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ABSTRACT
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even though the fundamental shocks have constant conditional variances.
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Overall, the new view of finance amounts to a profound change. We have to get

used to the fact that most returns and price variation comes from variation in

risk premia.

Cochrane’s (2001, p. 451) observation directs our attention to a critical counterfactual part

of the standard monetary general equilibrium model: constant risk premia. It has been

widely documented that variation in risk over time is essential for understanding movements

in asset prices. We develop a simple, general equilibrium monetary model that can generate

time-varying risk premia. In our model, the asset market is segmented; at any time, only a

fraction of the model’s agents choose to participate in it. Risk premia in our model vary over

time because the degree of asset market segmentation responds endogenously to stochastic

shocks.

We apply the model to interest rates and exchange rates because data on those vari-

ables provide some of the most compelling evidence that variation in risk premia is a prime

mover behind variation in asset prices. In fact, a stylized view of the data on interest rates

and exchange rates is that observed variations in the interest rate differential are accounted

for entirely by variations in risk premia.

To make this view concrete, consider the risks, in nominal terms, faced by a U.S.

investor choosing between bonds denominated in either dollars or euros. Clearly, for this

investor, the dollar return on the euro bond is risky because next period’s exchange rate is

not known today. The risk premium compensates the investor who chooses to hold the euro

bond for this exchange rate risk. Specifically, in logs, the risk premium pt is the expected log

dollar return on a euro bond minus the log dollar return on a dollar bond,

pt = i∗t + Et log et+1 − log et − it,

where i∗t and it are the logarithms of euro and dollar gross interest rate, and et is the exchange

rate between the currencies.1 The difference in nominal interest rates across currencies can

thus be divided into the expected change in the exchange rate between these currencies and

a currency risk premium.



In standard equilibrium models of interest rates and exchange rates, since risk premia

are constant, interest rate differentials move one-for-one with the expected change in the

exchange rate. However, nearly the opposite seems to happen in the data.

One view of the data is that exchange rates are roughly random walks, so that the

expected depreciation of a currency, Et log et+1−log et, is roughly constant. (See, for example,
the discussion in Section 9.3.2 of Obstfeld and Rogoff 1996.) Under this view, the interest

rate differential, i∗t − it, is approximately equal to the risk premium pt plus a constant. The

observed variations in the interest rate differentials are, thus, almost entirely accounted for

by movements in the risk premium.

A more nuanced view of the data is that exchange rates are not exactly random walks;

instead, when a currency’s interest rate is high, that currency is expected to appreciate.

This observation, documented by Fama (1984), Hodrick (1987), and Backus, Foresi, and

Telmer (1995), among others, is widely referred to as the forward premium anomaly. The

observation seems to contradict intuition, which predicts instead that investors will demand

higher interest rates on currencies that are expected to fall, not rise, in value. To explain the

data, then, theory requires large fluctuations in risk premia, larger even than those in the

interest differentials.

Our model is a two-country, pure exchange, cash-in-advance economy. The key differ-

ence between this model and the standard cash-in-advance model is that here agents must

pay a fixed cost to transfer money between the goods market and the asset market. This

fixed transfer cost is similar to that in the models of Baumol (1952) and Tobin (1956), and

it differs across agents. In each period, agents with a fixed transfer cost below some cutoff

level pay it and thus, at the margin, freely exchange money and bonds. Agents with a fixed

transfer cost higher than the cutoff level choose not to pay it, so do not make these exchanges.

This is the sense in which the asset market is segmented.

We show that the model can generate, qualitatively, the type of systematic variation

in risk premia called for by the data on interest rates and exchange rates. Rather than build
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a quantitative model, we deliberately build a simple model in which the main mechanism can

be clearly seen with pen and paper calculations. For example, throughout, we abstract from

trade in goods in order to focus on frictions in asset markets.

The mechanism through which this segmentation leads to variable risk premia is

straightforward. Changes in the money growth rate change the inflation rate, which changes

the net benefit of participating in the asset market. An increase in money growth, for exam-

ple, increases the fraction of agents that participate in the asset market, reduces the effect of

a given money injection on the marginal utility of any participating agent, and hence lowers

the risk premium. We show that this type of variable risk premium can be the primary force

driving interest rate differentials and that it can generate the forward premium anomaly.

Our model also has implications for the patterns of the forward premium observed

across countries. One of these implications is that if inflation is permanently higher in one

country, then asset market participation is, too. With higher asset market participation,

markets are less segmented; thus, the volatility of the risk premia should be smaller. The

model thus predicts that countries with high enough inflation should not have a forward

premium anomaly. This prediction is supported by Bansal and Dahlquist (2000), who study

the forward premium in both developed and emerging economies.

Finally, our model has implications for the forward premium over long horizons in

a given country. We show that under fairly general conditions market segmentation has no

impact on long term risk premia. Specifically, under these conditions our model’s implications

for long term risk premia are the same as those in a model with no segmentation. These risk

premia are determined entirely by long term inflation risk. We show that as long as the

conditional distribution of long run average inflation does not depend on the current state

of the economy, long run risk premia are constant. With constant risk premia long term

expected depreciation rates move one for one with long term interest differentials. In this

sense, our model is consistent with the evidence in Meredith and Chinn (2004) and Alexius

(2001) who show that in the data, long term expected depreciation rates tend to move nearly
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one for one with long term interest differentials.

The idea that segmented asset markets can generate large risk premia in certain asset

prices is not new. (See, for example, Allen and Gale 1994, Basak and Cuoco 1998, and

Alvarez and Jermann 2001.) Existing models, however, focus on generating constant risk

premia, which for some applications is relevant. As we have argued, however, that any

attempt to account the data on interest differentials and exchange rates requires risk premia

that are not only large but also highly variable. Our model generates such premia and hence

goes beyond previous attempts.

Our model is related to a huge literature on generating large and volatile risk premia

in general equilibrium models. The work of Mehra and Prescott (1985) and Hansen and

Jagannathan (1991) has established that in order to generate large risk premia, the general

equilibriummodel must produce extremely volatile pricing kernels. Also well-known is the fact

that because of the data’s rather small variations in aggregate consumption, a representative

agent model with standard utility functions cannot generate large and variable risk premia.

Therefore, attempts to account for foreign exchange risk premia in models of this type fail

dramatically. (See Backus, Gregory, and Telmer 1993, Canova and Marrinan 1993, Bansal

et al. 1995, Bekaert 1996, Engel 1996, and Obstfeld and Rogoff 2003.) Indeed, the only way

such models could generate large and variable risk premia is by generating an implied series

for aggregate consumption that is both many times more variable and has a variance that

fluctuates much more than observed consumption.

Faced with these difficulties, researchers have split the study of risk in general equi-

librium models into two branches. One branch investigates new classes of utility functions

that make the marginal utility of consumption extremely sensitive to small variations in con-

sumption. The work of Campbell and Cochrane (1999) typifies this branch. Bekaert (1996)

examines the ability of a model along these lines to generate large and variable foreign ex-

change risk premia. The other research branch investigates limited participation models, in

which the consumption of the marginal investor is not equal to aggregate consumption. The
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work of Alvarez and Jermann (2001) and Lustig (2005) typifies this branch. Our work here

is firmly part of this second branch. In our model, the consumption of the marginal investor

is quite variable even though aggregate consumption is essentially constant.

A body of empirical work supports the idea that limited participation in asset mar-

kets is quantitatively important in accounting for empirical failures of consumption-based

asset-pricing models. Mankiw and Zeldes (1991) argue that the consumption of asset mar-

ket participants, defined as stockholders, is more volatile and more highly correlated with

the excess return on the stock market than is the consumption of nonparticipants. Brav,

Constantinides, and Geczy (2002) argue that if attention is restricted to the consumption of

active market participants, then many standard asset-pricing puzzles, like the equity premium

puzzle, can be partly accounted for in a consumption-based asset-pricing model with low and

economically plausible values of the relative risk aversion coefficient. Vissing-Jorgensen (2002)

provides similar evidence.

To keep our analysis here simple, we take an extreme view of the limited participation

idea. In our model, aggregate consumption is (essentially) constant, so it plays no role in

pricing risk. Instead, this risk is priced by the marginal investor, whose consumption is quite

different from aggregate consumption. Lustig and Verdelhan (2005) present some interesting

evidence that aggregate U.S. consumption growth may be useful for pricing exchange rate

risk. In a more complicated version of our model, we could have both aggregate consumption

and the consumption of the marginal investor playing a role in pricing exchange rate risk.

Backus, Foresi, and Telmer (1995) and Engel (1996) have emphasized that standard

monetary models with standard utility functions have no chance of producing the forward

premium anomaly because these models generate a constant risk premium as long as the

underlying driving processes have constant conditional variances. Backus, Foresi, and Telmer

argue that empirically this anomaly is not likely to be generated by primitive processes that

have nonconstant conditional variances. (See also Hodrick 1989.) Instead, they argue, what

is needed is a model that generates nonconstant risk premia from driving processes that have
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constant conditional variances. Our model does exactly that.

Our work builds on that of Rotemberg (1985) and Alvarez and Atkeson (1997) and is

most closely related to that of Alvarez, Atkeson, and Kehoe (2002). It is also related to the

work of Grilli and Roubini (1992) and Schlagenhauf and Wrase (1995), who study the effects

of money injections on exchange rates in two-country variants of the models of Lucas (1990)

and Fuerst (1992) but do not address variations in the risk premium.

1. Risk, Interest Rates, and Exchange Rates in the Data

Here we document that fluctuations in interest differentials across bonds denominated in

different currencies are large, and we develop our argument that these fluctuations are driven

mainly by time-varying risk.

Backus, Foresi, and Telmer (2001) compute statistics on the difference between monthly

euro currency interest rates denominated in U.S. dollars and the corresponding interest rates

for the other G-7 currencies over the time period July 1974 through November 1994. The

average of the standard deviations of these interest differentials is large: 3.5 percentage points

on an annualized basis. Moreover, the interest differentials are quite persistent: at a monthly

level, the average of their first-order autocorrelations is .83.

To see that these fluctuations in interest differentials are driven mainly by time-varying

risk, start by defining the (log) risk premium for a euro-denominated bond as the expected

log dollar return on a euro bond minus the log dollar return on a dollar bond. Let exp(it)

and exp(i∗t ) be the nominal interest rates on the dollar and euro bonds and et be the price

of euros (foreign currency) in units of dollars (home currency), or the exchange rate between

the currencies, in all time periods t. The dollar return on a euro bond, exp(i∗t )et+1/et, is

obtained by converting a dollar in period t to 1/et euros, buying a euro bond paying interest

exp(i∗t ), and then converting the resulting euros back to dollars in t+ 1 at the exchange rate

et+1. The risk premium pt is then defined as the difference between the expected log dollar
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return on a euro bond and the log return on a dollar bond:

pt = i∗t + Et log et+1 − log et − it.(1)

Clearly, the dollar return on the euro bond is risky because the future exchange rate et+1 is

not known in t. The risk premium compensates the holder of the euro bond for this exchange

rate risk.

To see our argument in its simplest form, suppose that the exchange rate is a random

walk, so that Et log et+1 − log et is constant. Then (1) implies that

it − i∗t = −pt + Et log et+1 − log et.(2)

Here the interest differential is just the risk premium plus a constant. Hence, all of the

movements in the interest differential are matched by corresponding movements in the risk

premium:

var(pt) = var(it − i∗t ).

In the data, however, exchange rates are only approximately random walks. In fact,

one of the most puzzling features of the exchange rate data is the tendency for high interest

rate currencies to appreciate, in that

cov (it − i∗t , log et+1 − log et) ≤ 0.(3)

Notice that (3) is equivalent to

cov (it − i∗t , Et log et+1 − log et) ≤ 0.(4)

Thus, (3) implies that exchange rates are not random walks because expected depreciation

rates are correlated with interest differentials.

This tendency for high interest rate currencies to appreciate has been widely docu-

mented for the currencies of the major industrialized countries over the period of floating

exchange rates. (For a recent discussion, see, for example, Backus, Foresi, and Telmer 2001.)

The inequality (3) is referred to as the forward premium anomaly.2 In the literature, this
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anomaly is documented by a regression of the change in the exchange rates on the interest

differential of the form

log et+1 − log et = a+ b(it − i∗t ) + ut+1.(5)

Such regressions typically yield estimates of b that are zero or negative. We refer to b as the

slope coefficient in the Fama regression.

This feature of the data is particularly puzzling because it implies that fluctuations in

risk premia that are needed to account for fluctuations in interest differentials are even larger

than those needed if exchange rates were random walks:

var (pt) ≥ var (it − i∗t ) .(6)

To see that (4) implies (6), use (1) to rewrite (4) as var(it − i∗t ) + cov(it − i∗t , pt) ≤ 0 or

var (it − i∗t ) ≤ −cov (it − i∗t , pt) = −corr (it − i∗t , pt) std (it − i∗t ) std (pt) .

Then, as in Fama (1984), divide by std(it − i∗t ), and use the fact that a correlation is less

than or equal to one in absolute value.

2. The Economy

Now we describe–first generally and then in detail–our general equilibrium monetary model

with segmented markets that generates time-varying risk premia.

A. An Outline

We start by sketching out the basic structure of our model.

Consider a two-country, cash-in-advance economy with an infinite number of periods

t = 0, 1, 2, . . . . Call one country the home country and the other the foreign country. Each

country has a government and a continuum of households of measure one. Households in the

home country use the home currency, dollars, to purchase a home good. Households in the

foreign country use the foreign currency, euros, to purchase a foreign good.

Trade in this economy in periods t ≥ 1 occurs in three separate locations: an asset
market and two goods markets, one in each country. In the asset market, households trade
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the two currencies and dollar and euro bonds, which promise delivery of the relevant currency

in the asset market in the next period, and the two countries’ governments introduce their

currencies via open market operations. In each goods market, households use the local cur-

rency to buy the local good subject to a cash-in-advance constraint and sell their endowment

of the local good for local currency.

Each household must pay a real fixed cost γ for each transfer of cash between the

asset market and the goods market. This fixed cost is constant over time for any specific

household, but varies across households in both countries according to a distribution with

density f(γ) and distribution F (γ).3 Households are indexed by their fixed cost γ. The fixed

costs for households in each country are in units of the local good. We assume F (0) > 0, so

that a positive mass of households has a zero fixed cost.

The only source of uncertainty in this economy is the money growth shocks in the

two countries. The timing within each period t ≥ 1 for a household in the home country is
illustrated in Figure 1. We emphasize the physical separation of the markets by separating

them in the figure. Households in the home country enter the period with the cash P−1y

they obtained from selling their home good endowments in t − 1, where P−1 is the price

level and y is their endowment. Each government conducts an open market operation in the

asset market, which determines the realizations of money growth rates µ and µ∗ in the two

countries and the current price levels in the two countries P and P ∗.

The household then splits into a worker and a shopper. Each period the worker sells

the household endowment y for cash Py and rejoins the shopper at the end of the period.

The shopper takes the household’s cash P−1y with real value n = P−1y/P and shops for

goods. The shopper can choose to pay the fixed cost γ to transfer an amount of cash Px

with real value x to or from the asset market. This fixed cost is paid in cash obtained in the

asset market. If the shopper pays the fixed cost, then the cash-in-advance constraint is that

consumption c = n+ x; otherwise, this constraint is c = n.

The household also enters the period with bonds that are claims to cash in the asset
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market with payoffs contingent on the rates of money growth µ and µ∗ in the current period.

This cash can be either reinvested in the asset market or, if the fixed cost is paid, transferred

to the goods market. With B denoting the current payoff of the state-contingent bonds

purchased in the past, q the price of bonds, and
R
qB0 the household’s purchases of new

bonds, the asset market constraint is B =
R
qB0 + P (x + γ) if the fixed cost is paid and

B =
R
qB0 otherwise. At the beginning of period t+ 1, the household starts with cash Py in

the goods market and a portfolio of contingent bonds B0 in the asset market.

In equilibrium, households with a sufficiently low fixed cost pay it and transfer cash

between the goods and asset markets while others do not. We refer to households that pay

the fixed cost as active and households that do not as inactive. Inactive households simply

consume their current real balances.

B. The Details

Now we flesh out this outline of the economy.

Throughout, we assume that the shopper’s cash-in-advance constraint binds and that

in the asset market, households hold their assets in interest-bearing securities rather than

cash. It is easy to provide sufficient conditions for these assumptions to hold. Essentially, if

the average inflation rate is high enough, then money held over from one period to another in

a goods market loses much of its value, and households’ cash-in-advance constraints bind.4 If

nominal interest rates are positive, then bonds dominate cash held in the asset market, and

households hold their assets in interest-bearing securities rather than cash.

At the beginning of period 1, home households of type γ have M0 units of home

money (dollars), B̄h(γ) units of the home government debt (bonds), and B̄∗h units of the

foreign government debt, which are claims on B̄h(γ) dollars and B̄∗h euros in the asset market

in that period. Likewise, foreign households start period 1 with M∗
0 euro holdings in the

foreign goods market and start period 0 with B̄f units of the home government debt and

B̄∗f(γ) units of the foreign government debt in the asset market.

Let Mt denote the stock of dollars in period t, and let µt = Mt/Mt−1 denote the
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growth rate of this stock. Similarly, let µ∗t be the growth rate of the stock of euros M
∗
t . Let

st = (µt, µ
∗
t ) denote the aggregate event in period t. Then let st = (s1, . . . , st) denote the

state consisting of the history of aggregate events through period t, and let g(st) denote the

density of the probability distribution over such histories.

The home government issues one-period dollar bonds contingent on the aggregate

state st. In period t, given state st, the home government pays off outstanding bonds B(st)

in dollars and issues claims to dollars in the next asset market of the form B(st, st+1) at prices

q(st, st+1). The home government budget constraint at st with t ≥ 1 is

B(st) =M(st)−M(st−1) +
Z
st+1

q(st, st+1)B(s
t, st+1) dst+1(7)

with M(s0) = M̄ given, and in t = 0, the constraint is B̄ =
R
s1
q(s1)B(s1) ds1. Likewise, the

foreign government issues euro bonds denoted B∗(st) with bond prices denoted q∗(st, st+1).

The budget constraint for the foreign government is then analogous to the constraint above.

In the asset market in each period and state, home households trade a set of one-period

dollar bonds and euro bonds that have payoffs next period contingent on the aggregate event

st+1. Arbitrage between these bonds implies that

q(st, st+1) = q∗(st, st+1)e(st)/e(st+1),(8)

where e(st) is the exchange rate for one euro in terms of dollars in state st. Thus, without

loss of generality, we can assume that home households trade in home bonds and foreign

households trade in foreign bonds.

Consider now the problem of households of type γ in the home country. Let P (st) denote

the price level in dollars in the home goods market in period t. In each period t ≥ 1, in the
goods market, households of type γ start the period with dollar real balances n(st, γ). They

then choose transfers of real balances between the goods market and the asset market x(st, γ),

an indicator variable z(st, γ) equal to zero if these transfers are zero and one if they are more

than zero, and consumption of the home good c(st, γ) subject to the cash-in-advance con-
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straint and the transition law,

c(st, γ) = n(st, γ) + x(st, γ)z(st, γ)(9)

n(st+1, γ) =
P (st)y

P (st+1)
,(10)

where in (9) in t = 0, the term n(s0, γ) is given by M0/p(s
0). In the asset market in t ≥ 1,

home households begin with cash paymentsB(st, γ) on their bonds. They purchase new bonds

and make cash transfers to the goods market subject to the sequence of budget constraints

B(st, γ) =
Z
st+1

q(st, st+1)B(s
t, st+1, γ) dst+1 + P (st)

h
x(st, γ) + γ

i
z(st, γ).(11)

Assume that both consumption c(st, γ) and real bond holdings B(st, γ)/P (st) are uniformly

bounded by some large constants.

The problem of the home household of type γ is to maximize utility

∞X
t=1

βt
Z
U(c(st, γ))g(st) dst(12)

subject to the constraints (9)—(11). Households in the foreign country solve the analogous

problem with P ∗(st) denoting the price level in the foreign country in euros. We require thatR
B̄h(γ)f(γ) dγ + B̄f = B̄ and B̄∗h +

R
B̄∗f(γ)f(γ) dγ = B̄∗.

Since each transfer of cash between the asset market and the home goods market

consumes γ units of the home good, the total goods cost of carrying out all transfers between

home households and the asset market in t is γ
R
z(st, γ)f(γ) dγ, and likewise for the foreign

households. The resource constraint in the home country is given by

Z h
c(st, γ) + γz(st, γ)

i
f(γ) dγ = y(13)

for all t, st, with the analogous constraint in the foreign country. The fixed costs are paid

for with cash obtained in the asset market. Thus, the home country money market—clearing

condition in t ≥ 0 is given by
Z ³

n(st, γ) +
h
x(st, γ) + γ

i
z(st, γ)

´
f(γ) dγ =M(st)/P (st)(14)
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for all st. The money market—clearing condition for the foreign country is analogous. We let

c denote the sequences of functions c(st, γ) and use similar notation for the other variables.

An equilibrium is a collection of bond and goods prices (q, q∗) and (P, P ∗), together

with bond holdings (B,B∗) and allocations for home and foreign households (c, x, z, n) and

(c∗, x∗, z∗, n∗), such that for each γ, the bond holdings and the allocations solve the house-

holds’ utility maximization problems, the governments’ budget constraints hold, and the

resource constraints and the money market—clearing conditions are satisfied.

3. Characterizing Equilibrium

Here we solve for the equilibrium consumption and real balances of active and inactive house-

holds, that is, those that transfer cash between asset and goods markets and those that do

not. We then characterize the link between the consumption of active households and asset

prices. We focus on households in the home country. The analysis of households in the foreign

country is similar.

A. Consumption and Real Balances of All Households

Under the assumption that the cash-in-advance constraint always binds, a household’s de-

cision to pay the fixed cost to trade in period t is static since this decision affects only the

household’s current consumption and bond holdings and not the real balances it holds later

in the goods market. Notice that the constraints (10), (13), and (14) imply that the price

level is

P (st) =M(st)/y.(15)

The inflation rate is πt = µt, and real money holdings are n(st, γ) = y/µt. Hence, the

consumption of inactive households is c(st, γ) = y/µt. Let cA(s
t, γ) denote the consumption

of an active household for a given st and γ.

In this economy, inflation is distorting because it reduces the consumption of any

household that chooses to be inactive. This effect induces some households to use real re-

sources to pay the fixed cost, thereby reducing the total amount of resources available for

13



consumption. This is the only distortion in the model. Because of this feature and our

complete market assumptions, the competitive equilibrium allocations and asset prices can

be found from the solution to the following planning problem for the home country, together

with the analogous problem for the foreign country. Choose z(st, γ) ∈ [0, 1], c(st, γ) ≥ 0, and
c(st) ≥ 0 to solve

max
∞X
t=1

βt
Z
st

Z
γ
U
³
c(st, γ)

´
f(γ)g(st) dγdst

subject to the resource constraint (13) and

c(st, γ) = z(st, γ)cA(s
t, γ) + [1− z(st, γ)]y/µt.(16)

The constraint (16) captures the restriction that the consumption of households that do not

pay the fixed cost is pinned down by their real money balances y/µt. Here the planning weight

for households of type γ is simply the fraction of households of this type.

This planning problem can be decentralized with the appropriate settings of the initial

endowments B(γ) and B∗(γ). Asset prices are obtained from the multipliers on the resource

constraints above.

Notice that the planning problem reduces to a sequence of static problems. We first

analyze the consumption pattern for a fixed choice of z and then analyze the optimal choice

of z.

The first-order condition for cA reduces to

βtU 0 ³cA(st, γ)´ g(st) = λ(st),(17)

where λ(st) is the multiplier on the resource constraint. This first-order condition clearly

implies that all households that pay the fixed cost choose the same consumption level, which

means that cA(st, γ) is independent of γ. Since this problem is static, this consumption level

depends on only the current money growth shock µt. Hence, we denote this consumption as

cA(µt).

Given that the solution to the planning problem depends on only current µt and γ,

we drop its dependence on t. It should be clear that the optimal choice of z has a cutoff rule
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form: for each shock µ, there is some fixed cost level γ̄(µ) at which the households with γ ≤
γ̄(µ) pay this fixed cost and consume cA(µ), and all other households do not pay and consume

γ/µ. For each µ, the planning problem thus reduces to choosing two numbers, cA(µ) and

γ̄(µ), to solve

maxU(cA(µ))F(γ̄(µ))+ U(y/µ)
h
1− F(γ̄(µ))

i
subject to

cA(µ)F(γ̄(µ))+
Z γ̄(µ)

0
γf(γ) dγ + (y/µ)

h
1− F(γ̄(µ))

i
= y.(18)

The first-order conditions can be summarized by

U(cA(µ))− U(y/µ)− U 0(cA(µ))[cA(µ) + γ̄(µ)− (y/µ)] = 0(19)

and (18). In Appendix A, we show that the solution to these two equations, (18) and (19)–

namely, cA(µ) and γ̄(µ)–is unique. We then have the following proposition:

Proposition 1. The equilibrium consumption of households is given by

c(st, γ) =

⎧⎪⎪⎨⎪⎪⎩
y/µt if γ ≤ γ̄(µt)

cA (µt) otherwise,

where the functions cA (µ) and γ̄(µ) are the solutions to (18) and (19).

B. Active Household Consumption and Asset Prices

In the decentralized economy corresponding to the planning problem, asset prices are given

by the multipliers on the resource constraints for the planning problem. Here, from (17),

these multipliers are equal to the marginal utility of active households.

Hence, the pricing kernel for dollar assets is

m(st, st+1) = β
U 0(cA(µt+1))
U 0(cA(µt))

1

µt+1
,(20)

while the pricing kernel for euro assets is

m∗(st, st+1) = β
U 0(c∗A(µ∗t+1))
U 0(c∗A(µ∗t ))

1

µ∗t+1
.(21)
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These kernels are the state-contingent prices for dollars and euros normalized by the proba-

bilities of the state.

These pricing kernels can price any dollar or euro asset. In particular, the pricing

kernels immediately imply that any asset purchased in period t with a dollar return of Rt+1

between periods t and t+ 1 satisfies the Euler equation

1 = Etmt+1Rt+1,(22)

where, for simplicity here and in much of what follows, we drop the st notation. Likewise,

every possible euro asset with rate of return R∗t+1 from t to t+ 1 satisfies the Euler equation

1 = Etm
∗
t+1R

∗
t+1.(23)

Note that exp(it) is the dollar return on a dollar-denominated bond with interest rate it and

exp(i∗t ) is the expected euro return on a euro-denominated bond with interest rate i
∗
t ; these

Euler equations thus imply that

it = − logEtmt+1 and i∗t = − logEtm
∗
t+1.(24)

The pricing kernels for dollars and euros have a natural relation: m∗
t+1 = mt+1et+1/et.

This can be seen as follows. Every euro asset with euro rate of returnR∗t+1 has a corresponding

dollar asset with rate of return Rt+1 = R∗t+1et+1/et formed when an investor converts dollars

into euros in t, buys the euro asset, and converts the return back into dollars in t + 1.

Equilibrium requires that

1 = Etmt+1Rt+1 = Et

½∙
mt+1

µ
et+1
et

¶¸
R∗t+1

¾
.(25)

Since (25) holds for every euro return, mt+1et+1/et is an equilibrium pricing kernel for euro

assets. Complete markets have only one euro pricing kernel, so

log et+1 − log et = logm∗
t+1 − logmt+1.(26)

Substituting (24) and (26) into our original expression for the risk premium, (1), gives that

pt = Et logm
∗
t+1 −Et logmt+1 − (logEtm

∗
t+1 − logEtmt+1).(27)
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Hence, the currency risk premium depends on the difference between the expected value of

the log and the log of the expectation of the pricing kernel. Jensen’s inequality implies that

fluctuations in the risk premium are driven by fluctuations in the conditional variability of

the pricing kernel.

Finally, note that given any period 0 exchange rate e0, (26) together with the kernels

gives the entire path of the nominal exchange rate et. It is easy to show that the period 0

nominal exchange rate e0 is given by

e0 =
³
B̄ − B̄h

´
/B̄∗h.(28)

Clearly, this exchange rate exists and is positive as long as B̄h < B̄ and B̄∗h > 0 or B̄h > B̄

and B̄∗h < 0.

4. Linking Money Shocks and Active Households’ Marginal Utility

In our model, the active households price assets in the sense that the pricing kernels (20) and

(21) are determined by those households’ marginal utilities. Thus, in order to characterize the

link between money shocks and either exchange rates or interest rates, we need to determine

how these marginal utilities respond to money shocks, or how U 0(cA(µt)) varies with µt.

A. The Theory

In the simplest monetary models (such as in Lucas 1982), all the agents are active every

period, and changes in money growth have no impact on marginal utilities. Our model

introduces two key innovations to those simple models. One is that here, because of the seg-

mentation of asset markets, changes in money growth do have an impact on the consumption

and, hence, marginal utility of active households. The other innovation is that, because the

degree of market segmentation is endogenous, the size of this impact changes systematically

with the level of money growth. In particular, as money growth increases, more households

choose to be active in financial markets, and the degree of risk due to market segmentation

falls. With these two innovations, our model can deliver large and variable currency risk

premia even though the fundamental shocks have constant variance.
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Mechanically, our model generates variable risk premia because log cA(µ) is increasing

and concave in log µ. To see the link between risk premia and log cA(µ), define φ(µ) to be

the elasticity of the marginal utility of active households to a change in money growth. With

constant relative risk aversion preferences of the form U(c) = c1−σ/(1− σ), this elasticity is

given by

φ(µ) ≡ −d logU
0(cA(µ))

d log µ
= σ

d log cA(µ)

d log µ
.(29)

For later use, note that when log cA(µ) is increasing in logµ, φ(µ) > 0. The larger is

φ(µ), the more sensitive is the marginal utility of active households to money growth. Also

note that when log cA(µ) is concave in log µ, φ(µ) decreases in µ, so the marginal utility of

active households is more sensitive to changes in money growth at low levels of money growth

than at high levels. In this sense, the concavity implies that the variability of the pricing

kernel decreases as money growth increases.

We now characterize features of our equilibrium in two propositions. In Proposition

2, we show that more households choose to become active as money growth and inflation

increase. The result is intuitive: as inflation increases, so does the cost of not participating in

the asset market, since the consumption of inactive households, namely, y/µ, falls as money

growth µ increases. In Proposition 3, we show that, at least for low values of money growth,

log cA(µ) is increasing and concave in log µ.

Proposition 2. As µ increases, more households become active. In particular, γ̄0 (µ) > 0 for

µ > 1, and γ̄0 (1) = 0.

Proof. Differentiating equations (18) and (19) with respect to µ and solving for γ̄0

gives

γ̄0 (µ) =

h
U 0
³
y
µ

´
− U 0 (cA)

i
(y/µ)− U 00 (cA) [cA + γ̄ − (y/µ)]1−F

F
y/µ2

U 0 (cA)− U 00 (cA) [cA + γ̄ − (y/µ)]f/F ,

where to simplify we have omitted the arguments in the functions F, f, cA, and γ̄. Note that

cA (1) = y and γ̄ (1) = 0. Also note that (18) implies that if µ > 1, then cA + γ̄ − (y/µ) > 0.
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To derive this result, rewrite (18) as

cA(µ) +

R γ̄(µ)
0 γf(γ) dγ

F(γ̄(µ))
− y/µ =

y − y/µ

F(γ̄(µ))
,(30)

use the inequality γ̄(µ) ≥
³R γ̄(µ)
0 γf(γ) dγ

´
/F (γ̄(µ)), and note that the right side of (30) is

strictly positive for µ > 1. It follows from this result and (19) that U 0 (y/µ)−U 0 (cA) > 0 for

µ > 1. Finally, since U is strictly concave, U 00 (cA) < 0; thus, γ̄0 > 0 for µ > 1. Using similar

results for µ = 1, we get that γ0 (1) = 0. Q.E.D.

Proposition 3. The log of the consumption of active households cA(µ) is strictly increasing

and strictly concave in log µ around µ = 1. In particular, φ(1) > 0 and φ0(1) < 0.

Proof. We first show that φ (1) = σ[1 − F (0)]/F (0), which is positive when F (0) >

0. To see this, differentiate (18) with respect to µ and γ̄, and use, from Proposition 2, that

γ̄0 (1) = γ̄ (1) = 0, to get

c0A (1) = y
1− F (0)

F (0)
.

Using this expression for c0A(1) and using cA (1) = y in φ(1) = σc0A(1)/cA(1) gives our intended

result.

We next show that φ0(1) = −φ(1)/F (0), which is negative because φ(1) > 0 and

F (0) > 0. To see this, first differentiate (29) to get

φ0 (1) = σ

⎡⎣c00A (1)
cA (1)

+
c0A (1)
cA (1)

−
Ã
c0A (1)
cA (1)

!2⎤⎦ .(31)

Second, differentiate (18) with respect to µ and γ̄, and use the result at µ = 1, γ̄0 (µ) =

γ̄ (µ) = 0, and cA (µ) + γ̄ (µ)− y/µ = 0 to get

c00A (1) = −2y
1− F (0)

F (0)
.

Using these expressions for c0A and c00A in (31) produces the desired result. Q.E.D.

In Proposition 2 we have shown that more households pay the fixed cost when money

growth increases, and in Proposition 3 we have shown that locally the consumption of active

households is increasing and concave in money growth.
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B. A Numerical Example

Now we consider a simple numerical example that demonstrates these features more broadly.

We assume that a time period is a month. We let y = 1 and σ = 2, and for fixed costs we let

a fraction F (0) = .125 of the households have zero fixed costs and the remainder have fixed

costs with a uniform distribution on [0, b] with b = .1.

In Figure 2, we plot log cA(µ) against log µ (annualized). This figure shows that the

consumption of active households is increasing and concave in money growth in the relevant

range. Because of this nonlinearity, even if the fundamental shocks–here, changes in money

growth rates–have constant conditional variances, the resulting pricing kernels have time-

varying conditional variances.

To capture the nonlinearity of cA(µ) in a tractable way when computing the asset

prices implied by our model, we take a second-order approximation to the marginal utility of

active households of the form

logU 0(cA(µt)) = logU 0(cA(µ̄))− φµ̂t +
1

2
ηµ̂2t ,(32)

where µ̂t = log µt − log µ̄,

φ ≡ − d logU 0(cA(µ))
d log µ

¯̄̄̄
¯
µ=µ̄

= σ
d log cA(µ)

d logµ

¯̄̄̄
¯
µ=µ̄

(33)

η ≡ d2 logU 0(cA(µ))
(d log µ)2

¯̄̄̄
¯
µ=µ̄

= −σ d2 log cA(µ)

(d log µ)2

¯̄̄̄
¯
µ=µ̄

.

For our numerical example, φ = 10.9 and η =1,007 when µ̄ is 5% at an annualized rate.

Motivated by our previous results, we assume that φ > 0 and η > 0. With this

parameterization, we have that the pricing kernel is given by

logmt+1 = log β/µ̄− (φ+ 1)µ̂t+1 +
1

2
ηµ̂2t+1 + φµ̂t −

1

2
ηµ̂2t .(34)

Throughout, we assume that the log of home money growth has normal innovations, or shocks,

so that

µ̂t+1 = Etµ̂t+1 + εt+1(35)

20



and likewise for foreign money growth. Here εt+1 and ε∗t+1 are the independent shocks across

countries and are both normal with mean zero and variance σ2ε. For interest rates to be

well-defined with our quadratic approximation, we need

ησ2ε < 1,(36)

which we assume holds throughout.

5. Linking Money Growth and Risk Premia

Now we use our pricing kernel (34) to show how the risk premium varies systematically with

changes in money growth. We show that the risk premium varies even if the shocks to money

growth have constant conditional variances. In particular, we show that, locally, a persistent

increase in money growth decreases the risk premium pt.We also give conditions under which

the variation in the risk premium is large.

Recall that the risk premium can be written in terms of the pricing kernels as in (27):

pt = logEtmt+1 − Et logmt+1 − (logEtm
∗
t+1 − Et logm

∗
t+1).(37)

Note that if the pricing kernel mt+1 were a conditionally lognormal variable, then, as is well-

known, logEtmt+1 = Et logmt+1 + (1/2)vart(logmt+1). In such a case, the risk premium

pt would equal half the difference of the conditional variances of the log kernels. Given our

approximation (34), however, the pricing kernels are not conditionally lognormal; still, a

similar relation between the risk premium and the conditional variances of the kernels holds,

as we show in the next proposition (proved in Appendix B).

Proposition 4. Under (34), the risk premium is

pt =
1

2

1

(1− ησ2ε)

³
vart logmt+1 − vart logm∗

t+1

´
,(38)

where

vart(logmt+1) = [−(1 + φ) + ηEtµ̂t+1]
2σ2ε +

3

4
η2σ4ε(39)

and a symmetric formula holds for vart
³
logm∗

t+1

´
.
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To see how the risk premium varies with money growth, we calculate the derivative of

the risk premium and evaluate it at µt = µ̄ to get

dpt
dµ̂t

= −η(φ+ 1)σ
2
ε

1− ησ2ε

dEtµ̂t+1
dµ̂t

.(40)

Under (36), we know from (40) that the risk premium falls with home money growth if

log cA(µ) is concave in log µ so that η > 0 and if money growth is persistent, in that

dEtµ̂t+1/dµ̂t is positive.

The basic idea behind why the risk premium decreases with the money growth rate has

two parts. One is that, since money growth is persistent, a high money growth rate in period

t leads households to forecast a higher money growth rate in period t+ 1. The other part is

that, in any period, since η is positive, the marginal utility of active households is concave

in the rate of money growth in that period. So as money growth increases, the sensitivity

of marginal utility to fluctuations in money growth decreases. Thus, a high rate of money

growth in period t leads households to predict that marginal utility in period t + 1 will be

less variable. Hence, the risk premium decreases with the money growth rate.

Next consider the variability of the risk premium. Expanding (39), we have that

vart(logmt+1) equals a constant plus

ησ2ε
1− ησ2ε

∙
−(1 + φ)Etµ̂t+1 +

η

2
(Etµ̂t+1)

2
¸
.

As long as Etµ̂t+1 is approximately normal, so that the covariance between Etµ̂t+1 and

(Etµ̂t+1)
2 is approximately zero, the variability of the risk premium is increasing in φ, η,

and σ2ε.
5 The intuition for this result is the same as that for (40). As these parameters in-

crease, the conditional variance of the pricing kernels changes more with a given change in

the growth rates of money.

6. Generating the Forward Premium Anomaly

As we have noted in the data, high interest rate currencies are expected to appreciate. To

generate this forward premium anomaly in a model, we must find a shock that moves the
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interest differential and the expected depreciation rate in opposite directions. Here we present

sufficient conditions for a persistent shock to money growth to generate this pattern.

From the definition, the risk premium (1), the interest differential can be written as

it − i∗t = Et log et+1 − log et − pt.(41)

As we have seen, a persistent increase in money growth leads the risk premium pt to fall.

When this increase in money growth also leads to an expected exchange rate appreciation

smaller in magnitude than the fall in the risk premium, then the interest differential increases,

and our model generates the forward premium anomaly.

The simplest case to study is when exchange rates are random walks, for then an

increase in money growth has no effect on the expected appreciation. Because the covariance

between the interest differential and the expected change in the exchange rate is zero, the

model generates, at least weakly, the forward premium anomaly.

The more general case is when a persistent increase in money growth leads to a mod-

erate expected exchange rate appreciation. Recall that in standard models without market

segmentation, the opposite occurs: a persistent increase in money growth leads to an ex-

pected depreciation. We discuss in some detail below how our model with segmentation

delivers different implications for the effects of money growth on the exchange rate.

We begin our study of the general case with a discussion of the link between money

growth, expected changes in exchange rates, and interest differentials. Then we present

a numerical example of the model’s implications over time. We follow that with a brief

discussion of the model’s implications across countries.

A. The Link Between Money Growth and Expected Exchange Rate Depreciation

From (26) and (34), we can derive that the expected depreciation of the exchange rate is

given by

Et log et+1 − log et =(42)

−(φ+ 1)Et(µ̂
∗
t+1 − µ̂t+1) +

1

2
ηEt(µ̂

∗2
t+1 − µ̂2t+1) + φ(µ̂∗t − µ̂t)−

1

2
η(µ̂∗2t − µ̂2t ).
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The interest differential (41) is then given by combining (38) and (42). We can use these

formulas to establish the following proposition:

Proposition 5. If these inequalities are satisfied,

1− ησ2ε <
1 + φ

φ

dEtµ̂t+1
dµ̂t

≤ 1,(43)

then for µt close to µ̄, a change in money growth leads the interest differential and the

expected exchange rate depreciation to move in opposite directions. Specifically, an increase

in home money growth µ̂t raises the interest differential, it − i∗t , and lowers the expected

depreciation, Et log et+1 − log et.

Proof. Differentiating (42), evaluating the resulting expressions at µt = µ̄, and using

Etµ̂t+1 = 0 when µt = µ̄ gives

d(Et log et+1 − log et)
dµ̂t

= (1 + φ)
dEtµ̂t+1
dµ̂t

− φ.(44)

Adding (40) and (44) gives

d(it − i∗t )
dµ̂t

=
1 + φ

1− ησ2ε

dEtµ̂t+1
dµ̂t

− φ.(45)

The first inequality in (43) implies that d(it − i∗t )/dµ̂ is positive, so that an increase in

money growth increases the interest differential. The second inequality in (43) implies that

d(Et log et+1−log et)/dµ̂ is negative, so that an increase in money growth leads to an expected
exchange rate appreciation. Q.E.D.

Note that in our model an increase in money growth leads to an expected appreciation

of the nominal exchange rate et. To get some intuition for this feature, write this expected

appreciation as the sum of the expected appreciation of the real exchange rate and the

expected inflation differential:

Et log et+1 − log et = (Et log vt+1 − log vt) + Et[log(Pt+1/Pt)− log(P ∗t+1/P ∗t )],(46)

where the real exchange rate vt = etP
∗
t /Pt. In a standard model, an increase in money growth

leads to an expected nominal depreciation because the increased money growth increases
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expected inflation but has no effect on real exchange rates. In our model, an increase in

money growth leads to an expected real depreciation that dominates the expected inflation

effect.

Using our pricing kernels (20) and (21), our expression for exchange rate changes (26),

and the expression for the domestic price level together with (15) and its foreign analog, we

can write the right side of (46) in terms of the marginal utility of active households:

Et[logU
0(c∗At+1)/U

0(cAt+1)− logU 0(c∗At)/U
0(cAt)] + Et[logµt+1 − logµ∗t+1],(47)

where the first bracketed term corresponds to the change in the real exchange rate and the

second to the expected inflation differential. Hence, we can decompose the effect of money

growth changes on the expected change in the nominal exchange rate into two parts: a

market segmentation effect and an expected inflation effect. The market segmentation effect

measures the impact of an increase in money growth on the expected change in the real

exchange rate through its impact on the marginal utilities in the first term in (47). This

effect is not present in the standard general equilibrium model, which has no segmentation.

The expected inflation effect, which is in the standard model, measures the impact of an

increase in money growth on the expected inflation differential in the second term in (47).

Now consider the impact of a persistent increase in money growth on the expected

change in the nominal exchange rate. The expected inflation effect is simply

d(Et logµt+1)/d logµt.(48)

This effect is larger the more persistent is money growth. In the standard model, this is the

only effect, so that an increase in money growth of one percentage point leads to an expected

nominal depreciation of size d(Et log µt+1)/d log µt.

The size of the market segmentation effect depends on both the degree of market

segmentation and the persistence of money growth. A persistent increase in the home money

growth rate µt affects both the current real exchange rate

log vt = logU
0(c∗A(µ∗t ))/U 0(cA(µt))(49)
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and, by increasing the expected money growth rate in t+ 1, the expected real exchange rate

Et log vt+1 = Et logU
0(c∗A(µ∗t+1))/U 0(cA(µt+1)).(50)

To better understand the market segmentation effect, suppose first that money growth

is not persistent, but rather independently and identically distributed. Then changes in home

money growth affect only the current real exchange rate. A money growth increase increases

the consumption of the active home households in the current period, thus decreasing both

their marginal utility and the current real exchange rate

log vt = logU
0(c∗A(µ∗t ))/U 0(cA(µt)).

Since the expected real exchange rate in t+ 1 is unchanged by the money growth shock, the

real exchange rate is expected to appreciate from t to t+ 1; that is, Et log vt+1 − log vt falls.
The magnitude of this effect is larger the greater is the degree of market segmentation, as

measured by φ(µt).

Now suppose that money growth is persistent. Then changes in the money growth

rate in period t also affect the expected money growth rate in t+ 1 and, thus, the expected

real exchange rate in period t + 1 as well. The effect of money growth on the expected real

exchange rate depends on both the degree of market segmentation and the persistence of

money growth, as measured by d(Etµ̂t+1)/dµ̂t. Using (47), we see that an increase in the

home money growth rate µ̂t leads to an expected change in the real exchange rate of

d

dµ̂t
(Et log vt+1 − log vt) = φ

"
d(Etµ̂t+1)

dµ̂t
− 1

#
,(51)

where we have evaluated this derivative at µt = µ̄. As long as money growth is mean-reverting,

in that d(Etµ̂t+1)/dµ̂t < 1, an increase in money growth near the steady state leads to an

expected real appreciation. Clearly, the magnitude of the expected real appreciation depends

on both the degree of market segmentation, as measured by φ, and the degree of persistence

in money growth, as measured by d(Etµ̂t+1)/dµ̂t.

Note that the market segmentation effect and the expected inflation effect have oppo-

site signs. If the market segmentation effect dominates, then for values of µt close to µ̄, an
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increase in home money growth leads to an expected appreciation of the nominal exchange

rate. This will occur when

dEtµ̂t+1
dµ̂t

≤ φ

1 + φ
,(52)

which is equivalent to the the second inequality in (43). For this condition to hold, markets

must be sufficiently segmented relative to the persistence of money growth. If (52) holds as

an equality, then the market segmentation effect exactly cancels the expected inflation effect,

and the nominal exchange rate will be locally a random walk.

B. A Numerical Example of the Model’s Time Series Implications

Now we use a simple numerical example to illustrate the type of interest rate and exchange

rate behavior that our model can generate. We have constructed this example so that the

exchange rate is a martingale. Hence, interest rates are driven entirely by movements in the

risk premium, and the slope coefficient b in the Fama regression (5) is zero. The example has

some qualitative properties that are similar to the data: interest differentials are persistent,

and the exchange rate is an order of magnitude more volatile than interest differentials.

However, we think of this example as simply illustrating some of the behavior our model can

generate, not as being a definitive quantitative analysis of the properties of interest rates and

exchange rates.

We choose the processes for the money growth rates in this example in order to ensure

that the nominal exchange rate follows a random walk (actually, a martingale). Specifically,

we choose these processes so that

Et log et+1 − log et = Et(logm
∗
t+1 − logmt+1) = 0.

Since the pricing kernel in each country is a function of only that country’s money growth, we

choose these processes so that for the home country Et logmt+1 = log β/µ̄, where logmt+1 is

given by (34); we do likewise for the foreign country. For both the home and foreign countries,

we let these baseline processes be of the form

µ̂t+1 = g(µ̂t) + εt+1, µ̂
∗
t+1 = g(µ̂∗t ) + ε∗t+1.(53)
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Because (34) makes logmt+1 a quadratic function in µt and in µt+1, the function g (·) that
makes the exchange rate a martingale turns out to be quadratic in µt. To see this, notice

that g (·) is obtained by substituting (50) into (40) and setting the expected depreciation rate
to zero. The quadratic equation for g (·) has two solutions; we select the one that implies a
mean-reverting process in the sense that g0 (µ̂t) = d

³
Etµt+1

´
/dµ̂t < 1 when the derivatives

are evaluated at µ̂t = 0. We let εt and ε∗t both be normal with mean zero and standard

deviation σε, and we let the correlation of εt and ε∗t be ρε.

We use the parameter values φ = 10 and η = 1, 000.We think of these values as round

numbers that are motivated by those in our earlier example. Here, as before, we assume that

a period in the model is a month, and we again let µ̄ correspond to an annualized inflation rate

of 5%. We set σε = .0035 and ρε = .5. With these parameters, the resulting money growth

process of the form (53) is similar to that of an AR(1) process with a serial correlation of

.90. To demonstrate this similarity, in Figure 3 we plot 245 realizations of our baseline money

growth process (53) and this AR(1) process based on the same driving shocks εt.

In Table 1 we report on some properties of exchange rates and interest rates implied

by this example and provide, for comparison, some similar statistics from the data. The

statistics in the model are computed as the mean over 100,000 draws of length 245, while

those in the data are averages of the statistics for seven European countries presented by

Backus, Foresi, and Telmer (2001), each of which has 245 months of data. As the table

demonstrates, in the data, changes in the exchange rate are an order of magnitude more

volatile than interest differentials. Also, changes in the exchange rate have virtually no serial

correlation, whereas interest differentials are highly serially correlated. At a qualitative level,

our model successfully reproduces these features of the data.

In our model, by the construction of the function g, in an infinite sample the slope

coefficient b in the Fama regression would be zero. We are also interested in what our model

implies for this slope coefficient for samples of the length used in the data to estimate it.

Figure 4 displays that. The figure is a histogram of 1,000 estimates of the slope coefficients
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of the Fama regression from simulated samples of the length 245, which is the length used

by Backus, Foresi, and Telmer (2001). As is evident, our model is consistent with having a

wide variety of slope coefficients in small samples, including very negative ones. In addition,

note that the mean value for the slope coefficient across the 100,000 draws is −3.69, which is
substantially lower than its population value of zero. This indicates the presence of significant

small-sample bias.

C. Some of the Model’s Cross-Country Implications

So far we have focused on the time series implications of our model. Now we discuss some of

its cross-country implications.

A key mechanism at work in our market segmentation model is that as the money

growth rate rises, so does the inflation rate; thus, gains from participating in the asset market

rise with money growth. As these gains rise, more households choose to be active, and the

amount of risk in the economy falls. In an economy with a high enough mean inflation rate,

then, risk in the asset market is sufficiently low that the forward premium anomaly disappears.

Our model thus implies that the market segmentation effect is smaller in countries with higher

inflation rates.

More precisely, if the distribution of fixed costs is bounded and the risk aversion

parameter σ is greater than one, then clearly, beyond some sufficiently high inflation rate, all

households are active and consumption is constant. Then our model reduces to a standard

one similar to that of Lucas (1982), with constant risk premia and no forward premium

anomaly.

Some evidence for this cross-country implication has been found by Bansal and

Dahlquist (2000). They study a data set for 28 developed and emerging countries and

find that the forward premium anomaly is mostly present in the developed countries and

mostly absent in the emerging countries. In regressions for their entire data set, Bansal and

Dahlquist find that countries with a higher inflation rate tend to have a smaller forward

premium anomaly.
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7. Long term risk premia

In this section we investigate our model’s implications for long term risk premia,

interest rates and exchange rates. We first show that under fairly general conditions our

model’s implications for long term risk premia are the same as those in a model with no

segmentation. In this sense all the risk that arises in pricing long term nominal bonds arises

solely from long run inflation risk. This feature holds because the (real) risk coming from

market segmentation does not grow with the time horizon and hence is unimportant in pricing

long term bonds. We then show that if we impose stricter conditions on the long run behavior

of the money growth process then the long risk premia are constant over time. Under these

conditions our model implies that long term expected depreciation rates move one for one

with long term interest differentials. Thus our model implies that the slope coefficient in a

Fama regression of long term changes in exchange rates on long term interest differential is

equal to one. In this sense, our model is consistent with the evidence in Meredith and Chinn

(2004) and Alexius (2001) who show that the slope coefficient in a Fama regression tend to

be close to one in the long-horizon regressions.

We begin with some definitions. Define the k period dollar nominal rate it,k as

it,k = −1
k
logQt,k

where Qt,k is the price of a zero coupon nominal bond at t paying one dollar at t+k. Clearly,

Qt,k = Et

⎡⎣βkU 0
³
cA
³
µt+k

´´
U 0 (cA (µt))

Pt

Pt+k

⎤⎦ .
Define the k period euro nominal rate i∗t,k and the price Q

∗
t,k for a k period zero coupon euro

bond in a similar fashion. The exchange rate change between t and t+ k is then given by:

et+k
et

=

⎛⎝βkU 0
³
cA
³
µ∗t+k

´´
U 0 (cA (µ∗t ))

P ∗t
P ∗t+k

⎞⎠ /

⎛⎝βkU 0
³
cA
³
µt+k

´´
U 0 (cA (µt))

Pt

Pt+k

⎞⎠ .

The long term risk premium is given by

pt,k = Et

∙
1

k
log

et+k
et

¸
−

³
it,k − i∗t,k

´
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which can be written as

pt,k = bt,k − b∗t,k

where bt,k is given by

1

k

Ã
logEt

"
U 0
³
cA
³
µt+k

´´
exp(−

kX
s=1

logµt+s)

#
(54)

−Et

h
logU 0 ³cA ³µt+k´´i+ Et

"
kX

s=1

log µt+s

#!

and b∗t,k is analogous. From (54) we see that the long term premium depends on the variability

of long term inflation and the variability of the level of the marginal utility of active house-

holds. Under mild regularity conditions, in the long run, the accumulated effect of inflation

dominates the component of risk associated with the marginal utility U 0(cA) and the long

premium is independent of the variability of the marginal utility of active households.

Our first regularity condition is that long run average inflation (per period) has finite

conditional expectation in the sense that for all possible histories,

lim
k→∞

1

k
logEt

"
Pt

Pt+k

#
= lim

k→∞
1

k
logEt

"
exp(−

kX
s=1

log µt+s)

#
<∞(55)

The second condition is that the consumption of active households is uniformly bounded

away from zero in the sense that

cA(µ) ≥ c > 0 for all µ(56)

Note that the consumption of active households is bounded above by c̄ = y/F (0) with

F (0) > 0.

Proposition 6. Under (55) and (56) the long term risk premium in our model is the

same as in a version of our model with no fixed costs and hence no segmentation.

Proof. To prove this proposition we show that in the limit the expression (54) reduces

to

lim
k→∞

1

k

Ã
logEt[exp(−

kX
s=1

log µt+s)] + Et

"
kX

s=1

log µt+s

#!
(57)
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and hence does not depend on the marginal utility of active households at all. Since the

consumption of active agents is bounded above and below so is the marginal utility, so that

U 0(c̄) ≤ U 0(cA(µ)) ≤ U 0(c). In the limit, the first bracketed term in (54) satisfies

lim
k→∞

1

k

Ã
logU 0(c̄) + logEt[exp(−

kX
s=1

log µt+s)]

!

≤ lim
k→∞

1

k
logEt

"
U 0
³
cA
³
µt+k

´´
exp(−

kX
s=1

logµt+s)

#

≤ lim
k→∞

1

k

Ã
logU 0(c) + logEt[exp(−

kX
s=1

log µt+s)]

!
.

Since the terms U 0(c̄) and U 0(c) are constants and (55) holds if follows that

lim
k→∞

1

k
logEt[U

0 ³cA ³µt+k´´ exp(− kX
s=1

log µt+s)] = lim
k→∞

1

k
logEt[exp(−

kX
s=1

log µt+s)](58)

Clearly, the same bounding argument implies that limk→∞ 1
k
logEt[U

0
³
cA
³
µt+k

´´
] = 0.Q.E.D.

We now turn to the question of whether the long run risk premium is constant. From

(57) this risk premium depends on

lim
k→∞

1

k

Ã
logEt

"
Pt

Pt+k

#
− Et

"
log

Pt

Pt+k

#!
.(59)

Hence, a sufficient condition for the long run risk premium to be constant is that the condi-

tional distribution of long run average inflation is independent of the conditioning information

at date t.

For example, if µt is log normal then using the standard formula for the mean of a log

normal, (59) reduces to

lim
k→∞

1

2k
V art(−

kX
s=1

log µt+s).(60)

The expression in (60) will be independent of conditioning information under relatively weak

conditions. One such condition is that log µt follows a covariance stationary process, and that

its spectral density at frequency zero is finite.

For another example suppose that logµt follows a Markov chain. If the Markov chain

has strictly positive transition probabilities then the long run risk premium is constant.
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Moreover, it can be computed as we show in the next proposition. Consider a n state Markov

chain where πij = Pr{log µt+1 = log µj | log µt = logµi} denote the transition probabilities.
We prove the following proposition in an appendix.

Proposition 7. If the transition probabilities πij are all positive then the long term

premium, defined as lim pt,k as k →∞, is a constant given by

lim
k→∞

pt,k = [δ − E (log µ)]− [δ∗ − E (log µ∗)] ,

where δ is the log of the largest positive (dominant) eigenvalue of the matrix with entries

Aij = µj πij

for i, j = 1, 2, ..., n, where E (log µ) is the unconditional expectation of the log of the money

supply and the foreign country variables are similarly defined.

As discussed by Hansen and Scheinkman (2005), the quantity δ measures the impor-

tance of long run risk in pricing risky assets, This quantity has the dimension of a the yield

on a long term return. The intuition for why these long premia are constant is that if all

the transition probabilities are positive then there is sufficient mixing so that households’

expectation of long run average inflation rates do not depend on the initial state.

8. Conclusion

We have constructed a simple general equilibrium monetary model with endogenously seg-

mented asset markets and have shown that this sort of friction is a potentially important

part of a complete model of interest rates and exchange rates. The fundamental problem is

to develop a model in which exchange rates are roughly a random walk (so that expected

changes in exchange rates are roughly constant), while interest differentials are highly vari-

able and persistent. In such a model, by definition, time-varying risk must be the prime

mover of interest differentials. Our main contribution is to highlight the economic forces in a

model with endogenous market segmentation that allow the model to produce these features

of interest rates and exchange rates.
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Appendix A: Proof of Uniqueness

Here we show that equations (18) and (19) have at most one solution for any given µ.

To see this result, solve for γ̄ as a function of cA from (19) and suppress explicit

dependence of µ to get

γ̄(cA) =
U(cA)− U(y/µ)

U 0(cA)
− [cA − (y/µ)] .

Note that

dγ̄(cA)

dcA
= − U 00(cA)

(U 0(cA))2
[U(cA)− U(y/µ)].(61)

Use (19) to see that dγ̄(cA)/dcA is positive when cA + γ̄ − (y/µ) > 0 and dγ̄(cA)/dcA is

negative when cA + γ̄ − (y/µ) < 0. Substituting γ̄(cA) into (18) and differentiating the left

side of the resulting expression with respect to cA gives

F(γ̄(cA))+ [cA + γ̄(cA)− y/µ]
dγ̄(cA)

dcA
.(62)

Using (61), we see that (62) is strictly positive; hence, the equations have at most one solution.

Appendix B: Proof of Proposition 4

To prove Proposition 4, we derive two equations, (38) and (39).

To derive (38), start with (37), the risk premium defined in terms of the pricing kernels.

Compute Et logmt+1 from (34). To compute logEtmt+1, we must compute

logEt exp
µh
−(φ+ 1) + ηEtµ̂t+1

i
εt+1 +

η

2
ε2t+1

¶
.

To do that, use the result that if x is normally distributed with mean zero and variance

σ2 and satisfies 1− 2bσ2 > 0, then

E exp
³
ax+ bx2

´
= exp

Ã
1

2

a2σ2

(1− 2bσ2)
!µ

1

1− 2σ2b
¶1/2

.(63)

To derive (63), note that

E exp
³
ax+ bx2

´
=

1

σ
√
2π

Z
exp

³
ax+ bx2

´
exp

Ã
− x2

2σ2

!
dx =
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1

σ
√
2π

Z
exp

µ
1

2σ2

h
2σ2ax+

³
2σ2b− 1

´
x2
i¶

dx =

1

σ
√
2π

Z
exp

Ã
1

2σ2

"
−
³
1− 2σ2b

´
x2 + 2σ2ax−

Ã
σ4a2

1− 2σ2b
!
+

Ã
σ4a2

1− 2σ2b
!#!

dx =

exp

Ã
1

2

a2σ2

(1− 2bσ2)
!

1

σ
√
2π

Z
exp

⎛⎝− 1

2σ2

"³
1− 2σ2b

´1/2
x− σ2a

(1− 2σ2b)1/2
#2⎞⎠ dx =

exp

Ã
1

2

a2σ2

(1− 2bσ2)
!

1

σ
√
2π

Z
exp

⎛⎝−(1− 2σ2b)
2σ2

"
x− σ2a

(1− 2σ2b)
#2⎞⎠ dx,

which equals (63).

We can derive (39) using (34) together with the standard results that Etε
4
t+1 = 3σ4ε

and Etε
3
t+1 = 0.

Appendix: Proof of Proposition 7

Proof. Note that E[µt+1|µt = µj ] and E[Πk
s=1µt+s|µt = µj] are the jth elements of the

vectors A
−→
1 and Ak−→1 where

−→
1 is column vector of n ones. Let λ1 > λ2 ≥ . . . ≥ λn be

the eigenvalues of A, f1, f2, . . . , fn be the corresponding eigenvectors, and let fij be the jth

element of the ith eigenvector. Since A is a strictly positive matrix, by the Perron-Frobenius

Theorem, λ1 > 0, |λ1| > |λi| for i > 1, and f1j > 0 for all j.

Since the eigenvectors of A form an orthogonal basis for Rn we have
−→
1 =

Pn
i=1 αifi

where αi =< fi,
−→
1 > / < fi, fi > . Since f1 > 0 then α1 > 0. Then

lim
k→∞

1

k
logE[Πk

s=1µt+s|µt = µj ] = lim
k→∞

1

k
log

Ã
nX
i=1

αiλ
k
i fij

!

We can rewrite this expression and then use the fact that λ1 is the dominant eigenvalue to

compute this limit

lim
k→∞

1

k
log

⎛⎝λk1 nX
i=1

αi

Ã
λi
λ1

!k

fij

⎞⎠ = lim
k→∞

1

k
log

³
α1λ

k
1f1j

´
= logλ1.

Note that this limit is independent of the current state µt = µj. Hence,

lim
k→∞

1

k
bt,k = log λ1 − E logµ

and a similar expression holds for the foreign country variables. Q.E.D.
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Notes

1Technically, pt is simply the log excess return on foreign currency bonds. In general this

excess return could arise for many reasons including differences in taxes, liquidity services,

or transaction costs across bonds. In the paper we take the view that the fluctuations in this

excess return are driven primarily by risk and hence we refer to the excess return as the risk

premium.

2This anomaly can also be stated in terms of forward exchange rates. The forward

exchange rate ft is the price specified in a contract in period t in which the buyer has the

obligation to transfer ft dollars in t + 1 in exchange for one euro. The forward premium is

the forward rate relative to the spot rate ft/et. Arbitrage implies that log ft− log et = it− i∗t .

Thus, (3) can be restated as cov(log ft − log et, log et+1 − log et) < 0. The forward premium

and the expected change in exchange rates, therefore, tend to move in opposite directions.

This observation contradicts the hypothesis that the forward rate is a good predictor of the

future exchange rate.

3Variants of this model can be considered in which the fixed cost for each household

varies randomly over time. As will be clear from what follows, for the appropriate set of

sufficient conditions, the cash-in-advance constraints would always bind in those variants,

and the equilibrium would be identical to that discussed below.

4While this condition is intuitive, the problem’s nonconvexity requires that its proof be

more than just a verification of the relevant first-order condition. For the formal treatment

of a similar problem, see the appendix in Alvarez, Atkeson, and Kehoe (2002).

5Technically, a sufficient condition for the variability of the risk premium, var(pt) , to

be increasing in φ, η, and σ2ε is that cov(Etµ̂t+1, (Etµ̂t+1)
2) ≤ 0. This inequality holds with

equality if the distribution of Etµ̂t+1 is symmetric, as, for example, in the case of normally

distributed variables.
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Table 1

Data and Model Properties of Exchange Rates and Interest Rates

Statistics/Variable Data Model

Standard Deviations

Exchange Rates (log et+1 − log et) 36 58

Interest Rates (it − i∗t ) 3.5 1.3

Autocorrelations

Exchange Rates (log et+1 − log et) .04 0

Interest Rates (it − i∗t ) .83 .92

Source of data: Backus, Foresi, and Telmer (2001)



Figure 1   Timing in the Two Markets for a Household in the Home Country 
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Figure 2    The Log of the Consumption of Active Households
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