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ABSTRACT

This paper describes a simple model of aggregate and firm growth based on the introduction of
new goods. An incumbent firm can combine labor with blueprints for goods it already produces
to develop new blueprints. Every worker in the economy is also a potential entrepreneur who can
design a new blueprint from scratch and set up a new firm. The implied firm size distribution closely
matches the fat tail observed in the data when the marginal entrepreneur is far out in the tail of
the entrepreneurial skill distribution. The model produces a variance of firm growth that declines
with size. But the decline is more rapid than suggested by the evidence. The model also predicts a
new-firm entry rate equal to only 2.5% per annum, instead of the observed rate of 10% in U.S. data.
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1. Introduction

Most Þrms produce more than one good, and large Þrms tend to produce many different

goods. Producing certain goods can make it easier for a Þrm to introduce new goods.

The rate at which a Þrm introduces new goods is likely to depend on the number of

different goods it already produces.

In this paper, a Þrm can combine labor with the blueprint for any of the goods it

currently produces to develop blueprints for new goods, at a stochastic rate. These rates

are taken to be independent across goods. New Þrms can be set up by entrepreneurs who

develop blueprints for new goods from scratch using only their time. Every worker in

the economy is a potential entrepreneur, but the frequency with which workers can come

up with ideas for new goods varies across workers. The entrepreneurial skill distribution

is assumed to have unbounded support so that there will always be some workers who

Þnd it optimal to become entrepreneurs.

Consumers in the economy have Dixit-Stiglitz preferences over many differentiated

goods, and Þrms are monopolists in the markets of the various goods they produce.

Goods are produced using a linear labor-only technology. The technology with which

labor is converted into goods becomes more productive over time at an exogenous rate

that is common to all producers. In equilibrium, the amount of labor used optimally

by a Þrm to produce a particular good is constant over time, as is the amount of labor

used per good to develop new goods. The per capita labor supply is constant. Along

a balanced growth path, the number of differentiated goods produced in the economy

must therefore grow at the same rate as the population.

The shape of the Þrm size distribution depends critically on how many new goods

are introduced by existing Þrms, and how many are introduced by entrepreneurs who

develop a new good and set up a new Þrm. If few workers have sufficient entrepreneurial

skill to become an entrepreneur, then most of the new goods are introduced by existing

Þrms and the growth rate of existing Þrms is close to the population growth rate. There

will then be many incumbent Þrms that have had a long time to grow, and the resulting

size distribution will have the very fat tail observed in the data.

This paper complements the model described in Luttmer [2006a], in which every

Þrm is the monopolist producer of a single good and becomes more productive at a

Þrm-speciÞc idiosyncratic rate. In the model, Þrm productivity follows an exogenously

speciÞed geometric Brownian motion. The economy-wide distribution of productivity

improves over time as a result of selection and imitation by entrants. Stationarity

of the Þrm size distribution is induced by the spillover that arises from the ability
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of entrants to imitate. The resulting Þrm size distribution also closely matches the

observed distribution. The implied variance of Þrm growth rates is constant, while here

it is inversely proportional to size. The data indicate something in between these two

extremes. One possible interpretation is that the mechanisms described here and in

Luttmer [2006a] are both needed to account for the empirical evidence.

Klette and Kortum [2003] build a model of Þrm growth along the lines of the quality

ladder model of Grossman and Helpman [1991]. The stochastic process of the number

goods produced by an individual Þrm obtained here for an economy with differentiated

commodities is the same as in Klette and Kortum [2003]. The quality ladder environment

has a constant number of goods. In the presence of entry, the average Þrm therefore has

to decline in size. This rules out size distributions that are sufficiently fat tailed. Here,

instead, the growth rate of the average Þrm can be positive if there is positive population

growth and incumbent Þrms account for a sufficient fraction of the new goods introduced.

This is essential to replicate the fat tail of the observed Þrm size distribution.

Section 2 describes the economy. The balanced growth path is characterized in

Section 3. The stochastic process of Þrm size and the resulting stationary distribution

are analyzed in Section 4. The parameters of the size distribution are estimated in

Section 5 and the implications of these parameters for the research and development

productivity of Þrms and for the skill distribution of entrepreneurs are discussed. Section

6 concludes.

2. Growth in Variety

2.1 Consumers

Time is continuous and indexed by t. There is a continuum of consumers alive at any

point in time. The population size at time t is Ht = Heηt, and the population growth

rate η is non-negative. There is a representative consumer with preferences over rates

of dynastic consumption {Ct}t≥0 of a composite good, deÞned by the utility functionµ
E0

·Z ∞

0

ρe−ρt
£
Cte

−ηt¤1−γ dt¸¶1/(1−γ) .
The discount rate ρ and the intertemporal elasticity of substitution 1/γ are positive. The

composite good is made up of a continuum of differentiated commodities. Preferences

over these commodities are additively separable and symmetric. This implies that all

commodities trading at the same price are consumed at the same rate. Let ct(p) be
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consumption at time t of a commodity that trades at a price p. In equilibrium, there

will be a measure Nt of commodities that are available at time t, deÞned on the set of

commodity prices. The composite good is deÞned as

Ct =

·Z
cβt (p)Nt(dp)

¸1/β
.

where β ∈ (0, 1). Consumers choose ct(p) to minimize the cost of acquiring Ct. This
implies that

pct(p) = PtC
1−β
t cβt (p),

where Pt is the price index

Pt =

·Z
p−β/(1−β)Nt(dp)

¸−(1−β)/β
.

The price elasticity of the demand is −1/(1− β) < −1 for all commodities.
Every consumer is endowed with a ßow of one unit of labor per unit of time that

can be sold for wages or be used as an entrepreneur. Consumers also own claims to

Þrms. Contingent claims markets are complete and the representative consumer faces a

standard present-value budget constraint. There is no aggregate uncertainty. Optimal

consumption growth satisÞes the Euler condition

rt = ρ+ γ

·
DCt
Ct

− η
¸
, (1)

where rt is the interest rate expressed in units of the composite good.

2.2 Commodity Producers

Producing any particular commodity requires a unique commodity-speciÞc blueprint.

The owner of such a blueprint can use l units of labor to produce Ztl units of the

associated differentiated commodity. The resulting revenues are Ct1−β(Ztl)β, measured
in units of the composite good. Labor can be hired for wages wt. The commodity

producer solves

wtRt = max
l
Ct
1−β(Ztl)β − wtl

at any time t. The optimal net revenues Rt are a constant markup over labor inputs,

Rt =

µ
1

β
− 1
¶
Lt, (2)
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and the associated labor inputs are

Lt =

µ
βZt
wt

¶β/(1−β)
βCt
wt
. (3)

Labor productivity is assumed to be the same across all producers and evolves according

to Zt = Zeθt.

Market clearing implies that ct(pt) = ZtLt for every commodity. Hence all producers

charge the same price pt and the number of commodities can be written as Nt = Nt(pt).

The deÞnition of the composite commodity then implies that aggregate consumption is

given by

Ct = ZtLtN
1/β
t . (4)

Together with (3) this implies that wages are

wt = βZtN
(1−β)/β
t , (5)

in any equilibrium.

2.3 New Blueprints and Commodities

The introduction of new commodities requires new blueprints. There are two technolo-

gies for producing new blueprints. One combines the blueprint for an existing commodity

with labor to produce a different blueprint. The other uses the input of an entrepreneur

only to develop a new blueprint from scratch. There is no technology for copying existing

blueprints.

2.3.1 Combining Existing Blueprints and Labor

Any existing blueprint can be combined with a ßow of It units of labor to produce a

blueprint for a new commodity. The new blueprint is completed following an expo-

nentially distributed waiting time with mean µt = f(It). The production function f is

strictly increasing and concave, with an unbounded marginal product at zero. Blueprints

depreciate, in one-hoss-shay fashion, at some non-negative rate λ.

A blueprint allows its owner to jointly produce a commodity and new blueprints.

The price of a blueprint st must satisfy the Bellman equation

rtst = max
µt≤f(It)

{wt [Rt − It] + (µt − λ)st +Dst} ,
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and a transversality condition. The Þrst-order condition for labor used to develop new

blueprints is

µt = f(It),
wt
st
≥ Df(It), w.e. if It > 0. (6)

Not surprisingly, the search intensity for new blueprints is high when the price of a

blueprint is high relative to the wage. Solving the Bellman equation forward for st
yields

st =

Z ∞

t

exp

µ
−
Z v

t

[ru + λ− µu]du
¶
wv [Rv − Iv] dv. (7)

This is simply the present value of all the net revenues that will ßow from a particular

blueprint and the sequences of future blueprints that will be produced from it. Given a

time path for interest rates rt, wages wt and net revenues Rt, (6) and (7) determine the

growth rate µt = f(It) and the value st of a blueprint.

2.3.2 Entrepreneurs

All consumers in the economy are potential entrepreneurs who can attempt to design

new blueprints from scratch. Consumers are heterogeneous and must choose to either

supply one unit of labor at wage wt or become an entrepreneur. A type-x consumer

can generate a new blueprint after an exponentially distributed waiting time x. An

entrepreneur with a newly designed blueprint at time t can sell this blueprint at a price

st and then go on to design the next blueprint, or work for the wage wt.1 All consumers

with xst > wt choose to be entrepreneurs and all agents with xst < wt choose to work

at wage wt. The cross-sectional distribution of productivities has support (0,∞) and
is denoted by S. Hence, a fraction S(wt/st) of low-productivity consumers works for

Þrms, and a fraction 1 − S(wt/st) become entrepreneurs. The labor endowment of a
type-x consumer has market value max{wt, xst}, and so the shape of S will be reßected
in the distribution of earnings at a point in time, and in the distribution of wealth across

consumers if entrepreneurial skills are permanent.

2.3.3 Aggregate Innovation

New commodities are introduced by entrepreneurs at a rate νt, measured in new com-

modities per unit of time as a fraction of the existing number of commodities at time t.

1A more realistic scenario might be if the entrepreneur would, at least for while, be more efficient
than others at using the newly developed blueprint to produce the commodity or design new blueprints
based on it. This would generate a type of match similar to the one between Þrms and managers
analyzed in Holmes and Schmitz [1995].
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This rate is given by

νtNt = Ht

Z ∞

wt/st

xS(dx). (8)

This follows since there are Ht potential entrepreneurs, x is the rate at which an individ-

ual entrepreneur generates a new blueprint, and only those consumers with x > wt/st
choose to act as entrepreneurs. Together with investment by owners of existing blue-

prints, entrepreneurial activity generates a ßow of new blueprints equal to

DNt = (νt + µt − λ)Nt. (9)

The initial stock of blueprints is given by N0 = N .

2.4 Equilibrium

A fraction S(wt/st) of the Ht consumers in the economy use their unit of time to supply

labor. The amount of labor used by owners of existing blueprints to produce new blue-

prints is It per blueprint and production takes Lt units of labor per commodity. There

are Nt blueprints and commodities. The labor market clearing condition is therefore

HtS

µ
wt
st

¶
= Nt [It + Lt] (10)

at any time t.

Consumer wealth equals the present value of labor and entrepreneurial income, to-

gether with the value of the stock of blueprints stNt. In equilibrium, this must add up

to the present value of aggregate consumption Ct. This restriction implies a transversal-

ity condition for stNt. The equilibrium is determined by this transversality condition,

together with the other equilibrium conditions (1)-(10), as well as an initial condition

for N0 and the exogenous evolution of Zt.

3. Balanced Growth

A balanced growth path for this economy is a competitive equilibrium in which Ct =

Ce(κ+η)t and wt = weκt for some equilibrium growth rate κ, and in owners of existing

blueprints develop new blueprints at a constant rate µt = µ.

Because the marginal product of f at zero is inÞnite, µ and I = f−1(µ) must be
positive. Hence (6) implies that st/wt is constant, and thus st = seκt. Constant con-

sumption growth rate implies a constant interest rate rt = r, where r = ρ + γκ. The

fact that wt and st both grow at the rate κ implies that Rt = R, by (7). Because of (2),
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labor inputs can also be written as Lt = L. Since Zt, wt and Ct grow at the respective

rates θ, κ and κ+ η, (4)-(5) imply that Nt = Neηt and

κ = θ +

µ
1− β
β

¶
η, (11)

along any balanced growth path. The number of commodities must grow at the same

rate as the population, and this growth adds to productivity growth with an elasticity

(1− β)/β.
Along any balanced growth path, the Þrst-order condition (6) and the present-value

restriction (7) together with R = L(1− β)/β simplify to µ = f(I), w/s = Df(I) and

1

Df(I)
=

³
1−β
β

´
L− I

r − κ+ λ− f(I) , (12)

as long as f(I) < r − κ + λ. This condition relates investment I in new blueprints

to the amount of labor L used to produce a commodity. This relation depends on

the precise properties of the production function f . In the following, suppose that

I + [r − κ+ λ− f(I)] /Df(I) is increasing in I for f(I) < r− κ+ λ. Then (12) implies
that L is increasing in I. In this case, the equilibrium value of a blueprint rises with I

because more labor is used to generate more revenues, and not so much because those

revenues are discounted at a lower rate.

The labor market clearing condition (10) reduces to

H

N
=

I + L

S (Df(I))
. (13)

Using (12) to eliminate L from the right-hand side of (13) gives an expression that is

increasing in I. If µ = f(I) is high, then blueprint owners must be using a lot of labor

to produce commodities and design new blueprints. On the other hand many consumers

will also choose to be entrepreneurs, because s/w = 1/Df(I) is high. Under such

circumstances, the labor market can only clear if there are relatively few commodities.

Thus (12)-(13) imply a negatively sloped relation between N and I. The assumption

that the marginal product Df(I) is unbounded at zero implies that N goes to inÞnity

as I goes to zero along the equilibrium relation implied by (12)-(13).

The result that the number of commodities grows at a rate η along a balanced growth

path implies that investment in new blueprints by entrepreneurs and incumbent Þrms

must satisfy

η + λ =
H

N

Z ∞

Df(I)

xS(dx) + f(I), (14)
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by (8) and (9). Since S has unbounded support, this condition ensures that f(I) < η+λ

in any equilibrium. The right-hand side of (14) is increasing I. Blueprint owners produce

more blueprints and more consumers choose to be entrepreneurs when s/w = 1/Df(I)

and thus I is high. The rate at which new blueprints must be produced along a balanced

growth path is (η+λ)N per unit of time, and a high I can thus support a high value ofN .

It follows that (14) implies an increasing relation between N and I for all f(I) < η+ λ.

The assumption that S has unbounded support guarantees that N goes to inÞnity as

f(I) approaches η+λ from below. Therefore, N must go to zero as I goes to zero along

(14).

Note that r follows from the Euler equation (1) and (11). The levels of aggregate

consumption C and wages w are implied by (4) and (5), given L and N . The equilibrium

conditions (12)-(14) are shown in Figure I. They determine I, L, and N , and hence

µ = f(I) and s/w = 1/Df(I). The Þrst part of the following proposition now follows.

Proposition 1 Suppose r > κ+η, that I+[η+λ−f(I)]/Df(I) is increasing in I for
all I such that f(I) < η + λ, and that entrepreneurial skill distribution S is continuous

with support (0,∞). If r > η, then there is a unique balanced growth path deÞned by
(12)-(14). Suppose f(I) = g(AI) and S(x) = G(x/B), where g is a production function

and G a distribution function. Across balanced growth paths,

(i) the elasticities of [N,C/H, s/w] with respect to H are [1, (1− β)/β, 0];

(ii) the elasticities of [N,C/H, s/w] with respect to A = B are [1, (1− β)/β,−1];

(iii) if consumers are endowed with J units of labor, then the elasticities of [N,C/H, s/w]

with respect to J are [1, 1/β, 0];

(iv) µ = f(I) converges to η + λ from below as B goes to zero.

There is no effect on µ = f(I) in (i)-(iii).

Strictly concave constant-elasticity production functions satisfy the condition given in

this proposition. Note that Z does not appear in the equilibrium conditions (12)-(14),

and hence per capita consumption has a unit elasticity with respect to labor productiv-

ity in commodity production, by (4). This and the per capita consumption elasticity

reported in (i) matches (11). Labor-augmenting technological progress in blueprint pro-

duction that is neutral across entrepreneurs and blueprint owners, as in (ii), has the
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same effect as a population increase on the number of commodities and per capita con-

sumption. In both cases it is possible to sustain a larger number of commodities, and the

increased variety implies an increase in per capita consumption. But this type of techno-

logical progress in blueprint production lowers the per-commodity inputs L and I, and

this lowers s/w, thereby reducing the dispersion of earnings max{1, xs/w}. Population
growth leaves the distribution of earnings unchanged. An increase in per capita labor

supply, as in (iii), is equivalent to a population increase combined with a proportional

increase in labor productivity in commodity production.

0.025 0.03 0.035 0.04 0.045
10

−3

10
−2

10
−1

10
0

10
1

10
2

µ = f(I)

N
/H

(12) and (13)

(14)

η + λ

lower skills

Figure I. Equilibrium Conditions for N/H and µ = f(I).

Result (iv) of Proposition 1 is illustrated in Figure I for functional forms and para-

meters discussed in Section 5. As B goes to zero the fraction of consumers G(Df(I)/B)

who are not entrepreneurs goes to 1 for any Þxed I. Thus the curve deÞned by the

equilibrium conditions (12)-(13) converges to one deÞned by (12) and N/H = 1/(I+L).

In Figure I, B is reduced by a factor three without a perceptible effect on the rela-

tion (12)-(13). Entrepreneurs are largely irrelevant for labor market clearing when B

is small. But N/H as a function of µ = f(I) converges to zero along (14) for any

µ = f(I) < η+λ. For any Þxed level I < f−1(η+λ) of investment by blueprint owners,
the number of commodities that is sustainable along a balanced growth path converges

to zero as entrepreneurs become less and less efficient in coming up with new blueprints.

As a result, the equilibrium µ = f(I) shown in Figure I converges to the asymptote
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at η + λ. Existing blueprint owners will then account for essentially all growth in the

number of blueprints and commodities.

4. The Size Distribution of Firms

The economy described so far has consumers who are also workers and entrepreneurs.

Everyone can own blueprints and there are no Þrms.

4.1 Transaction Costs

Consider an entrepreneur who has just developed a new blueprint. To hire labor to

produce the associated commodity and develop further blueprints, the entrepreneur can

set up a Þrm at no cost. This deÞnes a Þrm entry. Claims to Þrms can be traded

freely. But there is a potentially very small cost involved in Þrms hiring entrepreneurs

to develop new blueprints from scratch, in selling blueprints to Þrms, and in merging

Þrms. There are no cost advantages to any of these transactions, and so they will not

occur in equilibrium.2

A Þrm will therefore only gain new commodities through its use of the technology

for combining existing blueprints with labor, at a rate µt per commodity already owned

by the Þrm. The Þrm only loses commodities as its blueprints become obsolete, at a

rate λ per commodity. A Þrm that has lost all its commodities is shut down and exits.

In this environment, Þrms differ only by the number of commodities they produce, and

this number can be used to measure the size of a Þrm. In the following, the distribution

of Þrm size is derived assuming that the economy is on a balanced growth path.

The measure of Þrms with n commodities at time t is denoted by Mn,t. Since every

commodity is produced by one and only one Þrm,

Nt =

∞X
n=1

nMn,t. (15)

Over time, the change in the number of Þrms with one commodity is

DM1,t = λ2M2,t + νNt − (λ+ µ)M1,t. (16)

2Of course these transactions do occur in the data. This is a familiar and important failure of the
type of model described in this paper. Chatterjee and Rossi-Hansberg [2006] provide an interesting
model of Þrm size in which adverse selection makes it difficult for Þrms to hire entrepreneurs or buy
their projects.
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where µ and ν = η + λ− µ are the values of µt and νt along the balanced growth path.
The number of Þrms with one commodity increases because Þrms with two commodities

lose one, or because of entry. The number declines because Þrms with one commodity

gain or lose a commodity. Similarly, the number of Þrms with n ∈ N \{1} commodities
evolves according to

DMn,t = λ(n+ 1)Mn+1,t + µ(n− 1)Mn−1,t − (λ+ µ)nMn,t. (17)

The joint dynamics of Nt and {Mn,t}∞n=1 is fully described by DNt = ηNt and (16)-(17).
By construction, (16)-(17) ensure that (15) holds if it holds at the initial date, which is

assumed to be the case.

4.2 The Stationary Distribution

A stationary distribution of Þrm size exists if (16)-(17) has a solution for whichMn,t/Nt

is constant over time. Since Nt grows at a rate η, this means that DMn,t = ηMn,t for all

n ∈ N. Given that Nt and Mn,t grow at the common rate η, one can deÞne

Pn =
Mn,tP∞
n=1Mn,t

for all n ∈ N. This is the fraction of Þrms that produce n commodities. Analytically
more convenient is the fraction of all commodities produced by Þrms of size n, which is

given by

Qn =
nMn,tP∞
n=1 nMn,t

for all n ∈ N. The mean number of commodities per Þrm can be written in terms of the
two stationary distributions {Pn}∞n=1 and {Qn}∞n=1 asP∞

n=1 nMn,tP∞
n=1Mn,t

=
∞X
n=1

nPn =

Ã ∞X
n=1

1

n
Qn

!−1
.

The numerator of the left-hand side adds up to the total measure of commodities in

the economy. This is Þnite by construction. Hence the mean Þrm size is well deÞned

and Þnite by construction. The right-hand side is the reciprocal of the mean number of

Þrms per commodity, provided that this mean is calculated against the distribution of

commodities by size of Þrm producing the commodity.

Recall that µ− λ = η − ν. Using this, (16) can now be written as

ηQ1 = λQ2 + η − (µ− λ)− (λ+ µ)Q1, (18)
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and (17) implies that

1

n
ηQn = λQn+1 + µQn−1 − (λ+ µ)Qn, (19)

for n ∈ N \{1}. Condition (15) corresponds to the requirement that the fractions Qn
add up to one,

∞X
n=1

Qn = 1. (20)

Any sequence {Qn}∞n=1 ⊂ [0, 1] that satisÞes (18)-(20) deÞnes a stationary size distribu-
tion {Pn}∞n=1 via Qn ∝ Pn/n. Note that (18)-(20) only depend on the parameters µ/λ
and η/λ.

0 0.5 1 1.5
0

0.5

1

1.5

β
n

β n+
1

n = ∞ 

 n = 1

λ/µ 

Figure II. The Dynamics of {βn}∞n=1.

The equation (19) is a second-order difference equation in {Qn}∞n=1. It comes with
two boundary conditions, (18) and (20). To solve (18)-(20), it is convenient to reduce

(19) to a Þrst-order equation in the variables

Zn+1 =
1

βn+1

£
Qn − βn+1Qn+1

¤
, (21)

for all n ∈ N and some sequence {βn}∞n=1. Set β2 = 1/(1 + (η + µ)/λ). Then the initial
condition (18) translates into

Z2 =
1

λ
[η − (µ− λ)] (22)
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Also, (19) can be written as

Zn+1 =

µ
µβn
λ

¶
Zn (23)

for all n ∈ N \{1} if
βn+1 =

µ
1 +

η + µn

λn
− µβn

λ

¶−1
. (24)

From the deÞnition of β2, observe that the recursion (24) holds for all n ∈ N if initialized
by β1 = 0. The recursion (24) is depicted in Figure II for the case µ > λ. Note

in particular that the curve deÞned by (24) shifts upwards as n increases. Using this

observation and the diagram, as well as an analogous diagram for λ > µ, one can verify

that {βn}∞n=1 converges monotonically from β1 = 0 to min{1,λ/µ}.
The sequence {Zn}∞n=2 is completely determined by (22)-(23). Observe from (21)

that Qn = βn+1(Qn+1 + Zn+1). The boundary condition (20) together with the fact

that βn ≤ 1 implies that QK
QK
n=1 βn must converges to zero as K becomes large. Thus

one can iterate forward to obtain the solution for {Qn}∞n=1. The following proposition
presents this solution and provides upper and lower bounds Qn when n is large.

Proposition 2 Suppose that µ, λ, η and ν = η − (µ − λ) are positive. DeÞne the
sequence {βn}∞n=1 by the recursion (24) and the initial condition β1 = 0. This sequence
is monotone and converges to min{1,λ/µ}. The solution to (18)-(20) is given by

Qn =
ν

λ

∞X
k=n+1

Ã
kY

m=n+1

βm

!µ
µβk
λ

¶−1 kY
m=2

µβm
λ
. (25)

Take any ε > 0. If µ > λ then

ν

(1 + ε)µ− λ
1+ε

≤
Ã

nY
m=2

µβm
λ

!−1
Qn ≤ ν

µ− λ (26)

for all large enough n. If µ < λ then

ν

(1 + ε)λ− µ
1+ε

≤
Ã

nY
m=2

µβm
λ

!−1
Qn ≤ ν

λ− µ (27)

for all large enough n.

Note that the balanced growth path described in Proposition 1 implies ν > 0. The

proof of Proposition 2 in Appendix A shows that the solution (25) satisÞes (20). The

distribution {Pn}∞n=1 follows immediately from Pn ∝ Qn/n.
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4.3 The Right Tail

As shown in (26)-(27),

Qn ∼
nY
k=2

µβk
λ

(28)

for all large enough n. When λ > µ, the properties of this product are quite different

from what they are when µ < λ. If λ > µ, then Qn is bounded above by a multiple of the

geometrically declining sequence (µ/λ)n. On the other hand, if µ > λ then µβn/λ ↑ 1,
and hence the right-hand side of (28) declines at a rate that is slower than any given

geometric rate. The proof of Proposition 2 shows that the right-hand side of (28) is

nevertheless summable. The following proposition gives a further characterization of

the right tail of the distribution.

Proposition 3 Suppose that η > 0, µ > λ and η > µ − λ. Then the right tail
probabilities of the stationary Þrm size distribution satisfy

lim sup
K→∞

Kz
∞X
n=K

Pn = 0

for any z smaller than the tail index ζ = η/(µ− λ).

The proof is in Appendix B. This proposition implies that

ln

Ã ∞X
n=K

Pn

!
∼ c− ζ ln(K) (29)

for some constant c. The limiting tail index ζ = 1 associated with Zipf�s law arises when

the entry rate ν = η − (µ− λ) converges to zero.

4.4 Entry and Exit Rates

The entry rate νNt represents the rate per unit of time at which new commodities are

introduced by new Þrms. Each new Þrm starts with one commodity, and so νNt is also

the number of new Þrms that enters per unit of time. The Þrm entry rate φ as a fraction

of the number of incumbent Þrms is therefore equal to νNt divided by the number of

Þrms in the economy,
∞X
n=1

Mn,t = Nt ×
∞X
n=1

1

n
Qn.

This implies a Þrm entry rate equal to

φ =
νP∞

n=1
1
n
Qn
. (30)

14



That is, the Þrm entry rate is equal to the rate ν at which new commodities are intro-

duced by new Þrms, times the average number of commodities per Þrm. The only Þrms

that exit in this economy are one-commodity Þrms. There are NtQ1 such Þrms, and

they each exit at a rate λ. The balance [φ − λQ1]Nt of Þrms entering and exiting per
unit of time must equal η times the total number of Þrms. On a per-commodity basis,

this gives

ν|{z}
gross entry per commodity

= η
∞X
n=1

1

n
Qn| {z }

net entry per commodity

+ λQ1|{z}
exit per commodity

. (31)

This can be veriÞed mechanically by adding up (18) and (19) over all n. In terms of

{Pn}∞n=1 one can summarize (30)-(31) more concisely as

φ = ν

∞X
n=1

nPn = η + λP1.

Eliminating the mean number of commodities per Þrm from (30) and (31) yields φ/η =

1/(1 − (λ/ν)Q1) and then the mean Þrm size is φ/ν = (η/ν)(1 − (λ/ν)Q1). Together
with the expression for Q1 implied by (25) this gives explicit solutions for the Þrm entry

rate and the mean Þrm size.

4.5 Special Cases

As will be shown in Section 5, the empirically relevant Þrm size process is one with large

µ and λ, where µ > λ and where ν = η − (µ − λ) is positive but very close to zero.
These conditions are violated in some well-known special cases of the Þrm size process

(15)-(17). Taking the limit ν ↓ 0 gives a tractable special case that is very close to what
is observed in U.S. data.

4.5.1 The Logarithmic Series Distribution

Suppose there is no population growth, η = 0, and so no growth in the aggregate

number of commodities. Then µ < λ and hence the size distribution must have a

geometrically declining right tail. The sequence {βn}∞n=1 is simply β1 = 0 and βn = 1
for all larger n. The transition (19) simpliÞes to [Qn+1−Qn] = (µ/λ)[Qn−Qn−1]. Clearly,
Qn+1 − Qn ∝ (µ/λ)n, and then Qn ∝ (µ/λ)n as well. The resulting size distribution

{Pn}∞n=1 is R.A. Fischer�s logarithmic series distribution

Pn =
1
n
(µ/λ)n

ln
³

1
1−µ/λ

´ .
15



This is the distribution that arises in Klette and Kortum [2004]. The mean of this

distribution is easy to compute, and ν = λ−µ. The resulting Þrm entry rate (30) equals
the exit rate λP1. This can be written as

η

λ
=

µ/λ

ln
³

1
1−µ/λ

´ .
This ratio ranges from 1 to 0 as µ/λ ranges from 0 to 1. To obtain a size distribution

with a right tail that decays at a slow geometric rate one needs µ close to λ > µ. This

implies φ/λ close to 0. High observed entry rates then imply high values of λ.

4.5.2 The Yule Process

Consider the case λ = 0 and µ ∈ (0, η). In this scenario, Þrms can only grow. A

stationary size distribution arises because not all Þrms have had the same time to grow,

and the population of Þrms itself grows. The entry rate is ν = η − µ, and the resulting
stochastic process is known as the Yule process. It was used by Simon [1955] as a

model for various skewed empirical distributions, including the city size distribution.

The difference equations (18)-(19) simplify to Q1 = (η − µ) /(η + µ) and

Qn =

Ã
n

n+ η
µ

!
Qn−1,

for all n ∈ N \{1}. Working out this recursion and using Pn ∝ Qn/n gives

Pn =
η

µ

Γ(n)Γ
³
1 + η

µ

´
Γ
³
n+ 1 + η

µ

´
where Γ is the gamma function. The right tail probabilities are

∞X
n=K

Pn =
Γ (K)Γ

³
1 + η

µ

´
Γ
³
K + η

µ

´
Since K1−aΓ(K+a)/Γ(K+1) converges to 1 as m becomes large, these tail probabilities
behave like K−η/µ for large K, as predicted by Proposition 3.
The size distribution has a mean 1/(1− µ/η), and so the formula for the Þrm entry

rate (30) reduces to φ = η, as expected. The limiting distribution as µ ↑ η, or ν ↓ 0, is
Pn = 1/[n(n+1)]. This is the discrete analog of the Pareto distribution that corresponds

16



to Zipf�s law. The right tail probabilities of this limiting distribution are exactly 1/n,

and so the distribution has no well deÞned mean.

One can verify that the stationary distribution would be Pn = (η/µ)(1 + η/µ)−n if
individual Þrms gain commodities at a rate µ instead of µn. This corresponds to an

environment in which a fraction (µ/η)/
P∞

n=1 nPn of the ßow ηNt of new commodities

is introduced by incumbent Þrms and the remaining fraction 1/
P∞

n=1 nPn by new Þrms.

By itself, population growth is not enough to generate the heavy right tail. It needs to

be combined with geometric growth of the individual Þrms.

4.5.3 The Limiting Case ν ↓ 0
As before, assume that η > 0 and λ > 0. Letting ν approach zero from above implies

that η = µ− λ in the limit. In this limit, the recursion (19) for Qn ∝ nPn becomes

(µ− λ)Pn = λ(n+ 1)Pn+1 + µ(n− 1)Pn−1 − (λ+ µ)nPn,

for all n ∈ N \{1}. This can also be written as

Pn =
λ

µ
(Pn+1 +Xn+1) (32)

together with

Xn+1 =

µ
n− 1
n+ 1

¶
Xn (33)

for all n ∈ N \{1}. Iterating on (33) gives Xn+1 = (2/[n(n+ 1)])X2. Since the Pn have
to add up to 1, it must be that Pn → 0. The fact that λ/µ < 1 then implies that we

can solve (32) forward. The result is

Pn =
1

ln (µ/η)

∞X
k=n

(λ/µ)k+1−n

k(k + 1)
.

where we have used η/µ = 1− λ/µ. The right tail probabilities are
∞X
n=K

Pn =
1

ln (µ/η)

∞X
n=K

1

n

µ
λ

µ

¶n+1−K
, (34)

and these satisfy

lim
K→∞

K
∞X
n=K

Pn = lim
K→∞

1

ln (µ/η)

∞X
m=0

K

K +m

µ
λ

µ

¶m+1
=

1

ln (µ/η)

1

µ/λ− 1
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by the dominated convergence theorem. Thus the right tail probabilities behave like

1/K, and the log right tail probabilities expressed as a function of ln(K) must asymptote

to a straight line with slope −1. The distribution does not have a Þnite mean.
At the same time as the rate ν at which commodities are introduced by entrepreneurs

who set up new Þrms converges to zero, the number of Þrms per commodity also goes

to zero. But the entry rate of new Þrms satisÞes φ = η + λP1, and this converges to a

positive value. A calculation yields φ = λ/ ln(µ/η). Together with η = µ− λ this gives
φ

η
=
µ/η − 1
ln (µ/η)

. (35)

This allows one to infer µ and λ = µ− η simply from the ratio of the Þrm entry rate φ

and the population growth rate η.

5. U.S. Employer Firms

U.S. Internal Revenue Service statistics contain more than 26 million corporations, part-

nerships and non-farm proprietorships. Business statistics collected by the U.S. Census

consist of both non-employer Þrms and employer Þrms. In 2002 there were more than

17 million non-employer Þrms, many with very small receipts, and close to 6 million

employer Þrms. In the following, Census data on employer Þrms assembled by the U.S.

Small Business Administration (SBA) will be considered. For employer Þrms, part-time

employees are included in employee counts, as are executives. But proprietors and part-

ners of unincorporated business are not (Armington [1998, p.9]). This is likely to create

signiÞcant biases in measured employment for small Þrms.

Figures III and IV show the 2002 numbers of Þrms in the right and left tails of the

size distribution of U.S. employer Þrms. In the data, size is measured by number of

employees. The number of commodities produced by a Þrm is inferred by dividing the

number of employees by an estimate of L + I that is described below. Employer Þrms

reported to have 0 to 4 employees during the observation period in March 2002 are

interpreted to have L+ I to 4 employees. The tail index for this data is ζ ≈ 1.06�note
from (29) that ζ does not depend on the units in which Þrm size is measured. U.S.

population growth is around 1% per annum. These two numbers imply that incumbent

Þrms introduce new commodities at an average net annual rate of µ− λ = η/ζ ≈ .94%.
Since ζ is so close to 1, this is only slightly below the population growth rate. Observe

that ν = η − (µ − λ) = η(1 − 1/ζ) ≈ .057%. The rate at which commodities are

introduced by new Þrms is only about .057% per annum.
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Figure III. Right Tail of the Size Distribution.
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Figure IV. Left Tail of the Size Distribution.

Figures III and IV also show Þtted size distributions for the case ζ = 1.06 implied

by the data and for the limiting case of ζ = 1. When measured by employment, the size

distribution depends not only on µ/η and λ/η, but also on the number of employees per

commodity L+ I. The Þtted distribution for ζ = 1.06 is obtained by choosing µ/η, λ/η
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and L + I to approximate the empirical distribution show in Figure IV, subject to the

restriction ζ = η/(µ − λ) = 1.06. The resulting estimates are L + I = 1, λ = .03969

and µ = .04912. Given ζ, the ratio µ/λ mainly affects the shape of the left tail of the

distribution. Alternative choices for L + I give rise to horizontal shifts by − ln(L + I)
of the curve representing the data in Figure III. The estimate L+ I = 1, one employee

per commodity, suggests that the Þrm size distribution is best approximated with very

narrowly deÞned, highly differentiated commodities.

5.1 Inferring Productivity and Entrepreneurial Skill Parameters

The equilibrium conditions shown in Figure I arise from the iso-elastic production func-

tion f(I) = g(AI) = (AI)α with α ∈ (0, 1), and the skill distribution S(x) = G(x/B),
where G is the Fréchet distribution G(z) = e−1/z

2
. The labor share parameter is α = .7

and β = .9, implying a 10% markup of price over unit labor costs. The interest rate

is r = .04, in accord with commonly used estimates based on U.S. data. The station-

ary Þrm size distribution with size measured by employment identiÞes µ/η, λ/η and

L+ I. The shape restriction f(I) = g(AI) together with the equilibrium condition (12)

then identify A and I and L separately. The implied value of a new blueprint is only

s/w = 1.6. As a result, the marginal entrepreneur must be coming up with an average

of about two new blueprints every three years. Using (13) to eliminate N/H from (14)

gives
η − (µ− λ)
I + L

=

R∞
w/s
xS(dx)

S(w/s)
(36)

The left-hand side of (36) equals .00057, implying that the marginal entrepreneur must

be very far out in the tail of the entrepreneurial skill distribution. This restriction

identiÞes the scale parameter B, given the shape restriction S(x) = G(x/B) and the

productivity of the marginal entrepreneur w/s that was inferred from the present-value

condition (12). The stationary size distribution therefore identiÞes the scale parameters

A and B, given β and the functions g and G.

Clearly, one has to go beyond Þrm size data alone to infer the preference parameter

β and the shapes of the production function f and the entrepreneurial skill distribution

S.

5.2 Over-Identifying Restrictions

The average number of commodities per Þrm implied µ/η and λ/η is 1/ [
P∞

n=1Qn/n] =

44.2. Combining the stationary distribution with the observed population growth rate
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gives the µ and λ reported above, and then ν ≈ .00057. The resulting entry rate of new
Þrms is then φ ≈ .00057 × 44.2 ≈ .025, by (30). The ζ = 1 approximation (35) gives

essentially the same estimate. This 2.5% entry rate of new Þrms is well below what can

be observed directly. In the SBA data, the number of new employer Þrms that enter and

survive during a year is about 10% of the number of incumbent Þrms. Ignoring even

the fact that Þrms may enter and exit within a year, the parameters inferred from the

stationary distribution and the population growth rate only account for about a quarter

of the observed entry rate. According to these parameters, Þrms move up and down the

Þrm size distribution at fairly low rates, implying a puzzle: why is there so much entry?

Jovanovic [1982] is a classic answer that is abstracted from in the model described here.

In the SBA employer Þrm data for 2002, roughly 6 million employer Þrms employ

about 110 million employees. If this is taken to be an estimate of aggregate employment

then another estimate of L+ I is

L+ I =
Þrms

commodities
× employees

Þrms
=

110

44.2× 6 = .42, (37)

This is half of the estimate L+I = 1 derived from Þtting the stationary size distribution

in Figure III. Thus the Þtted distribution implies an average Þrm that is too large. To

some extent this can be attributed to the fact that the average Þrm size is extremely

sensitive to small changes in ζ > 1 near the asymptote 1. The mean of the size distri-

bution behaves like 1/(ζ − 1). Values of ζ that are slightly higher than ζ = 1.06 imply
signiÞcantly fewer commodities per Þrm than the estimated 44.2, and hence a higher

estimate of L + I than (37). A related source of discrepancy between (37) and the

L+ I = 1 estimated in Figures III and IV is the fact that the empirical size distribution

necessarily has a Þnite support. Because the estimated tail index ζ is so close to 1,

truncating the estimated distribution can lead to large reductions in its mean.3

Over short intervals of time, the variance of Þrm growth is (λ + µ)/n for a Þrm

with n commodities. The estimated standard deviation of a Þrm with n commodities is

therefore
p
(λ+ µ)/n ≈ . 29801/√n. Hence the standard deviation of the growth rate

of a small Þrm with 9 employees and commodities is only about 10% per annum. The

standard deviation of the returns on the stocks of the much larger Þrms traded on the

NYSE is about is about 30% per annum. Leverage and other factors probably make

these returns more volatile than the standard deviation of Þrm growth. But the 10%

standard deviation for a Þrm with fewer than 10 employees is likely to be too low.

3Gabaix [2005] and Atkeson and Burstein [2006a] emphasize the sensitivity of predictions of models
of this type for aggregates and employment levels in the right tail of the distribution.
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As emphasized by Klette and Kortum [2004], the empirical evidence suggests that

the variance of Þrm growth rates declines more slowly than 1/n. Hymer and Pashigian

[1962] compared standard deviations of Þrm growth rates across size quartiles and found

that Þrms in the largest quartile were signiÞcantly more volatile than predicted by the

1/n rule. More recently, Stanley et al [1996] and Sutton [2002] Þnd that the variance of

the growth rate of Compustat Þrms behaves like 1/n1/3. Tentative interpretations are

given in Stanley et al [1996] and Sutton [2002, 2006].

6. Concluding Remarks

U.S. Þrm data exhibit (i) high entry rates, (ii) growth rate standard deviations that

decline with Þrm size at a rate that is slower than one over the square root of Þrm size,

and (iii) a size distribution with many small Þrms and a very long right tail. Luttmer

[2006a] and the current paper provide alternative interpretations of (iii). Both papers

require large amounts of randomness to deal with (i). The two papers seem to be on

opposite sides of the data when it comes to (ii). Finding tractable equilibrium models

of this phenomenon is task for further research.

Skewed Þrm size distributions are interpreted as reßecting skewed productivity dis-

tributions in Hopenhayn [1992], Klette and Kortum [2004], Lentz and Mortensen [2006],

Luttmer [2006a] and Atkeson and Burstein [2006b]. Furthermore, the continuous real-

location of resources across Þrms plays a crucial role in generating aggregate growth.

In Lucas [1978] and Gabaix and Lanier [2006] an assignment problem relates the Þrm

size and talent distributions. By contrast, in Simon and Bonini [1958] and Ijiri and

Simon [1964] Þrm size does not affect aggregate outcomes because all Þrms operate un-

der constant returns to scale. Similarly, Þrms in the economy described here and in

Luttmer [2006b] are all equally productive. The relative importance of each of these

interpretations of the Þrm size distribution remains to be sorted out.

A Proof of Proposition 2

Write the candidate solution (25) asÃ
nY

m=2

µβm
λ

!−1
Qn =

ν

λ

∞X
k=n+1

Ã
kY

m=2

βm

!µ
µβk
λ

¶−1 kY
m=2

µβm
λ
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Since βn ≤ min{1,λ/µ} this implies the upper bounds in (26) and (27). Take some ε > 0.
The lower bounds rely on βn ↑ min{1,λ/µ}. If µ > λ, then eventually βn ≥ (λ/µ)(1+ε),
and this gives the lower bound in (26). If µ < λ, then 1/(1 + ε) ≤ βn for all large

enough n, and this implies (27). Thus the sums deÞning {Qn}∞n=1 converge and (26)
and (27) hold. By construction, the candidate solution satisÞes (18)-(19). It remains to

prove the adding-up condition (20), which ensures that {Qn}∞n=1 is in fact a probability
distribution.

DeÞne F1 = 1 and

Fn = n
nY
k=2

µβk
λ
,

for all n ∈ N \ {1}. Note from the bounds (26)-(27) that the sequence {Qn}∞n=1 is
summable if and only if {Fn/n}∞n=1 is summable. DeÞne

Xn = n

µ
µβn
λ
− 1
¶

for all n ∈ N. The recursion (24) is equivalent to

Xn+1 =

µ
1 +

1

n

¶µ
Xn − η

λ
η+nµ
nλ

− 1
n
Xn

¶
(38)

Observe from this that Xn+1 < −1 if and only if Xn satisÞes

Xn <
η − (µ− λ)

λ
− 1 (39)

Since η > µ − λ, this is true if Xn ≤ −1. But this follows by induction starting from
X1 = −1. The Þxed point for the n = ∞ version of (38) is −η/(µ − λ) < −1. One
can verify that Xn converges to this Þxed point starting from X1 = −1. The fact that
limn→∞Xn < −1 implies that {Fn/n}∞n=1 is summable, by Raabe�s test. The inequality
Xn+1 < 1 is equivalent to Fn+1 < Fn, and so Fn ↓ F∞ for some F∞ ≥ 0. Therefore

KX
n=2

1

n
Fn ≥ F∞

KX
n=1

1

n

for all K. Since the left-hand side is summable, it must be that F∞ = 0.
Write (18) as ηQ1 = λ [Q2 −Q1] + η − (µ− λ)− µQ1 and (19) as

ηQn = λn [Qn+1 −Qn]− µn [Qn −Qn−1] ,
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for n ∈ N \{1}. Adding up gives over all n gives

η
∞X
n=1

Qn = η − (µ− λ) + λ
∞X
n=1

n [Qn+1 −Qn]− µ
Ã
Q1 +

∞X
n=2

n [Qn −Qn−1]
!
. (40)

Note that n[Qn+1 −Qn] = (n+ 1)Qn+1 − nQn −Qn+1 and n[Qn −Qn−1] = nQn − (n−
1)Qn−1 −Qn−1, and observe that the candidate solution (25) satisÞes limn→∞ nQn = 0,
since F∞ = 0. Using summation-by-parts for the two sums on the right-hand side of

(40) one obtains

∞X
n=1

n [Qn+1 −Qn] = Q1 +
∞X
n=2

n [Qn −Qn−1] = −
∞X
n=1

Qn. (41)

Together with η > µ− λ, (40) and (41) imply that the sequence {Qn}∞n=1 adds up to 1.

B Proof of Proposition 3

Recall that Pn ∼ Fn/n2 and deÞne RK =
P∞

n=K Fn/n
2. Observe

KzRK =
∞X
n=K

µ
K

n

¶z
nz−1

nY
k=2

µβk
λ
≤

∞X
n=K

nz−1
nY
k=2

µβk
λ
.

If the sum on the right-hand side is Þnite, then limK→∞KzRK = 0. A sufficient condition

for the sum to converge is a version of Raabe�s test, limn→∞Xn > 1, where now

Xn = n

Ã·
1− 1

n

¸z−1
λ

µβn
− 1
!
.

The recursion (24) for βn is equivalent to

Xn+1 =

µ
1 +

1

n

¶Ã
An +

µ
1− 1

n

¶z−1 ·
η

µ
+
λ

µ

Xn −An
1 + 1

n
Xn

¸!
where

An = n

Ã·
1− 1

n

¸z−1
− 1
!
.

Observe that limn→∞An = 1− z. The limiting recursion for Xn is therefore

Xn+1 − [1− z] ≈ η

µ
+
λ

µ
(Xn − [1− z]) ,

and this has the unique Þxed point 1− z + ζ. One can verify that Xn converges to this
Þxed point starting from X1 = −1. Thus z < ζ guarantees convergence.
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C The Limiting Case ν ↓ 0
Write

Pn = ξ
∞X
k=n

(λ/µ)k+1−n

k(k + 1)
,

and note that

1

ξ

∞X
n=K

Pn =
∞X
n=K

∞X
k=n

(λ/µ)k+1−n

k(k + 1)

=
∞X
m=0

µ
λ

µ

¶m+1 ∞X
n=K

1

(m+ n)(m+ n+ 1)
=

∞X
m=0

µ
λ

µ

¶m+1
1

m+K
.

For K = 1 this gives:

1

ξ

∞X
n=1

Pn =
∞X
m=1

1

m

µ
λ

µ

¶m
= − ln

µ
1− λ

µ

¶
,

and hence ξ = − ln(1 − λ/µ) = ln(η/µ). Using the fact that η = µ − λ, one can write
the entry rate as

η = η + λP1 = η +
λ

− ln
³
1− λ

µ

´ ∞X
k=1

(λ/µ)k

k(k + 1)
= λξ,

which is the result reported in (35).
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