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1. The Model Economy

Households

Households maximize, by choice of C(sY, £(s%, t = 0,

() max Y} Bw(shHUIC(s),f(sY]
=0 g

subject to

2) CsYH + K%Y + B(sY) = (1 — r(8"HW(sHE(sH) + Rb(s‘)B(s“l) + R (SHK(YH + T(sY,

subject to K(s™1) = K,, R(s")B(s™!) = a,, where K, and a, are given parameters. Here, s' =
{s0,5;,.--,5,} denotes the history of the exogenous shocks and C(s), K(s"), B(s") denote period t
consumption and end-of-period t capital stocks and loans to the government, respectively. Also,
R, (s") and R,(s") denote the gross returns on B(s'"') and K(s' '), and T(s") denotes period t transfers

from the government. Here,
3) R =1+ (1 - EE"NREY — 9),

where 6°(s*~1) denotes the effective period t tax rate on capital income, which is a function of s~!

& denotes the rate of depreciation on a unit of capital, and R is the rental rate on capital. Finally,
7(s") denotes the period t labor tax rate, W(s') denotes the wage rate and £(s*) denotes period t hours

worked. The first order necessary conditions for the household’s problem are:

4) U,(sH + UsH(1 = 7(sHW(EH =0

(5) Uc(sl) — B E 1,l,.(sr.+1|SI)U'C(81+I)Rk(st+1)

sl.-H

(6) UC(SI) = B E 7l'(Sl+] |St)Uc(Sl+i)Rb(St+l).

sl:+l



We assume the following parametric form for the utility function:

) U(C,0) = [CY (1 —0)y1%y, wheny # 0

= (1—-y)log C + v log(1—£), wheny = 0.

Firms
Firms rent capital and labor and combine these with technology, x(s'), to produce gross

output F(s") as follows:
®  F(sY = [KHfexplut + x(NLEHF .
Since firms are assumed to operate in competitive markets, their actions imply:

@  R() = Fy,

(10) W(@H) =F,,
where F, , and F,  denote the partial derivatives of F with respect to K(s'"1) and £(s"), respectively.

Equilibrium

The resource constraint for our economy is
(1) CEYH + GEY + KsH — (1=K = F(sh.
It is convenient to scale the variables as follows:

(12)  o(sY) = exp(—pd)C(s"), k(s = exp(—ud)K(s"), b(s?) = exp(—ut)B(s),
g(s) = exp(—put)G(s"),

f(s") = exp(—am)k(s'~)1" lexpx(sNLEN? ) = exp(—u)F(s"),




u(sh) = Ule(s), £(s)

B = B explu(l —v)VI,

8 =1— (1-8) exp(—p),

1 (s) = exp(—p) + (1 — 6N + 1 — exp(—p) - 8),

Iy(s) = exp(—pRy(s),
where f, denotes the partial derivative of f with respect to k. Given our functional forms:

u(s) = UL exp{—put[(1—v)¢ — 11}
Uy(sh) = Uy(sh) exp{ —put(1 -y}
f,(s) = F(s") exp(—put)

f(s) = exp(—p)Fy(s).

Here, u_, u, denote the partial derivatives of u with respect to ¢ and ¢, and f, denotes the partial
derivatives of f with respect to £. Using this scaling of variables our first order conditions and
resource constraint are:

u (s

)

(13) 1 +

(I — 7(sNf(sh = O

u,(s

BuC(SH 1)

1

(14) Y w(ssH

s u(s

r (s - 1 =0

(15)  c(sY) + g9 + k(s) — (1-8)k('™) = f(sY).



These are the equilibrium conditions for a nongrowing version of our economy in which the discount
rate is 3, the depreciation rate is 8, the utility function has the form given in (7), the after-tax return
on capital is 1,(s") and the production function is exp({—au)[k(s'~")]*[exp(x(s))L(sH]* ~¢.

The exogenous shocks are given by x, g, 6°, -, T. They are considered uncontrollable by

households and firms. Let

X,—X |
log(g,/2)
16y s = | ¢
T[—T

log(T /T)

Here, a variable without a time subscript denotes its value in nonstochastic steady-state.

We suppose that the exogenous variables can take on only one of a finite set of N, values:

(17 s, €8 = {s(1),....s(N)},

where s(i) is a 5 X 1 vector of numbers, i = 1, ..., N,. Let

-Wu T W:st
18) .- M1 T2 0 TN, ,

_”rN,1 TNz ""'Nst_
where

(19) = = Prob[s.., = sG)|s, = s(@].

We define an equilibrium for the nongrowing version of our economy as a set of functions



k(s = gk(s'"1),s), c(s) = h(k(s*"1),s), and £(s") = n(k(s'"!),s,) such that (13)-(15) are satisfied
and the transversality condition, 8'w(s")u (sHk(s") = 0 as t = oo, is satisfied. In addition, we require
that the government budget constraint be satisfied (given (15), this is equivalent to requiring (2)) and
that 3'n(sHu(sHb(s) = 0 as t = o . An equilibrium for our growing economy is obtained by scaling
in the obvious way. We consider equilibria which are “path independent” in the sense that all
histories s' which give rise to the same (k(s'™!),s,) produce the same decisions, k(s), c(s), £(s".

In practice we approximate g and n by log-linear functions § and fi, as described in
Appendix A. The function h is approximated by fi, which is obtained by combining (15) with § and
fi. In Section 3 we discuss our strategy for verifying that the government budget constraint is

satisfied.

2. The Value Function and Equilibrium Government Debt

In this section we discuss our strategy for approximating the value function and the
equilibrium debt function. We show how to use the equilibrium debt function to verify that the
government budget constraint is satisfied. Each function satisfies a particular functional equation on
a continuous state space defined by all (s,k) such that s € S, k = 0. In each case we adopt a
computational strategy similar to Coleman, Judd, or Marcet by restricting the state space to a finite
number of points (s,k) such that s € S and k € K, where K is an M-element set of values for the
capital stock. This converts our functional equation into a system of MN, equations. Our
approximate value and debt functions are MN, parameter functions which solve these equations

exactly.

2.1 Equilibrium Government Debt

Evaluate (2) at t + 1, multiply by Bw(s**'|s"), sum over all 5., € S and take (4)-(6) into

account, to get



(20) B(Sl) — TJ_I(_[)' B' E ‘.T(SH-IIS[){UC(SHI)[C(SHI) + K(SHI) + B(SH‘)] + Uf(SH‘l)f(Sﬁ-l)}
c 8 S141
— K(sY.

Multiply both sides of the above equation by exp(—ut) to get

(21) b(st) — (lt) B E W(Sl+1'St){uc(sl+1){c(sl+l) + k(sl+1) + b(st+1)] + uF(Sl+1)€(SL+1)}
Uc S Sy
— k(s),

using the scaled notation introduced above. Let b and k denote the beginning-of-period stock of debt
and capital, and let £ denote hours worked in the current period. Let primes denote next period’s
value for these variables. Then, in equilibrium, k' = g(k,s), ¢ = h(k,s), £ = n(k,s). Similarly, the
current period mérginal utilities of consumption and labor are functions of k and s only, and we
denote these by u.(k,s) and u,(k,s). Then, when evaluated in equilibrium, (21) defines a mapping
from the space of debt functions, b’ = ¢(k,s), into itself. The equilibrium debt rule is the fixed

point of this mapping. To make this more precise, define

22)  alk.s;e.ghn) = u—(:(—sj B Y. 7(s'|s)ulelk.s),s)h(gk,s).s") + glgk,s),s")

+ o(g(k,s),s0] + u,(glk,s),s)n(gk,s).s)} — gk,s),

(23)  &k.5;0) = o(k,5) — a(k,8;9,8,0,h)
forallk = 0and s € S. Then, the equilibrium debt rule has the property that

(24) Ak,s;egnh) =0 forallk = 0,s € 8.



In practice, we do not compute ¢ exactly. Instead, we approximate ¢(k,s) by a function, ¢(k,s;b),
which is piecewise linear in k for each fixed s € S. The vector b gives the values of ¢ for (s,k)
such that s € Sand k € K = {k;,....k}, where M X N, is the number of elements in b. By

analogy with (24), our method for approximating ¢ involves selecting b so that
(25 &k,s:b,g.0.0) =0

for all (s,k) such that s € S and k € K. It turns out that finding b in (25) requires solving a system
of linear equations. To see this, suppose we begin with some set of parameters b. Then, a(k,s;b.§,
f,h) fork € Kands € S defines a new vector, b'. This mapping from b to b’ is linear and can
be written b’ = T(b), where T(b) = Z + Bb. Then, according to (25) we seek a b such that b =
T(b). But this simply requires solving the linear system of equations b = Z + Bb for b. The
MN; % 1 vector Z and the MN; X MN; matrix B are described in detail in Appendix B.

Given our (approximate) equilibrium decision rules and government debt function, we can
verify that the government budget constraint is satisfied. Since the resource constraint is satisfied
by our construction of the equilibrium consumption decision rule, we need only verify that the
household’s budget constraint, (2), is satisfied. But, for t = 1, 2, 3, ..., we can in effect force it
to be satisfied by appropriate choice of R (s"). Thus, we need only verify that (2) is satisfied at

t = 0. Solving (2) for R,(s®)B(s™") and imposing the equilibrium decision rules, we get:

(26)  Ry(SOB(s™") = filky,80) + £(kp,50) + @(Ko.50) — (1 = 7{so)felsoIn(ky,So)
= 1(8p)ke — T(sp),

where k;, = exp(—p)K,. The government budget constraint is satisfied if R,(s"B(s™!) = a,.



2.2 The Value Function

Next, we require the discounted utility, (1), associated with our approximations to the

equilibrium decision rules, g, , fi. Let this be given by the function »(k,s). Then,
27) vk, = u(hk,s),0(k,8) + BEL(K',s)|k,s].

The function », when evaluated at the initial values of k and s, corresponds (apart from an additive
constant when ¢ = 0) to (1). We approximate » using a slight modification of the approach used
to approximate ¢. In particular, we approximate » by », a function which is piecewise linear in k
for fixed s. We pin down # by imposing the condition that it satisfies (27) for all s, k such that

s € S and k € K fixed point condition. See Appendix B for the details.

3. Assigning Parameter Values

For parameter estimation purposes, it is convenient to display equations (13)-(15) in
nonstochastic steady-state. In this section we adopt a notation which is slightly inconsistent with that
in the previous section, by letting a variable without the s' argument denote its value in nonstochastic
steady state. Then, in nonstochastic steady state, (13)-(15) become

I —v 1 —-1£

28 1- 5 7

A-nl-a) £ =0
C
(29) B expl(1—y)pdllexp(—p) + (1—6)af/k + 1 —exp(—p) — 8] — 1 =10

(30)

_ expl(l—e)x — aplz® — 6z _ g
exp[{l —a)x — aplz® f

- ©

e, % = expl(l —a)x — aplz® ",

where z = k/f.



The model parameters are v, 3, ¥, g, 7, 6, &, g. We set u = 0.016, the average annual
per capita growth rate in GNP in the post-war period. Also, we set § = 0.083, the rate of
depreciation implicit in post-war U.S. per capita investment (public and private) and capital stock
data. In addition, we set g/f = 0.18, k/f = 2.7, (1—4£)/f = 3.28, their post-war sample averages.
Our estimate for (1—£)/f reflects the assumption that the representative household has a time
endowment of 15 hours per day (i.e., 1,369 hours per quarter). In addition, it reflects an estimate
that per capita hours worked has averaged 320 hours per quarter in the post-war period. Finally,
we set o = 0.34, the post-war sample average of the ratio of employee compensation plus
proprietor’s income to total gross output. For a further discussion of the data on which these
calculations are based, see Christiano (1988).

We adopted the normalization, x = 0. Given these ratios and parameter values, (31) implies
z = 4.47 and (30) implies ¢/f = 0.56. The latter coincides with the post-war sample average of the
private consumption to gross output ratio. We still have six parameters to pin down: g, v, 7, 6,
¥, and B. We set the ratio, 7/8°, equal to 0.87, the ratio of the postwar average marginal income
tax rate to the average tax rate on capital. The average marginal income tax rate, 25 percent, is
based on data in Barro and Sahasakal (1983) and the average effective tax rate on capital income,
28 percent, is based on Jorgenson and Sullivan (1981)’s data. We chose the remaining parameters
to be consistent with g/y = 0.18, (28), (29), and the postwar average U.S. debt to gross output ratio,
0.51. We also took into account the model’s implication for the Frisch labor supply elasticity. The
debt to output ratio is the average, for the period 1950-1980, of the ratio to GNP of the market value
of privately held federal, state, and local debt, plus the present volume of depreciation allowances.
For the construction of their time series, see Chari, Christiano, and Kehoe (1991). The Frisch labor
supply elasticity, &, is the elasticity of hours worked with respect to the after-tax real wage, holding

the marginal utility of wealth constant. Evaluated in nonstochastic steady state, this is:!
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1 — (I-ywW 1 — ¢
1 — ¢ r

Note that as ¢ = —oo, ¢ converges to a lower bound of (1—+)(1—£)/f.

The steady-state debt to output ratio in our model is obtained by evaluating (21) in steady

state:
(32) E:BE+E—£1£L]-E/(1—B).
y y ¥ vy vy 1-¢ y

In our benchmark model, we set ¢ = 0, a value which is standard in the real business cycle
literature (see, e.g., ...). Then, with g = 0.07, B =1.016, vy = 0.748, 7 = 0.237, §° = 0.271,
(28)-(29) q/g = 0.18, b/y = 0.51 are satisfied with this parameterization, & = 3.27. The 1.6
percent discount rate is lower than the 3 percent figure used in Christiano and Eichenbaum (1992},
despite their applicatidn of the same estimation strategy used here. The difference reflects their
assumption that 8¢ = 0. From (29), it is clear that for a given capital-output ratio, the estimated
discount rate decreases with 6°. In effect, one must assume lower impatience in order to rationalize
a given capital-labor ratio when the return to capital is reduced by a higher tax rate.

We also considered a smaller value of y. One reason for this is based on estimates of ¢
found in the empirical labor literature. In their review of that literature, Rotemberg and Woodford
(forthcoming) report estimates of ¢ for males near zero and for females in the range 0.5-1.5. As
noted above, there is no ¢ which can produce an € less than (1—~) = 0.8. The range 0.8-1.5 for
e corresponds to a range (—oo, —2.69) for ¥, given our estimates of (1—£)/f and . These
considerations lead us to consider v = —8 as an alternative to ¥ = 0. Under this alternative,
¢ = 1.1, and 8 = 1.016. Rather than work with a value of § greater than 1, in our alternative (high

curvature) parameterization, we hold {3 to its value in the benchmark parameterization.
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Footnote

The Frisch elasticity is defined as follows, Let A = u,. Write the intratemporal first order

condition as u, + Aw = 0, when w is the after tax real wage. Totally differentiating these two

equations with respect to ¢, £, and w, holding A fixed, the Frisch elasticity is defined as ¢ = d log

£/d log w.
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Appendix A:

Approximating the Equilibrium Decision Rules

In this appendix, we describe our strategy for obtaining an approximate solution to the model.
The strategy involves first replacing the first order conditions, (13)-(14), by a log-linear
approximation about steady state. We then solve the resulting equations by an undetermined

coefficients method.

1. Log-Linearizing the Euler Equations

In this appendix we work with a version of (13) and (14) in which c(s') has been substituted
out using (15). Also, to simplify notation, we set k,,, = k(s", £, = (s, 6 = 6°(s), 7, = 7(5),

f, = f(sY, g = g(sh), x, = x(s9, T, = T(s"). Write

u
(Al) q(kl-t—l-:ktagtagpxpfl) =1+ —C"E (1_71)1:?,[!
[

hky2.K Kol Lo X 10X 81,8000

Bottt foxp(—p) + (180 + 1 — exp(—p) — 8)] — 1.

et
Then, the first order conditions are:

(Az) q(k[-g-]skpfpgvxv'rt) = 0

(A3) E{h(kt+2,k1+1,kpr—]‘,fpx1+lsxtig[+]:gt!9?) | T[,X[,Bf,T‘,g,] = O

Since we seek a log-linear expansion of q and h, it is useful to introduce the following change of

variables:
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Then,

(A.5)  qlk.k.f.8.%,7) = Q[CXP(E{H)s SXP(RJ, exp(f[), exp(g), X, 7

= f}(ﬁ.,.l,lzp@pgnxu'rt)'
Similarly define
(A6) Dk pks 1Ko Bons oXes 1 XoBis 1 8009

Let Q and H denote the first order linear expansion of § and h about nonstochastic steady-state.

Then, the first order conditions in the log-linearly expanded system are:

(A7) QU p.k.l8.x.7) =0

(A.8) E{H(RH’KHslzu?uljuxwlsxvgt-v-lagne?)thsgnsxtsTuBﬂ = 0.

Writing out Q explicitly,

(A9 Qk1,kolpBoxom) = Quki—K) + Qk—k) + Qu(f,—0) + Q& -8
+ Qs(xt_x) + QG(TI_T)!

where

(A.10) Q; = — [%] [ —eJ(1 —nf,(kic)



14

u
Q = —Qlfi+1-v1 + E’ (1 -7k
e .

f
= -Qf, — +
Q= -Qf ¢

E] (1=nIfy, + (5, —¢€pf]

u,

Q = Q(e/b)

Q = —Qf/k+ — (1-7f,

u,

C
= - = f,.
%= o
Here,
d log u, dlog u d log u, dlogu
(A].l) Ne &= —m—m——> € = _—-...-(., M = ——, € = __f’
dlog ¢ dlogc dlog ¢ dlog ¢
evaluated in steady-state.
Also, for our utility function,
!

(A12) o = (=YW — 1, 9, =¥

(= —(1-¥, &= —(p—-1) L _

U (1—y) 1-1¢
u, ¥ c

The function H is




15

(A.13) H(Et+2’1}t+1*12v?t+I’vawl’xt’gwl’gt’e‘:)
= HI(RH—Z—E) + Hz(Etﬂ_f() + Hz(ﬁx'—f() + H4(?t+1_f) + HS(PI_E)

+ He(%,. —x) + Hy(x,—X) + Hg(g,+1—8) + Ho(§ —8) + Hy,(6;—6%.

Here,

H4 = _Hlff f/k + Ne + B(l —ee)fkgf, H5 = Hlff B/k — N>
H6 = _Hlfx/k + 6(1—93)ka, H-’ = Hlfx/k’ HB = _Hl(fk+l_6+1)gfk

Hy, = —H,g/k, Hyy = —8(f + 1 — exp(—p) — 9).
It is convenient to substitute out for hours worked using the Q first order condition:

_Q k., ~k - % k -~k - % (8,8 — % (x,—x) — gf (7,—7)

Al15) F — F = — L
( ) ' Q3 Q3 Q3 Q3 Q3

for all t. Substitute this into the function H and collect terms:
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H - & H, =k + |H, — 22— H, - 9—1 H (lm((+1“f<)

) Q, q,
- Q - ) ) u Q =1

+ _H3 — é HS_ k,—k) + -H(j - 62 H4- (X1 —X%)

+ |H, - -95 H, (x,—x) + [Hy — % Hy| €. —8)

(A.16) % ] L%

+ Hg - % Hs (gt—g) + Hw(@f—ﬂe) - % H4(Tt+1_7)

L Q3 - Q3

= A,k =0 + Bk, —0 + BE&-D + B, ~%
+ Hs(xt—x) + I'{G(gm—g) + PIT(gt—g) + Hs(ef—g)

-+ Hg(‘f

+1

-7) + I:Im(‘rt—-r)

or,
(A.17) E[H ke, + Bk + Gk +H K +HX + B,y g +HE A+ Hif

+ﬁ9?(+1+ﬁ10?1|BiaTuguTt’xtsE] =0,
where a bar over a variable indicates deviation from nonstochastic steady state. Divide (26) by H;:
(A.18) E[Rt+2_¢l_(t+l+”1-(1+731+‘p51+1|Sp}21] = 0,

where,

H?
H,

—

1

HIII mml
EII e
I_o_l

_HS
YT |
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= =

|

The system has now been reduced to a single first order condition in capital.

H H
fo_2ol.
]Hl Hl

2. Solving the Log-Linearized System

Consider the following decision rule:
(A.19) K’ = Ak + d(s),
where a prime on a variable denotes next period’s value. Also,
(A.20) d(s) = d;, fors =s(),1 =1, ..., N,.

The coefficients to be determined are
Ad, ., dy

Note,

k” = Ak’ + d(s") = Mk + M(s) + d(s').
Substitute this into the capital first order condition, to get

E[Mk + Ad(s) + d(s’)—¢rk — ¢d(s) + vk + ys + ys'|k, 5] = 0,
or,

(A.21) E[(X=gh+1)k + (\—)d(s) + vs + d(s") + ys'|k, s] = 0.
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We use the condition that (30) be satisfied for all possible s and for all k to determine the unknown

coefficients in (28). Thus, select A so that
(A2D) N2 — ¢\ +» = 0.
Also, pick d,, ..., dy so that
N!i
(A=), + ¥ + E m;(di+¢) =0,
j=1
fori =1, ..., N,. Here,

¥i=sG), ¥ =4ys@, i=1,.., N,

Let,

Then,

(A.23) A—¢)d + ¥ + a(d+¢) =0,

so that,

(A24) d = —[(A—¢) INs + 7] [F+ 7).

The decision rule for capital is:

(A.25) k., = kik/k] exp(d(s(D)).
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The decision rule for labor is obtained by substituting the decision rule for capital into the linearized

first order condition for labor:

- Q - Q - Q, _ Q _ Qs _

A2) 1 = —__ = = - = g - = X - = 7

( ) : K Q k, Q, g Q, X Q, 7
Q .- Q, Q, - Q, . Q _ Qs .
= —— Ng— — dis®)) - = T o= BT = AT = T
SR N N T A

= ek, + e d(s(V) + €8 + X + e7,

where,
6 = — o [AQ+Q]
Q
o= -
d Q3
Q
“= g
_ %
e, = 63
o -2
Q
or,
log(£,/f) = e log(k/k) + e d(s(D)} + e, log(g/g) + e,(x,—x) + e (r,—7)
or,
(A.27) ¢ = l?(k(/k)e" (g[/g)es exple d(s()) + e (x,—x)} + e (r,—7)].
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A useful check on the decision rule formulas is to substitute them into the intertemporal
condition for capital, (A.8), and determine whether E[H| s,k] = 0 for all s and k. Doing so, we get

E{[\?H, + NH,+ H,+ H\e, + Hee Jk + [NH,+H,+H,e, +He,d(s)
+ [H;+Heald(s") + [Hy+He,JX' + [H;+Hse,J% + [Hy+H,e,)g’

+ [Ho+Hse,lg + Hyof + Hee s + He 7|s k).
Thus, we require
NH, + NH, + Hy + He, + Hee, = 0.
To obtain the other restriction, first define

z(s) = [H;+H,e ld(s) + [Hg+Huec)x + [Hg+Hye]g + He, 7

a(s) = [AH,+H,+H,e, +Hse,Jd(s) + [H,+Hse,JX + [Ho+Hge,lg + Hloé" + H,e,5.

Then, we require

NE
as) + Y wzs) =0, s =5, .., s,
j=1 )
or,
a+ 7z =0,
where
a(s,) z(s,)
a = : , Z = :

a(sy) z(sy)
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Appendix B:

Computation of Equilibrium Debt and Utility

In this appendix we present computational details of our strategy for approximating the

equilibrium government debt and value functions. For a general overview, see Section 4.

B.1 The Government Debt Function

Let K = {k,,....ky} denote a grid of values for the capital stock, with k., = k;, j =1, ...
M — 1. The interval, [k,,ky], should contain an ergodic set for k, in its interior. Leti = 1, ...
NM be an enumeration of all possible combinations of k, s, for k € K and s € {s(1),...,s(N)}.

In particular, we set

i=1-k=k, s5=s(l)
i=N,=»k=k, s=sNy)

i=N+1-k=k,, s=s(),

and so on.

Fix some value of i € {1,...,NM}. This determines some k, s combination. Let y* denote
the 1 X N, vector of all possible values of 8wy u//u., where s’ is next period’s value of s, u( is next
period’s marginal utility of consumption, w is the probability of passing from s to s* and u, is the
current period’s equilibrium marginal utility of consumption. Let D{” denote the N, X 1 vector of
values of r;, next period’s gross, after tax return on capital. Similarly, let D{? denote the N, X 1

vector of ry, next period’s returns on government debt.

Then, according to (14) and the scaled version of (6},

B.1) 1= y¢oDP
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(B.2) 1 = yOD.

Let k¥ and b denote the equilibrium values of k' and b’ given state i. Let b® denote the
N, x 1 vector of next period’s equilibrium debt. The j* element of b is next period’s debt when

s' = s(j). Let d{” denote the N, x 1 vector of values of
¢+ k" — (=) — T,

where ¢’ is next period’s consumption, k” is next period’s capital decision, f; is next period’s
marginal product of labor, and so on. Again, the j™ element of d{” corresponds to s’ = s(j). Then,

next period’s budget constraint, (2), implies
(B.3) d{® + b® = Dk + D{PH®,

Premultiplying (B.3) by ¢/ and taking (B.1)-(B.2) into account, we get,
(B.4) b = yOd{d + YOHO — k@,

which is a matrix representation of a(k,s;b,g,ﬁ,ﬁ) in (22).
Now, let G, denote the 1 X M vector containing the interpolation weights relating the capital

decision, k', to the capital grid, K. That is,
k® = GK,

where K is the M X 1 vector of [k;.k,,....ky]". (To simplify notation, we use K to denote both the
set {K;,Ky,...,ky} and the column vector [k, ,k,...,ky]".) For example, if k¥ = wk, + (1-w)k;,,,

then the j and j + 1 elements of G, contain w; and (1 —w;) and all other terms in G, are zero.
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Let b denote an NM X 1 vector of parameters defining a debt rule, ¥. Write

B.5) b=
bM

where b; is an N; X 1 vector forj = 1, ..., M. The i™ element of b; defines the value of ¢(k;,s;
b), i = 1, ..., N. Values of ¢ for values of k not on the grid, K, are defined by linear
interpolation. Thus, if k = wk; + (1—w)k;,, then ¢(k,s;b) = welk;,s;b) + (1-w)pk,,8;b).

It follows that,

[ 5(k®@,s,:b) |

B.6) 59 =[G® I, b, = P D)
. - i Ns Y, = .

Gk .5, 5b)

In (B.6), ® denotes the Kronecker product. Substitute (B.6) into (B.4):

(B.7) b® = w(i)dgi) — kO + '!“(i)(Gi@ IN; )b.

Stacking (B.7),

[ b ] $OGO g m YOG, ®ly)
p® _ 1/x(2)d1(2) —k® N \1/(2)(62 @ INS) b
(NM)

\_b | g 1(N\M) ERNUAL Ll,b(N’M)(GNsM Dly)

or,



24

(B.8) b' =Z + Bb,

in obvious notation. Here, Z is a NM X 1 vector and B is an NM X NM matrix. Equation (B.8)
is a map from the space of parameters of ¢ into itself. The fixed point is found by solving the

following system of NM linear equations:
(B.9) [1-Blb = Z.

B.2 Value Function

Let »© denote the value of state i € {1,...,NM}. Let ¢© denote the I X N, vector of all
possible values of Smy,, where s; is the value of s in state i and s’ is the value of s in the next
period. Let #" denote the N x 1 vector of values associated with the N, possible states next period.

Then, we can express (27) in matrix notation as follows:

(B.10) »© = u® + JOpO,

i

where u = u(c,f;) and c,, £, are the levels of consumption and work effort implied by the

equilibrium decision rules and the resource constraint. Write

8
B.11) » = i,
Pum

where »; isan N; X 1 vector forj = 1, ..., M. The i element of » defines the values of (k.89
Values of # for k not on the grid K are defined by linear interpolation. In particular, if k = wk; +

(1—w)k;_,, then i(k,s;») = wi(k;,s;p) + (1 —w)i(kj,,8;2). Thus,

(B.12) ¥ = [G;® Iy Iz,



25

where G, was discussed above. Substituting (B.12) into (B.10),

(B.13) #V = u® + yAG® I, )p.

Stacking (B.13),

i e 7 [ a® T J/(l)(Gl@INg
el u® s 171(2)(G2®1N5)
= ¥,
NM) NM) -
| [0 JM(Gy ML)

or,

(B.14) »' = u + By.

Here, B, is an NM X NM matrix similar to B in (B.8) and u is the NM X 1 vector u =
[®,u@, ... u®™M]’. The fixed point we seek has the property »' = », and so it solves the following

system of linear equations,

(B.15) I-B,Jr = u.




