part because they are non~controversial. For example, as one would
have expected on the basis of the work by Nelson [1972], and Cooper
and Nelson [1975], but perhaps not on the basis of Pierce's recent
work [1977],22/ there are significant cross-relations among these
five series, and they are of economically plausible form. Also, the
restrictions implicit in the one-dimensiongl unobservable—-index form,
which reduce the 125 parameters of the 5—variab1e.genera1 fifth order
autoregression to 42, are not strongly in conflicet with the data.

On the other hand, the model appears without "coaching" in
the form of a priori constraints to generate conclusions with inter-
esting economic interpretations. Money is strictly exogenous relative
to the rest of the system. "Phillips curve” relations between wage

or prices and unemployment arise largely from the common response

of these variables to money. Money affects unemployment fairly promptly,

263y requiring that there be a one-sided kxn g such that g*a
igs the identity and that c*y be serially uncorrelated, or equivalently,
that a{o)c*y be the one-step—ahead forecast error (innovation) in
atcky | we would fix a and c¢ up to multiplication by a fixed kxk
unitary matrix. This normalization would aveid unwanted restrictions,
but appears difficult to implement.

27xelson [1972] and Cooper and Nelson [1975] show that for
some series univariate autoregressions provide better out-of-sample
projections than multivariate models of the standard type, but
there are some series for which standard multivariate models do
provide better out-of-sample projections. Pierce examines all
possible bivariate relations among a group of financial sector
variables. Though there are significant relations among many
of Pierce's series, he emphasizes that the number of pairings of
series within this sector for which no statistically significant
relation is detectable is unexpectedly high.
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and the effect then decays over the course of two years. 'Surprise"
changes in prices or wages reduce unemployment, but only for about

a year. Prices and wages respond more slowly and permanently to
money. These conclusions have a monetarist ring, but the lenéth

of the lag in the response of real variables in the system to
innovations ("surprise changes') in money appears to leave more

room for discretionary monetary policy than is implied by some recent
classical rational expectations macroeconomic models.

This latter set of conclusions is discussed in this paper only
to show that results from "non-structural" models of this type
may be open to some interesting economic interpretations. They
are i1llustrative of a methodological point, and are not meant to
be treated as firmly established empirical results, for several
reasons. Most important of these reasons is the fact that some
obvious experiments on the list of variables included in the model
have not been carried out. One might suspect, for example, that
the strong effects of money on real variables in this system, and
money's exogeneity as well, might not persist in a system which
included GNP. A comparison (discussed below) of this five-variable
system with an observable-index model which omits money from the
system illustrates how important the variable—list can be in inter-
preting results from these systems.

Another reason for not treating the empirical results as firmly
established is the fact that some tests for specification error of
general form accept the null hypothesis of correct specification
only in the somewhat uncomfortable 5-10% range‘of marginal signif-

jicance levels. And finally this system is estimated using seascnally
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adjusted data. without special measures of the type we ordinarily
employzg/ to take account of this source of possible bias.

Table 1 diéplays the estimated D_l*a, ¢, and D lag
distributions for (3) , together with their asymptotic standard
errors.gﬁ |

. While it is difficult to tell much about the dynamics of the
estimated system from Table 22 directly, one can reach some conclu-
sions by looking for zerces in the table. Thus, the strongly
significant D(s) estimates indicate that every residual in (23)
is serially correlated. The fact that some a and ¢ coefficients
are more than twice their standard errors indicates that there are
statistically significant c¢ross-variable effects in the data. One
can also make some inferences about which variables would be plausibly
treated as exogencus in the system by looking for statistically
insignificant a's. From this table it would appear plausible that
money, unemployment, and demand pressure are all excgenous, in the
sense that feedback from other variables into them is statistically
insignificant. However, before reaching a conclusion on this it is
important to see (as we shall below) how much feedback into these

variables from others is implied by the point estimates.

ZBNote that for the unobservable-index models we have been able

conveniently to exclude seasonal bands from the data, which should
minimize seasonal bias.

2%stimates were obtained by maximum likelihood, conditional on
the observations on y for the five initial periods 1948II - 1949IT.
Though this is not strictly a maximum likelihood procedure (it
ignores Information about parameters available in the initial observa-
tions), it is asymptotically equivalent to maximum likelihood.
Natural logarithms were taken of all variables and linear trends

then removed by least squares for each variable before the observable-
index model was fit. '
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Variables for which the corresponding row of < Qanishes are
"bassive" =- they may be affected by other variables in the system,
but their own residual does not feed back into the defermination#of
‘.other yariables. It appears from the table that a null hypothesis
of passivity might be accepted for price and demand pressure.

The reasonableness and possible econemic mechanisms of the model's
dynamics can be assessed by examining the model's response to
"jhnovations" in each of the five variables. The innovation iﬁ
an element of a vector stochastic process is the difference between

the element's current value and the best forecast of the current

value available last period -- the one-step ahead forecast error.-v
Thus Panel A of Table 23, e.g., displays the response of the estimated
system to a unit upward "surprise" in the money variable. Because

the system implies that residuals are serially correlated, the initial-
period unit surprise in money generates a sustained smooth rise and
slowrfall in money, rather than a quick return to zero. One could of
course trace out instead the system response to a unit disturbance

in money with an immediate return to zero or with the disturbance

fixed indefinitely at the unit level, but these would give less

reliable pictures of the dynamics. What Table 23 displays are responses
to typical patterns of deviation from trend for each variable. For
money it is clear that a unit deviation from trend followed by immediate
return to the frend value would be atypical. Since such a pattern of

behavior for money is rare or non-existent in the historical period,

Fhte notion of an "innovation", we should note, 1s tied to theory
based only on first and second moments, or else to an assumption of
normality. In general it is not true that the only information about
y avallable from observing previous values of ¥y concerns the
méan of v. : thus in a general stochastic system one could not do
what we do‘here: discuss the response to a ''shock" without reference
to the initial state of the system.
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the model's tracing of the effects of such a pattern is likely to be
unreliable.*j

To pick-out one interesting pattern of results, note that Panels
B and E of Table 23 show that surprise increases in price or wage
generate a response in unemployment of the type which might be pre-
dicted by a rational expectations theory of the Phillips curve: an
initial drop in unemployment, followed a year later by a rise in
unemployment above trend of roughly the same order of magnitude.

The year-long persistence of the initial effect is perhaps greater
than would be expected on the basis of the strictest classical
rational expectations models, but it is certainly weaker than would
be suggested by policy discussions that assume that the vertical
Phillips curve 1s always five or more years in the future. Further-
more, Panel D shows that an unemployment innovation has no damping
effect on prices or wages (what effect it has 1s positive). This
could mean thét surprise changes in unemployment reflezt'Supply-
side influences not related to the standard Phillips curve mechanism.
For example, unemployment innovations might refléct shifts Iin com-
position of the labor force or adjustment to downward shifts in supply
of non-labor inputs.

Going back to Panel A, however, we see a pattern of covariation
much more consistent with the existence of an exploitabie Phillips
curve. An upward innovation in money generates a long-sustained drop
in unemployment accompanied by an even longer-sustained rise in prices

and wages, leaving the real wage roughly constant. At least over this

31
This point 1s a special case of a generally applicable point:

any kind of statistical model can give unreliable projections for
inputs of historically unprecedented form. The point has been made
before by others, but bears repetition.
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sample period, the model suggests that expansionary monetary policy
did produce sustained decreases in unemployment together with sustained
rises in wages and prices. Of course any reasonable modeling of
expectation-formation is likely to suggest, as does the ratibnal
expectations formulation, that the form of the response to policy
depends on the nature of the policy, so that Panel A might.qot e
a reliable tool for policy projection if policies ended up
systematically different from what they were in the sample period;
Nonetheless, the persistent effect of money-innovations in Panel A
definitely implies either that expectations are not ratiomal, that
there are important sources of lags other than information delays;
or that the model estimated here is very mistaken.

Now to cast the proper amount of doubt on these interpretations
right away, consider Table 24, which reports resu}tslanalogous to
those of Table 2, Panel E for a model fit to the same sample period
but excluding the money variable from the system. Camparing Table
24 with Panel E of Table 23, we see that the deviation from trend in
fhe wage itself generated by a wage innovation 1s more rapidly damped
in the five-variable system, that thé effect of the wage on C, the
demand pressure variable, is much larger in the four-variable sfstem,
and that the "expectational Phillips curve' behavior shown in Panel
E 1is not présent in Table 24. 1In fact, in results not displayed here,
oﬁe can See that no innovation in the four variable model generates
the kind of persistent negative covariation in wage and unemployment
which appears in Panel A of Table 23. ' v

From the point of view of the larger model, it 1s easy to explain
the large differences between the two sets of results -- the "innova-

tions" in the smaller model are not subject to the same economic
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interpretation as those in the larger model because a substantial
part of the "forecast errors” in the smaller model are predictable
from knowledge of past values of the money variable. (The sum of
squared residuals for wage, e.8., is 307 smaller for the five-
variable system). This is only an illustratiom of the theoretical
point made earlier, that innovations and the system's typical re-~
sponses to them will not remain fixed under changes in the list of _
variables unless all non-passive variables Temain in the system.
Clearly in thié case money is non-passive., However, it seemxs quite
likely that in a system which included some direct measure of
aggregate current activity, such as GNP, that measure would not
be passive, ;nd the results of Table 23 could undergo substantial
changes.

To assess the amount of cross-dependence in the system, it-
is useful to ask what proportion of the variance of k—step-ahead
forecast errors in one variable is accounted for by innovations in
each of the other variables, allowing k to take on different values,
As k approaches infinity, the variance of the k-step ahead forecast
error approaches the variance of the series itself. fable 25 reports
these computations?gJ Over a oune~year horizon, each variable is
explained primarily by its own innovation, though the wage has sub-
stantial contributions from prices and unemployment. Over a four-
year hori%oh, the bulk of the explanation for price ané wage movements
has shifted to other variables, the leading role being played by noney,

though unemployment contributes non-negligible explanation as well.

32 The coefficients in Table 23 are the coefficients of the moving
average representation of y. The numbers in Table 25 are obtained by
taking sums of squares of the coefficients in Table 23 over the relevant
horizon, welghting each panel by the variance of the corresponding
innevations. .
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The two Feal variables, unemployment and deémand pressure, are explained
primarily by their own -innovations over all horizons, with some non=
negligible -explanatory power at time horizons greater than a year
ittFibuted to other variables. Money at all time horizoms is explained

slmost entirely (more-than 97 Per'cént of variance) by its own innova-

fions, which is-to say that it 1s sharply causally prior in Granger's

Semse. | el TinooTine

REEEES 0 light of Tébié 25, it wmight be interesting fé test the hypothesis
that money is'exogenOUS;'that uhemployment is exogenous, and that
wages and prices are passive. -Only the first of these has been tested.
fhe- test’ is executed by estimating the model subject to the constraint
that’ the row of “a cerresponding to money is zero, then using the
computed constrained likelihood maximum to generate a likelihoéd ratio
test.T“Tﬁ%‘téétfktafiSfiE,'hs?ﬁptbtithlly"distributed‘as..i2(3), is
i%iﬁibiibh:bo%ieé?oﬁdé’td a marginal- significance 1evei‘greater than

AT R R ceviitio oo oIztooooo In .-

¢:"" qt 1is also Interesting to test the very strong constraint on the
‘system that &1l ‘elements of “'& ‘and. ¢ be zero. - In this form, the
‘System ‘becomes a det ‘of urnivariaté 3rd-crder autoregressions, so that
o ‘¢ross-variable effects are ‘alléwed. - For this null hypothesis, the

“[{keIihood Tatio -statistic is 4434 and -is ‘asymptotically distributed

§ﬁ§:i2(27){ ‘The hypothesis {s -therefore rejected at a marginal signif-

“féance Tevel betweén .01 and (02,777 7 I

“'wé might ask whéther an unéonstrained aitoregression of the same
tarder ég’éuf7éQdétidﬁ7(ﬁj3(fifthéordér in this case) fits substantially

better than the index model. The 1ikelihood ratio test statistic for
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this hypoéhesis is 89.7 with 73 degrees of freedom. This allows
rejection of the index-model constraint at a marginal significance
level of about .09. This latter result probably should leave us
willing to use the index-model, but should make us a little uncom-
fortable about doing so.‘

The form of index-model we have fit requires that a(0) be
zero, 1.e. that z have no contemporaneous effects on ¥y, so that
current innovations are uncorrelated. The general form of index
model ﬁakes no such restriction, and is only slightly more complicated
to fit. Table 28 shows the matrix of cross-correlaticns among the
regiduals from the fitted model. Treating 90 times the sum of squares
of off-diagonal elements in that matrix as x2(10) yields a test
statistic of 16.9, whose marginal significance level is about B%.
However the row of correlations corresponding to the wage 1is clearly
large, and the test statistic for that row alone would Be 14.17,
which as a x2(4) statistic has a marginal significance level
of less than .0l. Since the non-zero covariances are concentrated in
a single row, there is some prospect that they have a form which could
be accomodated by a one-dimensional observable—-index model with
a(0) # 0, but it seems quite unlikely that the model actually fit to

the data is correct in assuming no contemporaneous correlations.

the system were re-estimated allowing non-zero a(0). However, signif-

{cance tests might be quite different with this change in specification.
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Three types of test for the stability of the model over time
were carried out. 1In one, the sample was split between 1959 and 1960
and the model fit separately to each half-sample. The likelihood-
ratio test for the null hypothesis that both halves of-the sample
were the same was 28.30, which is asymptotically X2(42)%2j1n another
test, the model was used to predict the period immediately following
the sample period (i.e., beginning in 1972.1.). It appears that 1972.1
was an unusual quarter, at least from this model's perspective: <the
residual for the money supply was more than six standard deviations,
and that for the wage was 3.8 standard deviations. Since, as we have
seen, it appears that the model ought to allow positivé contempor-
aneous correlation in wage and money residuals, these two bad resid-
uals probably reflect the same phenomenon, a dramatic shift in the
pattern of behavior of money, which the model projects as a pure
autoregression. Whether or not the structure of the model coﬁditional
on money shifted remains an open question.

It is also of some interest to look at projections made far out
“of the sample period, to see how badly the model behaves in the recent
period of recession. As can be seen from Table 26, the model prediets,
using data through 1975.1I, an unemployment rate peaking at 9.2% in
the first quarter of 1976, and price deflation beginning in the first
quarter of 1976. Part of the reason for this forecast éppears to be
that money 1s predicted to be expanded at only a 2 per cent annual

rate during 1975. Inserting actual data for money in the second quarter

3Yowever, residual varlances appear to be larger in the earlier part
of the sample, which probably biases the sample-split test in favor of
the null hypothesis,
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of 1975 (but not for other variables) results in the projections in
Table 27. Now the unemployment rate peaks at 8.1% in the 197511 arid
111, and the price index remains roughly constant through 19771.
Whether one regards these projections as bad enough to cast doubt

on the usefulness of models of this type, or instead as surprisingly
reasonable for a model applied without refitting to a period so far
outside of its sample period, is a matter of judgment. Probably that
judgment ought to be reserved, in any case, until similar exercises
can be carried out with a variable list correcting some of the glaring

omissions from this model's list of wvariables.



Table 22

ESTIMATED COEFFICIENTS FOR OBSERVABLE-INDEX MODEL

C(s) D_l*a(S)
5 1 2 3 0 1 2
M 1.0000 0.0 0.0 .0018 .0092 .0063
(.018) (.024) (.013)
P 4.4136 -2.9456 -2.1460 .0552 -.0084 -.0090
(3.06) (2.40) (2.16) (.0189) (.0170) (.0116)
C L1795 .0847 -.1535 .2763 ~.1824 -.0359
(.150) (.252) (.169) (.154) (.221) (.131)
.3031 -.3991 <2344 | -,3546 .1265 .2285
{.125) (.184) (.120) (.246) (.303) (.238)
W 5.3265 .6989 -4.9039" .0561 0264 ~-.0289
(2.97) (2.03) (2.45) (.0240) (.0202) (.0158)
D{(s) (diagonal elements)
1 2 3
M -1.866 1.124 - 247
(.114) (.208) (.115)
P -.871 .021 -.076
(.211) (.272) (.158)
c -1.310 .181 .218
(.113) (.193) (.108)
u -1.532 .768 - -.138
(.114) (.1§5) (.115)
W -.766 . 209 ~.311
(.194) (.185) (.229)
NOTE: Standard errors in parenthesis (from asymptotic distribution), Here, as

in all tables of this section, M is money, P is price, C is demand pressure,
U is unemployment, and W 1s wage. Feor precise definitiens see footnote 25 in
the text.
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N
«16T367E=n]
«237T1SE=r]
«356234F 1]
«4B6T0ATE=r |
+557450E=n}
sRLGFR ] THE=( )
«TONBIIE=N1]
w725649F =1
«T23510E=n}
«ASRISEE=N]
+659700E=N
«ehl4615F=ny
eS6B8TAGE =1 ]
+D2RG4NEwn])
W6BT443Ewn)
«4653402€-1.)
0A22935E-G1
«3949NBE=N]
« 36A39NEwn]
53428006'”1
QBITQRSE“HI
-P94113E-hl
+PT1511F=n]
oESCS?“E-WI
«e”3139G9E =]
2214234F =)
e J9R9T74F =
« 1BR448F =
17341 TF=n)
C16263]1F=r)
+ 15286AGE=3]
214398 7F =
« 1357 T4E=r)
.1292h9F—ﬂ1
|]21343E‘ﬁ1
+115030E=n
«109292F=11
-104101E“ﬂ]
e 994 236E=rp
W G5216TE=np

0
0937454E-01
«113177
182321
22638)
261836
« 285918
«2H5921]

« 267111

2230079

180720

« 126756

e 741729 =n]
e 283543F ]
«TT24R0F=02
«e331409F=n]
QQBSOSBF-Dl
e 555 785F =~}
«565239F-nl
«eD34657F=(1
«4Bl7TTO0F=01
«419241Fan]
+355123F =1
o293396E-01
2235711€=01]
2 182446F =]
+133622€=01
B939R1Fan?
+D01759F=2
«1649SQ]lFapn?
«111773F=~02
«e 3267 35F i
«48]1968E=02
+D8345PF=p2
+640219E=-n2
062966 apn2
HE258T7E-p2
H4BTB2Ewn2
«PE2937T6F =02
«609965F=np
.593845F~p2

l.0pooo
l1,4248%
1.37787
1.12510
+B30604
«S9TERR
«430310
«33231n
« 293678
e 29254 ]
+309450
2325643
«325213
« 315725
« 286307
« 246112
«2N1571
+ 158578
«121123
-013430E-ﬂ]
cﬁQEQEQE-U]
-537771E-01
14 298m6E-01
35101 AE~(]
0286823E'Pl
« 2Z2R3R3E=nN1
« 1 72089E=pn1
«118223E~01
 hQ122RE=0
2 ZT4HYTE=N?

=«478309E=n3
=.2T1613E=02
a4 04541E~n?
“~s4644H4E~N?
'0473760E-02
-l¢5412QE‘ﬂ?
'-423194E'ﬂ2
=e392666E=n2
=e368B340E=np
‘-3GIEGQE“92
~+¢339513E~02

0
2»170051F«n1
«329648F=01
«3BE3NGF=0]
«514356F~=01]
eH12T723F=01]
«684TT78F=01]
«730793F=01
«734332F=(]
«T10233E=~01
e O64E646F=(]
H0TNESF 0]
«B4T2R0F=0]
«4902AR5F =1
«439649Fmy]
«396183F=01
.3589]1F“01
« 32649 Fap]
«297262F=01
2T0030F=n]
e 244 1A]F=(1
«21951RF =g
«196332F =01
+17497SFan}
+1587R4F =01
e 1 3B8953F (]

-124493F-01

«112206F=01
«J01R3GF=( L
09303?9F*02
B4 TOTF =12
s THONGTF (2
073IOQSF“ﬁ2
+O6T9ARE]lF=p2
e634013FwG2
«9937A8BFap?
+55RA05F -2
«528558F-()2
¢503044F =02
+4B1T29F~02
2404]]2F=02



LGSEITTE~ND

0

JT977RTF=01

179014
. 241897
.277055
279746
25ARRT
P2 THRS
.194738
167669
L1494n0
«1387T"0
L136770
L 137581
139394
J147°712
. 13RGCH3
135503
. 13757349
126619
L118A32
+113183
L 10A%94
104919
L192n13

LOY9a3V4F~01
L9T7s14T7E-D]
« 954651 E-01
.Q33?F‘11F"ql
L9l AB4BE=N1]
LABTE10F =01
JR6E3PAOE-N]
LB4rEA3p-nl
JARIRZ245F =01
L, 797225FE-01
LTT77648E=-0]
LT150A44FE-01
< T4P2A13F=1
. 726313F=01
L71nG15E~01

TABLE 23

PANEL E, RESPONSE TO W-INNOVATICN

0
e 294150
H1RBD]
.A392n3
e HaBHIRY
AUZ2547
«BNGT29
LA YAY3A
. 3377R3
L27R91s
U817
L P2TRAR
W 2230AN0
222715
PE1YIRZ
. 215637
05097
L 190670
2174213
LI8TTYE
2 V4P TRE
. 130312
e 120505
L1 13037
1NT2RD
107542
LOHR3RIF "]
. 239872E-01
L H96QBGE -]
« 51 214E=-01)
HAE3OTE~:]
o TORITEE~]
2 T2R2FASE ="
WFRABATE -]
JAGASAGE =Y
WFAPEATIE -
e BN IHANE =}
LHT99REE-1]
sAHN1IS4E-
«H419Y3E -1
WBP48TTE-1

1.4T186"
2.992@5
3.20041

Z2.,FA51%
170280
JRT1346
cH23034F-01
Z506431
JEB2E14S
LO3U5A0
L 365494
L T1T7A0
526438
.357404
L22BTAY
144207
LATOL00F- ]
LT60322¢~01
2619202801
LG0T7A36F =01
«352R15F=01
L146489F =1
LRY3TAZE~CE
«3159614F -1
CE1UB80F -0l
LE40093F~01
LTONRTEF~01
LR LTS |
LEDFGNTF=0l
WO TSIA0F -1
U4 9IITBE =iy ]
LA2T5]14F =001
L37T1278F =01
23343041 =01
«319254F=-01
e 314137E-0]
LA22673E~01
«332384F -4

-] ,8BHB5]3
-4 ,AR3368
-'E:‘n }.QSDB
=3.48007
-1,15073
1.17766
2. 76746
3.46577
3.39026
2.75846
1.85350
1.01703
« 330424
- 07754 0E=01
-, 2T6R37
- 265509
e 1 4THAY
-.P59799E~03
L121175
« 18763k
195113
156717
S23B11T7E~C)
«POARITIE~D]
-.7_3161‘\6-(]1
- - 25037E-01
-, 753016E~01
-, T0R653E-0l
- B53272E~01
—e2HPH1I6HE~N]
-, 1B9544E~01
—eETOZOTE=NZ
- 49THTHE-03
1492849E-33
-eFS1010E-02
-~ 106371E~01Y
-,135453E~01
-, 147T870E=01
~.144533E-01

1.06G000
1.06502
1.16093
1.23R”21
1.109%1
~994578
s H39ANRY
«HER3I?3
«57T2524
s GB2TY?
LZ2ET33
« 343H54
« 373508
«IDRG3T
L320138
« 294319
s 26HGTA
«23H84A2
2209204
185393
< 168717
0150030
137643
«IZ2THLT
e119034
~111197
«1E3A6H
d9ORAGORE-(]
H9In29F~01
HE2402F =01
e THH9E0F ]
s IN1T0AF=]
551323501
OTHRHE=UL
LHBTOLIARE=G]

WH3ITHRIOF-0]

L INYIRPFE =]
«HH3REHF=(1
.4ﬁ0Q2(1F-01
« 43894 GF =01



. 277556
« 769403
1.16946
1.45628
1,62536
1.72778
1.7819¢0
1.80251
1,79030
1.749R2
1,68415
1.56873
1,46795
1.385%R¢6
1.26562
1.14006
1,01149
JHE2048H
e 753550
627643
«505754
«3AS13¢2
f2TRB70
« 1 TEBAS

«HORTOHE~0]

-e552364E-02
= R2BET18E=(1]

"‘._150964
~4209627
~e25R9)2
-, 29F99¢
=-a330156
‘-352817
*03ﬁ7476
-.374?18
'0375190
-~,3695P4
"035R624
-.343047
-,323592

1.5945%5
5.,81136
B.40311
10.1786
10,2403
9.56666
R, 19065
£.S58246
4.TOT742
3.01139
1,31001
~1.,50608
254764
”3.33498
~3.,87705
-4020057
~4.33475
-4 431399
~417114
~3.93788
'3-04191
~3.30707
'?oq52ﬁ0
~2.59354
‘2024995
-1.90254%
‘1.5&324

S =]1,28587

~1e1]154
-, 160702
-.532528
~e326243
-.140837

P POEBRALAT=01

171224
.295562
410369
504231
«581700

TABLE 24

« 615850

0

= £92737E=¢1
~eG37248HE~0D1

»S39E20
1.87452
3.27649
4,47926
5.,275%52
5.70824
5.82468
5.71546
5.4365]
5.04375
4,57475
4,06416
3.53632
3.0108)
2.5003)
2,01367
1.55603
1.13057
« 738854
« 381624

«590121E=01

-.229123
~-,483163
~.703617
-+91142
-1,04654
=l.17081
"1.26515
=1.3309H
=1.36996
~1.3751%
'1034572
-=1.29809
~1.23476
~1,15826

FOUR-VARIABLE SYSTEM, RESPONSE TO W-INNOVATION

W

l.00000
1.20865
1.,42941)
164529
l.87622
2+61863
2.08155
2.06479
2.00027
1.8994])
le77658
1.6364/5
le48652
1.33026
‘117260
l1.016%H
«864914
2719247
2580891
« 450663
«3291AR5
e 216855
«113960

a2067455“01

“0136733
-+ 2008AR1
~e 255417
=.300567
“.330589

"=e363833

-,3H82731
-.393793
~a394775
“-3860]8
"0372041
-+ 353581
~.331382
’0306179
-.278685



TABLE 25

PROPORTION OF VARIANCE OF k-PERIOD AHEAD FORECAST
EXPLAINED BY INNOVATION IN ROW VARIABLE

k M P c U W
M .997 .021 017 .007 .053

P .001 .B54 .024 .022 .159

4Q c .000 .021 .915 .007 .057

U .001 .052 .022 943 .133

W .001 .052 .022 .021 .598

M .984 171 .067 .060 277

P .002 .530 .015 .035 .058

80 c .003 .080 .840 .024 .125

U .007 .165 .059 860 .258

W .003 .053 .019 .022 .282

M .973 V452 154 .066 .520

P .002 .240 .034 .054 .04t

16Q c .005 .069 725 .039 .075
U .018 211 .071 .814 .236

W .002 .028 .016 028 124

M .973 .606 171 .068 .637

P .002 158 .034 .054 045

24 c .005 047 .709 .039 .053
U .018 168 .071 .812 .178

W .002 021 015 .027 .087



1975 11

111

IV

1976 1

II

III

v

1977 1

1975 11

I11

Iv

1976 1
II
111
v

1977 1

PROJECTIONS FROM

M

285.
287,
288.
290,
291,
292.
292,

293.

PROJECTIONS FROM 1975 IT INITIAL CONDITIONS FCOR M,

1975.1 INITIAL CONDITIONS FOR OTHER VARIABLES

M

290,
296.
301.
303.
305.
306.
307.

307.

173.2
173.8
173.7
173.3

172.7

172.2

171.8

171.6

TABLE 26

1.638
1.634
1,595
1.533
1.466
1.411
1.371

1.346

TABLE 27

P
173.2
173.9

174.1

174.0

173.8

173.7

173.7

173.9

c

1.638

1.644

1.626

1.594

1.561

1.538

1.522

1.512

1975.I INITIAL CONDITIONS

U

177.7
179.5
180.0
180.5
181.0
181.6
182.5

183.5

177.7
179.7
180.9
182.1
183.6
185.2
186.9

188.6



TABLE 28

CORRELATIONS AMONG RESIDUALS

M P c U - W
1.0

.103 1.0
=-.051 .035 1.0
-.099 .009 .076 1.0

.157 .218 -.186 ~-.225 1.0
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