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ABSTRACT

This paper surveys recently developed methods for Bayesir inference and their use in economic time
series models. It begins by reviewing aspects of Bayesian inference essential to understanding the
implications of the Bayesian paradigm for time series analysis. It next describes the use of posterior
simulators to solve otherwise intractable analytical problems. The theory and the computational advances
are brought together in setting forth a practical framework for decision-making and forecasting. These
developments are illustrated in the context of the vector autoregressions, stochastic volatility models, and
models of changing regimes.
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1. Introduction

Econometric time series analysis is the discipline of using data to revise beliefs about
economic questions, especially questions about the future. These questions have a
common structure. Given data resulting from past behavior, and a set of assumptions
about economic behavior (or, several sets of competing assumptions), what decision or
action should be taken at the present time? The decision or action might involve public
economic policy, a private economic decision, or a choice between competing assumptions.

Unfortunately economic questions are rarely laid out so explicitly. Interactions
between assumptions and data are studied by a group of individuals, who (following
Hildreth, 1963) we may call investigators. The investigators’ tasks are complicated by the
facts that data sets are constantly being updated, new models are continually being
introduced and old ones modified, and the complete constellation of alternative assumptions
is never neatly defined. Decisions are made by another group of individuals, who (again,
following Hildreth) we may call clients. An ultimate client may be a public or private sector
decision-making body, in the case of policy, or the scholarly community, in the case of
choices among assumptions. Investigators typically have at best a vague idea who the
clients are, and exactly what use clients will wish to make of their results.

This chapter surveys recently developed methods that hold fresh promise for
investigators and their clients. These methods are based in the Bayesian paradigm for the
use of cconomic time series, and in recent advances in simulation methods for the
implementation of that paradigm. The purpose is to convey these innovations and their
significance for time series econometrics, to econometricians who have not followed the
relevant mathematical and applied literature. There are four substantive sections. The next
section reviews aspects of Bayesian inference essential to understanding the implications of
the Bayesian paradigm for time series analysis, and of posterior simulators for Bayesian
econometrics. Section 3 describes these simulators and provides the essential convergence
results. The theory and the computational advances are brought together in Section 4,
which sets forth a practical framework for Bayesian investigators report results in a way
that is immediately useful for decision-making in general and forecasting in particular.
Implementation in some specific time series models is taken up in Section 5. The survey in
this section is representative, not complete; see the surveys of Koop (1994), Chib and
Greenberg (1994b) and Geweke (1995b) for other models. The key points of the paper are
reviewed in the concluding section.




2. Bayesian Inference

This section provides a quick review of the principles of Bayesian inference. The
purpose is three-fold: to set up notation for the chapter; to provide an introduction for
econometricians unfamiliar with Bayesian methods; and to set forth the technical challenges
that posterior simulators largely overcome. Much of the notation is standard for
econometric models, but differs in some important respects from that used in non-
Bayesian approaches because those approaches do not condition on observables.

The introduction here is very concise and provides only the analytic essentials for the
subsequent development of posterior simulators. There are few examples and at a number
of points the exposition touches lightly on concepts of great depth. Those versed in
Bayesian methods at the level of Berger (1985) or Bernardo and Smith (1994) can easily
skip to Section 3 and use this section as a reference. Those seeking a complete introduction
can consult these references, perhaps supplemented by DeGroot (1970) and Berger and
Wolpert (1988) on the distinction between Bayesian and non-Bayesian methods. On
Bayesian econometrics in particular, see Zellner (1971) and Poirier (1995).

The results presented in this section are not operational. In particular they all involve
integrals that rarely can be evaluated analytically, and the dimensions of integration are
typically greater than the four or five for which quadrature methods are practical. The
balance of the chapter shows how the theory developed in this section can be implemented
in applicd econometrics using posterior simulators.

2.1 Basics

Inference takes place in the context of one or more models. A model describes the
behavior of a px1 vector of observables y, over a sequence of discrete time units

t=12,... The history of the sequence {y,} at time ¢ is given by Y,={y,} _:
Y, ={D}. A modelis a corresponding sequence of probability density functions
2.1.1) £,(v,]Y,..6)
in which 8 is a kx1 vector of unknown parameters, 8 € © ¢ R*. The function “p(-)”
will be used to denote a generic probability density function (p.d.f.). The p.d.f. of Y,
conditional on the model and parameter vector 8, is
(2.1.2) p(Y.16) = [T, £.(3.]Y,-..6)
The likeliliood function is any function L(8;Y,) o< p(Y,6).

[If the model specifies that the y, are independent and identically distributed then

f,(yt|Y,_1,8) =f,(y,|6) and p(Y,|9)= ;f,(y,|9). More generally, the index “f” may



pertain 1o cross sections, to time series, or both, but time series models and language are
used here for specificity. Likewise it is assumed that y, is continuously distributed for

specificity and brevity.]

The objective of Bayesian inference can in general be expressed
(2.1.3) E[g(0)Y,],
in which g(8) is a function of interest. There are several broad categories of functions of
interest that between them encompass most applied econometric work. Clearly the function
of interest can be a parameter or a function of parameters. Another category is
g(8)=L{a,,6)—L(a,,0) in which L{a,0) is the loss function pertaining to action «,

parameter vector 8, and (implicitly, through (2.1.3)) the model itself. A third category is
g(8) = xo,(8) which arises when a hypothesis restricts 6 to a set @,. [Here (-} is the

characteristic function yg(z}=1ifz€S, x;(z)=0ifze¢S.] Then E[g(9)|YT] =
P(B e G)U|YT) . Yet another important category arises from predictive densities, taken up in

detail in Section 4.
The specification of the model (2.1.1) is completed with a prior density p(6). It may

be shown that given (2.1.1) and a density p(Y;) (i.e., a density for the data unconditional
on @) a prior density must exist; see Bernardo and Smith (1994, Section 4.2). It is more
direct to place the specification of the prior density on the same logical footing as the
specification of (2.1.1). Thus a complete model specifies

(2.1.4) P(0e®)=[ p(6)do. P(Y,eTlo)=[ T b (v.IY..0)dY,,
where © is any Lebesgue-measurable subset of © and ¥ is any Lebesgue-measurable
subset of R™. [To keep the notation simple, a strictly continuous prior probability
distribution for 8 is assumed.]

By Bayes Theorem the posterior density of 8 is

p(6]Yr) = p(Y|6)p(8)/p(Y)
os P(lea) p(6)
o< L{8;Y,)p(6).
Thus
[ 8(OL(6;Y,)p(6)d6
J JL(8:Y)p(6)do
In the representation (2.1.5), one may substitute for p(@) any function p'(8) o< p(8). The

(2.1.5) E[g(0)|Y,]= j@ g(0)p(6Y,)d6 =

function p’(8) is a kernel of the prior density p(@). Posterior moments in a given model

are invariant to any arbitrary scaling of either the likelihood function or the prior density.



2.2 Sufficiency, ancillarity, and nuisance parameters
The vector s, =sT(YT) is a sufficient statistic in the model (2.1.2) given any of the

following equivalent conditions:

(2.2.1) p[Y 1[5 (Y 7). 6] = p[ Y [sr(¥,)] ¥V 6 €©;
(2.2.2) p(6]Y,)= p[@[sT(YT)] Y 8 € @ for all realizations Y,;
(2.2.3) p(Y,|6) = h[s,(¥;),0]r(¥,) for some h(-) and ().

Condition (2.2.3), the Neyman factorization criterion, is the condition usually verified to
demonstrate sufficiency of s, =s,(Y;). Sufficiency implies that one may use the

(sometimes much simpler) expression h[sT(YT), 9] in lieu of the likelihood function in
(2.1.5).

If ST(YT),=|:SIT(YT)’,82T(YT)’} and pls, (Y, }0]=p[s;p(Y)]: then s.(Y,) is
ancillary with respect to 6. As a consequence, it suffices to use any function proportional
to ps,,(Y,)|6] in lieu of the likelihood function in (2.1.5).

If 6'=(6;,0;) and g(6)=g(6,) then 8, is a nuisance parameter for the function of
interest g(@). A nuisance parameter presents no special problems in (2.1.5).

2.3 Point estimation and credible sets
Let the g X1 vector @ € £) represent an unknown state of the world: for example, @
could be the parameter vector 8 itself, a function of interest g(8), or a vector of future

’

values y* =(yT+[,...,yT+f) . Let ®@eQcQ represent an estimate of @. The Bayes
estimate of @ corresponding to the loss function L(a"),a)) is

(2.2.1) & = argmin E[L(®, 0)[¥, .

[Clearly, the estimate @ depends on the complete model (2.1.4) as well as the loss
function L((l'), co). But given the model and loss function, there is no ambiguity about the

Bayes estimate.]
Three loss functions are notable for the simplicity of the Bayes estimates @ that they

imply:

given quadratic loss L((]’J,&))=(&'J—a))’Q(d')—co) (where Qp.d., @R,
& =E(ao]Y,);

given quantile loss L(co,c'b)=cl(c'b—a));((_”@)(co)+c2(a)—&'J)x{&w)(a)) (where
¢ >0, ¢,>0,g=1), d=@:P(0<BV;)=c,/(c; +¢,) and hence if ¢, =c, the Bayes

estimate of @ is the median of its posterior distribution;



given 0/1 loss L{®,w)=1- g, (@)(m) (where N, (@) is an g-neighborhood of @),
as £ — 0, @ converges to the global mode of p(a)[YT) if a global mode exists.

All three estimators are derived in most texts in Bayesian statistics, e.g. Berger (1985,
Section 2.4.2) or Bernardo and Smith (1994, Proposition 5.2)
A 100(1 - @)% credible set for @ is any set C such that Jcp(a)|YT)da) =1-o. The

credible set depends on the complete model (2.1.4) but is defined without reference to a
loss function because it does not involve a Bayes action. In general a credible set can be
defined with reference to any distribution for @, not just the posterior distribution. In
most cases (always, for continuous distributions) the credible set is not unique.

If p(w|Y;)zp(@,|Y,) ¥ {(w,0,) 0, € C 0, Q- C, except possibly for a subset
of € with posterior probability 0, then C is a highest posterior density (HPD) credible set
for @w. It can be shown that HPD sets provide the credible sets with smallest Lebesgue
measure. Therefore the choice of a HPD set is a Bayes action if loss is proportional to the
Lebesgue measure of the credible set.

Since credible sets are defined with respect to a probability measure they are invariant
under one-to-one transformations: i.e., if v="h(®), h(-) is one-to-one, and C is a

100(1 - )% credible set for @, then D={v:v=h({w),® e C} is a 100(1 — )% credible
set for v. However, HPD credible sets are not invariant under transformation. [The
technical step involves the Jacobian of transformation. For demonstration and further
discussion see Berger (1985, pp. 144-145) or Bernardo and Smith (1994, pp. 261-262).]

2.4 Prior distributions

The complete model (2.1.4) provides a representation of belief. The choice of model
is always a judicious compromise between realistic richness in form and the effort required
to obtain posterior moments E[g(B)IYT]‘ To this end, it has proven useful to employ

classes of prior densities, p(6}z) where 7 is an indexing parameter, just as it has proven
useful to index the conditional density f,(y,|Y,_,.6) by 6.
Suppose that p(Y,|0},0 € © has sufficient statistic {T,ST(YT)}, where s (Y;) is a

vector whose dimension is independent of T and Y. Then the conjugate family of prior
densities for 0 with respect to p(Y,|0) is

{p(6l7),7eT; To}
where
T={z[ ps:(¥.,)=6]d6} <=

and




p(617) =[5+ (Y., ) = 2]/ [ plss (¥, ) = dle]ee.
A conjugate prior distribution for @ is thus proportional to a likelihood function composed
of 7, observations whose sufficient statistics are given in the vector 7. Less formally, the

information about @ in a conjugate prior distribution is equivalent to the information about
@ in a likelihood function with 7, imaginary observations and sufficient statistic 7.

There is an extensive literature providing conjugate families of prior distributions
corresponding to various specifications of f, (y,[YH, 9). A strong practical reason for this

effort is that in the presence of a conjugate prior distribution, the posterior distribution will
retain the same mathematical tractability that characterizes p(YT|9) and was likely an

important reason for the choice of f,(y,IYt_[,B) in the first place. For example, in the
regular exponential family of distributions

p(¥16) = [s(0)] T, 1(v.)exp{ 37 o8] T hu(v.)]}
the conjugate family for @ is

p(617) < [s(O)]" exe 3 c.0,(6)7 .
ceT={e[ O exol 7 c(0)z] <]

and then
2.4.1) p(6]Y,) <[s(8)]""" exp{z’i[qui(a)[xil T+ h,.(y:)]}.

If 6’=(6/,6;) and the value of 8, =6, is fixed, then one may define the
conditionally conjugate family of prior densities for 0, with respect to p(YTIBI,Qg ) in

precisely the same way. Given purely analytical approaches to Bayesian inference the use
of conjugate prior distributions is almost always essential. With the advent of the
numerical approaches that are the focus of this chapter conjugate prior distributions are no
longer essential, but are often useful as belief representations and can simplify
computation. Numerical approaches have rendered Bayesian inference practical in models
so complex that conjugate prior distributions do not provide simple belief representations.
In these cases, conditionally conjugate priors are often more useful and provide
computational advantages, as will be seen in Section 4.

The prior distribution, even if it is restricted to a conjugate family, provides a flexible
representation of prior beliefs. It is tempting to characterize prior distributions by the extent
to which they provide information about parameters. At one extreme, a prior distribution
with all its mass at a single point 8" € @ is clearly quite informative; such a prior is said to
be dogmatic. At the other extreme, what (if anything) constitutes an uninformative prior
distribution is Iess clear.




The desire to work with less informative prior distributions leads to an extension of
prior distributions that can be useful if applied carefully. Consider a sequence of prior
density kernels p,(6): i.., J. p;(e)de <o and the corresponding prior density is

p,(6)= pj(@)/f p,(6)df. Suppose further that Hm (6)=0 and lim,, p;(6)
=p'(8)V 8@, but that Lp (0)d6 is divergent. It is often the case that
J@L(G;YT) p (0)d8 and je g(6)L(6;Y,)p (6)d6 are convergent and furthermore
o f, g(e)L(e;erpj(e)ds _ je g(G)L(B;erpﬂ(a)dG
[,L(8:Y:)p;(6)d0 | L(6:Y,)p'(6)d6

In this case the formal use of the “prior density” p’ (@) has an unambiguous interpretation

=P

and provides correct posterior moments. If p'(8) is the limit of kernels of conjugate prior
densities then it generally retains the analytical advantages of the conjugate family. For
example in the regular exponential family with conjugate priors, if
7 =(ng ),...,’Ef,f})ﬁ—}(] then the limiting posterior distribution is given by (2.4.1)
with 7,=0(i=0,...,m). Formal analysis with p"(8)=1 would have led to the same

result.

2.5 Model averaging

Typically one has under consideration several complete models of the form (2.1.4).
For specificity suppose there are J models, and distinguish model M, by the subscript

P,(6, € é_j) = J@, p,(6,)d6,, P,(Y,e 17'|9j) - j}_’HL fﬁ(ytlY,_l,Bj)dYT

The J models are related by their description of a common set of observations Y, and a

e 77,

I

common vector of interest @. The number of parameters in the models may or may not be

the same and various models may or may not nest one another. The vector of interest @ --
e.g., the outcome of a change in policy, or actual future values of y, -- is substantively the
same in all models although its representation in terms of 6, may vary greatly from one

model to another. Each model specifies its conditional p.d.f. for @, pj(a)lﬂj,Y,.). The

specification of the collection of J models is completed with the prior probabilities
. J
pi(i=l.d), X =L
There are now three levels of conditioning. Given model j and &,, the p.d.f. of Y,
is p j(YT|6 ) Given only model j, the p.d.f. of 8, is p 1(6 ) And given the collection of

models M,,...,3, the probability of model j is p;. If the collection of models changes
then the p, will change in accordance with the laws of conditional probability. There is no



essential conceptual distinction between model and prior: one could just as well regard the

J
entire collection as the model, with {pi.,p j(Bf)}A L as the characterization of the prior

J=
distribution. At an operational level the distinction is usually quite clear and useful: one
may undertake the essential computations one model at a time.

Suppose that the posterior moment E[h(co)|YT] is ultimately of interest. (This

expression is just as general as (2.1.3) and encompasses the particular cases discussed
there.) The formal solution is

(2.5.1) Elb(o)¥,]= Y, E[b(a)|Y,.0,]P(M,]¥,).
From (2.1.5),
J‘@j 8(6,)L,(8,:Y1)p,(6;)d6,;
L,} Lj(ej;YT)pj(Bj)dﬂj
with g(Qj) = Lh(a)) pj(aJIQj,YT)dco. There is nothing new in this part of (2.5.1). From

(2.5.2) E[h(m)er,Mj] =

Bayes’ rule,
P/ 7) = (Y], )P(M,) /o(Y)

(2.5.3) =2, [, ,(¥:(0,)r,(0,)48, /p(¥:)

> pj.[ej 0,(Y+[6,)p,(6,)46; = p,M,r
The value M. is known as the marginalized likelihood of Model j. The name reflects the

fact that one can write

(2.5.4) My =] L,(6;Y.)p,(6,)d6;.
Expression (2.5.4) must be treated with caution, because the likelihood function

typically introduces convenient, model-specific proportionality constants:

j? p j(zr|9j)dz,. =1 but j?L,.(ej;zT)dzT #1. Whereas (2.5.2), like (2.1.5), is invariant
to arbitrary renormalizations of pj(YT[Gj] and pj(Bj), (2.5.3) is valid only with the

conditional p.d.f.’s themselves, not their kernels. As a simple corollary, model averaging
cannot be undertaken using improper prior distributions, a point related to Lindley's
paradox described below.

Model averaging thus involves three steps. First, obtain the posterior moments
(2.5.2) corresponding to cach model. Second, obtain the marginalized likelihood M

from (2.5.3). Finally, obtain the posterior moment using (2.5.1) which now only involves
simple arithmetic. Variation of the prior model probabilities p; is a trivial step, as is the

revision of the posterior moment following the introduction of a new model or deletion of




an old one from the conditioning set of models, if (2.5.2) and (2.5.4) for those models are
known,

2.6 Hypothesis testing
Formally, hypothesis testing is the problem of choosing one model from several.

With no real loss of generality assume there are only two models in the choice set. Treating
mode] choice as a Bayes action, let L(i[ j) denote the loss incurred in choosing model {

when model j is true and suppose that L(i}i) =0 and L(i[/)>0(j=i). Given the data
Y the expected loss from choosing model i is P(M,[Y,JL(ilj) (j#i) and so the Bayes
action is to choose model 1 if and only if

P(M,|Y;) = PMy L{1j2)

P(MZIYT) PMyr L(2|1) .
The value L(1]2)/L(2]1} is known as the Bayes critical value. The data bear on model

choice only through the ratio M,;/M,,, known as the Bayes factor in favor of Model 1.

The term p,M,;/p,M,, is the posterior odds ratio in favor of Model 1. For reasons of
economy an investigator may therefore report only the marginalized likelihood, leaving it to
his or her clients -- i.e, the users of the investigator’s research -- to provide their own prior
model probabilities and loss functions. The steps of reporting marginalized likelihoods and
Bayes factors are sometimes called hypothesis testing as well.

It is instructive to consider briefly the choice between two models given a sequence of
prior distributions p,;(6,) in Model 1 in which lim,_,_p,{(6,)=0V 6, €©,. It was seen in
Section 2.4 that the limiting posterior moment in Model 1 can be well-defined in this case,
and that it may be found conveniently using a corresponding sequence of convergent prior
density kernels. The condition lim,,.p,;(6,)=0V 6, €®, ensures lim,, M, =0,
however. Therefore, if the prior distribution in Model [ is improper whereas that in Model
2 is proper, the hypothesis test cannot conclude in favor of Model 1. This result is widely
known as Lindley's paradox, after Lindley (1957) and Bartlett (1957).

As will be seen, the computation of marginalized likelihoods has been a substantial
technical challenge. The reason is that in general M cannot be cast as a special case of
(2.1.5). In specific settings, however, (2.1.5) may be used to express Bayes factors. A

common onc is that in which models 1 and 2 have a common likelihood function and differ
only in their prior densities p,(8). Then the Bayes factor in favor of Model I is

M, | 8(O)L(6:Y,)p,(6)d0
M, J-gL(G;YT)pz(B)dB

(2.6.1)

with



(2.6.2) g(6) =p(8)/p,(6)-

2.7 Hierarchical priors and latent variable models
A hierarchical prior distribution expresses the prior in two or more steps. The two-
step case specifies a model

(2.7.1) AV AABICELCR 2R 3

and a prior density for 8 conditional on a hyperparameter ¢,

(2.7.2) p’B( 9]¢>) (qb = (I)). The model is completed with a prior density for ¢ and
v,

(2.7.3) pc(¢. ).

The full prior density for all parameters and hyperparmeters is

(2.7.4) p(6:9,¥) = pc($, W)ps(6l2).

There is no fundamental difference between this prior density and the one described in
Section 2.4, since
p(6,w) = [ ps(6l¢)p.(, v)do.

As will be seen, however, the hierarchical formulation is often so convenient as to render
fairly simple problems that otherwise would be essentially impossible. Given a hierarchical
prior, one may express the full posterior density
(2.7.5) p(0. v 8]Y ) = pa(Y-[0, ) p4(6]8) pc (2. W)

A latent variable model expresses the likelihood function in two or more steps. In the

two-step case the likelihood function may be written

(2.7.6) pa(Y+[Zr¥) (Z7 € Z v e ¥)

where Z, is a matrix of latent variables. The model for Z; is
(2.7.7) ps(Z7]¢) (¢ e @)

and the prior density for ¢ and ¥ is

(2.7.8) pc(#.v)-

The full prior density for all parameters and unobservable variables is
(2.7.9) D(Zr. ¥, 9) o Da(Yo[Z w)po(Z318) (5 W)

and the full posterior density is

27.10)  p(Z5. W 9|Y;) =< Pu(Yo|Zr W) ps(Zi]0) pe( . W)

Comparing (2.7.1)-(2.7.5) with (2.7.6)-(2.7.10), it is apparent that the latent variable
model is formally identical to a model with a two-stage hierarchical prior: the latent

variables correspond to the intermediate level of the hierarchy. With appropriate
marginalization of (2.7.10) one may obtain p(Z}lYT), which fully reflects uncertainty

10




about the parameters. If one is interested only in w, or in yand ¢, these distributions
may also be obtained by marginalization of (2.7.10). In the latter case the matrix of latent
variables Z. is a group of nuisance parameters, which are treated here as described in
Section 2.3.3. Marginalization requires integration, which is generally impossible
analytically. If the problem is approached using simulation methods, then marginalization
simply amounts to discarding the nuisance parameters.
The duality between the hierarchical prior and latent variable models often suggests

formulations that decompose more complex problems into simpler ones. For example,

y, ~ t{0,0%;v)
is formally equivalent to the latent variable model

y, = W,E;,
with @, a latent variable, v/} ~ x*(v}), and g, ~N(0,1) independent of w,. The
equivalent hierarchical prior formulation is the p.d.f. specification

»[(@, %)~ N(0, 5*,)
and the conditional prior distribution

viw? ~ 2 (v).

3. Simulation!

Bayesian methods are operational only to the extent that posterior moments (2.1.5) can
actually be computed. There are three ways in which this can be done. If the posterior
distribution and the function of interest are sufficiently simple, the posterior moment may
be obtained analytically. Most results in this category in econometrics may be found in
Zellner (1971); few further analytical results for posterior moments in econometrics have
been obtained since that work was published. If the required integration takes place in
fewer than (say) six dimensions then classical deterministic methods of numerical analysis,
principally quadrature, are often practical. (A standard reference for these methods is Davis
and Rabinowitz (1984).) In the remaining cases, which constitute the preponderance of
applicd econometrics, posterior simulators are the approach of choice.

Posterior simulators have a single characteristic principle: generate a sequence of
vectors {Gm} with the property that if E[g(@)]YT] exists then there is a weighting function
w{8) such that

(3.0.0)  By= s, g(0)w(6,)/3 wie,) - Elgo)Y,]=7

!'This section draws heavily on Geweke (1995a).

11




(Here and throughout this chapter, “—” denotes almost sure convergence.) Many
simulators produce {Bm} that -- at least asymptotically in M -- all have the® posterior

distribution, and in this case g, =M™ 3. g(6,,).

Posterior simulators have several attractions. First and foremost, they are often
straightforward to construct, even in quite elaborate models. This includes models
sufficiently complex that non-Bayesian methods like maximum likelihood are impossible or
impractical. Second, posterior simulators can take advantage of the structure of latent
variable models as set forth in Section 2.7, simulating parameters and latent variables

jointly. This often renders them operational even when the likelihood function cannot be
evaluated. Third, posterior simulators are well suited to situations in which g{@) cannot be

evaluated in closed form, but unbiased simulators are available, because g(8) may then be
replaced by its simulator. Leading examples are forecasting and discrete choice models.
Finally, posterior simulators are practical: they can be executed in reasonable time using
desktop equipment, and their very construction often provides further insight into the
statistical properties of the model.

All this comes at some cost. The proper use of posterior simulators requires analytical
work on the part of the econometrician. First and foremost, the investigator must verify
that the posterior distribution exists. A proper prior and a bounded likelihood function are
sufficient for the existence of the posterior distribution, but if the prior is improper then the
existence of the posterior must be demonstrated. Simulators can appear well-behaved over
a finite number of jterations even though the product of the prior and the likelihood is not a
probability density kernel in €. Second, the investigator must verify analytically that the
posterior moment of interest exists. In this section it is implicitly assumed that this has
been done for the problem at hand; expectation operators used here all apply to moments
that exist under the posterior. Third, the investigator must verify (3.0.1). This section
provides conditions for the convergence in (3.0.1) for a variety of simulators.

3.1 Pseudorandom number generation
All pseudorandom number generators begin with a pseudorandom sequence {uf} in

which the #, are assumed to be independently and uniformly distributed on the unit interval
(0, 1). In fact the sequence {ui} is deterministic: most software employs a multiplicative
congruential generator which generates integers J, = (a.],._l)modm and takes u, = J;/m.
The constants a and m are chosen carefully so that {u,} has good properties: e.g.,
a=16807 and m=2" -1 are common choices. The design and testing of uniform
pseudorandom number generators is an important part of numerical analysis with a
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substantial literature: see Geweke (19952, Section 3.1) for an overview and citations, and

suggestions regarding the use of multiplicative congruential generators. For the purposes
at hand it is assumed that the sequence {1} is a satisfactory approximation to an i.i.d.

CL ”

sequence with a uniform distribution on the unit interval, In what follows will denote
a realization from this distribution, and * {u,.} a sequence of such i.id. reahzatlons.

Given {ui}, one can in principle generate random variables from any univariate
distribution whose inverse cumulative distribution function (c. d f. ) can be evaluated.
Suppose x is continuous, and consequently the inverse c.d.f. F™ {C' P{x<c)= p}
exists. Then x and F~'(x) have the same distribution: P[F!(x) < d] Plz < F(d)|=F(d).
Hence pseudorandom drawings {x, } of x may be constructed as F™'(1), where {1},
is a sequence of pseudorandom uniform numbers. A simple example is provided by the
exponential distribution with probability density f(x)=Aexp(—~Ax),x20. Then
F(x)=1-exp(-Ax), F'{p)=—log(l— p)/A, and consequently, x=—log{ux)/A. The
inverse c.d.f. method is very easy to apply if an explicit, closed form expression for the
inverse c.d.f. is available. Since most inverse c.d.f.’s require the evaluation of
transcendental functions, the method may be inefficient relative to others.

Acceptance methods are widely used as a simpler and more efficient alternative to the
inverse c.d.f. method. Suppose that x is continuous with p.d.f. f(x) and support C. Let
g be the p.d.f. of a different continuous random variable z with p.d.f. g(z) which has a
distribution from which it is possible to draw i.i.d. random variables and for which

SUp,ec[F(x)/8(x)] = a < eo.
The function g is known as an envelope or majorizing density of f, and the distribution
with p.d.f. g is known as the source distribution. To generate x,,

{a) Generate u;

(b) Generate z;

(©) If u>f(z)/[ag(z)], go to (a);

(d) x,=z.
The unconditional probability of proceeding from step (c) to step (d} in any pass is

_‘:{f (2Yflagz)}glz)dz=a",
and the unconditional probability of reaching step (d} with value at most ¢ in any pass is
[ {t@)/lag@)]} g(z)dz = a™ F(c).

Hence the probability that x, is at most ¢ at step (d) is F(c).

A key advantage of acceptance methods is that they often can be tailored to
idiosyncratic univariate distributions that arise in the posterior distributions for specific
econometric models. This frequently happens in conjunction with the Gibbs sampler
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(Section 3.4.1); some examples are provided in Geweke and Keane (1995). In this use of
acceptance sampling it is often useful to consider a family of source densities g(x;ot)
indexcd by a parameter vector «. It is then usually easy to choose & to maximize the
probability of acceptance from the source density (Geweke, 1995a, Section 3.2).

Composition methods decompose a random variable into two or more components,
each of which is easy to generate. For example, x ~ t(0, 1;2) can be generated in the

obvious way from three independent standard normals; if x ~ B(m,n) then x =2z, /(z, +z,)
with z, and z, independent, z, ~ ¥*(2m+2), z, ~ x*(2r+2) (Johnson and Kotz, 1972,
Section 40.5).

The univariate normal distribution arises repeatedly in posterior distributions, usually
as the distribution of a subset of parameters conditional on others. Both inverse c.d.f. and
acceptance methods for generating univariate normal pseudo-random vectors are well
developed. Good software libraries implement both. The gamma distribution with scale
parameter A and shape parameter ¢ has p.d.f,

f(x)= A exp(-Ax)(Ax)"" /T(a), x 2 0.
In general, random variables from this distribution may be generated efficiently using
composition algorithms and acceptance methods. Fast and accurate methods are
complicated but readily available in statistical software libraries.

Two multivariate distributions are especially important in posterior simulators. The
generation of a multivariate normal random vector X from the distribution N{u,X) is

based on the familiar decomposition
z~N(0,I,), x=p+AzwithAA’=EZ.

While any factorization A of £ will suffice, it is most efficient to make A upper or lower
triangular so that m(m +1)/2 rather than m* products are required in the transformation
from z to x. The Choleski decomposition, in which the diagonal elements of the upper or
lower triangular A are positive, is typically used.
1o . . . n — — ’ . . .
If x, ~ N(0,X), the distribution of A = Zf:] (x, —%)(x, —X) is Wishart, with p.d.L.
A exp(— S1r E'IA) )
Hn-Dm_m(m-— 3ln~ m NE
= Y g A

2

(3.1.1) f(A)=

for brevity, A ~ W(Z,n—1}. Direct construction of A through generation of {x,.}:;l
becomes impractical for large n. A more efficient indirect method follows Anderson
(1984). Let X have lower triangular Choleski decomposition £ =LL’, and suppose
Q~W(I,,n—1). Then LQL'~W(Zn-1} (Anderson, 1984, pp. 254-255).

Furthermore Q has representation
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Q=UU" u,=0(i<j<m)
u; ~ N(0,1) wu, ~ 3 (n—1i)
(i =1,...,m), with the », mutually independent for {2 j (Anderson, 1984, p. 247). Even

if z 1s small, this indirect construction is much more efficient than the direct construction.

3.2 Independence simulation

The simplest possible posterior simulator can be constructed if one can generate the
i.i.d. sequence {6,} with common p.d.f. p(6]¥;). Denoting §= E[g(@)[YT] and
g, =M E;: 1 g(6,,), by the strong law of large numbers
(3.2.1) 8.—Z.
If the posterior variance of g(8), o, = var[g(e)]YT] = E{[g( 0) - ‘g‘]2 |YT} < oo, then by the
Lindberg-Levy central limit theorem
(3.2.2) M3, - 8)=>N(0, 6?).
(Here and in what follows “="" denotes convergence in distribution.)

The leading simple example of a posterior simulator based on independence sampling
in econometrics is the normal linear model with conjugate prior distribution,

- . 2
(3.2.3) ﬂl - T)fk I + Tsxl' elX N(O’ g IT)’
(3.2.4) vs*/d® ~2(¥),  Blo* ~N(B, o Hy').

[The matrix o2 H, is the precision of the conditional prior distribution for 8 -- i.e., the
inverse of its variance matrix.] Straightforward manipulation shows

(3.2.5) (vs"/o* 3. %) ~ 2(¥),

(3.2.6) ﬁl(o’z,y,x) ~ N(B, o*Hy )

where V=y+T-k 5= V“{_\Qz +(y— Xb)’(y— Xb)], H, =H, +(X'X)7,
B =H,'[HyB+(X’X)"'b| with b=(X'X)"X’y. [For derivations see Zellner (1971,
Section 3.2.3} or Poirier (1995, Theorem 9.9.1).] Since the marginal posterior distribution
of f§ is multivariate Student-£, closed-form expressions for the moments of § exist. But
many functions of interest are nonlinear if §§. For example, if the explanatory variables
include lagged dependent variables then conditional on the presample lagged dependent

variables the posterior distribution is given by (3.2.5) and (3.2.6), but functions of interest
like predictors of future values and spectral densities involve nonlinear transformation of
and o”.

The generation of pseudorandom vectors following (3.2.5) and (3.2.6) in fact
involves acceptance sampling, as explained in Section 3.1, although this feature will be
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transparent to the user of a mathematical software library or a higher-level language. The
acceptance sampling algorithm is quite general and can in principle be used to produce an
independent sample from any posterior density p( E?]YT). The essential requirement is that
one be able to draw pseudorandom vectors from a distribution whose p.d.f. r{8) is an

envelope of p(6|YT). One then proceeds as in Section 3.1. The advantages of the

procedure are that it requires only specification of the kernels of the two p.d.f.’s, and that it
produces i.i.d. pseudorandom vectors from the posterior distribution. The disadvantages
are that it is often difficult to find an envelope and determine supeee[p(BIYT) / r{ 9)] and

that acceptance probabilities may be so low as to render the whole algorithm impractical.
The potential for these difficulties generally increases with the dimension of @ (although
the strucutre of the posterior density is also important). When acceptance sampling
succeeds, however, (3.2.1) always applies, and (3.2.2) applies if the posterior variance

exists.
A simulator closely related to acceptance sampling is importance sampling. Let j(6)

be a probability density kernel corresponding to a distribution from which an i.i.d.
sequence {6, } can be drawn conveniently, and whose support includes ©. Define the

corresponding weight function w(8) =p(6|¥,)/i(6). (In this expression, p(6]¥,) need
only be the kernel of the posterior density.) Then

(327 Fu= s, 20)w(6,)/T 0 we,) 7
If both

(3.2.8) E[w(6)] = j@[p(em)2 / j(e)}de

and

Eg(6) w(O)Y, ] = [ [e(6)* p(6]Y)’ /i(0)]a0
arc absolutely convergent, then
(3.2.9) M7 (g, -F)=N(0, %)
and :
sty = M3 [8(6,)-2] w(o,)/[ T w(e,)] » o
where
o =E{[g(6)- 2] w(6)}.

{(For proofs see Geweke (1989b).)
In importance sampling the simulated @, are independent but the sample must be

weighted to produce a simulation-consistent approximation of the posterior moment g
from an “incorrectly drawn” sample. The intuition underlying (3.2.7) is that if 8, is
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drawn from an area that is undersampled, relative to the posterior distribution, then that

drawing must receive a large weight to compensate, and conversely. Neither (3.2.7) nor
(3.2.9) requires that w(@) be bounded, but as a practical matter if w(@) is bounded and

var[g(B)lYT] <o then (3.2.8) is satisfied, and without this condition establishing (3.2.8)
is usually tedious. Experience suggests that when w(#) is unbounded convergence in

(3.2.7) is so slow as to make the method impractical.

In many circumstances one therefore can choose between acceptance and
importance sampling. The choice depends on the computational demands of the problem.
If evaluation of g{6) is trivial relative to the generation of 6,, and computation of w(6)
then importance sampling is preferred; conversely, acceptance sampling is the method of
choice. Geweke (1995a, Section 4.4) provides elaborations on the comparison, as well as
a mixture of acceptance and importance sampling that can be optimized for each problem.

3.3 Variance reduction

In many instances it is possible to modify independence sampling to produce a
sequence of drawings each of which is identically distributed as in the original algorithm,
but with dependence between draws that substantially lowers the sampling variance of the
mean, thereby increasing the accuracy of g, as an approximation of g.

Antithetic acceleration (Geweke, 1988) is based on a technique originally due to
Hammersly and Morton (1956). The essential properties are most easily conveyed in the
case where the sequence {Bm} can be drawn directly from the posterior distribution. In

this method the sample drawn can be described {sz};:: with the @, identically

distributed and the only mutual dependence being that arising between 8, and 8,,. Let
g, =M sz Z; g(6,,) and suppose var[g(8)[Y,| <. Then

m=1

Mg, -F)= N(O, a*’“), o= var[g(@mi)] + cov[g(@m; ) g(em)].
As long as cov[g(@m,), g(Bmz)] < 0, antithetic acceleration with /2 replications will have

smaller variance of approximation error than importance sampling with M replications, and
the computational requirements will be about the same.

To focus further on the properties of antithetic acceleration, consider the situation in
which p(B[YT) is symmetric about the point y. In this case 8, =u+e¢,,0,,=1—¢,
describes a pair of variables drawn from the posterior distribution, with correlation matrix
—-I. If g(8) were a linear function, then var{%[g(ﬂml)+g(9m2)}}= 0, and variance
reduction would be complete. At the other extreme, if g(8) is also symmetric about g,

then var{% [£(8,1) + (8.2 )]} = var[g(8)]: antithetic simple Monte Carlo integration will
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require double the number of computations of simple Monte Carlo for the same
information. As an intermediate case, suppose that d{y)=g{6y) is either monotone

nondecreasing or monotone nonincreasing for all 8. Then g(6,,)-7 and g(6,,)- %
must be of opposite sign if they are nonzero. This implies cov[g(@m,), g(sz )] <0, whence
o < var]g(8)] = o, and so antithetic acceleration produces gains in efficiency.

As T increases, the posterior distribution generally becomes increasingly symmetric
and concentrated about the true value of the vector of unknown parameters, reflecting the

operation of a central limit theorem. (For an overview and citations, see Bernardo and
Smith (1994, Section 5.3).) In these circumstances g(6) is increasingly well described by

a linear approximation of itself over most of the support the posterior distribution as T
increases. Let o7 indicate the accuracy of simple Monte Carlo and o;? the accuracy of

antithetic Monte Carlo. Given some weak side conditions, it may be shown that
oy /o% — 0, and under somewhat stronger conditions that To;’ /o2 converges to a

constant {Geweke, 1988).

To introduce another method of variance reduction, suppose there is an approximation
to the original problem that can be solved exactly with reasonable effort: i.e., one can
determine /1t = E[h(v)IYT]= _[Nh(v)f)(v|YT)dv exactly. Suppose that the sequence
{ 6, Vm} can be drawn, {Bm} an i.1.d. sequence from the original posterior distribution
and {v,} an i.i.d. sequence from the approximating distribution, but with &, and v,

constructed from the same underlying random numbers so that g(6, ) and h(v,) are
correlated. Let g, =M’[Z}:=Ig(6m) and  h,, ‘“‘MIZ:,,,h(Vm)’ and consider

approximations of the form
Zn =38y "*’ﬁ(hm _h)
Clearly E(g),)=&. One can easﬂy verlfy that var(g;,) is minimized by

B= ——cov[ ]/var[ ]
and that in this case
var(gy,) = var(EM){l - corrz[g(ﬁm),h(ﬁm)]}.
The paramecter  may be estimated in the obvious way from the replications. This is an
example of the use of control variates, introduced by Kahn and Marshall (1953) and
Hammersly and Handscomb (1964).
Yet a third method of variance reduction is the use of conditional expectations If

g = (9{'”, 6(’2)) and g(6)=g(9(1)), it may be the case that E[ ( Y ] can be

m I (2)’
evaluated analytically. If so, then by the Rao-Blackwell Theorem the variance of

approximation error can be reduced by using the function of interest E[g(BUJ)‘Q(z)m,YT]
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rather than g(H(l)m) in any posterior simulator, Extensions of this idea are developed in

Casella and Robert (1994).

3.4 Markov chain Monte Carlo

This section takes up a recently developed class of posterior simulators that have
collectively become known as Markov chain Monte Carlo. The idea is to construct a
Markov chain with state space © and invariant distribution with p.d.f. p(@]YT).
Following an initial transient or burn-in phase, simulated values from the chain form a
basis for approximating E[g(G)IYT]. What is required is to construct an appropriate

algorithm and verify that its invariant distribution is unique, with p.d.f. p(BIYT).

Markov chain methods have a history in mathematical physics dating back to the
algorithm of Metropolis ef al. (1953). This method, which is described in Hammersly and
Handscomb (1964, Section 9.3) and Ripley (1987, Section 4.7), was generalized by
Hastings (1970), who focused on statistical problems, and was further explored by Peskun
(1973). A version particularly suited to image reconstruction and problems in spatial
statistics was introduced by Geman and Geman (1984). This was subsequently shown to
have great potential for Bayesian computation by Gelfand and Smith (1990). Their work,
combined with data augmentation methods (Tanner and Wong, 1987), has proven very
successful in the treatment of latent variables and other unobservables in econometric
models. Since about 1990 application of Markov chain Monte Carlo methods has grown
rapidly; new refinements, extensions, and applications appear almost continuously.

3.4.1 The Gibbs sampler
The Gibbs sampler begins with a partition, or blocking, of 8,8’ = (6"”,...,9"“).

’ B -
For b=1,...,B, 6" =(9,””,...,9£’E,),)) where k(b)21; Zb:lk(b) =k; and the 6,.”’} are the
components of 8. Let p(GbIQ("b),YT) denote the conditional p.d.f.’s induced by
p(G[YT), where 60 = {9“",(1 # b}.
Suppose a single drawing 8,, 6, = ( 6[;“],...,85{3)), from the posterior distribution is

available. Consider successive drawings from the conditional distribution as follows:
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91([) - p(@m le(g—l),YT)

o ~ (0 6", 6....,67.Y,)

3.4.1 ; ; . ,
(G.4.1) o) ~ (6 [6l0.....60, 04", ..., Y, )

61 ~ p(68" 612, Y ).
This defines a transition process from 6, to 8/ = ( g;m,....e/¢ )). The Gibbs sampler is

defined by the choice of blocking and the forms of the conditional densities induced by
p(6lY,) and the blocking. Since 6, ~p(6|Y,), (ef",...,eff“‘),9}”,95““,...,93”})
~ p(G[YT) at each step in (3.4.1) by definition of the conditional density. In particular,
6, ~ p(6Y,).

Iteration of the algorithm produces a sequence 6, 8,,...,0,,,... which is a realization
of a Markov chain with probability density function kernel for the transition from point 6,
to point 6,,, given by

B a o
(3.4.2) Ko(6,,0;1)=T1,.,0[62] 6 (a>b), 6%)(a<b),Y,].
Any single iterate 8; retains the property that it is drawn from the distribution with p.d.f.
p(6]Ys).

For the Gibbs sampler to be practical, it is essential that the blocking be chosen in such
a way that one can make the drawings (3.4.1) in an efficient manner. For many problems
in economics, the blocking is natural and the conditional distributions are familiar; Section
4 provides several examples. In making the drawings (3.4.1) all the methods of this
section are at one’s disposal.

The informal argument just given assumes that it is possible to make an initial draw
from the posterior distribution. That is generally not possible; otherwise, one could use
independence sampling. Even if it were, the argument potentially establishes only that
given a collection of independent initial draws from the posterior distribution, one can
generate a collection of independent final draws by iterating (3.4.1) on each initial draw.
What is needed for application is a demonstration that one can consistently approximate a
posterior moment with successive realizations of a single chain that begins with arbitrary
8, € ©. The stylized examples in Figures 1 and 2 show that this need not be the case.

Conditions for this sort of convergence are based on the mathematics of continuous
state space Markov chains. Brief overviews for econometricians are presented in Chib and
Greenberg (19944) and Geweke (19952); from there the reader may turn to Tierney (1991},
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and to Tierney (1994) for a rigorous treatment based on Numelin (1994). There are two
sets of convergence conditions emerging from this literature that are most directly useful in
Bayesian econometric models. If either set holds, then g, = M"‘Zi]g(em)

— E[g(@)IYT].

Gibbs sampler convergence condition I (after Tierney, 1994). For every point 8" € ©
and every ©,g® with the property P(GGG,IYT) >0, it is the case that
PG(QN e@),lﬁ‘j = 9*,YT)>O, where P,(-) is the probability measure induced by the

transition kernel (3.4.2).
Gibbs sampler convergence condition 2 (after Roberts and Smith, 1994). The
density p(6]Y) is lower semicontinuous at 0, J@tb)p(e[‘(r)dé?w) is locally bounded

(b=1,...,B), and © is connected. [A function h(x) is lower semicontinuous at O if, for
all x with h(x) > 0, there exists an open neighborhood N, O x and £ > 0 such that for all
y e N,, h(y) 2 £ >0. This condition rules out situations like the one shown in Figure 2.]

These conditions are by no means necessary for convergence of the Gibbs sampler;
Tierney (1994) provides substantially weaker conditions. However, the conditions stated
here arc satisfied for a very wide range of posterior distributions in econometrics and are
much easier to verify than the weaker conditions. Furthermore, the appropriate blocking is
usually inherent in the structure of the posterior density, as will be seen in several examples
in Section 4.

3.4.2 The Metropelis-Hastings algorithm
The Metropolis-Hastings algorithm begins with an arbitrary transition probability
density function q(Om,G') and a starting value 6,. The random vector 8 gencrated from
q(Gm,B*) is considered as a candidate value for @_,,. The algorithm actually sets
8 ., = 8" with probability
a(Bm, 9*) = min{p(eer)q(e*’e"i) , I};
p(6,[Y:)a(6,..6")
otherwise, the algorithm sets 8, ,, =6, . This defines a Markov chain with a generally
mixed continuous-discrete transition probability from 6, to 9,,,, given by
q(em’emﬂ)a(@m’emﬂ) if 6,,, # 6,

1- _[Dq(em,a)a(em,e)de ife,, =6,

KMH(Bm’ 6m+1) =
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This form of the algorithm is due to Hastings (1970). The Metropolis et al. (1953)
form takes q(Bj,G*) = q(B*,Gj). A simple variant that is often useful is the independence

chain (Tierney, 1991, 1954), q(GJ,G*) = j(B*). Then

where w(60) = p(9|YT) / j(6). The independence chain is closely related to acceptance

sampling and importance sampling. But rather than place a low (high) probability of
acceptance or a low (high) weight on a draw that is too likely (unlikely) relative to
p(6|YT), the independence chain assigns a high (low) probability of accepting the

candidate for the next draw.

There is a simple two-step argument that motivates the convergence of the sequence
{6,,} generated by the Metropolis-Hastings algorithm to the posterior distribution. (This

approach is due to Chib and Greenberg, 1994b.) First, observe that if any transition
probability function p(6,,.6,.,,) satisfies the reversibility condition

p(aleT) (9 9m+[) (6m+]|YT)p(9m+t’ am)’
then it has the posterior as its invariant distribution. To see this, note that

[ p(6]Y7)p(6.6,.1)d6 = [ p(6,,..]¥1)p(6,.,,,6)d0
= P(9m+r |Yr)j p(8m+1’ G)de = P(an |YT)'

The second step is to consider the implications of the requirement that K,,(6,.,6,,,,) be
reversible: p(6,,]¥ ) K8, 6,s1) = P8t Y1 K pggr (60
that

D[ Y1)a(6,. 8 Jox(6,,.6") = (B*IY Ja(€".6,)(6",6,).
Suppose (without loss of generality) that p( LYr)a(6,.6°) 2 p(6°]Y,)q(6".6,). If we
take o(6°,6,)=1and o(8,,0")=p(6°|Y;)q(6",6,)/p(6,]Y)a(6,..6"). this equality is

satisfied.

6,). For 8, =6, it implies

In implementing the Metropolis-Hastings algorithm, the transition probability density
function must share two important properties. First, it must be possible to generate 6’
efficiently from q(em, 9*). All the methods of this and the previous section are potential

tools for these drawings. (Once again, acceptance sampling is attractive relative to
importance sampling.) A second key characteristic of a satisfactory transition process is

that the unconditional acceptance rate not be so low that the time required to generate a
sufficient number of distinct 8, is too great.

22



The convergence properties of the Metropolis-Hastings algorithm are inherited from
those of q(@m,Q*) (Roberts and Smith, 1994). In particular the following condition

guarantecs M~ Zf:; g6,)— E[g(G)IYT]:
Metropolis-Hastings algorithm convergence condition I (after Tierney, 1994). For
every point 8" € © and every ©, c © with the property P(G € GIIYT) >0, it is the case

that P,(6

L

g € @1]9,,, = Bk,YT) >0, where P(-) is the probability measure induced by the
transition kernel q(@m, 8*) .

Metropolis-Hastings algorirf:m convergence condition 2 (after Chib and Greenberg
(1994b) and Mengersen and Tweedie (1993)). Forevery 6 €9, p(BlYT) > 0, and for all
pairs (Bj, GJ.H) eOXO, p(Bj[YT) and q(ej,Gm]are positive and continuous.

Once again, the conditions are sufficient but not necessary, but weaker conditions are
typically much more difficult to verify. On weaker conditions, see Tierney (1994).

3.4.3 Caveats

In any practical application one is concerned with numerical accuracy. Markov chain
Monte Carlo methods present two characteristic potential difficulties in assessing numerical
accuracy: slow convergence, and the formal inapplicability of central limit theorems.

A leading cause of slow convergence is multimodality of the posterior distribution, for
example, as shown in Figure 3 for a Gibbs sampler. In the limit multimodality approaches
disconnectedness of the support, and increasingly large values of M are required for a
good approximation. This difficulty is essentially undetectable given a single Markov
chain: for a chain of any fixed length, one can imagine multimodal distributions for which
the probability of leaving the neighborhood of a single mode is arbitrarily small. This sort
of convergence problem is precisely the same as the multimodality problem in optimization,
where iterations from a finite collection of starting values cannot guarantee the
determination of a global optimum. Multimodal disturbances are difficult to manage by any
method, including independence sampling. In the context of the Markov chain Monte
Carlo algorithms, the question may be recast as one of sensitivity to initial conditions: 0%,
85, and 02 will lead to quite different chains, in Figure 3, unless the simulations are
sufficiently long.

A Markov chain Monte Carlo algorithm can be made more robust against sensitivity to
initial conditions by constructing many very long chains. Just how one should trade off the
number of chains against their length for a given budget of computation time is problem
specific and as a practical matter not yet full understood. Many of the issues involved are
discussed by Gelman and Rubin (1992), Geyer (1992), and their discussants and cited
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works. In an extreme variant of the multiple chains approach, the chain is restarted many
times, with initial values chosen independently and identically distributed from an
appropriate distribution. But finding an appropriate distribution may be difficuit: one that is
too concentrated reintroduces the difficulties exemplified by Figure 3; one that is too diffuse
may require excessively long chains for convergence. These problems aside, proper use of
the output of Markov chain Monte Carlo in a situation of multimodality requires specialized
diagnostics; Zellner and Min (1995) have obtained some interesting results of this kind. At
the other extreme a single starting value is used. This approach provides the largest
number of ilerations toward convergence, but diagnostics of the type of problem illustrated
in Figure 3 will not be as clear.

If one assumes standard mixing conditions for the serially correlated process g(Gm)

(e.g. Hannan, 1970, 207-210) then well-established central limit theorems apply to the
distribution of g,. The resulting assessment of numerical accuracy (Geweke, 1992) has
proven reliable in econometric models in the sense that it provides good forecasts of the
output of repeated simulations. This approach is fundamentally unsatisfactory, however,
because it assumes properties that should be derived from the known structure of the
algorithm, and/or are strictly not true. For example, if the posterior variance exists, then in
a stationary Metropolis-Hastings algorithm a standard central limit result applies (Geyer,
1992; Kipnis and Varadhan, 1986). But since a Metropolis-Hastings algorithm begins
with an arbitrary initial condition it is not stationary. In addition, there is no central limit
theorem applicable to Markov chain Monte Carlo in which it has been shown that the
variance parameter can be estimated consistently in M, to the author’s knowledge. Given
the success of both Markov chain Monte Carlo algorithms in econometrics and statistics
and the apparent reliability of assumed central limit theorems, these questions are clearly
prime candidates for future research.

4. Bayesian investigation and communication

The elements of the formal problem addressed by a Bayesian investigator are

summarized in Section 2.5, which provides the point of departure here. The essentials
include a collection of complete models (j=1,...,J), each of which describes the joint

distribution of observed data Y, and vector of interest @, conditional on a vector of
parameters 6,:

p/(¥r-0l6,)=pi(0]Yr6))p, (¥}
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Each model is completed with the specification of the prior density pj(ﬂj) for its

parameters, and the collection is completed with the prior model probabilities
p(i=1...J). Within cach model, p,(Y|8,)=T]_ f,(s]¥,-6,). Section 4.1

describes some insights into model comparison, predictive densities, and forecasting that
arise from this elementary relation.
Since it is required only to specify p j(co]YT,Qj), the vector of interest @ is quite

r

general. For example, it may consist of some future data, @ = (yfm,.‘.,y,.+ f) . In this
case,

p,(@f¥r0,) =TT (0¥, 6)) T 03] ¥o08))
Closed form expressions may or may not be readily computed, but it is essentially always
the case that simulations from p j(a)lYT,Qj) can be carried out in straightforward fashion,

and as will be seen this is typically all that is required. In other cases @ may be a vector of
latent variables, and then greater ingenuity may be required to simulate from p j(cu|YT, 6),-):

the problem is one of signal extraction, which for many models has been thoroughly
investigated.

In a closed investigation all of the elements of this problem are completely specified,
including models, priors, and vectors of interest. The closed investigation is completed
with the specification of a reporting objective in the form of a mapping from the distribution
CDIYT to a real number, R[p(co|YT)]. Very often this mapping may be expressed

E[h(co)lYT]. for a known function h(w)}. Examples include minimum mean square error

forecasting, probabilities of turning points, and the evaluation of relative loss for alternative
decisions. In other instances quantiles of the distribution are required, as in minimum
absolute crror forecasting or the reporting of an interquartile range. For simplicity of
notation we proceed as if the problem is always of the form E[h(a))IYT].

Section 4.2 takes up the common elements of forecasting and signal extraction
problems in a closed investigation with a single model. Their solution is general, siraple
and elegant -- especially in comparison with non-Bayesian methods. Section 4.3 takes up
the question of why this is so.

In a closed investigation with multiple models the investigator requires

p(@f¥s) =3, P(M,[Y,)p,(@]Yy).
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The essential incremental task is the evaluation of the marginalized likelihood, as explained
in Section 2.5. Some methods of evaluating the marginalized likelihood are taken up in
Section 4.4,

The closed investigation has two distinguishing features. First, the ultimate consumer
-- who, following Hildreth (1963) may be called the client -- has provided a complete
formal specification of the problem. Second, the investigator’s report E[h(a))]YT] is
formally useless if any aspect of the problem specification is changed, and typically is not
then very useful in an informal way either. In an oper investigation the investigator is
missing one or more elements of the problem specification: for example, the investigator
may not know the client’s priors or vectors of interest, and may not know all of the models
the client entertains and their associated prior probabilities. This situation is much more
typical of the conditions under which investigations are carried out. Given the methods set
forth in this chapter the investigator can in fact do a great deal in this situation, as described
in Section 4.5.

4.1 The predictive decompeosition
Suppose that Y, :{ys}::=I is available, and a single model has been completely

specified. Then the predictive density for observations u + 1 through 7 is
r
4.1.1) D(GrlYa) = [ P(OY )T, (il Yo, 6)0,

where
¥, 0)/ I, T (5 Y0}

“.12) p(elY,)=p(O] I,_f.(v.
In this expression, (¥,,,,....¥,) is a random vector; the practical mechanics of working

r

with its distribution are taken up in Section 4.2.
Once the observations ¥,,,,....¥, are known, the predictive likelihood for observations

 + 1 through ¢ is
@ =] w0,

The right hand sides of expressions (4.1.1) and (4.1.3) are only formally identical:

Y,.,.0)d6.

(yu Lo ..,y,) is a random vector in the former, and is fixed in the latter. The predictive

likelihood is the probability density assigned to the observed (¥,,,,....¥,) by the posterior

based on observations 1,...,z. It is a measure of the out-of-sample forecasting
performance of the model -- one that fully accounts for parameter uncertainty.
Since Y, = {2}, the marginalized likelihood is

ﬁg =Iep(9)nj=lfs(ys Y G)dB:MT'

y]
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Substituting (4.1.2) in (4.1.1),

L eI 1. (y.Y....6) ,
L @ o, e[

)d6

=17

1,0)d0 iy

Jp@OIT f(v.¥ :
. POIT LY. 00, 8,

Hence for any 0Su=s0<s[< <s, =1,

MM

o 4 ag
(4.1.4) TR ~H-;

This decomposition has several 51gn1ﬁcant implications for time series analysis.
First, specific choices of the s, yield

A T ag T ~rE
(4.1.5) My =5 =L 7o =T Lo Pl

where T is an integer multiple of ». This identity links the model’s marginalized
likelihood with its out-of-sample forecasting record as embodied in the predictive
likelihood. Recall that the data bear on model choice only through the marginalized
likelihood (Section 2.6). Therefore, (4.1.5) provides a well-defined sense in which model
choice is equivalent to the comparison of out-of-sample forecast performance. In a
symmetric model choice problem (balanced loss function and equal prior probabilities) the
chosen model will be the one with the best out of sample forecasting record as indicated by
the right hand side of (4.1.5). The forecasting record can be stated in terms of all one-step-
ahead forecasts, or in terms of non-overlapping forecasts of r successive realizations. It
cannot be expressed only in terms of r-step-ahead forecasts. This accords well with the
common experience in time series analysis, that preferred models provide superior one-
step-ahead forecasts, but not necessarily superior r-step-ahead forecasts for r> 1.

The decomposition (4.1.4) also provides a general method of computing M,. If M,

is cast directly in the form of (2.1.3),
T
M, =E[g(6)Y,]= [ p(6)g(6)d6, g(6)=TT_ £, (»[Y,.6).
the result is not useful for computation: the prior distribution is typically much more diffuse
than the likelihood function T]__ f,(»,

) so that draws from the prior are very

=17

inefficient, being almost always far removed from the main support of the likelihood

),

function. On the other hand, since

=E[g(0)Y,]= [ p(6]v,)e(6)d6, &(6)=TT....f.(5.

=12
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a simulation method may provide a computationally efficient approximation of 5. Then,
one may appeal to (4.1.5) to approximate M. (For further details see Geweke (1994).)

A third use of the decornposition is in reporting. Forall viu<v <z,

o MM,

b M MM B
Consequently a plot of log(p;) for s=wu+1,....z is visually revealing of predictive
likelihoods for all subintervals.
The decomposition also provides a useful diagnostic in the comparison of models.

& 7Y

Introduce an additional subscript “ j” or “k” to denote alternative models and define the
predictive Bayes factor B’;tk,u = p'/ Pl A;lm = p'o/Pro =My [M,, is the Bayes factor
defined in Section 2.6. From (4.1.5),

Byw= B/ B =TTpre [T P = I B
By considering characteristics of observations for which B,“ _, is relatively larger or

smaller, it is often possible to get a deeper understanding of model suitability and new
models may be suggested.

4.2 Forecasting and signal extraction

The general forecasting and signal extraction problem can be stated as follows.
Given a data set Y, and a collection of models M, (j=1,...,J), corresponding to each

model j there is a parameter vector €;, a data density p(- |6 j), a prior density p(G ;.), and a

prior model probability p;. There is also a common vector of interest @ € €2, and for each
model a specified density p j(a)lﬂj,Yr). The problem is to choose a Bayes action a€ A to
minimize

E[C(w,a)|Y, ] J (w,2)p(0]¥, Jdw

= J-nc(a)’a)z;[je} pf(wlei’YT)pi(ef|YT)d9j:|P(Mjer)dm:
where C is a loss (or “cost™) function, P(Mj]YT) is given by (2.5.3), and pj(ﬂjlY,.) is

given by Bayes theorem for each model.
In many instances the solution of the minimization problem can be expressed
E[h(@)|Y, ] for a known function h(-): the leading example is quadratic loss, discussed in

Section 2.3. If g(6)= I a)|YT,6)dco can be evaluated in closed form, then the

forecasting and signal extraction problem is a special case of the problem set forth in
Section 2.1, to which the simulation methods of Section 3 are directly addressed. This is
rarely the case.
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In most instances, however, the methods of Section 3 can be adapted to the
approximation of E[h(co)|YT] through an auxiliary simulation. To cast this method as a

special case of the general treatment in Section 3, let 8 =(w’,6"), 8e®=Qx©, and
g(é) =h(®w). Then
E[h(@)Y,]= J,2(8)p(8¥)d8.

To draw from p(é[YT), first draw @ using an appropriate simulator, and then draw @

from p(co G,YT). The second step is generally easy: in forecasting, it amounts to

simulation of the model with known parameter values; in signal extraction, it typically
involves the appropriate conditional distribution, again with known parameter values. If
the convergence conditions of Section 3 are satisfied, and if E[h((o)IYT] exists, then

S w(o,)h(w,)/3" we,) - Eh(e)|y,]

where w(8,,) is associated with draw m from p(@[YT), and @, ~ p(co]@m,YT).

The class of forecasting and signal extraction problems that lead to the approximation
of posterior moments of @ is interesting but not exhaustive. It includes minimmum mean
square error forecasting and signal extraction, taking one of a finite number of Bayes
actions, and interval forecasting of the form P(co EQ*[YT). However, solutions of

quantile or 0/1 loss forecasting or signal extraction problems, and the formation of credible
sets, cannot be expressed as posterior moments.

The set of forecasting and signal extraction problems that can be solved using posterior
simulation methods can be widened to include most continuous loss functions using some
results of Shao (1989). Shao obtained results for importance sampling algorithms. It is
reasonable to conjecture that his results extend to MCMC methods, but this has not yet
been shown, to the author’s knowledge. Let r(a) = IﬂC(cu,a) p(co]YT)daJ denote expected

loss corresponding to action a, and let a” = arg min r(a) denote the (possibly set-valued)

solution. Correspondingly from the posterior simulator denote

rm(a) = Zfﬂc(wwa)w(em)/zfn W(Gm)

and a, =argr£1in r,(a). Shao (1989) sets forth two sets of conditions under which

r(a,}—>x(a’). r,{(a,} > r(a’),and a, »a’if a"is unique.

Optimal action convergence conditions 1.

(1) The action space A is compact.
(2) The loss function C(w,a) is continuous in a forall @ € Q.
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(3) There exists a measurable function M(@) with the properties sup C(w,a} < M(w) and
| M(@)p(e]Y,)do <.

Optimal action convergence conditions 2.
(1) A isconvex and C(w,a) is a convex continuous function of a forall @ € Q.

(2) Forall ac A, r(a)<oo, and there exists a”: r(a‘) = min r(a).
(3) Let A’ denote the closure of A and B(c)= {ae A"
B h that inf >rfa’).
(¢} such tha x’ér]:}(c)r(a) r(a )

a-a'|= c}; there is nonempty

(4) Let N(c)= {a eA”
uEEB)C( @,a) < M(w) and fﬂM(m)p(ler)dw < oo,

a— a"" < c}; there exists a measurable function M(®) such that

The second set of conditions admits the quantile loss function. A consequent corollary is

that quantiles can be approximated consistently based on posterior simulator output. If the
loss function is twice differentiable and it is convenient to evaluate Jr, /da and

d?r, /dada’, then a, can be computed by standard optimization algorithms, subject to the

usual caveats about the local shape of the objective function.

4.3 Bayesian and non-Bayesian approaches

In the classical non-Bayesian approach to forecasting and signal extraction an action
a=alY;) is taken to minimize
(4.3.1) E[C(@,2)(6] = B{q[@(Y, ),a(Y,)] 6}
In (4.3.1) Y, is a set of random vectors whose distribution is indicated by the data density
(2.1.2) and an assumed parameter vector 8. (If more than one model is being considered
then the conditioning set includes one particular model as well as the parameter vector.} In
the classical approach the action a{Y,) minimizes loss on average over all realizations
conditional on a specified model. In the Bayesian approach the action minimizes loss on
average over all model specifications under consideration conditional on the observed data.
This contrast between ex ante and ex post approaches is the philosophical heart of the
contrast between Bayesian and non-Bayesian methods; e.g., see Berger and Wolpert
(1988) and Poirier (1988, 1995).

There are two hurdles that must be overcome in implementing the classjcal approach to
forecasting and signal extraction. Each has spawned a substantial literature,

The first hurdie consists of the technical problems inherent in the minimization of the
expression (4.3.1) as stated, i.e., assuming a value for €. A seminal contribution is
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Granger (1969), which obtains analytical results for multistep-ahead forecasts of Gaussian
processes. Recent extensions of Granger’s approach include Weiss and Anderson (1984)
and Weiss (1991) for model selection and estimation, Diebold and Mariano (1994) for
forecast evaluation, and Chirstoffersen and Dicbold (1995) for conditional
heteroscedasticity.

The latter paper proposes a numerical approach to multistep-ahead forecasting,

a=Jr, = G(ﬂnmr’ Gf‘mr)

where U, and 07, are the first two conditional moments and G is twice continuously
differentiable. A second order Taylor series approximation to G leads to an expression
with six unknown coefficients, which are determined by means of a long simulation of
{y,} and evaluation of the loss function. This approach requires three levels of
approximation: limitation of the conditional distribution to its first two moments; a quadratic
approximation to the unknown function of these moments; and the simulation error in
approximating the quadratic function. In addition, i, and o7, ,, must be determined
analytically.

Clearly the approach of Christoffersen and Diebold (1995) can be extended to
overcome all of these difficulties except simulation noise (which can be made arbitrarily
small with sufficient computing). Since the forecast g is an unknown function of
{y,_,,s > 0}, the entire literature on nonparametric minimization provides a good approach.
(For technical essentials see Amemiya (1985), and for an application whose essentials are
similar to what is being proposed here see Smith (1991).) Thus, the first hurdle in
implementing the classical approach to forecasting and signal extraction is entirely
technical.

The second hurdle arises from the fact that 8 is not, in fact known. This difficulty is
fundamental, not merely technical, for the minimization of (4.3.1) is conditional on fixed
8. In all but a handful of trivial problems -- e.g., one-step-ahead minimum mean square
error forecasting in a Gaussian first order autoregression -- the unknown parameter vector
6 remains in the solution. As a practical matter, @ can be replaced by an estimator § with
desirable asymptotic properties, but good results typically require modification based on an
expansion of the distribution and the loss function at hand.

To highlight the fact that conditioning on @ is the fundamental difficulty, consider the
modification of the classical problem (4.3.1) in which a minimizes

E[C(w.a)|8,Y,].
In this problem the first technical hurdle vanishes. Conditional on the data set Y., it is no

longer necessary to determine the full mapping from all possible Y, to the optimal a.
Simulation of @ conditional on & and Y, can be employed to find a satisfactory numerical
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approximation of a, directly. The problem of uncertainty about 8 -- the second hurdle --
still remains.

The technical difficulties in the classical approach to forecasting and signal extraction
reflect the conditioning on a true model, and the minimization of loss averaged over all
possible realizations. Problems arise because this conditioning does not reflect the
information the investigator brings to the situation. The Bayesian approach conditions on
the data in hand, and loss is minimized conditional on all models under consideration and
the corresponding possible values of the signal or future data @. This reflects the
investigator’s situation, and simulation methods provide the direct solution of the problem.

4.4 Model averaging

Posterior odds ratios are the basis of model averaging, which via (2.5.1) is
fundamental to forecasting and signal extraction when more than one model is under
consideration. The essential technical task in model comparison is obtaining the
marginalized likelihood M T defined in (2.5.3). In describing how the marginalized
likelihood can be obtained using a posterior simulator it is convenient to drop the subscript
J denoting the model. For reasons discussed in Section 2.5 it is essential to distinguish
between probability distribution functions and their kernels in the marginalized likelihood.
In what follows, p(8) always denotes the properly normalized prior density and p(YT|9)

the properly normalized data density.

There are three conditions that a good approach to the computation of the marginalized

likelihood M, should satis{y.

(1) Given a large number of models it is much easier to summarize the comparative
evidence through the marginalized likelihood than through pairwise Bayes
factors. Therefore, the approach should provide a simulation-consistent
approximation of M, alone, rather than the Bayes factor comparing two models.
For example, it is sometimes casy to compute a Bayes factor using (2.6.1) and
(2.6.2), bul that does not meet this criterion.

(2) The development of a posterior simulator, its execution, and the organization of
simulator output all require real resources. Therefore, the numerical
approximation of M, should require only the original simulator output and not
any additional, auxiliary simulations.

(3) Accurate approximations are always desirable. The accuracy of the
approximation of M, should be of the same order as the approximation of
posterior moments in the model. Ideally, it should be convenient to assess
numerical accuracy using a central limit theorem.
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For posterior simulators based on independence sampling it is generally
straightforward to satisfy all three criteria. In the case of importance sampling let j(8)
denote the p.d.f. of the importance sampling distribution, not merely the kernel. Since
importance sampling distributions are chosen in part with regard to the convenience of
generating draws from them, their normalizing constants are generally known. So long as
the support of the importance sampling distribution includes the support of the posterior

distribution,
(4.4.1) AAJ;M) = Mﬂ]z:ﬂp(am)p(YTlgm)/j(em) M , M IW(B,,,)
—*I (Y,10)d0 = M.

And if
(44:2) [.[p(6Y p(¥116)’ [i(8)]d0 = [ w(6) i(6)d6 <=
then

MP( - My) = N(0, &)
where

o® = [ [p(8)p(Y16)//(6) ~ ;] i(6)d6
and

& = 5 [p(0)e(Yr16,)/i0.) - 1] - o
A sufficient condition for these results is thdt the we1ght function w(8) be bounded above,
the same condition that is most useful in establishing the simulation-consistency of
importance sampling simulators.

This approximation to the marginalized likelihood was used in Geweke (198%92). More
recently it has been proposed by Gelfand and Dey (1994); see also Raftery (1995). The
practical considerations involved are the same as those in the approximation of posterior
moments using importance sampling. For the sake of efficiency the importance sampling
distribution should not be too diffuse relative to the posterior distribution. For example

j(@)=p(6) satisfies (4.4.2) and leads to the very simple approximation
M =M"Z:ﬂp(YT|6m). But the prior distribution works well as an importance
sampler only if sample size is quite small and @ is of very low dimenston (Kloek and van

Dijk, 1978). For an evaluation of the use of the prior in this way, see McCulloch and

Rossi (1991).
Acceptance sampling from a source density r{0) is so similar to importance sampling

that exactly the same procedure can be used to produce M"M’ The ratio
( ,.|9 ) / r IS needed for the acceptance probability in any event. The only

addltlonal work is to record p(6,,) p( TIG ) / r(6,,) whether the draw is accepted or not,
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and then to set M = M"nglp(em)p(YT|6m) /r(6,,), the summation being taken over

all candidate draws.

Simulation-consistent approximation of the marginalized likelihood from the output of
a Markov chain Monte Carlo posterior simulator is a greater challenge, and has spawned a
substantial recent literature. No method will fully meet the three criteria stipulated above,
without more fundamental progress on the application of central limit theorems. Many
methods are specialized to particular kinds of models and require at least two models for the
computations because they provide Bayes factors rather than marginalized likelihoods.
Methods have been developed for approximation of Bayes factors when the dimension of
the parameter vectors in the two models is the same (Meng and Wong, 1993; Gelman and
Meng, 1994; Chen and Shao, 1994), or the models are nested (Chen and Shao, 1995). A
more general procedure is due to Carlin and Chib (1995) but this requires simultaneous
simulation of two models. The decomposition of the likelihood function set forth in
Section 4.1 provides a fully general approach, but in effect this requires the consideration
of many models. On this approach see also Gelfand, Dey and Chang (1992), Geweke
(1994), Kass and Raftery (1995, Section 3.2), and Min (1995).

Many straightforward approaches yield procedures with impractically slow
convergence rates. A leading example is the “harmonic mean of the likelihood function”
suggested by Newton and Raftery (1994): if g(6) = [p(l.'fi)p(YTIG)]_t then E[g(6)]=M;".
But g(@) generally has no higher moments and consequently numerical approximations are
poor.

At this juncture the procedure for approximating the marginalized likelihood from the
output of a Markov chain Monte Carlo posterior simulator that comes closest to satisfying
all threc criteria is a modification of the harmonic mean of the likelihood function,
suggested in Gelfand and Dey (1994). They observed that
(4.4.3) E[1(6)/p(8)p(Y,16)] = M
for any p.d.f. f(8) whose support is contained in @. One can approximate (4.4.3) from
the output of any posterior simulator in the obvious way, but for this approximation to have
a practical rate of convergence f(8)/p(6)p(Y|6) should be uniformly bounded. Gelfand
and Dey (1994) and Raftery (1995) interpret this condition as requiring that {(8) have “thin

tails” relative to the likelihood function.
1t is not difficult to guarantee both the boundedness and thin tail condition in (4.4.3).
Consider first the case in which @ = R*. From the output of the posterior simulator define

By=M"Y" 6, and 2,=M"3¥(0,-6,)0,-8,). I[Since the posterior
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simulator is a Markov chain Monte Carlo algorithm, it is assumed that W(B,,,) =1. If the

posterior simulator is an importance sampler, then (4.4.1) can be applied directly.] It is not
essential that the posterior mean and variance of @ exist. Then take

(4.4.4) f(6) =22m) 8, exp[-%(ﬁm - 9M)’ =(e, - @M)}ZéM(G)’

6, = {9;(9,,, - é,_,)’z-‘(em -6, sxg(k)}.

If the posterior is uniformly bounded away from O on every compact subset of ©, then the
function of interest f(B)/ p(B)p(GIYT) possesses posterior moments of all orders. For a

wide range of regular problems, this function will be approximately constant on @)M,
which is nearly ideal.
If 6 4 18 not included in © some modifications of this procedure are required. In

some cases it may be easy to reparameterize the model so that ® =R*. If not, the domain
of integration for the function of interest (8)/p(8)p(Y,|@) can be redefined to be

©, MO or a subset of ©,, MO, and a new normalizing constant for f(8) can be well

approximated by taking a sequence of 1.i.d. draws {8,} from the original distribution with

p.d.f. (4.4.4) and averaging ¥o(6,), at the cost of an additional, but simple, simulation.
In the case of the Gibbs sampler there is an entirely different procedure due to Chib

(1995) that provides quite accurate evaluations of the marginalized likelihood, at the cost of
additional simulations. Suppose that the output from the blocking 8" = (9’“),. . G'(B)) is

available, and that the conditional p.d.f.’s p(B“ o j),Yr) can be evaluated in closed

form for all j. [This latter requirement is generally satisfied.] Suppose further that
condition 1 or 2 for convergence of the Gibbs sampler is satisfied.

From the identity p(6]Y)=p(6)p(Y16)/M;, M, =p(6")p(Y.[6")/p(6']X;) for
any 8" €®. [In all cases, p(-) denotes a properly normalized density and not merely a

kernel.] Typically p(YTIE?*) and p(G*) can be evaluated in closed form, but p(B*IYT)

cannot. A marginal/conditional decomposition of p(e*{YT) is
p(0]Y;) = p(a*“’[YT)p(e*‘” 9*<”,Yr)-...-p(9*“”

The first term in the product of B terms can be approximated from the output of the

9*“’,...,9*(8-”,YT).

posterior simulator because

Mgk, p(6

9;2>,...,9,5,8),YT) ~p(6"¥; ).
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To approximate p(@"m g, ...,e"" ,YT), first execute the Gibbs sampling algorithm

with the parameters in the first j blocks fixed at the indicated values, thus producing a

s m
M‘!2:=lp(9*(j] 9*(1)’. ',,9*(1'—1}’6};::'1},_ e ejg}:YT) > p(et[”

Chib (1995) describes an extension to include latent variables.

sequence {QU H ...,B_E.B)} from the conditional posterior. Then

e*(”,...,e““"J,YT).

4.5 Bayesian communication

An investigator cannot anticipate the uses to which her work will be put, or the
variants on her model that may interest a client, Different uses will be reflected in different
functions of interest. Variants will often revolve around changes in the prior distribution.
Any investigator who has publicly reported results has confronted the constraint that only a
few representative findings can be conveyed in written work.

Posterior simulators provide a clear answer to the question of what the investigator
should report, and in the process remove the constraint that only a few representative
findings can be communicated. What should be reported is the M x (k +2) simulator

output matrix,
6, w(6) p(6)
6, w(6,) p(6,)
by making it publicly and electronically available. In a reasonably large problem
(M =10,000 and k = 100) the corresponding file occupies about 3.2 megabytes of storage
(at a current capital cost of about US$1.40) and can be moved over the internet in about a
niinute,

Given the simulator output matrix the client can compute posterior moments and solve
signal extraction and forecasting problems not considered by the investigator. In signal
extraction or forecasting the client simulates one (or more) values of @ corresponding to
each G, from the density p(cu]t?m,Yr). This simulation is typically much easier and faster

than is the posterior simulator itself. Given the collection of simulated @, solution of the
formal problem then proceeds as described in Section 4.2.

With a small amount of additional effort the client can modify many of the
investigator’s assumptions. Suppose the client wishes to evaluate E[g(@)[YT] using his
own prior density p’ () rather than the investigator’s prior density p(8). Suppose further
that the support of the investigator’s prior distribution includes the support of the client’s
prior. Then the investigator’s posterior distribution may be regarded as an importance
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sampling distribution for the client’s posterior density. The client reweights the
investigator’s {B"‘H=1 using the function
()= p(8]Y,) _P(OL(8Y.) _p'(8)
p(e]Y,)  p(OL(6]Y.) p(6)

where p*(9|YI) denotes the client’s posterior distribution. The client then approximates his

posterior moment E*[g(e)lY,] by

YR CALICATCAT) WA ALICARS AEC) AEFS
The result g, — g follows almost at once from Tierney (1994).

The efficiency of the reweighting scheme requires some similarity of p (@) and p(6).
In particular, both reasonable convergence rates and the use of a central limit theorem to
assess numerical accuracy essentially require that p*(8)/p(6) be bounded. Across a set of
diverse clients this condition is more likely to be satisfied the more diffuse is p(8), and is
trivially satisfied for the improper prior p(8) = constant if the client’s prior is bounded. In
the latter case the reweighting scheme will be efficient so long as the client’s prior is
uninformative relative to the likelihood function. This condition is stated precisely in
Theorem 2 of Geweke (1989b). Diagnostics described there will detect situations in which
the reweighting scheme is inefficient, as will standard errors of numerical approximation as
well. I the investigator chooses to use an improper prior for reporting, it is of course
incumbent on her to verify the existence of the posterior distribution and convergence of
her posterior simulator.

Including p(Bm) in the standard simulator output file avoids the need for every client
who wishes to impose his own priors to re-evaluate the investigator’s prior. Of course, the
p (8)’s need not be the client’s subjective priors: they may simply be devices by which
clients explore robustness of results with respect to alternative reasonable priors.

The potential for clients to alter investigators® priors, update their results, and examine
alternative posterior moments, exists given current technology. All that is required is for
Bayesian investigators to begin making their results available in a conventional format, in
the same way that many now provide public access to text and data. Once this is done,
colleagues, students, and policy makers may employ the results to their own ends much
more flexibly than has heretofore been possible, with modest technical requirements.

5. Some models

The innovations in methods for simulation from posterior distributions just described
have made possibie routine and practical applications of Bayesian methods in statistics.




This section reviews the implementation of posterior simulators in a few models for
economic time series. The survey concentrates on just a few models in order to provide
the technical detail that is essential to the application of these methods, not just their
appreciation. All of the method presented here can be combined, used in more elaborate
models, and be tailored to more specific models implied by the theory and data in a given
application.

5.1 Vector autoregressions

The vector autoregression (VAR) was introduced by Sims (1980) and has
subsequently been applied extensively in macroeconomics (e.g., Doan, Litterman and
Sims, 1984; Blanchard and Quah, 1989) and forecasting (e.g., Litterman, 1986). The

canonical model for L time series ¥, = (y,,...,¥,,) is

i)
(5.1.1) Y, =Bz, +> By, +¢e, &~N03I) (t=12..)
conditional on y,...,¥, , and a kX1 vector of deterministic covariates z,. There are

other, equivalent, representations of the VAR, based on alternative normalizations; these
include recursive and block recursive forms, as well as error correction representations.
Since these are all renormalizations, it proves convenient to treat them as functions of
interest and they are described from that point of view below in Section 5.1.2.

Some extension of notation reveals relationships between the VAR and other
econometric models. Let

z Y] g

Zy Yr Er
and take X =[Z,Y,,....Y,,} B =[B,,....B,]. Then

~

[ — ]
TxL Tx(k+pL) L

a multivariate regression (Anderson, 1984). The maximum likelihood estimator of the

s

parameters is B=(X'X)"X'Y, £=7"$=7"(Y - XB) (Y-XB).
Alternatively, let ¥ = vee(Y), 8 = vec(B), and £ = vec(E). Then
y=(I®X)B+e, £~N(0,E®IL,}.
Thus the VAR is a seemingly unrelated regressions model (Zellner, 1962) with the same
covariates in each equation.
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5.1.1 Prior distributions
Through straightforward manipulations the likelihood function for (5.1.2) can be

expressed
(5.1.3) =™ exp(-3tr =7'S)

(5.1.4) -eXP{—é(ﬁ -B) (=" @ x’X)(B- ﬁ)}
where ﬁ = vec(ﬁ). Integrating (5.1.3) with respect to 3, obtain

[Tt exp(~4trSE™),

up to a factor of proportionality not involving £. The functional form in £ is the same
as that of the Wishart distribution (3.1.1). Interpreted as a kernel in B, (5.1.4) implies

B~ N[[;’, I® (X’X)"I]. Hence a fully conjugate prior distribution has the form

7~ WSt v), BE~N(BZOH;)
Multiplying the kernel of the conjugate distribution by (5.1.3)-(5.1.4), after a little
manipulation one obtains the kernel of the posterior distribution

27~ W[(S+8)", v+ T—k—pl’| BIE~ N(B, Z®H;)
with “}fﬁ =H,+X'Xand § = (I ® ﬁ;;‘ I;Iﬁ)[_i + (I ® ﬁ;X’X)B. Independence simulation
from this posterior distribution is very fast and simple.

The fully conjugate prior distribution is often an inconvenient representation of beliefs,
since uncertainty about the variance matrix and the coefficients is linked. The prior

distribution

(5.1.5) B~N(8.H;'), £ ~wW(s",y)

does not have this property, and leads immediately to
(5.1.6) ﬁ|E,Y,X ~ N(B.H;')

with B, = H; + T @ X'X, B =H; (HB+H,B), and
(5.1.7) B, Y.X ~ W(§", V)

with S=8+(Y - XB)’(Y —XB), V=v+T. Thus this prior distribution is conditionally
conjugate. It is immediately suited to a Gibbs sampling algorithm blocked in 3 and X.
The computations here are more demanding, since a linear system of order & + pI? must be
solved at each step.

The prior distribution (5.1.5) as stated involves potentially a very large number of

parameters. Simply to organize the representation of prior beliefs about § and £ within the
family (5.1.5) it is necessary to restrict 8 and Hy. This can be done conveniently through

a system of hierarchical priors (Section 2.7). This approach has been taken by Doan,
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Litterman and Sims (1984) and by Chib and Greenberg (1995) for a closely related
problem in the seemingly unrelated regressions model. A common notation that captures
all of these approaches is

B~N{B(u), Hy(m)'|; s ~p,(-) m~p,(-).
Conditional on ¢, 7, £, X and Y the distribution of 8 is (5.1.6). Conditional on §and X
the posterior distribution of i and 7 has kernel

(5.1.8) exp{—é[ﬁ - ﬁ(u)]’ﬂﬁ(n)[ﬁ - Q(u)]} Pu{H)P+(7)

since i and m do not appear directly in the likelihood function. The practicality of this
procedure rests on the existence of a suitable method of drawing t and & from (5.1.8).
This is gencrally not difficult to achieve since y and  are likely of low dimension. For
example, in the spirit of Doan, Litterman and Sims (1984) we might have

byl m) ~ N(g, ), byl ) ~ N{tta, ;) (i # ),

bl 7, 7) ~ N(py, moms™), b\, 7 7) ~ N{py, woms ™'} (s> 1, # j),
where all distributions are conditionally independent. The hierarchy might be completed by

the seven independent prior distributions,
u-N BS) si/m - g {y) (j=1-4), m~0(0,1) (j=56).

It is straightforward to verify that conditional on 8, %, Y and X, f is sufficient for the
distribution of g and 7; that the seven posterior distributions of g and 7, (j = 1,...6) are
conditionally independent; that the conditional distribution of g is multivariate normal; and
7, (j=1,...,4) is inverted gamma. The conditional distributions of 7, and m, are
unconventional but are easily handled through acceptance sampling along the lines
described in Geweke (1995a, Section 3.2).

5.1.2 Functions of interest

The properties of vector autoregressions in the population have been studied
extensively. Any set of such properties may be represented through functions of interest of
the form g(Bo,. ..,B P,Z), and hence inferences about them can be carried out readily by

means of posterior simulation. Examples include guestions about stationarity,
cointegration, spectral densities, and various decompositions of variance. Here we discuss
three kinds of properties: alternative normalizations; transformations of parameters; and
problems in prediction.

For many purposes, other normalizations of (5.1.1) are convenient. Once such
normalization is the fully recursive form,

in
(5.1.9) V=2 AN+, 1, ~ N0, D)
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in which A, is lower triangular, [A,] =0 (j=1,...,L), and ® is a diagonal matrix. The
mapping from Z and the B, to ® and the A, can be constructed explicitly by letting
PP’ = £ be the unique Choleski decomposition of £ in which P is lower triangular and
p;>0 (j=1..,L); take ®=diag(p2); R=P®"™; A =R7B, (s>1); and
A,=1-R7".

Given stationarity of y conditional on z there are three other standard useful
representations of multivariate time series that may be obtained as functions of interest. A
nccessary and sufficient condition for conditional stationarity is that the roots of
s.110)  [I,-3) Bz|=0
all lie outside the unit circle. Stationarity may be imposed by checking this condition
directly, and discarding draws corresponding to nonstationary configurations of {BJ}L.

The moving average representation corresponding to (5.1.1) 1is
y, = Z;oB:BUzI_s +Z; oBi&.;- The sequence {B }= is the inverse of {Bs}f=1 under

convolution, i.e.,

(5 et B2 ) vt

The terms B, may be obtained through the recursion
r-l
B, =1, B, = 2 WBB. (r=12,.).

One may obtain moving averages corresponding to other normalizations, as well. The
representation ¥, = 3" DiDyz,_ +3 " D;{,_, corresponding to (5.1.10) is given by the
recursion

-1

Ay =(1-A)", A =(T T AA, A (r=12,..).

This representation has been used extensively to examine the impulse response functions
;] (w,)" (s=012..),

which trace out the effect of a typical shock of size (!,{f)z.z in{,ony,. There is a

substantial literature on methods for obtaining confidence bands for impulse response
functions (e.g., Sims, 1986; Runkle, 1987; Blanchard and Quah, 1989; Sims and Zha,
1994; Koop, 1995; Phillips, 1995). Since the impulse response function is a closed form
mapping from the parameters of the VAR, however, there really are no essential difficulties
in a Bayesian approach.

The spectral density matrix corresponding to (5.1.1) is

,

5,(1) [ -3 B,exp(- zﬂ.s] [ - B.exp z}{s]
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At a given frequency the spectral density matrix is a closed form function of the parameters
of the VAR, and it may be computed at many frequencies. Spectral densities have been
applicd in a wide variety of signal extraction problems (Nerlove, Grether and Carvalho,
1979, Chapters 3-4; Whittle, 1983). The frequency domain representation provides several
useful adjuncts to the study of multiple time series. One is that the roots of (5.1.10) all lie
outside the unit circle if and only if

1 @) [T legi-3" B, exp(—ms)rdz, =0

(Rozanov, 1967, Theorem 4.2). For large systems it is easier to check this condition by
computing I‘Z:;IB.; exp(—iAs) at many frequencies than to determine the roots of

(5.1.10) directly. From (5.1.1) and (5.1.11),
(27)" | logl$,(A)}dA =Toglz].

The autocovariance function of y conditional on z cannot be determined in closed
form from the VAR parameters. Three approaches are possible, but it is not clear if any is
generally more efficient than the others. Since

y=(2n1)" _[ J(A)exp(—idr)dA = Z" A ZA’

§=r?
the autocovariance function may be approximated by computing many spectral density

ordinates or terms in the moving average representation. Alternatively the Yule-Walker
relations

R,(0)=3" BR (-s)+Z
Ry(j)zz* 1B3Ry( ) (j=1,---,P_1)

may be solved for R (j) (j=0,...,p—1) through iteration to a fixed point, and then
R,()=3" BR(j-s) (j=p.p+1...) may be computed iteratively.

ym] T ¥
Yet another normalization is the error-correction representation (Davidson, Hendry,
Srba and Yeo, 1978) that has proved especially useful in the study of co-integration (Engle
and Granger, 1987). Write (5.1.1) in the form

- D
(5.1.12) Ay, =C,Az,+ Y CAy, , +C,y,, +&, &~ N(0,I)
in which C,=B,,C,=-Y B, (j=L.,p-1)andC,=-{I-3/ B]). A

necegsary and sufficient condition for stationarity of y conditional on z is that all roots of
(5.1.10) lie outside the unit circle. Hence rk(Cp)= L is necessary for stationarity.

Moreover, departures from stationarity thought likely a priori typically imply rk(Cp) < L.

Interest in the literature has concentrated on the implications of rk(Cp) < L. Let
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w oMV [R ] ik
Tlw ) TR ST

with R nonsingular and R R; =0. The vector w,, is taken to be stationary while w,, is

nonstationary with no stationary linear combinations. Then (5.1.12) implies
L3 -] * L] *®
Aw, =Cz, + E i;leAZI_l +Cz,_ +¢

-1
where C, =RC,, C.=RCR™" (s=1,...,p—1)}, and
C: =RC,R™" = [R]C"}R"
r r RZCp '
If R,C, is of full row rank and R,C, =0, then w,, is stationary but w,, is nonstationary.
Imposition of this condition amounts to assuming that the last r, rows of C:, are zero,

which is easily accomplished in the context of the Gibbs sampling posterior simulator
described above.

Because of the recursive formulation of the VAR sampling from the predictive density
is straightforward. Given the parameters of the model, the data, and all future values of the
deterministic process {z,}, the recursion

§,=¥, (t=1...T)
Vo ~ N(Bozm +37 B z) (=12,..)
provides a draw from the conditional distribution. Based on one or more such draws for

each simulation of parameter values, forecasting problems can be attacked directly as
described in Section 4.2.

5.2 Time-~varying volatility medels

Models in which the volatility of asset returns varies smoothly over time have received
considerable attention in recent years. (For a survey of several approaches see Bollerslev,
Chou and Kroner (1992).) Persistent but changing volatility is an evident characteristic of
returns data. Since the conditional distribution of returns is relevant in the theory of
portfolio allocation, proper treatment of volatility is important. Time-varying volatility also
affects the properties of real growth and business cycle models.

The earliest model of time varying volatility is the autoregressive conditional
heteroscedasticity (ARCH) model of Engle (1982). This was extended to the generalized
ARCH (GARCH) model by Bollerslev (1986). Since then many variants of ARCH
models have appeared. The distinguishing characteristic of these models is that the
conditional variance of the return is a deterministic function of past conditional variances
and past values of the return itself. GARCH models exhibit both time-varying volatility
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and leptokurtic unconditional distributions, but the two cannot be separated: these models
cannot account for leptokurtosis without introducing time-varying volatility.

Stochastic volatility models have been examined by a series of investigators beginning
with Taylor (1986). Promising Bayesian methods have been developed by Jacquier,
Polson and Rossi (1994), In these models the conditional variance of the return is a
stochastic function of its own past values but is unaffected by past returns themselves.
Like GARCH models they account for time-varying volatility and leptokurtosis, but unlike
GARCH models it is possible to have excess kurtosis without heteroscedasticity.

5.2.1 The GARCH model
The GARCH model of time-varying volatility may be expressed

y, =[x, + /¢,
(5.1.1) h=o+y, Ve, +2. Sh,

g, ~ IIDN(0, 1)
Here, y, is the observed return at time f; x, is a vector of covariates and f is the
corresponding vector of coefficients; A, is the conditional variance at time ¢; >0, 7, 20
(s=1....q),6,20(j=1,...,p). The vector of covariates is typically deterministic,
including a constant term and perhaps indicator variables for calendar effects on the mean
of y,.

For the discussion here, assume the GARCH (1,1) model, which is (5.1.1) with
p=g=1. (Henceforth, we omit the subscripts on ¥, and §,.) The GARCH (1,1)
specification has proven attractive for models of returns. It typically dominates other
GARCH models using the Akaike or Schwarz Bayesian information criteria (Bollerslev,
Chou and Kroner, 1992). Following the GARCH literature we treat A, as a known
constant. Then, the likelihood function is

L,(8.0.7.87,) =TT n” exp|- (5, - x/B)’ /21,

where fi, is computed recursively from (5.1.1).

For expressing prior distributions as well as for carrying out the computations it
proves useful to work with a =log(e) rather than ¢. With this reparameterization a

convenicnt functional form of the prior distribution is
a~N(as):

(5.1.3) B ~N(B.8, );
7(y,8)=2(y20,620,y+6<1)
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and the distributions are independent. Restriction of yand & to the unit simplex is
equivalent (o the staternent that the variance process is stationary.

A Metropolis independence chain can be construted to produce a sequence of
parameters whose unconditional limiting distribution is the posterior distribution. Let
8’ =(f",a,7.6), and let p(H[Yr) denote the posterior distribution. The kernel of this
distribution is the product of (5.1.2) and the three prior density kernels in (5.1.3). The
mode of the log posterior kernel is easily found using analytical expressions for the

gradient and Hessian and a standard Newton-Raphson algorithm. Denote the mode by 6,
and the Hessian at the mode by H. Let J(-;u, V, v} denote the kernel density of a

multivariate Student-¢ distribution with location vector U, scale matrix V, and v degrees
of freedom. For the choices u =8, V=—(1L.2)’H"", v=5, the ratio p(B]YT) / I(6;1,V,v)

is typically bounded above.
This multivariate Student-z distribution forms a proposal distribution for an
independence Metropolis algorithm as follows. At step #z, generate a candidate §” from

J(-;,u, v, V). With probability
CHIATAIEIHTRA
p=min pl;}g_!) ’J/( (m{f) V) , 1y,
p (0777, ) /3{8" 50,V v)
8" = g"; and with probability 1-p, 8™ =™, In applications of this proposal

distribution, about half the candidate parameter vectors are typically accepted (Geweke,
1994).

5.2.2 The stochastic volatility model
The stochastic volatility model taken up by Jacquier, Polson and Rossi (1994) is
y:=ﬁ’xr+sr’ E.f:htvzur’
logh = a+dlogh_, +o,v,

(zﬂj [il') N(O, Iz),

Y

where |§] <1 and &, > 0. Following Jacquier, Polson and Rossi, do not condition on
but regard /7y as a random variable drawn from its unconditional distribution

N(oc/(l - §), 0'3/(1 - 52)). Then,
L(8,0.6,0,;Y;) = [ [TL(B.0:.8.0, hyse. s s Y o My,

where
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L'(B,0,8,0,,h,...h; Y, )=
(5.2.4) IL.2" exp(—Z“: g’ /Zhs)exp[—zu (logh, — a - Slogh,_,)" /20‘,,"]

exp{[logh] -af(1-8 /[0‘2/ 1- 52)]}

The prior distributions for § and o, are of the forms
B~N(B.S,)
and
v,5,/0; ~ 1 v,),
respectively. The prior distribution of (o, 5)’ is bivariate normal, induced by independent

normal prior distributions on the persistence parameter &,
&~ N(8.s5)
and the unconditional mean of logh,,
af(1-8)~N(k, 5}).

A linearization of ¢/(1~ &) yields the corresponding bivariate normal prior distribution,

@ B1-8)| |s(1-8) +K’s% -hsj
5.2.5 ~N , 2 .
(:2:9) [5 ) U ) } { —hs} 55

Draws from the posterior distribution may be accomplished using Markov chain Monte
Carlo algorithms. To describe these procedures, let 8 =(f’,0,8,0,) and

h’ = (..., 1, ), and note that for any function of interest g(6,h),
_ Ls@L.(6v,)z(6)de _ [ | a(6)L.(6.h]7,)x(6)and6
Blg(6.)] == | L.(6]7,)n(6)d0 |, ] E.(6.b]r,)(6)ando

where 7(6) is the prior distribution constructed from (5.2.5).

¥

The posterior distribution of § conditional on {¢,8), ©, and h is normal, and the
posterior distribution of (&, &) conditional on 8, o, and h is normal up to the last term of
(5.2.4) which may be accommodated by acceptance sampling; and the distribution of o,
conditicnal on 3, {,8) and h is inveried gamma.

The nonstandard part of the problem is drawing the vector of latent variables h. The
posterior distribution of A, (1 < s <u), conditional on {hr,r # s} and @ has density kemel
(5.1.6) 7 exp(-&2/2h,)

(5.1.7) : exp[—(log - /202]

where
or(1- &)+ S8(logh, | +logh,,,) 52 o>
B 1+ 8° ’ 1+82°

€.r=y.\'_x.:ﬁ’
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Drawing h may be accomplished in a number of different ways. Jacquier, Polson and
Rossi (1994) use a Metropolis chain, generating from a candidate density, and using the
procedures described in Section 3.4.2 to either accept or reject the draw. The term (5.1.6)
is the kernel of a random variable whose inverse has a gamma distribution. Using this
family to approximate (5.1.7) by matching first and second moments, and combining with

the first term, yields the candidate density kernel
x~(#) exp(—A/x);
¢= [I -~ Zexp(o‘z)]/[l —~ exp(o’)]+.5,
A= (¢ —1)exp(p,+.50%)+.5¢].
Alternatively (Geweke, 1994} note that the posterior conditional density kernel for
H, =logh, is
exp[—(H,, — U, )/20'2]exp[—8: /2cxp[Hl\,)],
where u’ =t —.50”. One can draw efficiently from this distribution using acceptance
sampling, employing a source N (2,,0'2) distribution with A chosen optimally as described
in Geweke (1994, Section 3.2). For H, =logh, the conditional posterior density kemel is
exp[—(H, - ﬂ:)l/zdf]exp[—ef/Zexp(HI )]
where y; = o + 8H,~.567. There is a symmetric expression for H, =logh,.
This approach to stochastic volatility can be extended in several dimensions, using
Markov chain Monte Carlo methods for Bayesian inference. These include leptokurtic or
skewed shocks and leverage effects through correlation between #, and v,. A multivariate

generalization of the model is
Y. = nEVe,
Lxl
logh = a+ élogh,_, +o,v,

E, \1D
HEE

t
which is also a stochastic generalization of the discount dynamic mode! used extensively in
Bayesian forecasting (Harrison and Stevens, 1976; West and Harrison, 1989). For an
overview of these extensions see Jacquier, Polson and Rossi (1995).

5.3 Changing regime models
Changing regime models provide one means of introducing nonlinear behavior in time

series, while still retaining much of the tractability of (5.1.1). The nonlinearity is
introduced through a latent process {s,} whose range is 5, = j(1,...,J). If 5,=J, then
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R . D .
v, =Bz +Y" By,  +g, &~N(0,zY) (r=12,..).
Much as before denote B =[Bg”,...,B£,”], g =vec[B(”], ﬁ’:(ﬁ(” peeen B ) A

conditionally conjugate family of priors is
B~N(B,H;'), [E"')]" _ W([S('”]_I, 2(;')) (G=1.d),
where the J+1 distributions are independent. The need for expression of S and Hy in

terms of hyperparameters, or for hierarchical priors, is once again evident.

Since the model is symmetric in the (ﬁ“ ), )3("’), further restrictions are required for
identification. These necessarily depend on the particular application. Examples include
inequality restrictions on the intercept coefficient in growth rate equations, thus identifying
one state as a contraction in a two-state model (McCulloch and Tsay, 1994), restriction of a
particular lime to a specific state, and inequality constraints on variances (Albert and Chib,
1993). The threshold model, described below, provides yet another means of

identification.
Conditional on the process {s,}, inference can proceed much as in Section 5.1.1. If

the ﬁm arc independent a priori, then this amounts to applying the procedures of Section
5.1.1 separately to subsamples of the form {£:s, = j}(j=1.....J). If not, the posterior

distribution of §, conditional on the U and {st}, is still multivariate normal, and the

posterior distributions of the =0 are conditionally inverted Wishart,
The changing regime model is completed with specification of the process determining
{s.},
p(sr | 9,}’,,],...,}’,_,,3,_1,!) (t=1..,7),

in which the parameter vector & indexes the class of processes, and a prior distribution
p(6). The posterior density kernel is

HLI <IE("’ )l—l/’i

ool -4l =885 B[] w52 me, )

53.2)  TL.p(s
(53.3) p(6)
(5.3.4) ‘HL p(Z9) p(B (s=0,....p1 j =1,....7)).

Conditional on all other parameters and the latent variables {s,}, the kernel density for 8

(5.3.1)

0. tre s Yoern 1o

involves only (5.3.2) and (5.3.3). Thus, issues of drawing & involve only the auxiliary
model for the latent variables {s,}. Conditionalon s, {r #1),
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P(s, = j}e<f,(s,) p(s,[ﬁ,y,_],..,,y,_,,s,_l,t) ;p(smle,y,“,,...,yf_r,s,,z)
where HL f,(s,) denotes (5.3.1) as a function of s5,. Thus, s, can be drawn by
evaluating (5.3.5) for j=1,...,J. A practical issue that may arise in this procedure is serial
correlation of the algorithm induced in this data augmentation. Generally serial correlation
can be reduced by drawing » adjacent s, simultaneously, at the cost of J” rather than »J
evaluations.

Several variants of (5.3.2)-(5.3.3) have been proposed, and in fact the variety of
models that can be applied has been enhanced greatly by the development of Markov chain
Monte Carlo methods for Bayesian inference. Here we describe four such models. In each
case we concentrate on the conditional posterior distributions of the latent variables s,, and

the conditional distribution of the parameters peculiar to the variant.

5.3.1 Markov switching models
In the Markov switching regime model the evolution of states is described by the first
order Markov chain,
P(s, = jl6.r=1)=p,; (i =1...,T),
P(s, = jl6,s, =i} = p; (ij=1....5¢=2,3,.)
This model was developed and applied to macroeconomic time series by Hamilton (1989,
1990). Bayesian inference using the Gibbs sampler has been implemented by Albert and

Chib (1993), Chib (1994), and McCulloch and Tsay (1994).
The kernel of the likelihood function in the Py (5.3.3) is the product of J+1 kernels

of the multinomial distribution indexed by i=0,...,J: H}; p,.'}"‘ where #; is the number of
transitions from regime 7 to regime j in {s,};. A natural conjugate prior distribution for
these parameters is the Dirichlet (also known as the multivariate beta) distribution,

plpy) =TT ey P20 =1 s0) T py=ta, 2-1G=0,..0)].
(For further discussion see Zellner, 1971, 38-39.) Hence a conditionally conjugate prior
distribution for 8 = {p,;,.,j =1...,J5;i= 0,...,]} is

: i a , J .
p(e) o Hi:ol_[j=1 pijd [a(.j =-1, Py 20 = 1,...,‘]; 2;’:1 Py = I; (,{ = 0’___,_]')]
and the corresponding conditional posterior density kernel is
; g J ny+ay . . J 1. s
(5.3.6) plo]< T IT.r  [p20i=ti Y py =1 (i=0,...0)]

There is a convenient genesis for this density (Johnson and Kotz, 1972, 232-233).
Construct the J{J ++ 1) independent random variables

dy~1[2m +a,+1)] (G=1...05i=0,...,0). 7
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Then
py=d, /3" dp (j=l...J;i=0,..J) (8)
has probability density kernel (5.3.6).
Conditioning to denote (5.3.1) as a function of s, by H; f, (s,), the distribution of s,

conditional on s, {r #¢) and all other parameters is
P(S, = J) oc f) (j)Poij.:,;
P(s, = j) o< £,(1)Py,, iPis, 6 =20 T —1);

P(ST = j) b f'r(j)Psr,l g
This completes the set of conditional distributions needed for a Gibbs sampling algorithm
for the Markov switching model. One can readily verify that Gibbs sampler convergence
condition 1 applies.
The Markov switching model may be extended, by allowing transition probabilities to
depend on the time of year. See Ghysels, McCulloch and Tsay (1994) for methods, and
evidence for this sort of behavior in macroeconomic time series.

5.3.2 Probit switching model

In the probit switching regime model, the evolution of the state variables is described

by means of an auxiliary J x 1 vector of latent variables v,,
I

(v“,.,.,vj_l’,) ~ (l"w,, .Q)

where w, is a subset of {y,_,...,¥,.},and v, =0. Then,
P(sI =j) = P(vj, 2y, Vi= 1,...,1).

This model has been studied by McCulloch and Tsay (1993).

Conditional on s,, this is a conventional multinomial probit model. If (I", Q) and
(B("), T j=1,...,7 ) are independent in the prior distribution, then the entire literature on
Markov chain Monte Carlo methods for Bayesian inference in the multinomial probit model
applies directly to the step of drawing I' and Q; e.g., see Geweke, Keane and Runkle
(1994a, 1994b), McCulloch and Rossi (1995}, and McCulloch, Polson and Rossi (1995).
If J =2 there is considerable simplification: see Albert and Chib (1993).

Once again letting H; f(s,} denote (5.3.1) as a function of s,, the distribution of s,
conditional on s, (r #¢) and all parameters is
P(s, = j) o< £,(7) - P(v, 2 v,I1.Q).

When J =2 the second probability in this expression is the c.d.f. of a univariate normal

distribution. For J 2 3, a recent literature on evaluation of orthant probabilities for the
multivariate normal distribution can be applied; see Hajivassiliou, McFadden and Ruud
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(1993) for documentation of the advantages of the GHK probability simulator due to Keane
(1990), Geweke (1992), and Hajivassiliou and McFadden (1994). See Geweke, Keane
and Runkle (1995) for a description and code,

5.3.3 Threshold autoregressive model

In the threshold autoregressive model introduced by Tong (1978, 1983) and Tong and
Lim (1980),

5, = f(yw, 9).

The simplest leading example one that has been studied from both Bayesian and non-
Bayesian perspectives, is 5, =1ify_, <r, 5,=2ify,_ >r; 8=(q, r)’. Conditional on
6 the states are known. If prior distributions for the B* and il are jointly conditionally
conjugate (as described at the start of Section 5.1.1) then analytic marginalilzation of the
B and £ is possible. The marginal posterior in 8 can then be evaluated directly,
leading to an independence sampling algorithm for the whole posterior. Examples of this
approach are Geweke and Terui (1992, 1993). Alternatively the problem can be blocked
into the B, the £, g and r. For this approach, see Carlin, Gelfand and Smith (1992)
and McCulloch and Tsay (1994).

5.3.4 Pure break models
Perhaps the simplest changing regime mode} is
s, =1,t<b; 5,=2,t>5,

as a special case of (5.3.2), together with a prior distribution for 4 from (5.3.3). There is a
considerable non-Bayesian literature associated with this model in economics, beginning
with Peron (1989). Non-Bayesian approaches are complicated by the issue of inference
about b; conditioning problems similar to those discussed in Section 4.3 arise. In the
Bayesian formulation the parameter b is symmetric with all other parameters in the model.
Bayesian inference in the context of (5.3.1)-(5.3.4), using a Gibbs sampiing algorithm, is
straightforward. See DeJong (1992) for an early study.

The focus in the literature has been on the comparison of models with, and without,
breaks. A formal comparison using Bayesian methods has not yet becen made, to the
author’s knowledge. In doing so, it would be important that the prior distribution for the
BU! and TV be chosen carefully. Given improper priors for these parameters, a finding of
a one-regime model would be implied by Lindley’s paradox.

The pure break model is ultimately handicapped by its failure to specify a stochastic
process that determines breaks. Because of this, forecasts conditional only on the data are

51




not possible in this model, as they are in the other changing regime models considered
here. As an incompletely specified model, it is not well suited to serious practical
application.

6. Conclusions

The procedures described in this survey can be summarized in three steps for the
Bayesian econometric analysis of time series.

(1) Be explicit abont assumptions. This entails a formal probability distribution over
all the models under consideration. As a technical matter, it means describing prior beliefs
through a probability for each model and a distribution of plausible parameter values within
each model.

(2) Condition on available information. Available information consists of the
assumptions in (1), and data related to the random variables whose distribution is governed
by these assumptions.

(3) Use posterior simulators to report the logical implications of (1) and (2). The
logical implications are completely summarized by the probability distributions of models
and parameters conditional on available information. These implications are drawn using
the laws of probability, i.e., Bayes’ theorem.

These procedures impose considerable discipline on the econometrician, in all three
steps. The discipline is precisely the same as that imposed in the development of ideas in
modern economic theory, and on the behavior of rational economic agents in these models.
The first two steps are no more than the application of the defining paradigm of the
discipline of economics, to the work that economists and econometricians do when they
confront their ideas with facts about the real world.

The third step is not essential to drawing the logical implications of the first two steps.
However, it has two compelling advantages. The first stems from the fact that drawing the
logical implications is technically very demanding. Posterior simulators provide by far the
best device currently available for completing this task, As a practical matter they are the
only device in most situations. The second compelling advantage is that the output of a
posterior simulator, generated by an investigator, provides a simple tool by means of which
a remote client can, within reasonable limits, alter the assumptions made in (1), update the
data sets used in (2), and examine implications in (3) not considered by the investigator.

The implementation of the Bayesian paradigm made possible by recent innovations in
posterior simulators places the formal analysis of economic time series on the same logical
footing as economic science in general, and makes the results of that analysis more
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accessible to scholars and policy makers. The realization of this promise is just beginning,
and its pursuit should provide worthy tasks for econometricians for some time.

53




References

Albert, J.LH. and S. Chib, 1993, “Bayes Inference via Gibbs Sampling of Autoregressive
Time Series Subject to Markov Mean and Variance Shifts,” Journal of Business and
Economic Statistics 11: 1-15.

Albert, J.H. and S. Chib, 1993, “Bayesian Analysis of Binary and Polychotomous
Response Data,” Journal of the American Statistical Association 88. 669-679.

Amemiya, T., 1985, Advanced Econometrics. Cambridge: Harvard University Press.

Anderson, T.W., 1984, An Introduction to Multivariate Statistical Analysis. New York:
Wiley. (Second ecdition)

Bartlett, M.S., 1957, “A Comment on D.V. Lindley’s Statistical Paradox,” Biometrika 44:
533-534.

Berger, 1.0O., 1985, Statistical Decision Theory and Bayesian Analysis (Second Edition).
New York: Springer-Verlag, 1985.

Berger, J.0. and R.L. Wolpert, 1988, The Likelihood Principle. Hayward: Institute of
Mathematical Statistics. (Second edition)

Bernardo, J.M., and A F.M. Smith, Bayesian Theory. New York: Wiley, 1994.

Bianchard, O.J., and D. Quah, 1989, “The Dynamic Effects of Aggregate Demand and
Supply Disturbances,” American Economic Review 79: 635-673.

Bollerslev, T., 1986, “Generalized Autoregressive Conditional Heteroskedasticity,”
Journal of Econometrics 31: 307-327.

Bollerslev, T., R. Chou, and K.F. Kroner, 1992, “ARCH Modeling in Finance,” Journal
of Econometrics 52: 5-59.

Carlin, B. and S. Chib, 1995, “Bayesian Model Choice via Markov Chain Monte Carlo,”
Journal of the Royal Statistical Society Series B S7. 473-484.

Carlin, B., A. Gelfand and A F.M. Smith, 1992, “Hicrarchical Bayesian Analysis of
Change Point Problems,” Applied Statistics 41: 389-405.

Casella, G. and C.P. Robert, 1994, “Rao-Blackwellization of Sampling Schemes,” Cornell
University Biometrics Unit technical report BU-1252-M.

Chen, M. and Q. Shao, 1994, “On Monte Carlo Methods for Estimating Ratios of
Normalizing Constants,” National University of Singapore Department of Mathematics
Research Report No, 627.

Chen, M. and Q. Shao, 1995, “Estimating Ratios of Normalizing Constants for Densities
with Different Dimensions,” Worcester Polytechnical Institute technical report.

Chib, S., 1994, “Calculating Posterior Distributions and Modal Estimates in Markov
Mixture Models,” Journal of Econometrics, forthcoming.

54




Chib, S., 1995, “Marginal Likelihood from the Gibbs Output,” Journal of the American
Statistical Assoctation, Journal of the American Statistical Association, forthcoming.
Also Washington University Olin School of Business working paper.

Chib, 8. and E. Greenberg, 19942, “Markov Chain Simulation Methods in Economeirics,”
Washington University Olin School of Business working paper.

Chib, S. and E. Greenberg, 1994b, “Understanding the Metropolis-Hastings Algorithm,”
Washington University Olin School of Business working paper.

Chib, S. and E. Greenberg, 1995, “Hierarchical Analysis of SUR Models with Extensions
to Correlated Serial Errors and Time Varying Parameter Models,” Journal of
Econometrics, forthcoming. Also Washington University Olin School of Business
working paper.

Christoffersen, P.F., and F.X. Diebold, 1995, “Optimal Prediction under Asymmetric
Loss,” NBER Technical Working Paper #167.

Davidson, J.E.H., D.FF. Hendry, F. Srba, and S. Yeo, 1978, “Econometric Modeling of
the Aggregate Time-Series Relationship between Consumers’ Expenditure and Income
in the United Kingdom,” Economic Journal 88: 661-692.

Davis, P.J., and P. Rabinowitz, 1984, Methods of Numerical Integration. Orlando:
Academic Press. (Second edition)

DeGroot, M., 1970, Optimal Statistical Decisions. New York: McGraw-Hill.

DelJong, D.N., 1992, “A Bayesian Search for Structural Breaks in U.S. GNP,” in T.
Fomby and R.C. Hill {(eds.), Advances in Econometrics: Bayesian Methods Applied to
Time Series Data. JAI Press, forthcoming.

Diebold, F.X. and R.S. Mariano, 1993, “Comparing Predictive Accuracy,” University of
Pennsylvania Department of Economics manuscript.

Doan, T., R. Litlerman and C. A. Sims, 1984, “Forecasting and Conditional Projection
Using Realistic Prior Distributions” Econometric Reviews 5: 57-61.

Engle, R., 1982, “Autoregressive Conditional Heteroscedasticity with Estimates of the
Variance of United Kingdom Inflation,” Econometrica 50: 987-100.

Engle, R.F., and C.W.J. Granger, 1987, “Co-Integration and Error Correction:
Representation, Estimation, and Testing,” Econometrica 55: 251-276.

Gelfand, A.E., D.K. Dey and H. Chang, 1992, “Model Determination Using predictive
Distributions with Implementation via Sampling-Based Methods,” in J.M. Bernardo,
J.O. Berger, A.P. Dawid and AF.M. Smith (eds.), Bayesian Statistics 4. Oxford:
Oxford University Press.

Gelfand, A.E., and D.K. Dey, 1994, “Bayesian Model Choice: Asymptotics and Exact
Calculations,” Journal of the Royal Statistical Society Series B 56: 501-514.

Gelfand, A.E., and A.F.M. Smith, 1990, “Sampling Based Approaches to Calculating
Marginal Densities,” Journal of the American Statistical Association 85: 398-409,

55




Gelman, A., and D.B. Rubin, 1992, “Inference from Iterative Simulation Using Multiple
Sequences,” Statistical Science T: 457-472.

Gelman, A. and X.L. Meng, 1994, “Path Sampling for Computing Normalizing
Constants: Identities and Theory,” University of Chicago Department of Statistics
Technical Report No. 377.

Geman, S., and D. Geman, 1984, “Stochastic Relaxation, Gibbs Distributions and the
Bayesian Restoration of Images,” IEEE Transactions on Pattern Analysis and Machine
Intelligence 6: 721-741.

Geweke, I., 1988, “Antithetic Acceleration of Monte Carlo Integration in Bayesian
Inference,” Journal of Econometrics 38: 73-89.

Geweke, I, 198%9a, “Exact Predictive Densities in Linear Models with ARCH
Disturbances,” Journal of Econometrics, 1989, 40: 63-86.

Geweke, J., 1989b, “Bayesian Inference in Econometric Models Using Monte Carlo
Integration,” Econometrica 57: 1317-1340.

Geweke, J., 1991, “Efficient Simulation from the Multivariate Normal and Student-¢
Distributions Subject to Linear Constraints,” in E. M. Keramidas (ed.), Computing
Science and Statistics: Proceedings of the 23rd Symposium on the Interface, ST1-578.
Fairfax, VA: Interface Foundation of North America.

Geweke, J, 1992, “Evaluating the Accuracy of Sampling-Based Approaches to the
Calculation of Posterior Moments,” in J.O. Berger, J.M. Bernardo, A .P. Dawid, and
A.F.M. Smith {eds.), Proceedings of the Fourth Valencia International Meeting on
Bayesian Statistics, 169-194. Oxford: Oxford University Press, 1992,

Geweke, 1., 1994, “Bayesian Comparison of Econometric Models,” Federal Reserve Bank
of Minneapolis working paper No. 532.

Geweke, J., 1995a, “Monte Carlo Simulation and Numerical Integration,” in H. Amman,
D. Kendrick and J. Rust (eds.), Handbook of Computational Economics.
Amsterdam: North-Holland, forthcoming.  Also Federal Reserve Bank of
Minneapolis Staff Report No. 192.

Geweke, J., 1995b, “Posterior Simulators in Econometrics,” in D. Kreps and K.F Wallis
{eds.), Advances in Economics and Econometrics: Theory and Applications.
Cambridge: Cambridge University Press, forthcoming. (Invited symposium paper,
Econometric Society Seventh World Congress) Also Federal Reserve Bank of
Minneapolis working paper No. 555, September 1995.

Geweke, J. and M. Keane, 1995, “An Empirical Analysis of the Male Income Dynamics in
the PSID: 1986-1989,” University of Minnesota Department of Economics working

paper.

Geweceke, J., M. Keane and D. Runkle, 1994a, “Alternative Computational Approaches to
Stdtlbtlcai Inference in the Multinomial Probit Model,” Review of Economics and
Statistics, 1994, 76, 609-632.

56




Geweke, J., M. Keane and D. Runkle, 1994b, “Statistical Inference in Multinomial
Multiperiod Probit Models,” Federal Reserve Bank of Minneapolis Staff Report No.
177.

Geweke, J., M. Keane and D. Runkle, 1995, “Recursively Simulating Multinomial
Multiperiod Probit Probabilities,” American Statistical Association 1994 Proceedings
of the Business and Economic Statistics Section.

Geweke, J., and N. Terui, 1992, “Threshold Autoregressive Models for Macroeconomic
Time Series: A Bayesian Approach,” American Statistical Association 1991
Proceedings of the Business and Economic Statistics Section, 42-50.

Geweke, J., and N. Terui, 1993, “Bayesian Threshold Autoregressive Models for
Nonlinear Time Series,” Journal of Time Series Analysis, 1993, 14, 441-455.

Ghysels, E., R.E. McCulloch, and R.S. Tsay, 1994, “Bayesian Inference for Periodic
Regime-Switching Models,” University of Chicago Graduate School of Business
mineo.

Granger, C.W.J., 1969, “Prediction with a Generalized Cost of Error Function,”
Operational Research Quarterly 20: 199-207.

Geyer, C.J., 1992, “Practical Markov Chain Monte Carlo,” Statistical Science 7: 473-481.

Hajivassiliou, V. and ID. McFadden, “The Method of Simulated Scores for the Estimation
of LDV Models with an Application to External Debt Crises,” Cowles Foundation
Discussion Paper 967, Yale University.

Hajivassiliou, V., D. McFadden and P. Ruud, 1995, “Simulation of Multivariate Normal
Orthant Probabilities: Methods and Programs,” Journal of Econometrics, forthcoming.

Hamilton, J.D., 1989, “A New Approach to the Economic Analysis of Nonstationary Time
Series,” Econometrica 57: 357-384.

Hamilton, J.D., 1990, “Analysis of Time Series Subject to Changes in Regime,” Journal
of Econometrics 45: 39-70.

Hammersly, .M., and D.C. Handscomb, 1964, Monte Carlo Methods. London: Methuen
and Company.

Hammersly, I.M., and K.W. Morton, 1956, “A New Monte Carlo Technique: Antithetic
Variates,” Proceedings of the Cambridge Philosophical Society 52: 449-474.

Hannan, E.X., 1970, Multiple Time Series. New York: Wiley.

Harrison, P.J. and C.F. Stevens, 1976, “Bayesian Forecasting,” Journal of the Royal
Statistical Society Series B 38: 205-247.

Hastings, W.K., 1970, “Monte Carlo Sampling Methods Using Markov Chains and Their
Applications,” Biometrika 57: 97-109.

Hildreth, C., 1963, “Bayesian Statisticians and Remote Clients,” Econometrica 31: 422-
438.

57




Jacquier, E., N.G. Polson, and P.E. Rossi, 1994, “Bayesian Analysis of Stochastic
Volatility Models,” Journal of Business and Economic Statistics 12: 371-417.

Jacquier, E., N.G. Polson, and P.E. Rossi, 1995, “Stochastic Volatility: Univariate and
Multivariate Extensions,” mimeo.

Johnson, N.L., and S. Kotz, 1972, Distributions in Statistics: Continuous Multivariate
Distributions. New York: Wiley,

Kahn, M., and A.W. Marshall, 1953, “Methods of Reducing Sample Size in Monte Carlo
Computations,” Operations Research 1. 263-278.

Kass, R.E. and A.E. Raftery, 1995, “Bayes Factors,” Journal of the American Statistical
Association 90: 773-795.

Keane, M., 1990, Four Essays in Empirical Macro and Labor Economics. Unpublished
Ph.D. dissertation, Brown University.

Kipnis, C., and S.R.S. Varadhan, 1986, “Central Limit Theorem for Additive Functionals
of Reversible Markov Processes and Applications to Simple Exclusions,”
Communications in Mathematical Physics 104: 1-19,

Kloek, T. and H.K. van Dijk, 1978, “Bayesian Estimates of Equation System Parameters:
An Application of Integration by Monte Carlo,” Econometrica 46: 1-19.

Koop, G., 1994, “Recent Progress in Applied Bayesian Econometrics,” Journal of
Economic Surveys 8: 1-34,

Koop, G., 1995, “Parameter Uncertainty and Impulse Response Analysis,” Journal of
Econometrics, forthcoming,.

Lindley, D.V., 1957, “A Statistical Paradox,” Biometrika 44: 187-192.

Litterman, R.B., 1986, “Forecasting with Bayesian Vector Autoregressions ~ Five Years of
Experience,” Journal of Business and Economic Statistics 4: 25-38.

McCulloch, R.E. and P.E. Rossi, 1991, “A Bayesian Approach to Testing the Arbitrage
Pricing Theory,” Journal of Econometrics 49: 141-168.

McCulloch, R.E. and P.E. Rossi, 1995, “An Exact Likelihood Analysis of the
Multinomial Probit Model,” Journal of Econometrics 64: 207-240.

McCulloch, R.E., N.G. Polson and P.E. Rossi, 1995, “A Bayesian Analysis of the
Multinomial Probit Model with Fully Identified Parameters,” University of Chicago
Graduate School of Business working paper.

McCulloch, R.E., and R.S. Tsay, 1993, “Bayesian Inference and Prediction for Mean and
Variance Shifts in Autoregressive Time Series,” Journal of the American Statistical
Association 88: 968-978.

McCulloch, R.E., and R.S. Tsay, 1994, “Statistical Analysis of Economic Time Series via
Markov Switching Models,” Journal of Time Series Analysis 15: 523-540.

58




McCulloch, R.E., and R.S. Tsay, 1995, “Bayesian Analysis of Threshold Autoregressive
Processes with a Random Number of Regimes,” University of Chicago Graduate
School of Business.

Meng, X.L. and W.H Wong, 1993, “Simulating Ratios of Normalizing Constants via a
Simple identity,” University of Chicago Department of Statistics Technical Report No.
365.

Mengersen, K.L and R.L. Tweedie, 1993, *Rates of Convergence of the Hastings and
Metropolis Algorithms,” Colorado State University Department of Statistics working

paper.

Mectropolis, N., A.W. Rosenbinth, M.N. Rosenbiuth, A.H. Teller, and E. Teller, 1953,
“Equation of State Calculations by Fast Computing Machines,” The Journal of
Chemical Physics 21: 1087-1092.

Min. C., 1995, “Forecasting the Adoptions of New Consumer Durable Products,” George
Mason University School of Business Administration working paper.

Nerlove, M., D.M. Grether, and J.L. Carvalho, 1979, Analysis of Econoniic Time Series.
New York: Academic Press.

Newton, M.A. and A.E. Raftery, 1994, “Approximate Bayesian Inference by the Weighted
Likelihood Bootstrap” (with discussion), Journal of the Royal Statistical Society
Series B 56: 3-48.

Numelin, E., 1984, General Irreducible Markov Chains and Non-negative Operators.
Cambridge: Cambridge University Press.

Peron, P., 1989, “The Great Crash, the Oil Shock, and the Unit Root Hypothesis,”
Econometrica 57: 1361-1401.

Peskun, P.H., 1973, “Optimum Monte-Carlo Sampling using Markov Chains,”
Biomerrika 60: 607-612.

Phillips, P.C.B., 1995, “Impulse Response and Forecast Error Variance Asymptotics in
Nonstationary VAR'’s,” Yale University Cowles Foundation Discussion paper No.
1102.

Poirier, D.J., 1988, “Frequentist and Subjectivist Perspectives on the Problem of Model

Building in Economics” (with discussion). Journal of Economic Perspectives 2: 120-
170.

Poirier, D.J., 1995, Intermediate Statistics and Econometrics: A Comparative Approach.
Cambridge: MIT Press.

Pole, A., and A F.M. Smith, 1985, “Bayesian Analysis of Some Threshold Switching
Models,” Journal of Econometrics 29 97-119.

Raftery, A.E., 1995, “Hypothesis Testing and Model Selection Via Posterior Simulation,”
University of Washington working paper.

Ripley, R.D., 1987, Stochastic Simulation. New York: Wiley.

59



Roberts, G.O., and A.F.M. Smith, 1994, “Simple Conditions for the Convergence of the
Gibbs Sampler and Metropolis-Hastings Algorithms,” Stochastic Processes and Their
Applications 49: 207-216.

Rozanov, Y.A., 1967, Stationary Random Processes. San Francisco: Holden-Day.

Runkle, D.E., 1987, “Vector Autoregressions and Reality,” Journal of Business and
Economic Statistics 5: 437-442.

Shao, 1., 1989, “Monte Carlo Approximations in Bayesian Decision Theory,” Journal of
the American Statistical Association 84: 727-732.

Sims, C.A., 1980, “Macroeconomics and Reality,” Econometrica 48: 1-43.

Sims, C.A., 1986, “Are Forecasting Models Usable for Policy Analysis?,” Federal
Reserve Bank of Minneapelis Quarterly Review 10: 2-15.

Sims, C.A., and T. Zha, 1994, “Error Bands for Impulse Responses,” Yale University
Cowles Foundation Discussion Paper No. 1085.

Smith, A.A., 1991, “Solving Stochastic Dynamic Programming Problems using Rules of
Thumb,” Queen’s University Department of Economics Discussion Paper No. 816.

Tanner, ML A., and W.-H. Wong, 1987: “The Calculation of Posterior Distributions by
Data Augmentation,” Journal of the American Statistical Association 82, 528-550.

Taylor, S., 1986, Modeling Financial Time Series. New York: John Wiley and Sons.

Tierney, L., 1991, “Exploring Posterior Distributions Using Markov Chains,” in E.M.
Keramaidas (ed.), Computing Science and Statistics: Proceedings of the 23rd
Symposium on the Interface, 563-570. Fairfax: Interface Foundation of North
America, Inc.

Tierney, L., 1994, “Markov Chains for Exploring Posterior Distributions™ (with
discussion and rejoinder), Arnals of Statistics 22: 1701-1762. (Also Technical
Report No. 560, University of Minnesota School of Statistics.)

Tong, ., 1978, “On a Threshold Model,” in C.H. Chan (ed.), Pattern Recognition and
Signal Processing. Amsterdam: Sijthoff and Noordhoff.

Tong, H., 1983, Threshold Models in Non-linear Time Series Analysis. New York:
Springer-Verlag.

Tong, H., and K.S. Lim, 1980, “Threshold Autoregression, Limit Cycles and Cyclical
Data,” Journal of the Royal Statistical Society Series B 42: 245-292.

Weiss, A.A., 1991, “Multi-step Estimation and Forecasting in Dynamic Models,” Journal
of Economerrics 48: 135-149.

Weiss, A.A., and A.P. Andersen, 1984, “Estimating Forecasting Models Using the

Relevant Forecast Evaluation Criterion,” Journal of the Royal Statistical Society Series
A 137: 484-487.

60




West, M. and J. Harrison, 1990, Bayesian Forecasting and Dynamic Models. Berlin:
Springer-Verlag.

Whittle, P., 1983, Prediction and Regulation by Linear Least-Square Methods (Second
Edition). Minneapolis: University of Minnesota Press.

Zellner, A., 1962, “An Efficient Method of Estimating Seemingly Unrelated Regressions
and Test of Aggregation Bias,” Journal of the American Statistical Association 57: 500-
5009,

Zellner, A., 1971, Bayesian Inference in Econometrics. New York: Wiley,

Zellner, A. and C. Min, 1995, “Gibbs Sampler Convergence Criteria,” Journal of the
American Statistical Association, forthcoming.

61




o(2)

/\ ) 6(1)

Figure 1. The disconnected support ©= 04 w6, for the probability distribution
implies that a Gibbs sampler with blocking (8(1), 8(2)) will not have the

probability distribution as its invariant distribution, for any starting value.
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Figure 2. The probability density p( 8) is uniform on the closed set @ and
consequently is not lower semicontinuous at 0. The point A is absorbing
for the Gibbs sampler with blocking (8 (1}, 8 @), so if 8, = A convergence

will not occur.
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Figure 3. Iso-probability density contours of a multimodal bivariate
distribution are shown. (Arrows indicate directions of increased density.)
Given sufficiently steep gradients the Gibbs sampler will converge very

slowly.






