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1 Introduction

Nash equilibrium as a solution concept has been a center of attention in economics for half
a century. Yet the problem of explaining how players come to play it has no satisfactory
solution. Bayesian learning literature (e.g., Jordan 1991, Jordan 1997, Kalai and Lehrer
1993, Nyarko 1994) is one attempt to address this issue. In case when players’ individual
characteristics (e.g., payoff matrices) are private information, several authors including the
ones mentioned above have recently shown that infinitely repeated play of the same game
will result in convergence of players’ beliefs to Nash equilibrium of the one-shot game. In
a one-shot game Nash equilibrium players’ beliefs coincide with the strategies played. If
a one-shot game has a unique pure strategy Nash equilibrium, then in the repeated game
beliefs and actual plays would converge to each other (both will converge to the Nash
equilibrium). But when the one-shot game has a mixed strategy Nash equilibrium, beliefs
and actual plays need not converge to each other. The relevance of beliefs in predicting
actual plays becomes a nontrivial issue. This paper studies Bayesian learning processes
treating beliefs as forecast of actual plays, and assesses the accuracy of this forecast using
the notion of calibration.

Bayesian learning in games can be modeled in several alternative ways. One possible
approach (we follow it in this paper) is to assume “bounded rationality” of the players
and Bayesian update of their beliefs. Fach player has an initial belief (or forecast) about
his opponents’ strategies in the first period; his first period strategy is a best response to
this forecast. If a player’s strategy is a mixed one, he randomizes over his actions. Then a
play, i.e. action profile, is realized. As time passes, the player updates his belief/forecast
using the Bayes rule, and chooses best response to the forecast as his strategy for the next
period, etc.

The notion of calibration (see Dawid 1982, Foster and Vohra 1997, Kalai et al. 1995,
Lehrer 1997) can be used to evaluate the quality of a forecast. This is one of several cri-
teria that have been used to test the reliability of probability forecasts. Let us comment
on the result by Kalai et al. (1995) that makes this criterion particularly attractive. A
forecast is said to merge to the true distribution if, as time passes, forecasted probabilities
converge to the true probabilities. Intuitively, merging seems to be an appropriate crite-
rion to measure the accuracy of the forecast. So does calibration, as Kalai et al. (1995)
prove the equivalence between calibration and merging. In this paper we show that in a
repeated game of incomplete information about the payoff functions, if Nature is to choose
a vector of players’ payoff functions according to Lebesgue measure, then with positive
probability it will choose such payofts that players’ forecasts are not calibrated with the
“true” distribution of plays. Or, using the equivalence result by Kalai et al. (1995), the
players’ forecasts and the actual plays do not converge to each other. In other words,
the players’ predictions in those games do not become asymptotically accurate. The def-
inition of calibration requires that forecast pass all calibration tests, basic ingredients of
calibration. The set of calibration tests is large (of cardinality continuum). We relax the



requirements in the definition of calibration to address this question: To what extent are
the players’ forecasts accurate? Our main result states that if Nature arbitrarily chooses
a game (players’ payoff matrices) according to Lebesgue measure, as well as a calibra-
tion test according to some probability distribution, then with probability one players’
forecasts will pass the calibration test.

Let us give some more details. The environment is the same as that in Jordan (1991)
and Jordan (1997). We consider finite normal form games of incomplete information
played repeatedly infinitely many times. The number of payers and number of actions
available to each player are finite and fixed. Then a game is specified by choosing payoff
matrix for each player. There is a large set of possible games (of positive Lebesgue
measure). Each player knows his payoff matrix but not those of the other players. Players
are assumed to have a common prior distribution over the set of possible games. Nature
first chooses a game according to that common prior distribution. Every player observes
only his component of the game, i.e. his payoff matrix. Suppose that in period 1 players
choose their strategies according to a Bayesian Nash equilibrium. This means that every
player forms a belief about other players’ period 1 strategies. After every finite history
of plays, each player can observe all the previously chosen actions. He then updates
(according to the Bayes rule) his prior distribution over the set of possible games, and
then chooses a new strategy for next period according to a new Bayesian Nash equilibrium.
In doing so the player has a certain belief about what the other players will play next
period. These formation of beliefs (if some other conditions are met) is called sophisticated
Bayesian learning process (SBLP). ! Beliefs of the players (they are compatible in SBLP)
form a belief about what will be played by all players next period. One can interpret
this belief as a forecast. Then the question arises as to how good this forecast might be.
Obviously, it would depend on the true game that Nature has chosen.

In the following two paragraphs we will give an intuitive definition of calibration using
a weather forecast example.? Suppose the state of weather can be either R (rain) or
S (shine) in any period; there are infinite number of periods t = 1,2,....; there is a
true distribution g of infinite histories (sequences) of R and S. A forecast v should
assign a probability distribution over set {R, S} after every finite history of R and S.
One possible way of assessing the forecast v is to compare, after any finite sequence of
realizations of R and S, the empirical frequency of, say, R over the sequence with average
forecast of R over the same sequence. Intuitively, if forecast is “good” then these two
numbers should be close to each other as time passes. The idea behind calibration is to
compare these two variables calculated not only over the entire sequences, but also over
all subsequences. Kalai et al. (1995) motivate this approach by the following example.
Suppose the true distribution p puts probability one on sequence (R, S, R,S,...), and

LOne can argue that if Bayesian Nash equilibrium is involved in the definition of this learning process,
then it cannot be a foundation of Nash equilibrium. There is an alternative non-Bayesian way of defining
SBLP. In formal part of this paper we follow this approach. For details, see Jordan (1997).

2The formal definition can be found in section 2.



forecast v assigns distribution (0.5,0.5) after any finite sequence. Intuitively, it is not a
good forecast since it cannot detect a very simple pattern (R, S, R, S,...). If we compare
empirical frequencies of R with average predictions of R over periodst =1,2,...,T along
(R,S,R,S,...), those numbers will be close to each other, suggesting that the forecast is
“good”. But calibration allows to calculate those variables over any increasing sequence
of periods. Let us compute the two variables over odd periods ¢t = 1,3,5,...,T (assuming
odd T'). Empirical frequency of R along (R, S, R, S,...) is 1, whereas average prediction
of R over the same history is still 0.5. The two numbers cannot become close to each
other no matter how large T is. Thus, calibration can detect the “badness” of v. This
was possible because we could specify when to check the forecast: only in odd periods
along (R,S,R,S,...).

Roughly, a calibration test, which is a basic ingredient of calibration, specifies when to
check the forecast (in the example above it is all histories of odd length along (R, S, R, S, .. .),
and what event to check (in the example the event is { R}). A forecast v passes a calibra-
tion test with respect to the true distribution p if along p-almost every infinite history
empirical frequencies converge to the average predicted probabilities, where both are cal-
culated according to the calibration test (as in the example). Forecast v is calibrated with
respect to the true distribution p if it passes every calibration test with respect to pu.

Let us make clear how we use the parallel between “forecast vs. true distribution”
and “beliefs vs. actual plays”. Consider a SBLP, denote it e. As we argued above, it can
be viewed as a forecast of what will be played next period. Suppose Nature has chosen a
game g according to the common prior. (As we said earlier, each player now can see his
own component, or payoff matrix, of the game, but not those of other players.) This game
induces a new probability measure e, of histories that will actually be played. We can treat
this induced distribution as the true distribution for this game. In this paper we concern
ourselves with the question of whether for every (or almost every) game g (chosen first by
Nature) the SBLP e, as a forecast, is calibrated with the induced probability distribution
e, of actually played histories.

If one wants to show that beliefs in a Bayesian learning process, treated as forecast,
are “good” in some sense, a desirable result would be to show that for all/almost all games
the forecast is calibrated, or, alternatively, a SBLP e is calibrated with all/almost all e,.
We prove that this statement is not true. It is shown that for a set of games of positive
Lebesgue measure the forecast is not calibrated. On the other hand, we show that under
certain conditions for almost every game the forecast is “almost” calibrated.

More specifically, a calibration test tells for every finite history of plays whether to
check the players’ expectations about what will be played next period, and if yes, specifies
what event to check. A SBLP deterministically passes a calibration test at a game if
observed long-run empirical frequencies of plays equal the average forecasted probabilities
along all best-response histories of the game (an infinite history of plays (hq, h,...) is
a best response of a game if period ¢ play h; is a myopic best response to expectations
conditioned on the observed history (hy,...,hi—1)). A SBLP is strictly calibrated at a



game if it deterministically passes all calibration tests at that game. We show that for
a fixed SBLP there is a positive measure of games at which the SBLP is not strictly
calibrated.

This result shows that with positive probability Nature can choose such a game that
players’ beliefs do not converge to the actual plays, i.e. their forecasts are not asymptot-
ically accurate. There is a connection between this result and those of Nachbar (1994)
and Foster and Young (1996). In Nachbar (1994) it is shown that in a two-player dis-
counted repeated game there is no belief for either player such that two assumptions
termed Conventional Prediction and Conventional Optimization hold. Loosely put, these
two assumptions require that the players are good predictors of future plays and are ra-
tional. The author assumes no uncertainty about the payoffs. Foster and Young (1996),
on the other hand, assume both uncertainty about payoffs and myopic maximization as in
the present paper. They show that for a large set of games, if players are good predictors
and rational, then neither beliefs nor actions converge to a Nash equilibrium.

If, as we have shown, in many games players’ forecasts are not asymptotically accurate,
can one measure the extent to which these forecasts are accurate? Suppose an inspector
checks the accuracy of the forecast. But instead of applying all calibration tests she applies
only a subset of calibration tests. The simplest case is when this subset is a singleton.
The main result of the paper is that for any fixed calibration test, if Nature chooses a
game, with probability one it will be such a game that players’ forecasts will pass the
calibration test. We generalize this result in the following way. Suppose the inspector
chooses calibration test according to some probability distribution. If Nature arbitrarily
chooses a game, with probability one it will be such a game that the players’ forecasts
will pass calibration test with probability one. In other words, the SBLP is “almost”
calibrated with respect to almost every game.

Section 2 contains definitions and the results by other authors that we use in the
proofs. Section 3 contains our main results. Section 4 concludes.

2 Preliminaries

The situation to be formalized here is the following. There is a finite number of players,
each has a finite fixed number of actions. Then any game is specified by a collection of
payoff matrices of players. There is imperfect information about payoff functions: there
is a large set of possible games (vectors of payoff functions); Nature chooses a game
according to some probability measure and reveals to each player only his own payoff
matrix. Players then play the game repeatedly infinitely many times. In any period, if a
player’s strategy is mixed, he randomizes. Then Nature chooses a play, i.e. a vector of
actions, according to the strategies. All previous plays are observable. After observing
the previous period play, every player uses Bayes rule to update his belief about other
players’ payoff functions, and then forms a belief about next period strategies of other



players. This formation of beliefs is a learning process.

We will deal with n-player normal form games with n > 2. For each player i, let
the set of strategies S; be finite. Let S = [[(L; S;. As usual, S ; = [];; S;. The payoff
function of player i is u; : S — R, where R denotes the set of real numbers. Let the set of
possible payoff functions for player i be the unit ball U = {u € R | (X,cqu(s)?)Y2 < 11,
Then the set of all possible games is G = U". For every g € G let N(g) denote the set of
Nash equilibria of g. If A is a finite set, A(A) denotes the set of probability distributions
on A.

Definition 2.1 For eacht > 1, let H' =T['_, S, with generic element h' = (hy, ..., hy),
where each h, = (hi;)",. Denote H® = {x} (initial history). Let H® = T[>, S, with
generic element h = (hy,ha,...). For a given h € H*, let h* denote t-period truncation
of h. We call any h and h' an infinite and a finite history respectively.

Let X be a topological space. Bx denotes the Borel o-algebra on X. All measurable
spaces in this paper are of type (X, Bx). Whenever we say “measurable set” we mean
“Borel set”. If (X, Bx, ) and (Y, By, ) are two measure spaces, we sometimes consider
product space (X X Y, Bx x By, u x v), where Bx x By is the product o-algebra, pu x v
is the product measure.

If © and v are measures on a measurable space (X, Bx), we use notation y < v to
indicate that p is absolutely continuous with respect to v.

The following definitions are due to Jordan (1991) and Jordan (1997). 3

Definition 2.2 A learning process is an n-tuple e = (e;)".;, where each e; = {e;}52,
with ey : H" — A(S_;).

One can give the following interpretation to a learning process. After any finite history
h' (including the initial history) every player ¢ has expectation (or, belief) e;(h') as to
what the other players will play next period ¢ + 1.

Definition 2.3 Let e be a learning process and g = (u;)?; € G. A best-response history
for (e,g) is an infinite history h = (hy,hg,...) € H* such that for each t > 0 and i,
hi 1 mazimizes Y, .cs . i+, 5—;) ex(h')(s_;) over S;. BRH/(e,g) will denote the set of
best-response histories for (e,g). * If BRH(e,g) is a singleton, we denote it h(e, g).

In other words, along h € BRH (e, g) every player myopically maximizes next period
expected utility given his expectation about what the other players will play.

In what follows, if ¢ is a measure on G x H*, the marginals of ¢ on G and H* will
be denoted by ¢¢ and ¢p, respectively. If x is a measure on H*, the marginal of x on
H' will also be denoted as y (this should not cause confusion). Also, if A'™! = (hf, s) with
s € S, we will frequently use x(s | k') instead of x(h'** | h'). If x is a Borel measure on
a topological space X, supp x is defined as the smallest closed subset A with x(A) = 1.

3We have adapted some of them to our case.
4Obviously, BRH (e, g) is a nonempty set.



Definition 2.4 Let ¢ be a Borel probability measure on G x H* satisfying:
(i) da = g X -+ X ¢%, where each ¢, is a probability measure on U.

(ii) For each h' € supp ¢, ¢ (- | h') is a product distribution, i.e. ¢y (- | h') =
Oy (- | hY) x - x @ (- | BY), where each ¢ (- | ht) is a measure on S; and ¢y (- | hY)

is a measure on S.
(iii) For each t >0, define e, : H' — A(S) by ®
er(h')(s) = b (her = s | h'). (1)

For each i and h' € H', let e;;(h') be the marginal of e;(h') on S_;. This defines the

learning process e as follows: ey : H' — A(S_;) and e; = {eu}%.
(iv) If (g, h) € supp ¢, then h € BRH (e, g).

Then e = (e;); is called a sophisticated Bayesian learning process (SBLP) induced by ¢.

In Jordan (1991), the distribution ¢ is called a Bayesian strategy process (BSP). Jordan
(1997) considers a stricter version of SBLP. In particular, besides the conditions in Def-
inition 2.4 it is required that each ¢% is a w.a.c. probability measure on U. ¢ Jordan
(1991) shows (Proposition 2.6) that if p is a product measure on G, i.e. = i1 X -+ iy,
where each p; is an arbitrary measure on U, then there exists a SBLP e induced by ¢
such that ¢ agrees with p on GG. For the case when the “product measure” assumption
(ii) in the previous definition is not made general existence conditions are given in Cotter
(1991) and Yannelis and Rustichini (1991).

Now we turn to defining the notion of calibration that will be used to assess the quality
of players’ beliefs treated as forecast. If A is a set, let P(A) denote the set of subsets of
A. The following definition is due Kalai et al. (1995) (from now on KLS).

Definition 2.5 A checking rule is a pair of functions (C, D) such that

C:|JH —{0,1},

t=0

D:|JH —P(9).
t=0

SIf ht & supp(d), then e (ht) is defined arbitrarily.

6Let m be Lebesgue measure on U. A Borel probability measure p on U is uniformly absolutely
continuous (u.a.c.) if there are numbers o > 0 and 3 > 0 such that am(A) < p(A4) < fm(A) for every
Borel set A C U.



The function C indicates whether to check (a forecast against the actual realization) after
any finite history, and the function D specifies which event to check. Here we follow
Dawid (1982) in restricting ourselves to checking rules that consider only next period
events. One could consider checking rules with D being uniformly bounded finite horizon
events. KLS argue that this is equivalent to one-period-ahead case (as far as calibration is
concerned; see Definitions 2.6 and 2.7 below). Everything is different if there is no upper
bound on the horizon of events in D (see KLS).

Note that the set of cluster points of any sequence in A(S) is a nonempty subset of
A(S). We say that the sequence {o,,} in A(S) converges to the set A C A(S) and denote
it o, — A if all cluster points of {o,,} belong to A.

We introduce the following two definitions.

Definition 2.6 Let e be a SBLP, g € G, and (C,D) a checking rule. We say that e
deterministically passes the calibration test induced by (C, D) at game g (or, shortly,

e g-passes the calibration test (C, D)), if for every h € BRH (e, g) satisfying >22,C(h™) =
00, the following holds:

L T CON[I(W € D(T)) = e (W)(D ("))

t—o00 23:0 C(hT) = O’ (2)

where I is indicator function.

If the beliefs e, (h7)(D(h")) are interpreted as predicted probabilities of the events
D(h™), then the SBLP e in the previous definition g-passes the calibration test (C, D) if
along any h € BRH (e, g) the observed empirical frequencies converge to the average of
predictions, where both frequencies and averages are calculated with respect to C, i.e.
things are ignored when C(h"™) = 0. From now on, we use the terms “checking rule” and
“calibration test” interchangeably.

Definition 2.7 We say that a SBLP e is strictly calibrated at a game g € G (or, shortly,
g-calibrated), if e g-passes all calibration tests.

There is a very close relation between the notion of g-calibration and the notion of calibra-
tion in the Dawid-KLS sense. A forecasting is a function from U H* to A(S). Equation
(1) shows that a SBLP e can be interpreted as a forecasting. If u is a Borel probability
measure on H*, a forecasting e is said to pass a calibration test (C, D) with respect to
p (in the KLS sense) if there is a set H' C H with p(H’) = 1 such that every h € H’
with > C(h7) = oo satisfies (2). A forecasting e is said to be calibrated with p
(in the KLS sense) if e passes all calibration tests with respect to u. It turns out (see
Theorem 1 below) that for a given SBLP e, the set BRH (e, g) is a singleton for almost
every game g, so that BRH (e, g) = {h(e, g)}. Take any such a game g. If 654 denotes
Dirac measure that puts probability one on point h(e,g), then e is g-calibrated if and
only if e is calibrated (in KLS sense) with (e g).

8



As we will see later (see Proposition 1 below), g-calibration may be too demanding
in our setup because all calibration tests have to be passed. In Section 2 we introduce
another version of calibration with a milder requirement that almost all calibration tests
be passed.

We will need the following results.

Lemma 1 (Jordan 1997, p.155) The set of games with a mized Nash equilibrium as
the unique Nash equilibrium has positive Lebesgque measure.

We can take a “matching pennies” type of game for n players with two strategies for each
player. This game would have a unique Nash equilibrium, and in addition this equilibrium
would be a mixed equilibrium. Moreover, all games in an e-neighborhood of g would have
the same property. To obtain an n-player game with arbitrary number of strategies in sets
S; we add strictly dominated strategies. The resulting game would still have the property
of the original game as well as all games in its small neighborhood.

Theorem 1 (Jordan 1997, Theorem 1) For every learning process e there is a set of
games GERH such that Lebesque measure m(G\ GER#H) =0, and for every g € GER the
set BRH (e, g) is a singleton, i.e. BRH(e,g) = {h(e,g)}.

Theorem 2 (Jordan 1991, Theorem 3.2) Let e be a SBLP induced by ¢. Then
6({(g,h) | er(h) = N(g)}) = 1.

The theorem says that for ¢-almost every pair (game, infinite history) beliefs along the
history converge to the set of Nash equilibria of the game.

Definition 2.8 For each t > 1, define the empirical frequency distribution
fo HY — A(S) by

fi(h')(s) = %-#{r <t|h,=s}, alses.

Theorem 3 (Jordan 1997, Theorem 3) ” Let e be a SBLP induced by ¢. Let ¢ =
by X -+ X @&, where each ¢k is a probability measure on U that is mutually absolutely
continuous with respect to Lebesgque measure. Let GBRH be as in Theorem 2. Then there
is a set GEC C GPRH gych that Lebesgue measure m(G\GEC) = 0 and for every g € GEC,
if h = h(e, g) is the unique element of BRH(e,g), then

. 1 .
T [[(0) = 5 D er (7)) = 0.
T=1

"In Jordan (1997) this theorem is proven with the stronger assumption that each (bé is a u.a.c.
probability measure on U (see footnote 6), for the author needs that assumption in another theorem (of
general convergence). It is easily seen that if just Theorem 3 needs to be proven, the weaker assumption
m < ¢, < m is enough. See also the discussion after Definition 2.4.

9



Thus, along the unique best-response history the empirical frequencies of strategy profiles
approach their average expected probabilities.

Finally, let us introduce some convenient notation. ® C will denote the set of cal-
ibration tests with generic element ¢ = (C, D). For a fixed SBLP e define functions
¢t:C x H® — R, t=0,1,2,..., by ?

Sty C(h)|[I(h™1 € D(h7)) — e (h™)(D(h7)))]
o C(h7) ’

where 0/0 = 0. Note that (2) in this notation can be rewritten as

Cte(cv h) = (3)

lim ¢f(eh) = 0. (4)

3 Results

We first show that there is no hope for a SBLP to be g-calibrated at all/almost all games.

Proposition 1 Let e be a SBLP induced by ¢. Suppose that the condition of Theorem 3
is satisfied. Then there is a set of games GNC C G with positive Lebesque measure such
that for no game g € GNC the SBLP e is g-calibrated.

Proof. Let G° and GFY be the sets of games described in Lemma 1 and Theorem 3
respectively, and let G, = G°NGEY. Then m(G.) > 0. Let T, = {(g, h) | e;(h*) — N(g)}-
From Theorem 2 ¢(7.) = 1. Denote the projection of T, on G by G%. Then ¢¢(GZ) =1
as ¢(T,) = 1. Since ¢(G \ G”) = 0 and m < ¢g, m(G \ G”) = 0. Let GN¢ = G NG".

From above m(GYY) > 0, and for every g € GY¢ we have the following:

e the set N(g) is a singleton: N(g) = {o(g)}, where o(g) is a mixed strategy Nash
equilibrium;

e the set BRH (e, g) is a singleton: BRH (e, g) = {h(e,g9)};
o ¢ (hf(e,g)) — o(g) as t — 0.
This and Theorem 3 imply that
lim [Ifi(h(e,9) — ()| =0, allge G, ®
Fix an arbitrary g € GN¢. Since o(g) is mixed, there are two different s', s” € S with

a(g)(s') >0, a(g)(s") > 0. (6)

8Throughout we assume that n, S1,..., Sy, and thus S, U, G, H*, are fixed.
9Here and below subscripts and superscripts e, ¢, or g indicate dependence on SBLP e, calibration test
¢, or game g, respectively.

10



From (5) and (6) we have that h(e,g) = s for infinitely many ¢. Define checking rule
9 = (C*9, D%9) as follows:
for every h' € H'

ca(pty — if h*(e, g) = (1, s),
cn) = { otherwise;

1
0
DRty = {éhm(e,g)} if C°9(h') =1,

otherwise.
Then

I[ht“(e,g) € De’g(ht(e,g))] =1, al t=0,1,2,...,
et(ht(e,g))(De’g(ht(e, g))) —o(s) as t— oo.

From above >%° , C“9(h" (e, g)) = oo. Therefore '°
(e hle g)] = 1= o(s') > 0.
Thus, g does not pass calibration test ¢©Y and therefore e is not g-calibrated. |

Proposition 2 Let e be a SBLP induced by ¢. Let m be Lebesgue measure on G and m <
¢a. Then for every calibration test c there is a set of games G, such that m(G\G..) =0,
and e g-passes c for every game g € Ge.

Proof. Fix a calibration test ¢ = (C,D). By Dawid’s theorem !! there is a set of
histories H,. C H* with measure ¢y (H..) = 1 such that for any history h € H. . with
S 2o C(ht) = oo the following holds:

Jim G (e, h) = 0. )
Define ée,c C G as
Gee={g € G | there is h € H,, such that (g,h) € supp ¢}.

Since ¢y (He ) = 1, we conclude that ¢G(ée,c) =1

Define G, . = éeycﬂGfRH, where GBRH is from Theorem 1. Note that ¢G(G\CA¥€,C) =0
and m(G \ GBFH) = 0. Since m < ¢g, we conclude that m(G \ G.) = 0. From the
definition of G, . we infer that for every game g € G.. the set BRH (e, g) is a singleton.

From this, (7), and part (iv) of Definition 2.4 we conclude that e g-passes c for every
g€ Geg. [ |

10See (3) and (4).

" Appendix contains the statement of the theorem and its proof.
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The set of calibration tests C can be naturally topologized (with every basic open set
being a set of calibration tests that agree on a finite history h'). Let C be endowed with
the o-algebra Be generated by open sets, i.e. the Borel o-algebra.

We will need the following notation. Let (X, Bx,u) and (Y, By, v) be finite measure
spaces. If A C X XY, x € X,y €Y, the z-section A, is defined by A, = {y € Y | (z,y) €
A}, and similarly, y-section A, = {x € X | (z,y) € A}. We will use the mathematical
fact that if A € Bx x By, then all A, € By, A, € Bx and

px v(A) = [ v(Adu(a) = [ v(A,)dv(y) (8)

(see, e.g., Proposition 2.34 and Theorem 2.36, pp. 63-64 in Folland (1984)).

In spite of the fact that, according to Proposition 2, each c-section of the set F =
{(c,g) | e does not g-pass c} is a subset of Lebesgue measure zero, in general E might
not be measurable and may not be a subset of any null set (see Exercise 2.5.47, p.67
in Folland (1984)). The following lemma and proposition show that, in fact, E is a
measurable null set.

Lemma 2 Set E = {(c,g) | e does not g-pass c} is measurable.

The proof can be found in Appendix.
As before, m will denote Lebesgue measure on the set of games G.

Proposition 3 Let e be a SBLP induced by ¢. Let 1y be a Borel probability measure on C.
Suppose ¢ K m K ¢pg. Denote x = ¢pg x . Then for x-almost every pair (¢,g) € Cx G
the SBLP e g-passes calibration test c.

Proof. Let E = {(c,g) | e does not g-pass c}. By Lemma 2 E is measurable. Since
both ¢ and v are finite measures, we can apply (8):

X(E) = [ ¢o(E:) du(e),

where E. = {g € G | (¢,g) € E}. By Proposition 2 and assumption ¢¢ < m, ¢g(E.) =0
for every ¢ € C. Thus, x(E) = 0. [

Definition 3.1 Let e be a SBLP induced by ¢, ¥ a Borel probability measure on C. Let
g € G. The SBLP e is said to be 1¥-calibrated at g if e g-passes -almost every calibration
test.

Corollary 1 Let e be a SBLP induced by ¢. Let v be a Borel probability measure on C.
Suppose pa < m <K da. Then there exists a set of games GAC such that m(G\ G4) = 0,
and e is 1-calibrated with respect to every g € GAC.

Proof. Let E be from the proof of Proposition 3, so that ¢¢ x ¥(F) = 0. The claim
follows from (8) and the assumption m < ¢g. [
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4 Conclusions

Another way to see the intuition behind Proposition 1 is to use the result by Kalai et
al. (1995) on the relationship between calibration and merging. Let p (true distribution)
be a probability measure on H> and v (forecasting) a function from U H' to A(S).
Forecasting v induces a unique (subjective) probability distribution on H* which we
(with a slight abuse of notation) also denote v. Then the subjective distribution v is said
to merge to p, if for p-almost every h € H*
. t t
Jim (A | 1) = v(A| )] =0. )

The main result in KLS is that calibration and merging are equivalent, i.e. v is calibrated
with p if and only if v merges to p. As we said earlier 12, for almost every game g a SBLP
e is calibrated at g if and only if e is calibrated with 6, 4. From KLS’s equivalence
result it follows that if e were calibrated at almost every game g, then expectations along
the unique BRH h(e, g) would have merged to x4 as (9) suggests. But since there is
a set of games with positive Lebesgue measure that have mixed equilibrium as a unique
Nash equilibrium, and since expectations along (unique) BRH must converge to Nash
equilibrium by Jordan (1997), this is impossible. In other words, the main culprit of
Proposition 1 as a negative result is the fact that for many games (of positive Lebesgue
measure) players cannot “learn” to play mixed Nash equilibrium.

Jackson et al. (1998) are interested in representing a probability distribution governing
a stochastic process in the form

p= [ o dNO), (10)

so that each component 4 is both “learnable” (u merges to ) and “sufficient for predic-
tion” (knowing gy is enough to predict in the sense that the past realizations would not
help in prediction). This representation reflects a two stage Bayesian process in which
Nature first chooses g according to measure A, and then py governs the evolution of the
process. Jackson et al. (1998) argue that if one does not impose the two requirements on
the components i, then there are infinitely many representations (10). But if one does
impose them, then for a large class of processes such a representation exists and is unique.
In our case we represent a SBLP e as

e = /Géh(e’g) d¢G

Proposition 1 shows that components 0,y are not “learnable” for a large set of games g
(though it is easily seen that they are “sufficient to predict”). In the language of Jackson
et al. (1998), this representation is “too fine” to be learnable.

12Gee the discussion after Definition 2.7.
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Proposition 2 shows that if an inspector uses just a single calibration test, then a
SBLP passes that test at almost all games. The key argument in the proof of Proposition
2 is that we fix calibration test ¢ and then find set G... If the set of calibration tests
were countable then by straightforward argument we would have shown that for almost
all games g, a SBLP e is calibrated at g. But the set of calibration tests has cardinality
contimum. Nevertheless, we can generalize Proposition 2 in the following way. Suppose!®
the inspector chooses calibration tests according to a probability distribution v over the
set of calibration tests. If Nature simultaneously chooses a game according to Lebesgue
measure, then with probability one it will be such a game that SBLP passes -almost all
calibration tests (or, SBLP is t-calibrated).

Appendix A
Proof of Lemma 2  Observe that
(i) for any t =0,1,2,..., the set {({(c,h) | (c,h) € C x H*®} is a finite subset of ;

(ii) for any pair (6,}1) €Cx H*® and any t =0,1,2,..., the set of pairs (¢, h) agreeing
with (¢, h) on h' is an open set, thus a Borel set.

These two observations imply that all {f are measurable functions. Therefore (see, e.g.,
Problem 3, p. 47 in Folland (1984)) the set

A" ={(c,h) | lim ¢F(c, h) exists}
is measurable, as well as the set
A" ={(e,h) | tlim ¢ (c,h) =0}.

We will show that the set

is measurable. Since the sets

t
Ay ={(c,h) | Y C(T)>T}, all t=0,1,2,..., 0<T <t+1,

7=0

13Lehrer (1997) first used the approach of passing almost all calibration tests as opposed to passing
all calibration tests in a different context. The main result of his paper is that for a given probability
measure 1 over C, the forecaster can find a forecast that would pass ¥-almost all calibration tests, or in
other words, any inspection is manipulable.
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are measurable, and
o o
r /
A= U A
T=1 t=T—1

A’ is measurable.
Define

A= ((Cx H®)\ A (A n(A"\ A")).
It is easy to see that A C A’. In words, A is a set of pairs (¢, h) such that >5°, C(h') = oo
and either lim; .o, (f(c,h) does not exist, or lim; o (f(c,h) # 0. A is measurable, of

course.
Let us show that the set

B ={(h,g) | h € BRH(e,g)},
is measurable. Indeed, sets

B(h) = {(h,g) | h* = h* and there exists h € BRH(e,g) with h' = h'},
all t=0,1,2,..., hte H,

are measurable. For -
b= U B@®Y,
t=0 ptept
B is measurable.
Consider the measurable set £’ = A x G NC x B. From above, E’ is the set of triples
(¢, h,g) such that h € BRH(e,g), 372, C(h') = oo, and either lim; .o (f(c,h) #0 or
this limit does not exists. Then F is the projection of £’ on C x G:

E ={(c,g) | there exists h € H® s.t. (¢, h,g) € E'}.

Therefore E is a measurable set. [ |

Appendix B

For completeness we include the statement and proof of Dawid’s theorem. Recall that
ei(h")(-) = édu (- | ') (see Definition 2.4). The theorem says that e is calibrated with itself
(in KLS sense). See also the discussion after Definition 2.7.

Theorem 4 (Dawid 1982) Let e be a SBLP induced by ¢. For every calibration test
¢ = (C, D) there is a set of histories H.. C H* with ¢g(H..) = 1 such that for every
h € H, . with Y72, C(h") = oo the following holds:

. i [IW € D(h™ )] - 67—1(’1771)(17(717*1))}C(’ffl)
feo i C(h7 1)

—0. (11)
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Proof.  Define the random variables o : H* — R and (; : H* — R as follows:

_ I[P e DY) = e a (WTHD(TY) i
aulh) = T ),
ﬁt = Zaﬂ

t=1,2,...,

where 0/0 = 0. Tt is easy to see that F(au|h'™!) = 0 (here expectation is taken with
respect to measure ¢y ). Hence, {3} is a martingale.

Let us check that the condition of the martingale convergence theorem is met (see
Feller (1966), Theorem VIIL.8.1, p.236). It is sufficient to show that the second moment of

{83} is uniformly bounded. Indeed, since (I[ht € D(ht )] — e,g_l(h’f*l)(D(h’f*l)))2 <1,

Now we show that E(a; - ay) = 0if ¢ < t'. Iterate conditional expectations to obtain
E(oy - ay) = E(oy - E(aw | b)) = 0. Then

t

mﬁ=§ﬂﬁ>§_F<E%%%ﬂ)
t C(hT 1) 2

1 > 1 2
2 < Zﬁzz'

Mﬁ

T
<

||M~

By applying the martingale convergence theorem to {/3;} we conclude that {/3;} converges
almost surely, i.e. there is a subset H.. C H*™ with ¢y(H..) = 1 such that {3,(h)}
converges for all h € H. .. Then if h € H.. and i, C(h') = oo, convergence of

o = i: s D(hT_lez]::ét(hi(}f)_ DO ¢ gy

implies by Kronecker’s lemma (see Feller (1966), p.238) that (11) holds.
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