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ABSTRACT

The Ramsey approach to policy analysis finds the best competitive equilibrium given a set of available

instruments. This approach is silent about unique implementation, namely designing policies so that

the associated competitive equilibrium is unique. This silence is particularly problematic in monetary

policy environments where many ways of specifying policy lead to indeterminacy. We show that

sophisticated policies which depend on the history of private actions and which can differ on and off

the equilibrium path can uniquely implement any desired competitive equilibrium. A large literature

has argued that monetary policy should adhere to the Taylor principle to eliminate indeterminacy.

Our findings say that adherence to the Taylor principle on these grounds is unnecessary. Finally, we

show that sophisticated policies are robust to imperfect information.
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Frank Ramsey proposed a now classic approach to policy analysis under commitment.

This approach speci�es the set of instruments available to policymakers. The Ramsey problem

is to �nd the competitive equilibrium that maximizes social welfare with the given set of

instruments. Barro (1979), Lucas and Stokey (1983) among many others have extended

this approach to situations with uncertainty by specifying the instruments as functions of

exogenous events. This extension has made the approach very useful in addressing policy

questions in macroeconomics1.

While the Ramsey approach has been very useful in characterizing the best competitive

outcomes, by itself it is not an operational guide to policy in the sense that it does not

tell policy-makers how to conduct policy for all possible histories. An approach that is

an operational guide would specify policies for every history and would describe what the

corresponding outcomes will be for every history. Here we extend the language of Chari

and Kehoe (1993) to an environment in which the policymaker has commitment in order to

specify policies after every history and to describe continuation outcomes after every history.

In our approach, we allow policies to depend on the history of past actions by private agents

and allow them to di¤er on and o¤ the equilibrium path. We label such policies sophisticated

policies and label the resulting equilibrium a sophisticated equilibrium.

In many macroeconomic models, especially monetary models, many ways of specifying

policies lead to indeterminacy and therefore could lead to undesirable outcomes. In such

models the question of pressing interest is, Can policies be speci�ed as operational guides

which tell policymakers what to do after every history and which lead a desired outcome to

be the unique equilibrium outcome? If we can, then we say the policy uniquely implements

the desired outcome.

In this paper we study two standard monetary economies: a simple model with one

period price setting and a model with Calvo price setting. The main contribution in this

paper is to show that, under su¢ cient conditions, any outcome of a competitive equilibrium

can be uniquely implemented by appropriately chosen sophisticated policies.

Our �ndings are of particular relevance to monetary policy. The simplest way of

applying the Ramsey approach to policy-making is to �nd the desired competitive equilibrium,

which speci�es policy as a function of exogenous events, and use that function for policy. This



way of describing policies is problematic in monetary policy environments in which policy-

makers use short-term interest rates as their principal monetary policy instrument. The

reason is that, since at least the early work of Sargent and Wallace (1975), researchers have

been aware that policies which make interest rates functions only of exogenous events can

lead to indeterminate outcomes. Such policies could lead to the best equilibrium but they

could also lead to undesirable outcomes including hyperin�ation and outcomes with excessive

volatility due to sunspot-like �uctuations. In this sense, policies which lead to indeterminacy

are risky and researchers generally agree that such policies should be avoided.

This concern with the risks arising from indeterminacy has led to a substantial litera-

ture which is aimed at �nding policy rules which eliminate indeterminacy. (See, for example,

McCallum 1979 and for some recent work see Woodford 2003.) The recent literature argues

that interest rate rules should follow the Taylor principle: interest rates should rise more

than one-for-one with a rise in in�ation rates relative to target in�ation. The reasoning is

that an interest rate rule that obeys the Taylor principle leads to unique outcomes while a

rule that violates it leads to indeterminacy. A related literature argues that the undesirable

in�ation experiences of the 1970s in the United States was due in large part to the failure of

monetary policy to obey the Taylor principle in that time period. (See, for example, Clarida,

Gali, and Gertler (2000).)

Our �nding that sophisticated policies can implement any equilibrium outcome implies

that such policies can implement outcomes which violate the Taylor Principle along the

equilibrium path as well as those which obey such a principle along the equilibrium path. Since

sophisticated policies can uniquely implement any desired competitive equilibrium it follows

that adherence to the Taylor principle is not needed for uniqueness. Moreover, our �ndings

imply that historical evidence that policy violated the Taylor principle in some periods does

not necessarily imply that such policy was unwise.

Our paper is also related to previous papers that address problems of indeterminacy in

monetary economies (see Wallace 1981, Obstfeld and Rogo¤ 1983, Benhabib, Schmitt-Grohe,

Uribe 2001, Christiano and Rostagno 2001, King, 2001, and Svensson and Woodford, 2005).

Read at face value these papers pursue a di¤erent approach to implementation that we refer

to as implementation via nonexistence. The idea is to specify policies so that for all outcomes
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but the desired one, no competitive equilibrium exists. This approach is quite di¤erent from

the approach taken here as well as the approach taken in the microeconomic literature on

implementation. The general idea of implementation via nonexistence pursued in various

contexts has been criticized in both the macroeconomic and the microeconomic literature.

In the macroeconomic literature Kocherlakota and Phelan (1999), Buiter (2002), Ljungqvist

and Sargent (2004), and Bassetto (2005) criticize this general idea in the context of the �scal

theory of the price level and Cochrane (2007) criticizes in the context text of the literature

on monetary policy rules. In the microeconomic literature, Jackson (2001) criticizes a similar

approach to implementation.

We agree with those who argue that this approach trivializes the implementation

problem. To see why, consider the following policy. If private agents choose the desired

outcome, continue with the desired policy. If private agents deviate from the desired outcome:

then forever after set government spending at a high level and taxes to zero. Clearly, any

deviation leads to nonexistence of equilibrium and hence we trivially have implementation

via nonexistence. Our approach, in contrast, insists that policies be speci�ed so that a

competitive equilibrium exists following any deviation. We achieve implementation in the

traditional microeconomic sense, namely by specifying policies which provide incentives for

agents not to deviate�not by nonexistence. In our approach policies are speci�ed so that even

if all other agents deviate an individual agent has no incentive to do so.

Despite our criticisms of implementation via nonexistence, the papers in this literature

make two valuable contributions. The �rst is the idea of regime-switching. This idea dates

back to at least Wallace (1981) and has been used by Obstfeld and Rogo¤ (1983), Christiano

and Rostagno (2001), and Benhabib, Schmitt-Grohe, Uribe (2002). The basic idea in, say,

Benhabib, Schmitt-Grohe, Uribe (2002) is that if the economy embarks on an undesirable

path some combination of monetary and �scal policy switches regimes in such a way that the

government�s budget constraint is violated and no equilibrium exists.

We use regime-switching in some of our sophisticated policies. We show that under

su¢ cient conditions switching from an interest regime to a money regime after deviations can

uniquely implement any desired outcome. In contrast to the existing literature, however, we

do not achieve implementation via nonexistence, but rather by structuring the money regime
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so as to discourage deviations in the �rst place.

The second idea is that of the King rule, namely an interest rate policy which makes

the di¤erence between the interest rate and its target is a linear function of the di¤erence

between in�ation and its target, with a coe¢ cient greater than 1: This idea dates back to

at least King (2001) and has been used by Svensson and Woodford (2004). Restricting

attention to equilibria in which all variables are bounded, this rule implements equilibria

via nonexistence: any deviation of outcomes from the target cause the outcomes to become

unbounded thus lead to nonexistence of (bounded) equilibria.

As we show, in the simple model the King rule cannot uniquely implement any out-

comes and in the Calvo model it cannot implement some unbounded outcomes. Interestingly,

this rule, appropriately translated, leads to unique implementation of bounded equilibria in

the Calvo model. But, again, our implementation works by discouraging deviations not via

nonexistence.

The basic idea of the construction is the same in both models. Consider constucting

central bank policies that uniquely implement a desired competitive equilibrium. Along the

equilibrium path choose the policies to be those given by the desired competitive equilibrium.

Structure the policies o¤ the equilibrium path, referred to as reversion policies, to discourage

deviations. Speci�cally, if the average choice of private agents deviates from those in the

desired equilibrium, choose the reversion policies so that the optimal choice, or best response,

of each individual agent is di¤erent from the average choice.

Our construction requires that best responses be controllable, in the sense that policies

can be found which ensure that, following any deviation, the best response of any individual

private agent is di¤erent from the average choice of the private agents. Controllability imples

that reversion policies can be constructed so that no deviation is optimal and hence that

the desired equilibrium is uniquely implemented. A su¢ cient condition for controllability is

that policies can be found so that the continuation equilibrium is unique and varies with

policy. The latter requirement typically holds so that if policies can be found under which

the continuation equilibrium is unique (somewhere) then we have unique implementation

(everywhere). This su¢ cient condition suggests a simple way to state the general message of

our paper: uniqueness somewhere generates uniqueness everywhere.
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Our reversion policies have an important property: they are not extreme in any sense.

Indeed, they simply bring in�ation back to the desired path and do not threaten the private

economy with dire outcomes following deviations.

One concern with our construction is that it apparently relies on the idea that the

central bank perfectly observe private agents�actions and thus can detect any deviation. We

show that our results are robust to imperfect information about private agents�actions.

Here we propose one way to eliminate indeterminacy under interest rate rules. For

some other proposed resolutions to the indeterminacy issue, see the work of Bassetto (2002)

and Adao, Correia, and Teles (2006).

1. A Simple Model with One-Period Price Stickiness
We begin by illustrating the basic idea of our construction of sophisticated policies

using the simple model with one-period price setting because the dynamical system associated

with the competitive equilibrium is very simple and this simplicity allows us to focus on the

strategic aspects of sophisticated policies. In a subsequent section we investigate a New

Keynesian model with multiperiod price setting.

The model we use to analyze the optimal choice of a monetary policy instrument is

a modi�ed version of the basic sticky price model with a New Classical Phillips curve (as

in Woodford 2003, Chap. 3, Sec. 1.3). Here, in order to make our results comparable to

those in the literature, we describe a simple, linearized version of the model. In Appendix A,

we describe the general equilibrium model that when linearized gives rise to the equilibrium

conditions studied here. Our implementation result holds in the nonlinear model as well.

A. The Determinants of Output and In�ation

Consider a monetary economy populated by a large number of identical, in�nitely

lived consumers, a continuum of producers, and a central bank. Each producer uses labor

to produce a di¤erentiated good on the unit interval: Producers i 2 [0; �] are �exible price

producers, and producers i 2 [�; 1] are sticky price producers.

The timing within a period is as follows. At the beginning of the period, sticky price

producers set their prices after which the government chooses its monetary policy, either by

setting interest rates or by choosing the quantity of money. Shocks �t and �t are then realized.
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At the end of the period, �exible price producers set their prices, and consumers make their

decisions. We interpret the shock �t as a �ight to quality shock that a¤ects the attractiveness

of government debt relative to private claims and the shock �t as a velocity shock.

Here we develop necessary conditions for an equilibrium and then, in the next section,

formally de�ne an equilibrium. Here and throughout we express all variables in log-deviation

form. In particular, this way of expressing variables implies that none of our equations will

have constant terms.

Consumer behavior in this model is summarized by an intertemporal Euler equation

and a cash-in-advance constraint. We can write the linearized Euler equation as

yt = Et [yt+1]�  (it � Et [�t+1]) + �t;(1)

where yt is aggregate output, it is the nominal interest rate, �t is an i.i.d. mean zero shock

with variance var(�), and �t+1 = pt+1 � pt is the in�ation rate from time period t to t + 1 ,

where pt is the aggregate price level. The parameter  determines the intertemporal elasticity,

and Et denotes the expectations of a representative agent given that agent�s information in

period t, which includes the shock �t:

The cash-in-advance constraint, when �rst-di¤erenced, implies that the relationship

between in�ation �t; money growth �t; and output growth yt � yt�1 is given by a quantity

equation of the form

�t = �t � (yt � yt�1) + �t:(2)

where �t is an i.i.d. mean zero shock with variance var(�):

We turn now to producer behavior. The aggregate price level pt is a linear combination

of the prices pft set by the �exible price producers and the prices pst set by the sticky price

producers and is given by

pt =
Z �

0
pft(i) +

Z 1

�
pst(i):(3)

The optimal price set by an individual �exible price producer i satis�es

pft(i) = pt + 
yt;(4)
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where the parameter 
 is the elasticity of the equilibrium real wage with respect to output and

is referred to in the literature as Taylor�s 
: The optimal price set by sticky price producer i

satis�es

pst(i) = Et�1 [pt + 
yt] ;(5)

where Et�1 denotes expectations at the beginning of period t before the shock �t is realized.

Using language from game theory, we can think of equations (4) and (5) as akin to the best

responses of each �exible and sticky price producer given their beliefs about the aggregate

price level and aggregate output. Equations (1)�(5) completely describe the simple model.

In this model, the �exible price producers are uninteresting strategically, in that their

expectations about the future have no in�uence on their decisions. Their prices are set me-

chanically according to the static considerations re�ected in (4). In all that follows, equation

(4) will hold on and o¤ the equilibrium path, and we can think of pft(i) as being residually

determined by (4) and substitute out for pft(i) from these equations. To do so, substitute

(4) into (3) and solve for pt to get

pt = �yt +
1

1� �

Z 1

�
pst(i);(6)

where � = �
=(1� �): Now the system is summarized by (1), (2), (5), and (6).

We follow the literature and express the sticky price producers�decisions in in�ation

rates rather than price levels. To do so, let xt(i) = pst(i)� pt�1 and rewrite (5) as

xt(i) = Et�1 [�t + 
yt] :(7)

We �nd it convenient to de�ne

xt =
1

1� �

Z 1

�
xt(i) di(8)

to be the average price set by the sticky price producers relative to the aggregate price level

in period t� 1: We can then rewrite (6) as

�t = �yt + xt:(9)

For later use, note that the economy is summarized by (1), (2), and (7)�(9), so that when

checking whether a constructed outcome is a competitive equilibrium, we will need only to

check whether these equations are satis�ed.
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In the following lemma, we show how this economy produces the key features of a New

Classical Phillips curve along the equilibrium path in which

xt(i) = xt:(10)

(See the discussion below for what happens following deviations from the equilibrium path.)

Lemma 1. Any allocations that satisfy (7)�(9) and (10) satisfy (i)

xt = Et�1�t;(11)

(ii) Et�1yt = 0; and (iii) the New Classical Phillips curve:

�t = �yt + Et�1�t(12)

where � = �
=(1� �):

Proof. To prove (ii), substitute (9) into (7): Integrating both sides of the resulting

equation from � to 1 and using (8) yields (ii). Taking expectations of both sides of (9) and

using (ii) yields (i) and (iii). Q:E:D:

Note that when it sets monetary policy, the central bank chooses to operate under

either a money regime or an interest rate regime. In the money regime, the central bank

sets �t, and the interest rate is residually determined from (1) after the realization of the

shock �t: In the interest rate regime, the central bank sets it, and money growth is residually

determined from (2) after the realization of the shock �t: Of course, in both regimes, equations

(1) and (2) hold.

B. Competitive Equilibrium

We de�ne a notion of competitive equilibrium in the spirit of Barro (1979) and Lucas

and Stokey (1983). In this equilibrium allocations, prices, and policies are all de�ned as

functions of the history of exogenous events st = (s0; : : : ; st), where st = (�t; �t):

The actions of the sticky price producers, in�ation, and output can be summarized

by fxt(st�1); �t(st); yt(st)g: In terms of the policies we �nd it convenient to let the regime

choice as well as the policy choice within the regime as �t(st�1) = (�1t(st�1); �2t(st�1)) where
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the �rst argument �1t(st�1) 2 fM; Ig denotes the regime choice, money (M) or interest rates

(I), and the second argument denotes the policy choice within the regime, either money

growth �t(s
t�1) or interest rates it(st�1): If the money regime is chosen at t the interest rate

is determined residually at the end of the period while if the interest rate regime is chosen

at t then the money growth rate is determined residually at the end of the period. Let at(st)

denote the allocations, prices, and policies in this competitive equilibrium.

A collection of allocations, prices, and policies at(st) = fxt(st�1); �t(st); yt(st); �t(st�1)g

is a competitive equilibrium if it satis�es (1), (2), (9), and (11).

C. Sophisticated Equilibrium

We now turn to sophisticated equilibrium. This de�nition is very similar to that of

the de�nition of competitive equilibrium except that we allow allocations, prices, and policies

to be functions of the history of both aggregate private actions and policies as well as the

history of exogenous events.

We make two observations before we turn to our formal de�nition. First our de�nition

of sophisticated equilibrium simply speci�es policy rules by the central bank and does not

require any form of optimality by the central bank. We specify sophisticated policies in this

manner to show that our result regarding unique implementation does not depend on the

objectives of the central bank. One way of thinking of our sophisticated policies is that the

policies are speci�ed at the beginning of period 0 and then the central bank is is committed

to follow them.

Second, the only interesting private agents in this model are the sticky price producers.

Their behavior at the beginning of period t depends on what they expect the government to

do and what other sticky price producers do. The �exible price producers are described by

a simple static rule (4). The behavior of the consumers and the �exible price producers is

summarized by an intertemporal Euler equation (1) and the cash-in-advance constraint (2).

We turn now to de�ning the histories that private and the central bank confront when

they make their decisions. The public events that occur in a period are, in chronological

order, qt = (xt; �t; st; yt; �t). Letting ht denote the history of these events from period 0 up

to and including those in period t, we have that ht = (ht�1; qt) for t � 1 and h0 = q0: As a

9



matter of notational convenience, we focus on perfect public equilibria in which the central

bank�s strategy is a function of only the public history.

The public history faced by the sticky price producers at the beginning of period t

when they set their prices is ht�1: A strategy for the sticky price producers is a sequence of

rules �s(i) = fxt(i; ht�1)g for choosing wages for every possible public history, while average

prices by these producers are given by �x = fxt(ht�1)g:

The public history faced by the central bank when it sets its regime and either its

money growth or interest rate policy is hgt = (ht�1; xt): A strategy for the central bank

f�t(hgt)g is a sequence of rules for choosing the regime as well as the policy within the

regime, either �t(hgt) or it(hgt).

If the money regime is chosen in period t (�1t(hgt) speci�es M); then interest rates

it(hyt), output yt(hyt);and in�ation rates �t(hyt) are determined residually from (1), (2), (9),

and (11) after the relevant shocks are realized, where here hyt = (ht�1; xt;M;�t; st) is the

history that determines output, in�ation, and interest rates in the current period.

If, instead, in period t the interest rate regime is chosen (�1t(hgt) speci�es I); then
the money growth rate �t(hyt) as well as output yt(hyt) and in�ation �t(hyt) are determined

residually from (1), (2), (9), and (11) after the relevant shocks are realized, where here

hyt = (ht�1; xt; I; it; st) is the history that determines output, in�ation, and money growth in

the current period.

We let �g denote the strategy of the central bank consisting of the regime choice and

the policies under that regime. At the end of period t, output and in�ation are determined

as functions of the relevant history hyt according to the rules yt(hyt) and �t(hyt): We let

�y ={yt(hyt)} and �� ={�t(hyt)} denote the sequence of output and in�ation rules.

A sophisticated equilibrium given the policies here is a collection of strategies (�s(i); �x; �g)

and output and in�ation rules (�y; ��) such that given the other strategies and rules, �s(i)

is optimal for all histories in the sense that

xt(i; ht�1) = E [�t(hyt) + 
yt(hyt)] ;(13)

the aggregate choices �x are related to the individual choices �s(i) according to

xt(ht�1) =
1

1� �

Z 1

�
xt(i; ht�1) di;(14)
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the Phillips curve is given by

�t(hyt) = �yt(hyt) + xt(ht�1)(15)

and (1) and (2) are satis�ed in the manner described above.

In light of condition (14) and the observation that given (�g; �x); output, in�ation, and

the residually determined policy are mechanically given by (1), (2), and (9), we summarize a

sophisticated equilibrium by (�g; �x): Note for later, from Lemma 1 that

xt(ht�1) = E[�tjht�1]:(16)

Associated with each sophisticated equilibrium � = (�g; �x) are the particular sto-

chastic processes for outcomes that occur along the equilibrium path, called sophisticated

outcomes. These sophisticated outcomes can be generated from the strategies in the stan-

dard recursive fashion. These outcomes can then be written as a function of the history

of exogenous events st = (s0; : : : ; st), where st = (�t; �t): These (on the equilibrium path)

outcomes include allocations a(�) = fxt(st�1;�); �t(st;�); yt(st;�); �t(st�1)g: We call an al-

location a(�) associated with a sophisticated equilibrium � a sophisticated outcome. The

following lemma is an immediate consequence of the de�nitions of competitive equilibrium

and sophisticated outcomes.

Lemma 2. (Equivalence between competitive equilibria and sophisticated outcomes.)

A sophisticated outcome is a competitive equilibrium and for any given competitive equi-

librium there exists a sophisticated policy which supports the competitive equilibrium as a

sophisticated outcome.

Equilibrium with Sophisticated Policies

We now show that any competitive equilibrium in which the central bank uses interest

rates as its instrument can be uniquely implemented with sophisticated policies. Later we

show that when the central bank uses money as its instrument, unique implementation is

trivial.

The basic idea behind our construction is that the central bank starts by picking

any competitive equilibrium allocations and sets its interest rate policy on the equilibrium

path consistent with this equilibrium. The central bank then constructs its policy o¤ the
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equilibrium path so that any deviations from these allocations would never be optimal for

the deviating agent. In so doing, the constructed sophisticated policies support the chosen

allocations as the unique equilibrium allocations.

In our construction, we �nd it convenient to consider sophisticated policies with one-

period reversion to money. Under these policies, the central bank discourages deviations by

switching to a money regime for one period, and for the rest of the o¤-the-equilibrium-path

policies, it uses the continuation of what it would have done on the equilibrium path. In

particular, after a deviation, the central bank switches to a level of the money supply which

generates the same expected in�ation as in the original equilibrium. (Of course, we could

have chosen many other values that also would discourage deviations, but we found this value

to be the most intuitive one.2) Having the central bank switch to a money regime, instead

of another interest rate in an interest rate regime after a deviation is convenient because as

we show in the following lemma outcomes are uniquely determined under a money regime.

Lemma 3. (Controllability of Best Responses) For any history hgt; if the central bank

chooses the money regime with money growth �t; then output yt and in�ation �t are uniquely

determined and given by

yt =
�t + �t + yt�1 � xt

1 + �
(17)

�t = �yt + xt:(18)

Proof. The proof is immediate from substituting (2) into (9) and recalling that yt�1

and xt are in the history hgt. Q:E:D:

Note that this lemma applies to histories hgt which have been generated o¤ the equi-

librium path as well as on it. In particular, it applies to histories in which the sticky price

producers�choice of in�ation xt represents a deviation from their strategies (and does not

equal their expectations of in�ation.)

We use this lemma to construct sophisticated policies that uniquely support any com-

petitive outcome. To do so �x a desired competitive equilibrium outcome path (x�t (st�1);

��t (s
t); y�t (s

t)) together with central bank policies i�t (st�1). Consider the following trigger-

type policy that supports these outcomes as unique equilibria: If sticky price producers choose
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xt at t to coincide with the desired outcomes x�t (s
t�1), then let central bank policy in period

t be i�t (s
t�1): If not and these producers deviate to some ~xt(st�1) 6= x�t (s

t�1); then for that

period t; let the central bank switch to a money regime with money growth set so that the

expected in�ation for that period equals the expected level of in�ation in the original equilib-

rium, namely, x�t (s
t�1): To determine the required level of money growth, use (17) and (18)

to calculate that the required level of money growth is given by

~�t = ~xt(s
t�1)� yt�1 +

1 + �

�

h
x�t (s

t�1)� ~xt(st�1)
i
:(19)

>From period t+1 on along this deviation path, let the central bank use what it would have

done if there had been no deviation. From period t+1 on along the equilibrium path, let the

central bank continue on with the analog of the policies just described.

We use these policies to establish the following proposition:

Proposition 1. Unique Implementation with Sophisticated Policies Any

competitive equilibrium outcome in which the central bank uses interest rates as its instru-

ment can be implemented as a unique equilibrium with sophisticated policies with one-period

reversion to money.

Proof. Consider the sophisticated policies described above, and suppose that in period

t the sticky price producers deviate to ~xt(st�1) 6= x�t (s
t�1). Then the central bank sets money

growth according to (19), and the resulting in�ation, by construction, is ��t (s
t); and the

resulting output is

~yt =
~�t + �t + yt�1 � ~xt(st�1)

1 + �
;(20)

where we have used (17). Substituting for ~�t from (19) gives that

Et�1~yt =
1

�

h
x�t (s

t�1)� ~xt(st�1)
i
:(21)

We need to show that given these levels of in�ation and output, a sticky price producer

will not �nd it optimal to make this deviation. That is, the sticky price producer will set

xt(i) to some value other than ~xt: From (7), we can see that the best response of a sticky

price producer is

xt(i) = Et�1
h
x�t (s

t�1) + 
~yt
i
;(22)
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where we have used the fact that ~�t is constructed to generate a level of in�ation equal to

x�t (s
t�1): Combining (21) and (22), we have that the best response of the sticky price producer

is

xt(i) = x�t (s
t�1) +

1

�

h
x�t (s

t�1)� ~xt(st�1)
i
;

since � > 0; clearly xt(i) 6= ~xt(s
t�1) whenever ~xt(st�1) 6= x�t (s

t�1): That is, an individual

sticky price producer will never �nd it optimal to follow the deviation ~xt(st�1) whenever

~xt(s
t�1) is indeed a deviation from x�t (s

t�1): Q:E:D:

The logic of the proof of the proposition makes clear that in order for reversions

to money to uniquely implement equilibrium outcomes, sophisticated policies must have a

key controllability property: following a deviation, the central bank can choose policies so

as to make it not optimal for an individual price-setter to cooperate with the deviation.

A su¢ cient condition for this property is that an individual price-setter�s best response is

uniquely determined by (and monotone in) the money growth rate. The construction of

money growth given in (19) shows that in the simple model, after a deviation monetary

policy can be chosen in such a way that the best response of any individual price-setter can

be controlled.

A simple way of describing our unique implementation result is that uniqueness of

best responses under some regime guarantees unique implementation of any desired outcome.

Note that if the variance of the money shock vt is large, all of the outcomes under money are

undesirable. Nevertheless, the money regime is useful as an o¤-equilibrium commitment that

helps support desirable outcomes along the equilibrium path under interest rate regimes.

Finally, as a technical aside, note from the proof of Proposition 1 that we do not need

uniqueness for all money growth policies. Rather, all we need is that for every deviation

we can �nd a monetary policy which induces a best response correspondence that does not

include the deviation.

So far we have focused on implementing competitive outcomes when the central bank

uses interest rates as its instrument. From Lemma 3 is immediately follows that it is trivial

to uniquely implement competitive outcomes in which the central bank uses money as its in-

strument. Clearly, we can use a simple generalization of Proposition 3 to uniquely implement
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competitive equilibrium in which the central bank uses interest rates in some periods and

money in other periods: in periods in which the monetary regime speci�es interest rates, use

sophisticated policies with reversion to money while in periods in which the monetary regime

speci�es money, make the money growth independent of the decisions of private agents.

Necessity of Regime Switching for Unique Implementation

We now turn to a common way of modeling policies, referred to as restricted policies.

Such policies are restricted to be the same on and o¤ the equilibrium path and are typically

assumed to be linear functions of private agents�actions. Here we show that any interest rate

policies that are linear functions of actions and shocks that the central bank has observed lead

to a continuum of equilibria. Hence, such policies cannot uniquely implement any desired

outcome. In this sense, in order to uniquely implement any desired outcome the central bank

must switch from an interest rate regime to a money regime following deviations.

Consider a class of restricted policies of the form

it = �{t +
1X
s=0

�xsxt�s +
1X
s=1

�ysyt�s +
1X
s=1

��s�t�s(23)

where �{t can depend upon the history of stochastic events f�sgt�1s=0: Notice that policies of this

kind are linear feedback rules on variables in the central bank�s history. We can then can

establish the following result.

Proposition 2. Indeterminacy of Equilibrium Under Restricted Policies

The linear competitive equilibria with interest rate rules of the linear feedback form (23) have

outcomes of the form

xt+1 = it + c�t; �t = xt + �(1 +  c)�t; and yt = (1 +  c)�t:(24)

For every feedback rule the economy has a continuum of competitive equilibria indexed by

the parameter c and by x0:

Proof. In order to verify that the outcomes which satisfy (24) are part of an equilib-

rium, we need to check that they satisfy (1), (9), and (16). That they satisfy (16) follows

by taking expectations of both sides of the equation �t = xt + �(1 +  c)�t: Substituting for

xt+1 from (24) and it from (23) into (1), we obtain that yt = (1 +  c)�t, as required by (24).

Inspecting the expressions for �t and yt in (24) shows that they satisfy (9). Q:E:D:
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This proposition shows that if the central bank follows an interest rate regime in all

periods for all histories, the economy has a continuum of competitive equilibria. In this sense,

unique implemention requires regime switching.

The class of linear feedback rules in (23) includes a popular speci�cation of the Taylor

rules of the form as

it = �{t + �Et�1�t + bEt�1yt:(25)

When the parameter � > 1, such policies are said to satisfy the Taylor principle, namely,

that the central bank should raise its interest rate more than one-for-one with increases in

in�ation. When � < 1, such policies are said to violate that principle.

Of course, the Taylor rule is not a well-de�ned function of histories until we �ll in how

expectations are formed. To do so we begin with a simple lemma. The lemma shows that

under any interest rate rule, the expected in�ation rate is uniquely determined by the policy,

but the realized in�ation rate may not be.

Lemma 4. In any history ht�1,

E [ytjht�1] = 0.(26)

If that history gives rise to an interest rate regime, then

E [�t+1jht�1] = it(hgt);(27)

where hgt = (ht�1; xt(ht�1)):

Proof. Note that (26) is simply a restatement of part (ii) of Lemma 1. Taking expec-

tations of the Euler equation (1) with respect to ht�1 gives that

E [ytjht�1] = E [yt+1jht�1]�  (it(ht�1)� E [�t+1jht�1] ):(28)

Using the law of iterated expectations gives that E [yt+1jht�1] = 0: From (28) we then have

(27), that E [�t+1jht�1] = it(hgt): Q.E.D.

>From this lemma we know that E [ytjht�1] = 0: Since E [�tjht�1] = xt, policies of the

Taylor rule form can be written as

it = �{t + �xt:(29)
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Thus, policies of the Taylor rule form (29) are linear feedback rules of the form (23) and

thus lead to indeterminacy, regardless of the value of �: For every � � 1 the economy has

a continuum of unbounded equilibria indexed by c and x0 � 0 as well as a unique bounded

equilibrium with c = 0 and x0 = 0. For � < 1; all the equilibria are bounded.

To discuss boundedness, it is useful to substitute from (29) into the �rst equation in

(24) to obtain a di¤erence equation in expected in�ation

xt+1 = �{t + �xt + c�t:(30)

If � � 1, then clearly xt = 0 when c = 0 and x0 = 0 and is unbounded otherwise. If � < 1 ,

then clearly xt is bounded.

We now show that rules of the form speci�ed in (23) include rules of the form discussed

by King (2001) and Svensson and Woodford (2005) given by

it = i�t + �(Et�1�t � Et�1�
�
t )(31)

where i�t and �
�
t can depend upon the history of stochastic events. The idea behind a King

rule of the form (31) is i�t and �
�
t are the interest rates and in�ation rates that the central

bank desires to implement uniquely. From Lemma 4 the King rule can be written in the form

it = i�t + �(xt � x�t ):(32)

Clearly, such a rule is of the linear feedback rule form (23).

In the literature, researchers often restrict attention to equilibria in which in�ation is

bounded. Here we argue that equilibria in which in�ation is unbounded cannot be dismissed in

this model on logical grounds. Equilibria in which in�ation explodes are perfectly reasonable

because the explosion in in�ation is associated with an explosion in the money supply. To

see this association, suppose that policy is described by a Taylor rule of the form (29) with

�{ = 0 and � > 1 and, for simplicity, suppose that �t = �t = 0 for all t: Using (26), we know

that yt = 0 for all t, and hence, from (2) the growth of the money supply is given by

�t = xt = �tx0:(33)

Thus, in these equilibria, in�ation explodes because money growth explodes. Each equilib-

rium is indexed by a di¤erent initial value of the endogenous variable x0: This endogenous
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variable depends solely on expectations of future policy and is not pinned down by any initial

condition or transversality condition.

The idea that the central bank�s printing of money at an ever-increasing rate leads

to a hyperin�ation is at the core of most monetary models. In these equilibria, in�ation

does not arise from the speculative reasons analyzed by Obstfeld and Rogo¤ (1983) but

from the conventional money printing reasons analyzed by Cagan (1956). In this sense, the

theory predicts for perfectly standard and sensible reasons that if the central bank follows a

Taylor rule that satis�es the Taylor principle, then the economy can su¤er from any one of a

continuum of very undesirable paths for in�ation.

Now consider an economy with the stochastic shocks: When � � 1; the economy has

two kinds of indeterminate equilibrium. In one kind, c = 0 and expected in�ation grows in a

deterministic fashion. In the other kind, c 6= 0 and expected in�ation grows in a stochastic

fashion with mean growth rate �. When � < 1; the economy has a continuum of bounded

equilibria. In one kind, c = 0 and expected in�ation gradually reverts to 0: In the other

kind, c 6= 0 and expected in�ation �uctuates and its mean value reverts to 0: The intuitive

idea behind the multiplicity of stochastic equilibria in Proposition 2 associated with c 6= 0 is

that interest rates pin down only expected in�ation and not the state-by-state realizations

indexed by the parameter c.

In Proposition 2, we focused on linear competitive equilibria which can be described as

time-invariant linear functions of the shocks: Clearly, there are other competitive equilibria

in which the coe¢ cients of the allocation rules depend on time t as well as the history

of the shocks. There are also competitive equilibria in which the allocations depend on

exogenous sunspots. Our theorems about supporting competitive equilibrium outcomes with

sophisticated policy rules apply equally well to all of these equilibria.

Extension to Interest Elastic Money Demand

To keep the exposition simple we have assumed that money demand is interest inelastic.

This feature of the model implies that if a money regime is adopted in some period t then

the equilibrium outcomes in that period are uniquely determined by the money growth rate

in that period. This uniqueness under a money regime is what allows us to use one-period
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reversion to a money regime to support any desired competitive equilibrium.

Now consider economies with interest elastic money demand. For such economies

consider sophisticated policies which specify an interest regime along the equilibrium path

and an in�nite reversion to a money regime following a deviation. Such policies can uniquely

implement any desired outcome if best responses are controllable. A su¢ cient condition for

such controllability is that competitive equilibria are unique with a suitably chosen money

regime. As with inelastic money demand the uniqueness under a money regime is what allows

us to use reversions to a money regime to support any desired competitive equilibrium.

A sizable literature has analysed the uniqueness of competitive equilibrium under

money growth policies. Obsteld and Rogo¤ (1983) and Woodford (1996) provide su¢ cient

conditions for uniqueness of competitive equilibria in such a circumstance. For example,

Obstfeld and Rogo¤ consider a money-in-the-utility function model with preferences of the

form u(c)+v(m) where m is real balances and show that a su¢ cient condition for uniqueness

under a money regime is

lim
m!0

mv0(m) > 0:

These authors focused attention on �exible price models but their results can be readily

extended to our simple sticky price model. Indeed, their su¢ cient conditions apply unchanged

to a deterministic version of our simple sticky price model. The reason is that our model

without shocks is e¤ectively identical to a �exible price model. Hence, under appropriate

su¢ cient conditions our implementation results extend to environments with interest elastic

money demand.

2. A Model with Staggered Price-Setting
We turn now to a version of the simple model laid out above with staggered price-

setting. The main point of this section is to show that our primary result, namely, that

sophisticated policies can implement uniquely any equilibrium allocation, carries through

to this widely used setting. To make this point in the simplest fashion, we abstract from

aggregate uncertainty. We �rst show that, along the lines of the argument for our simple

sticky price model, we can uniquely implement any desired outcome with an in�nite reversion

to a money regime following a deviation. We then show that, under su¢ cient conditions, we
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can also unique implement any desired outcome with policies that use interest rate regimes

both on and o¤ the equilibrium path.

We then turn to the implications of our analysis for the Taylor principle. The common

interpretation, stressed by Taylor (1993) and Clarida, Gali, and Gertler (2000) among others

is that it refers to the comovements of interest rates and in�ation rates along the equilibrium

path. Under this interpretation the stochastic processes for interest rates and in�ation rates

satisfy this principle if, on average, along the equilibrium path a rise in in�ation rates is

associated with a more than one for one rise in interest rates. We show that the Taylor

principle, interpreted in this fashion, is neither necessary nor su¢ cient for either determinacy

or e¢ ciency.

A more subtle interpretation, stressed by King (2001), Svensson and Woodford (2005),

and Cochrane (2007), is that the Taylor principle is a prescription for what the central bank

will do following a deviation from the equilibrium path. Under this interpretation the Taylor

principle describes the commitments of the central bank to its behavior o¤ the equilibrium

path. In particular, if in�ation rates rise relative to their level on the equilibrium path the

central bank commits to raising interest rates more than one for one with the rise in in�ation.

The Taylor principle, interpreted in this fashion, as a statement about o¤ the equilibrium

path behavior has no relation to the e¢ ciency of the equilibrium. We do show, however,

under su¢ cient conditions a policy rule that obeys the Taylor principle o¤ the equilibrium

path can ensure determinacy, at least of bounded equilibria.

A. Setup

We begin by setting up the model. We show that sophisticated policies with reversion

to money can implement any competitive equilibrium uniquely and then show that sophis-

ticated policies with reversion to interest rates can implement any competitive equilibrium

uniquely.

Consider, then, a model with no aggregate uncertainty in which prices are set in a

staggered fashion as in Calvo (1983). At the beginning of each period, a fraction 1 � � of

producers are randomly chosen and allowed to reset their prices. After that, the central bank

makes its decisions, and then, �nally, consumers make their decisions. This economy has no
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�exible price �rms. The nonlinear economy is described in Appendix A.

The linearized equations for this model are similar to those in the simple model. The

Euler equation (1) and the money growth equation (2) are the same except that there are no

shocks, �t; �t. The price set by a producer which is permitted to reset its price is given by

the analog of (5), which is

pst(i) = (1� ��)

" 1X
r=0

(��)r�t(
yr + pr)

#
:(34)

Here also Taylor�s 
; is the elasticity of the equilibrium real wage with respect to output:

Letting pst denote the average price set by �rms that are permitted to reset their prices in

period t; this equation can be rewritten recursively as

pst(i) = (1� ��) [
yt + pt] + ��pst+1;(35)

together with a type of transversality condition limT!1(��)
TpsT (i) = 0: The aggregate price

equation can be written as

pt = �pt�1 + (1� �)pst:(36)

To make our analysis parallel to the literature, we express the decisions of the sticky

price producers in terms of the in�ation rate rather than prices. Letting xt(i) = pst(i)� pt�1;

with some manipulation, we can rewrite (35) as

xt(i) = (1� ��)
yt + �t + ��xt+1:(37)

We can also rewrite (36) as

�t = (1� �)xt;(38)

where xt is the average across i of xt(i):

The transversality-type condition can be rewritten in terms of in�ation rates as

lim
T!1

(��)Txt(i) = 0:(39)

In equilibrium, since xt(i) = xt and (38) holds, this restriction is equivalent to

lim
T!1

(��)T�t = 0:(40)
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In the following lemma, we show that this economy produces the key features of a

New Keynesian Phillips curve along the equilibrium path in which

xt(i) = xt:(41)

Lemma 5. Any allocations that satisfy (37)�(41) also satisfy the New Keynesian

Phillips curve

�t = �yt + ��t+1;(42)

where � = (1� �)(1� ��)
=�:

Proof. To prove (42), substitute for xt using (38) and (41) into (37). Collecting terms

yields (42). Q:E:D:

We then have that a competitive equilibrium must satisfy (1), (2), (40) and (42). In

addition to these conditions, we now argue that a competitive equilibrium must satisfy two

boundedness conditions. Such conditions are controversial in the literature. Standard analy-

ses of New Keynesian models impose strict boundedness conditions, namely that both output

and in�ation must be bounded above and below in any reasonable equilibrium. Cochrane

(2007) has forcefully criticized this practice, arguing that any boundedness conditions must

have a solid economic rationale. Here we provide a rationale for two such conditions. In our

view, there are solid arguments for requiring that output yt is bounded above so that

yt � �y for some �y(43)

and in�ation is bounded below so that

� � � for some �:(44)

The rationale for output being bounded above is that in this economy there is a �nite

amount of labor to produce the output. The rationale for requiring that in�ation is bounded

below comes from the restriction that nominal interest must be nonnegative. (Note that even

though the real value of consumer�s holdings of bonds must satisfy a tranversality condition,

this condition does not impose any restrictions on the paths of yt and �t: The reason is that
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in our nonlinear model the government has access to lump sum taxes so that government

debt can be arbitrarily chosen to satisfy any transversality condition.)

We think of the boundedness conditions (43) and (44) as being minimal. These bounds

allow for outcomes in which yt; the log of output, falls without bound (so that the level of

output converges to zero). They also allow for outcomes in which in�ation rates rise without

bound. For completeness, we provide conditions under which our implementation result holds

with stricter and weaker boundedness conditions below.

With these restrictions, a competitive equilibrium is a sequence of in�ation rates and

output which satisfy the deterministic versions of (1), (2), as well as (40), (42), (43) and

(44). Clearly, this de�nition is analogous to that for a deterministic version of the compet-

itive equilibrium in the simple model. The de�nition of a sophisticated equilibrium is also

analogous to that in the simple model. It should be clear that the equivalence of competitive

equilibria and sophisticated outcomes, as in Lemma 2, holds here.

We now turn to unique implementation of competitive equilibrium by sophisticated

policies.

B. Sophisticated Policies

We now show that any competitive equilibrium can be uniquely implemented with

sophisticated policies. The basic idea behind our construction is that the central bank starts

by picking any competitive equilibrium allocations and sets its policy on the equilibrium

path consistent with this equilibrium. The central bank then constructs its policy o¤ the

equilibrium path so that any deviations from these allocations would never be a best response

for any individual price setter. In so doing, the constructed sophisticated policies support

the chosen allocations as the unique equilibrium allocations.

To prove our implementation result we need to �nd a policy of the central bank such

that if all other producers but one choose a particular deviation, it is optimal for the one

producer to choose a price di¤erent from the particular deviation. If such policies can be

found we say the best responses are controllable. As we discuss below a su¢ cient condition

for controllability is that the continuation equilibrium is unique.
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With Reversion to a Money Regime

In our construction of sophisticated policies with reversion to a money regime, we �nd

it convenient to consider sophisticated policies with in�nite reversion to money. Under these

policies, along the equilibrium path the central bank chooses the prescribed interest rates i�t :

If, instead, sticky price producers deviate by setting ~xt 6= x�t ; then the central bank switches

to a money regime with money growth set so that the pro�t-maximizing value of xt(i) is such

that xt(i) 6= ~xt:

To illustrate the details of our construction of monetary policy following a deviation,

we suppose that in the nonlinear economy preferences are given by U(c; l) = log c+ b(1� l);

where c is consumption and l is labor supply, so that in the linearized economy Taylor�s 


equals one. We also suppose that after a deviation the central bank reverts to a constant

money supply m = logM:With a constant money supply, it is convenient to use the original

formulation of the economy in which we use price levels rather than in�ation rates. The

cash-in-advance constraint implies that yr+ pr = m for all r so that with 
 = 1, (34) reduces

to

pst(i) = (1� ��)

" 1X
r=0

(��)r�tm

#
= m:(45)

That is, if after a deviation the central bank chooses a constant level of the money supply m

then sticky price producers optimally choose their prices to be m:

We can use (45) to show how a sophisticated policy with in�nite reversion to money

deters deviations. To do so, consider a history in which price-setters in period t deviate from

p�st to ~pst: Clearly, (45) implies that for any history, the central bank can e¤ectively control the

best response of any price-setter by the appropriate choice of monetary policy. Speci�cally,

the central bank can make it optimal for an individual price-setter to choose pst(i) 6= ~pst:

The following proposition then follows immediately.

Proposition 4. Unique Implementation with Reversion to Money Sup-

pose that 
 = 1: Then any competitive equilibrium, that is any sequence of in�ation and

output that satis�es the deterministic versions of (1), (2), (40), (42), (43) and (44), can be

implemented as a unique equilibrium with sophisticated policies with an in�nite reversion to

money.
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The logic of the proof of the proposition again makes clear that in order for reversions

to money to uniquely implement equilibrium outcomes, sophisticated policies must have a

controllability property. Equation (45) makes clear that the best response of each individual

price-setter is controllable.

With Reversion to an Interest Rate Regime

We turn now to constructing our policies in which the central bank chooses interest

rates both on and o¤ the equilibrium path. We prove a lemma that gives conditions under

which the continuation equilibrium under these policies is unique. We use this construction

and our lemma to prove our main result regarding unique implementation.

Construction of Sophisticated Policies We construct policies to support an arbitrary

competitive equilibrium outcome fx�t ; ��t ; y�t ; i�tg1t=0. In our construction we need to de�ne

policies for all histories in which private agents may or may not have deviated. Note that

we do not de�ne policies for histories in which the central bank alone has deviated. (Doing

so is straightforward but unneccesary because we assume the central bank can commit to its

policies.)

Consider �rst histories along the equilibrium path, that is, histories in which there

has never been a deviation. Such histories can be written as hgs = (h�s�1; x
�
s; �

�
s) where

h�s�1 = fx�t ; ��t ; y�t ; i�tgs�1t=0 . For such histories let the central bank chooses the prescribed

interest rates (i�t ):

Consider next histories in which the �rst deviation ~xs occurs in some period s; that

is, hgs = (h�s�1; xs; �s) but xs 6= x�s: We now construct policies that discourage individual

price setters from joining in this deviation, that is, we construct policies so the optimal price

chosen by an individual price setter xs(i) di¤ers from ~xs:

In period s; as in all periods, in�ation and the aggregate price setting choice are

mechanically linked by (38). This mechanical link means we can equally well think of the

deviation in terms of in�ation or the price setting choice. It is convenient to express the

deviation in terms of in�ation. Thus, we let ~�s = (1 � �)~xs denote the in�ation associated

with the deviation ~xs: Let the sophisticated policy specify reversion to a modi�ed Taylor rule
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of the form

is =

8><>: �~�s if ~�s 6= 0

�{s if ~�s = 0

9>=>; .(46)

where the setting of the parameter � is described below and �{s is some nonzero number.

Consider next histories hgs in which a deviation has occured in some period t < s: For

such histories let the policy be given by (46).

Note that in our construction the policies chosen in the period with the �rst deviation

coincide with policies in periods subsequent to the deviation except when the �rst deviation is

to ~�s = 0: The reason is that under the � that we choose for (46) the continuation equilibrium

will imply that �s = 0 so that xs(i) = 0: To discourage a deviation to ~�s = 0 we need to

choose a policy that makes xs(i) 6= 0: A policy that sets �{s 6= 0 ensures that xs(i) 6= 0:

Uniqueness of Continuation Equilibrium In order to show the our constructed policies

uniquely implement the desired outcome we show that after a deviation in period s; the best

responses in period s are controllable. To do so we �rst show that the continuation equilibrium

from s+ 1 onward is unique.

Given our construction in all periods t � s+ 1 the central bank is using a Taylor rule

of the form

it = ��t:(47)

We show that the Taylor rule parameter � can be chosen in such a way that the continuation

equilibrium is uniquely given by yt = �t = 0 for all t � s+ 1:

To verify uniqueness of the continuation equilibrium for an appropriate choice of �, we

begin by solving (1), (42), and (47) without imposing the transversality-like condition (40)

(or any boundedness conditions). To do so, we substitute out it in (1), using (47), to get

yt+1 +  �t+1 = yt +  ��t;(48)

which together with (42) de�nes a dynamical system. Letting zt = (yt; �t)
0; with some

manipulation we can stack these equations to give zt+1 = Azt; where

A =

264 a b

��
�

1
�

375
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and where a = 1 + � =�, b =  (�� 1=�): The solutions to this system are

yt = �t�s�11 !1s+1 + �
t�s�1
2 !2s+1 and �t = �t�s�11 (

�1 � a

b
)!1s+1 + �

t�s�1
2 (

�2 � a

b
)!2s+1(49)

where �1 < �2; the eigenvalues of A, are given by

�1; �2 =
1

2

 
1 + � 

�
+ 1

!
� 1
2

vuut 1 + � 
�

� 1
!2
� 4(�� 1)� 

�
(50)

and !1s+1 =
h
(�2�a

b
)ys+1 � �s+1

i
=�, !2s+1 =

h
(a��1

b
)ys+1 + �s+1

i
=�; where � is the deter-

minant of A: Here and throughout we restrict attention to values of � 2 [0; �max]; where �max
is the largest value of � that yields real eigenvalues. (That is, at �max the discriminant in

(50) is zero.)

For a continuation outcome to be part of an equilibrium outcome, it must satisfy the

transversality-like condition (40) and the boundedness conditions (43), (44) as well as (49).

The restrictions imposed by the transversality condition (40) on the solutions described in

(49) can be derived by substituting for �t in (40); using (49), to get

lim
T!1

(��)T
"
�T1 (

�1 � a

b
)!1s+1 + �T2 (

�2 � a

b
)!2s+1

#
= 0:(51)

The boundedness conditions can be rewritten using (49) as

ys = �t�s�11 !1s+1+�
t�s�1
2 !2s+1 � �y and �s = �t�s�11 (

�1 � a

b
)!1s+1+�

t�s�1
2 (

�2 � a

b
)!2s+1 � �:(52)

The "initial" conditions !1s+1; !2s+1 satisfying (51) and (52) determine the continuation out-

comes from (49).

We now develop conditions such that there exists a Taylor rule coe¢ cient � under

which the only solution to (49) that satis�es our transverality and boundedness conditions

has !1s+1 = !2s+1 = 0: It is easy to see from (50) that if � < 1; the smaller eigenvalue �1

is less than one while if � > 1 then �1 is greater than one. Clearly, then no � < 1 will

guarantee uniqueness because with �1 < 1; a continuum of values of !1s+1 satisfying (51)

and (52) exists. Notice also that not all � > 1 will yield uniqueness. For some values of

� > 1 there will be a continuum of solutions that have the property the in�ation converges

to in�nity, the level of output is bounded (the log of output converges to negative in�nity)

and the transversality condition is satis�ed. Hence, for such values we will have a continuum
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of equilibria. These considerations imply that the Taylor coe¢ cient � we seek must be larger

than one and have the property that under it all solutions to (49) with either !1s+1 6= 0 or

!2s+1 6= 0 violate either our the transversality condition or our boundedness condition and

hence will not be continuation competitive equilibria.

We now develop a lemma which shows that under the condition

�(1 + � ) > 1(53)

there is some value of �� greater than one such that after any history, if the central bank

switches to a Taylor rule with � 2 (1; ��) the resulting continuation is unique. That is, under

(53), the initial conditions !1s+1; !2s+1 satisfying (51) and (52) are unique, and equal to 0;

for a range of values of the Taylor coe¢ cient � greater than 1:

The idea of the proof is that we eliminate the �large root indeterminacy�associated

with the initial condition !2s+1 using the transversality condition. This condition requires

that prices not diverge to in�nity faster than (1=��)t in that (��)t�t must converge to zero.

Given the form of in�ation in (49), this condition requires that (���2)t!2s+1 converge to zero.

In the appendix we show that under (53), ���2 > 1 for � 2 (1; ��) so that !2s+1 = 0:

We eliminate the �small root indeterminacy� associated with the initial condition

!1s+1 using the boundedness condition. To develop this argument suppose that !2s+1 = 0:

The form of output and in�ation in (52) implies that if �1 > 1 and (�1 � a)=b > 0; then

both output and in�ation converge to in�nity (when !1s+1 > 0) or both converge to minus

in�nity (when !1s+1 < 0): In the former case output is unbounded above and in the latter

case in�ation is unbounded below. In the appendix we show that if � 2 (1; ��); �1 > 1 and

(�1 � a)=b > 0: Hence !1s+1 = 0: We then conclude that for � 2 (1; ��); !1s+1 = !2s+1 = 0 so

that yt = �t = 0 for t � s+ 1:

Consider then the following lemma which is proved in Appendix B.

Lemma 6. Suppose (53) is satis�ed. Then there exists some value of �� > 1 such that

if the central bank chooses a reversion policy of the Taylor rule form with � 2 (1; ��) then the

resulting continuation is unique from s+ 1 onwards and the associated output and in�ation

rates are zero in all periods t � s+ 1 where the deviation occurs in period s:

28



We now use Lemma 6 to show that the policies following a deviation, parameterized

by � and �{s; can be chosen so that the best response xs(i) of an individual price-setter is

unique and controllable. Let � be chosen so that � 2 (1; ��) and satis�es � 6= 1=(1 � �)� :

From (37) and (38), the best response xs(i) given the in�ation ~�s induced by the deviation is

xs(i) = (1� ��)
ys +
~xs

1� �
+ ��xs+1:(54)

Note that xs+1 = 0 because Lemma 6 implies that for all periods after the one with the

deviation, output and in�ation are zero; that is, yr = �r = xr = 0 for all r � s+1: Next note

that substituting ys+1 = �s+1 = 0 into the Euler equation (1) gives that ys = � is: Using

both of these results, we can rewrite (54) as

xs(i) = �(1� ��)
 is +
~xs

1� �
:(55)

Using (38) and the form of the sophisticated policy which implies that is = �~�s; we can

rewrite (55) as

xs(i) =
1� �(1� �)� �

1� �
~xs::(56)

The condition that � 6= 1=(1� �)� implies that xs(i) 6= ~xs unless ~xs = 0:

If ~xs = 0; then recall that the policy rule speci�es that is is some nonzero number, so

that, using (55), xs(i) is not equal to zero. We then have proved the following proposition.

Proposition 5. Unique Implementation with Reversion to Taylor Rules

Suppose (53) is satis�ed. Then a sophisticated policy indexed by �{s and � with �{s 6= 0 and

� 2 (1; ��) and satisfying � 6= 1=(1� �)� uniquely implements any competitive equilibrium

outcome.

The basic idea of our construction is that by reverting to a Taylor rule with � in the

determinate region, the central bank uniquely pins down the continuation values of output

and in�ation from s+1 on. By varying the policy in period s; the central bank can uniquely

control any best response and thereby discourage any deviation. Thus, here, as before,

sophisticated policies can be used to control best responses.
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In our proof we used one particular set of policies o¤the equilibrium path to discourage

deviations, but many others will also discourage deviations. For example, for histories o¤ the

equilibrium path we could instead have used policies of the form

it = �{t + ��t(57)

where �{t is an exogenous bounded deterministic sequence and � 2 (1; ��): These policies o¤ the

equilibrium path along with policies that specify it = i�t on the equilibrium path with �t = ��t

can uniquely implement outcomes with interest rates i�t ; in�ation ��t ; and the associated

output y�t :

If (53) is violated, it can be shown that there is indeterminacy under interest rate

rules for all � 2 [0; �max]: For such economies, sophisticated policies with specify reversion

to Taylor rules do not uniquely implement outcomes. It may still be possible to uniquely

implement outcomes by specifying reversion to money rules.

The King Rule We now show that the King rule can implement bounded equilibria but

does not implement all equilibria. To that end consider policies of the King rule form

it(hgt) = i�t + �(xt � x�t )(58)

where xt is an element of the history hgt = (ht�1; xt; �t) where ht�1 = fxs; �s; ys; isgt�1s=0:

This rule speci�es behavior both on and o¤ the equilibrium path. For histories on the

equilibrium path xt = x�t so that it(hgt) = i�t : For histories o¤ the equilibrium path this rule

speci�es it(hgt) = i�t whenever xt = x�t and (58) for histories with xt 6= x�t :

To show that, in our context, the King rule can implement bounded equilibria we

replace the levels of variables in our dynamical system with their deviations from the target

and mimic our proof above.

To see that the King rule cannot necessarily implement unbounded equilibria consider

the following desired outcome

y�t = 0; �
�
t =

��t�1
�

:

Under the King rule there are a continuum of equilibria of the form:

yt = y�t + �t1!10
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�t = ��t + �t1(
�1 � a

b
)!10

The reason is that �1 < 1=� so that there is a continuum of values of !10 � 0 which satisfy

tranversality and boundedness. The basic idea is the second term in �t goes to minus in�nity

slower than the �rst term goes to plus in�nity. With !10 � 0; yt goes to minus in�nity

and �t goes to plus in�nity. Such a path violates neither our boundness conditions nor our

transversality condition.

An interesting feature of this rule is only current deviations a¤ect the current setting

of policy and past deviations have no e¤ect on the current setting of policy. In this sense, this

rule forgives past deviations. If there is a deviation in some period s the economy returns

to the original equilibrium path in the period after the deviation. Note that our formulation

gives outcomes following deviations which are quite di¤erent from those in the literature on

implementation via nonexistence. In our formulation following a deviation, in�ation does

not explode but rather returns to the original equilibrium path. Nonetheless, our translation

of the King policy achieves implementation by discouraging deviations from the equilibrium

path. In contrast, in the literature�s formulation following a deviation in�ation explodes

and no equilibrium exists. Hence, the literature�s formulation of the King policy achieves

implementation via nonexistence.

Other Views on Bounds So far we have considered one view on bounds. Since the issue

of what bounds to impose is controversial, we discuss other views brie�y. Adding bounds

reduces the region of indeterminacy and expands the region of determinacy. These bounds

increase the applicability of these policies, but reduce their need. As the region of determinacy

expands, the range of parameter values for which sophisticated policies can be used for unique

implementation also expands. As the region of indeterminacy shrinks, however, the range of

parameter values for which sophisticated policies are needed shrinks.

Strict Bound View Consider �rst the standard view in the literature, namely, the

strict bound view. In this view, only outcomes that are bounded both above and below are

considered reasonable. Under this view the range of Taylor rules coe¢ cients which yield

uniqueness expands to include all values of � 2 (1; �max). To see the expansion in the range,
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note from (50) that �1 > 1 when � > 1: Since �2 � �1 > 1 for � > 1; (49) and the boundedness

conditions imply that !1s+1 = !2s+1 = 0: Hence, the continuation equilibrium is unique for

all � > 1: Here, we can choose the Taylor rule parameter in a reversion to any value of � > 1;

hence, the analog of Proposition 5 holds even for parameter values that violate (53). Clearly,

the strict bound view expands the applicability of sophisticated policies by expanding the

range of � such that the equilibrium is determinate relative to our view. It also reduces the

range for which these policies are needed.

No Bound View Another view is that neither transversality nor boundness condi-

tions should be imposed. Under this view reversion to interest rate regimes cannot achieve

implementation but reversion to a money regime can.

C. Welfare and the Taylor Principle

We have shown that adherence to the Taylor principle is not necessary nor su¢ cient for

the unique implementation of a desired equilibrium outcome. Here we ask whether e¢ cient

outcomes satisfy the Taylor principle in the sense that an observer of the e¢ cient outcome

path who regressed interest rates on in�ation rates would �nd a regression coe¢ cient greater

than one. We show that whether this regression coe¢ cient is larger or smaller than one has

little to do with e¢ ciency.

To make this question interesting we need to add stochastic shocks to the model. We

follow much of the literature in adding a cost-push shock, namely a stochastic shock to the

New Keynesian Phillips curve so that it is of the form

�t = �Et�t+1 + �yt + ut(59)

where ut is i.i.d., has mean zero, and is the cost-push shock. Following the exposition in

Woodford (2003, Ch. 6) the e¢ cient allocations solve

min
1

2

1X
t=0

E0�
t[�2t +

�

�
y2t ](60)

subject to (59) where we have assumed that the economy has no distortions in the steady state.

(The basic idea is the monopoly distortion is o¤set by a constant subsidy to labor.) Here �
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is a parameter that determines the elasticity of substitution 1=(1� �) between di¤erentiated

goods as well as the steady state markup 1=�:

Following Woodford (2003, p. 489) it is easy to derive the e¢ cient allocations. Given

these allocations a regression of interest rates on in�ation has a regression coe¢ cient of

cov(it; �t)

var(�t)
= [� � 1] �1(1� �1)

2
(61)

where 0 < �1 < 1 is the smaller root of the characteristic equation

��2 � (1 + � + ��)�+ 1 = 0:

Clearly, as � ranges from 1 to in�nity the regression coe¢ cient ranges from 0 to in�nity.

Hence, the magnitude of this coe¢ cient has little to do with e¢ ciency.

3. Trembles and Imperfect Information
Thus far we have shown that any equilibrium outcome can be implemented as a unique

equilibrium with sophisticated policies. In our equilibrium, deviations in private actions lead

to changes in the regime. This observation leads one to ask how sophisticated policies should

be constructed if we allow for trembles in private decisions or if the central bank can monitor

private decisions only imperfectly.

A. Trembles

Consider �rst allowing for trembles in private decisions by supposing that the actual

price chosen by a price-setter, xt(i); di¤ers from the intended price, x̂t(i); by an additive error

"t(i); so that

xt(i) = x̂t(i) + "t(i):

If "t(i) is independently distributed across agents, then it simply washes out in the aggregate

and is irrelevant. Even if "t(i) is correlated across agents, say, because it has both an aggregate

and an idiosyncratic component, our argument goes through unchanged if the central bank

can observe the aggregate component, say, with a random sample of prices.
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B. Imperfect Information

More interesting is a situation in which the central bank has imperfect information

about prices. We consider two formulations of imperfect information. In the �rst, labeled

imperfect monitoring, the central bank observes the aggregate action of price-setters xt with

probability q and observes nothing with probability 1�q: In the second, labeled measurement

error, the central bank observes the actions of price setters with symmetric measurement

error. Of course, if the central bank could see some other variable perfectly, such as output

or interest rates on private debt, then it could infer what the private agents did. In this sense,

we think of these setups as ones that gives the central bank minimal amounts of information

relative to what actual central banks have.

We will show that with imperfect monitoring we can exactly implement any desired

outcome while with measurement error we can implement outcomes which are close to the

desired outcomes when the measurement error is small.

Imperfect Monitoring

Consider the imperfect monitoring formulation. We restrict attention to deviations

which generate bounded paths for in�ation, with the rationale that the central bank can

easily �gure out if the economy is on an unbounded path.

We prove the following proposition in Appendix B:

Proposition 7. Unique Implementation with Imperfect Monitoring. If

the detection probability q is su¢ ciently high, so that

1

1� q
> 1 + �q + (1� q)� ;(62)

then sophisticated policies with in�nite reversion to money can uniquely implement any

competitive equilibrium outcome. Under condition (53) and (62), sophisticated policies with

reversion to interest rates can uniquely implement any equilibrium outcome

The sophisticated policies we use to prove this result are as follows. If the central

bank detects a deviation, then it switches to a suitably chosen policy that yields uniqueness.

Such a policy could be either a reversion to a money regime or a reversion to an interest

rate regime in the determinate region. With such policies in place, it is easy to work out the
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dynamical system following undetected deviations. If the detection probability satis�es (62),

then the dynamical system has a unique solution, so that the best response is controllable.

Notice that for any values of the other parameters, there is always a detection proba-

bility strictly less than one that satis�es (62).

Suppose next that the central bank perfectly monitors prices every K periods. An

argument similar to that in Proposition 7 can then be used to obtain unique implementation.

The essential idea behind both this result and that in Proposition 7 is that indeterminacy

arises in the New Keynesian model because the associated dynamical system lacks a terminal

condition. Periodic monitoring provides the needed terminal condition and probabilistic

monitoring acts a form of discounting that e¤ectively provides a terminal condition.

Measurement Error

Next we turn to the measurement error formulation. In this formulation the central

bank observes

~xt = xt + "t(63)

where "t is i.i.d. over time and has mean zero and variance �2": Consider supporting some

desired bounded outcome path. We consider monetary policies of the King rule form (58).

We have already shown that the King Rule uniquely implements bounded equilibria when

the economy has no measurement error. Here the King rule can be written as

it(hgt) = i�t + �(~xt � x�t ) = i�t + �(xt � x�t ) + �"t(64)

It is easy to show that in this economy with measurement error the best response of any

indidvual price setter is identical to that in the economy without measurement error. The

reason is that the best response depends only the expected values of future variables. Given

that the measurement error "t has mean zero these expected values are unchanged. It follows

that the unique equilibrium in this economy with measurement error has xt = x�t : The realized

value of output yt, however, �uctuates around the target value y�t . From the Euler equation

the realized value of output is given by yt = y�t � �"t. Clearly, as the size of the measurement

error "t goes to zero, the outcomes converge to the desired outcomes. We have established

the following proposition.
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Proposition 8. Approximate Implementation with Measurement Error.

As the variance of the measurement error approaches zero, sophisticated policies of the King

rule form yield outcomes with converge to the desired outcomes.

4. Concluding Remarks
We have de�ned and illustrated what we have called sophisticated policies for monetary

economies and have shown how they can uniquely implement any competitive outcome. The

logic of our arguments should extend to other applications, including analyses of �nancial

crises, �scal policy and so on.

The main message of this paper is that in designing policy we should follow the Ram-

sey approach to determine the best competitive equilibrium, and then check whether best

responses are controllable. If they are, then sophisticated policies of the kind we have con-

structed can uniquely implement the Ramsey outcome. If they are not, then policymakers

have no choice but to accept indeterminacy. We have shown that this way of thinking about

implementation makes the Taylor principle irrelevant.
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Notes

1An extensive literature has used the Ramsey approach to discuss optimal monetary

policy. See, among others, Chari, Christiano, and Kehoe (1996), Schmitt-Grohe and Uribe

(2004),Siu (2004), and Corrreia, Nicolini, and Teles (2008).

2We choose this part of the policy in order to make it abundantly clear that after a

deviation the central bank is not doing anything exotic, such as producing a hyperin�ation.

Rather, in an intuitive sense, the central bank is simply getting the economy back on the

track it had been on before the deviation threatenned to shift it in another direction.
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5. Appendix A: The Nonlinear Economies
Here we describe the nonlinear economies that when linearized give the equilibrium

conditions described in the body of this work.

A. The Simple Sticky Price Model

This model is a monetary economy populated by a large number of identical, in�nitely

lived consumers, �exible price and sticky price intermediate good producers, �nal good pro-

ducers, and a government. In each period t, the economy experiences one of �nitely many

events st: We denote by st = (s0; : : : ; st) the history of events up through and including pe-

riod t. The probability, as of period zero, of any particular history st is g(st). The initial

realization s0 is given.

The timing within a period is as follows. At the beginning of the period, sticky price

producers set their prices and the govenment chooses its monetary policy, either by setting

interest rates or by choosing the quantity of money. The event st is then realized. At the end

of the period, �exible price producers set their prices, and consumers and �nal good producers

make their decisions. The event st is associated with a �ight to quality shock (1� �(st)) that

a¤ects the attractiveness of government debt relative to private claims.

In each period t; the commodities in this economy are labor, a consumption good,

money, and a continuum of intermediate goods indexed by i 2 [0; 1]. The technology for

producing �nal goods from intermediate goods at history st is

y(st) =
�Z

y(i; st)� di
� 1
�

;(65)

where y(st) is the �nal good and y(i; st) is an intermediate good of type i. The technology

for producing each intermediate good i is simply

y(i; st) = l(i; st)(66)

where l(i; st) is the input of labor.

Intermediate good producers behave as imperfect competitors. Fraction � of interme-

diate good producers have �exible prices in that they set their prices in period t after the

realization of the shock st. Fraction 1� � have sticky prices, in that they set their prices in

period t before the realization of the shock st: Let Pf (i; st) denote the price set by a �exible
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price producer i 2 [0; �]; and let Ps(i; st) denote the price set by a sticky price producer

i 2 [�; 1]:

Final good producers behave competitively. In each period t; they choose inputs

y(i; st), for all i 2 [0; 1], and output y(st) in order to maximize pro�ts given by

max P (st)y(st)�
Z �

0
Pf (i; s

t)y(i; st) di�
Z 1

�
Ps(i; s

t�1)y(i; st) di(67)

subject to (65), where P (st) is the price of the �nal good in period t. Solving the problem in

(67) gives the input demand functions

yd(i; st) =

"
P (st)

P (i)

# 1
1��

y(st);(68)

where P (i) is the price charged by the intermediate good producer i. The zero pro�t condition

implies that

P (st) =
�Z �

0
Pf (i; s

t)
�

��1 di+
Z 1

�
Ps(i; s

t�1)
�

��1 di
� ��1

�

:(69)

Using (66), we can see that the problem faced by the �exible price producers is to choose

P1(i; s
t) in order to maximize

h
Pf (i; s

t�1)�W (st)
i
yd(i; st)(70)

subject to (68), where W (st) is the nominal wage rate. The resulting optimal price is given

as a markup over the nominal wage rate

Ps(i; s
t) =

1

�
W (st):(71)

The problem faced by the sticky price producers is to choose Ps(i; st�1) in order to maximize

X
st

Q(stjst�1)
h
P2(i; s

t�1)�W (st)
i
yd(i; st)(72)

subject to (68), where Q(stjst�1) is the price of a dollar at st in units of a dollar at st�1. The

resulting optimal price is given as a markup over weighted expected marginal costs

Ps(i; s
t�1) =

1

�

P
st Q(s

tjst�1)P (st)
1

1��W (st)y(st)P
st Q(stjst�1)P (st)

1
1�� y(st)

:(73)

We turn now to the consumers. The consumer side of the economy is a variant of the

standard cash-in-advance formulation, as in Lucas (1992), with two modi�cations. First, we
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assume that the government pays interest on wages at the private market interest rate. This

modi�cation ensures that the consumer�s �rst-order condition for labor supply is undistorted

as in the cashless economies of Woodford (2003). Second, we allow for �ight to quality shocks

that a¤ect government debt relative to private debt.

Consumer preferences are given by

1X
t=0

X
st

�tg(st)U(c(st); l(st));(74)

where c(st) and l(st) are consumption and labor. In each period t = 0; 1; : : :, consumers face

a cash-in-advance constraint in which purchases of consumption goods are constrained by

their holdings of nominal money balances M(st) according to

P (st)c(st) =M(st)(75)

as well as a sequence of budget constraints

M(st)+
B(st)

R(st)
= Rp(s

t�1)(1+� l)W (s
t�1)`(st�1)+

h
1� �(st�1)

i
B(st�1)+T (st)+�(st);(76)

where B(st) is government debt with price 1=R(st); Rp(s
t) is the rate of return on private

debt, �(st) is the nominal pro�ts of the intermediate good producers, � l is a subsidy to labor

income and T (st) is nominal transfers and where the right side of (76) is given in period 0:

The subsidy � l is set, as is standard in the literature, to undo the ine¢ ciency in a steady

state due to monopoly power Speci�cally, (1 + � l) = 1=�: Note that we have imposed that

the cash-in-advance constraint holds with equality.

The consumer�s problem is to maximize utility, subject to the cash-in-advance con-

straint, the budget constraint, and borrowing constraints, B(st+1) � �B; for some large nega-

tive number �B: For notational simplicity, we have suppressed decisions on holdings of private

state-contingent debt with price Q(stjst�1) and private state-uncontingent debt with the pri-

vate market interest rate Rp(s
t): Clearly, 1

Rp(st)
=
P
st+1 Q (s

t+1jst) and

Q
�
st+1jst

�
= �g(st+1jst)Uc(s

t+1)P (st)

Uc(st)P (st+1)
:

The �rst-order conditions for the consumer�s problem imply that

�Ul(s
t)

Uc(st)
=
(1 + � l)W (s

t)

P (st)
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1

R(st)
=
h
1� �(st)

i X
st+1

�g(st+1jst)Uc(s
t+1)

Uc(st)

P (st)

P (st+1)
:(77)

If we log-linearize this economy, then we can obtain the equations in the body for the

simple model. Setting (1 + � l) = 1=�;we obtain the quadratic approximation to welfare used

in the text.

B. The Model with Staggered Price-Setting

This model is nearly identical to the simple model above. The main di¤erences are

that in this new model there are no �exible price producers and each producer can reset

prices in each period with probability 1� �:

The problem of a producer who is allowed to reset is to

max
Ps(st)

1X
r=t

X
sr
�r�tQ(srjst)

h
Ps(s

t)Cs(s
r)�W (sr)Cs(s

r)
i

subject to

Cs(s
t) =

 
Ps(s

t)

P (st)

!��
C(st):

The �rst-order conditions imply that

Ps(s
t) =

�

� � 1

P1
r=t

P
sr �

r�tQ(srjst)W (sr)
P (sr)

�
1

P (sr)

����1
C(sr)P1

r=t

P
sr �r�tQ(srjst)

�
1

P (sr)

���
C(sr)

:

The consumer side of the model is identical to that in the simple model. This staggered

price-setting model when linearized gives the equilibrium conditions described in the body.

6. Appendix B: Proofs of Lemma 6 and Propositions 6 and 7
Here we prove Lemma 6 and Propositions 6 and 7. We will use the following to help

prove Lemma 6 and the propositions. Let �1(�) and �2(�) be de�ned from (50).

Lemma A. The smaller eigenvalue �1(�) is increasing in � and the larger eigenvalue

�2(�) is decreasing in �: Furthermore, for all � 2 [1; 1=�) the smaller eigenvalue satis�es

�1(�) > 1 and �1(�)� a)=b > 0.:

Proof. From (50), we have that the smaller eigenvalue is

�1(�) =
1

2

 
1 +

1 + � 

�

!
� 1
2

vuut 1 + 1 + � 
�

!2
� 4(1 + � �)

�
:(78)
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and the larger eigenvalue is

�2(�) =
1

2

 
1 +

1 + � 

�

!
+
1

2

vuut 1 + 1 + � 
�

!2
� 4(1 + � �)

�
:(79)

Clearly, �1 is an increasing function of � and �2 is a decreasing function of �:

To prove that �1(�) > 1 for � 2 [1; 1=�) note that

�1(1) =
1

2

 
1 + � 

�
+ 1

!
� 1
2

vuut 1 + � 
�

� 1
!2
= 1

while

�1

 
1

�

!
=
1

2

 
1 +

� 

�
+
1

�

!
� 1
2

vuut 1 + � 

�
+
1

�

!2
� 4

�
(1 +

� 

�
)

=
1

2

 
1 +

� 

�
+
1

�

!
� 1
2

vuut 1 + � 

�
� 1

�

!2
=
1

�

so that �1(�) > 1 for all � 2 (1; 1=�):

Next, to prove that �1(�)�a)=b > 0 for � 2 [1; 1=�) note that straightforward algebra

gives

�1(�)�
 
1 +

� 

�

!
=

8><>: �� 
�
< 0 for � = 1

1
�
� (1 + � 

�
) < 0 for � = 1

�

9>=>; :
Since a = 1+� =� and b = ��1=�; we have shown that (�1(�)�a)=b > 0 for all � 2 [1; 1=�):

Q:E:D:

A. Lemma 6

Recall that Lemma 6 is the following.

Lemma 6. Suppose (53) is satis�ed. Then there exists some value of �� > 1 such that

if the central bank chooses a reversion policy of the Taylor rule form with � 2 (1; ��) then the

resulting continuation is unique and the associated output and in�ation rates are zero in all

periods t � s+ 1 where the deviation occurs in period s:

Proof of Lemma 6. We now develop su¢ cient conditions under which the initial

conditions !1s+1; !2s+1 satisfying (51) and (52) are unique, and equal to 0; for a range of

values of the Taylor coe¢ cient � greater than 1:
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We eliminate the large root indeterminacy by �nding values for the Taylor rule para-

meter � so that the transversality condition rules out paths for in�ation that explode at rate

�2 so that equilibria must have !2s+1 = 0: To see how we �nd such values, let �
� be de�ned

by

���2(�
�) = 1(80)

if ���2(�max) � 1; and by �max if there is no value of � 2 [0; �max] for which ���2(�) = 1:

We now show that under (53), �� > 1: To see this note from (79) that �2(1) = (1 + � )=�

so that ���2(1) = �(1 + � ) which by (53) is greater than one. Since �2(�) is decreasing

it follows that if ���2(�
�) = 1 is satis�ed for some point �� in [1; �max] then �

� > 1: If no

such point exists then �� = �max which is also greater than 1. Either way �
� > 1: Hence,

���2(�) > 1 for all � 2 [0; ��) and the transversality condition, written as (51), is satis�ed

only if !2s+1 = 0 for all � 2 [0; ��):

We eliminate small root indeterminacy by �nding values for the Taylor rule parameter

such that the smaller root �1(�) is larger than one and the coe¢ cient on the initial condition

on the small root !1s+1; namely (�1(�)� a)=b > 0: For such values of � the bound on output

in (52) requires that !1s+1 � 0 and the bound on in�ation in (52) requires that !1s+1 � 0

so that !1s+1 = 0: From Lemma A we have that the required interval is [1; 1=�) because for

all � 2 [1; 1=�) we have that �1(�) > 1 and (�1(�)� a)=b > 0.

Combining the two parts of the argument we have that if � satis�es both � 2 [0; ��) and

� 2 [1; 1=�) then both large root indeterminacy and small root indeterminacy are eliminated.

The intersection of these intervals is contained in (1; ��) where

�� = min[��;
1

�
]:

Since �� > 1 and 1=� > 1; clearly �� > 1: In sum, we have shown that that there exists a �� > 1

such that for � 2 (1; ��) the initial conditions for the dynamical system !2s+1 = !1s+1 = 0

that starts after the deviation. Hence from (49) we have that yt = �t = 0 for all t � s + 1.

Q:E:D:

B. Proposition 6

Recall that Proposition 6 is the following:
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Proposition 6. Rules Satisfying the Taylor Principle are Inefficient

The outcomes under a Taylor rule of the form (29) with � > 1 are dominated by outcomes

of an equilibrium with � = 0.

We begin by working out the stochastic processes for yt and �t implied by the dynam-

ical system. For notational simplicity we write �2t as simply �t:We begin with the dynamical

system that arises with � = 0: We can write this system as

yt = Etyt+1 +  �t+1 + �t(81)

�t+1 = �Et�t+2 + �Etyt+1:(82)

We solve this system using the method exposited by Lubik and Schorfeide (2003). In solving

this system, it is convenient to let ut = �t+1 and to let the forecast errors be de�ned by

"yt � yt�Et�1yt and "ut � ut�Et�1ut: After some manipulation, we can write (81) and (82)

as

Etzt+1 = �Et�1zt +	�t +�"t;(83)

where zt = [Etyt+1; Etut+1]0, "t = ["yt; "ut]0and

� =

264 1 � 

��
�

� +1
�

375 ; 	 =
264 �1

�
�

375 ; � =
264 1 � 

��
�

� +1
�

375 :(84)

Let J ^ J�1 = � be the Jordan decomposition of �: Letting wt = J�1Etzt+1; we can write

this system as

wt = ^wt�1 + J�1	�t + J�1�"t;

with eigenvalues, �1 � �2;

�1; �2 =
1

2

 
1 +

1 + � 

�

!
� 1
2

vuut 1� 1 + � 
�

!2
+ 4

� 

�
;

and eigenvectors

J =

264 1 1

(1� �1)= (1� �2)= 

375 :
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It is immediate that since � > 0, 0 � �1 < 1 < �2; so that there exists a continuum of

solutions. More precisely, since the number of explosive roots, here 1, is less than the number

of expectation errors, here 2; the system has one degree of indeterminacy.

The best outcome clearly has bounded output and in�ation, so that we need to choose

both the initial condition on !20 and the shocks so as to never put weight on the explosive

root. These restrictions can be summarized by a condition on the deterministic component

of the system

[J�1Etzt+1]2� = 0(85)

and a condition on the stochastic component

[J�1	]2��t + [J
�1�]2� "t = 0:(86)

where [A]2�denotes the second row of matrix A: With some algebra, we can write these

conditions as

�1 � 1
 

Et�1yt + Et�1ut = 0(87)

and 
1� �1
 

+
�

�

!
(�t � "yt) +

 
1� �1 +

1

�
(� + 1)

!
"ut = 0:(88)

For later use, let D be de�ned from (88) so that

"ut = D(�t � "yt):(89)

Since we have chosen w2t to be identically zero, we can write the solution to the system as

w1t = �1w1t�1 +
h
J�1	

i
1
�t +

h
J�1�"t

i
1
:(90)

Recall that

w1t =
h
J�1Etzt+1

i
1
=
1

�

 
1� �2
 

Etyt+1 � Etut+1

!
:

Using (87) in (90), we have, after some manipulation, that
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Etut+1 = �1Et�1ut +

 
�2 � 1
�1 � 1

� 1
!�1  

�2 � 1
 

� �

�

!
�t

+

 
�2 � 1
�1 � 1

� 1
!�1  

1� �2
 

+
�

�

!
"yt +

 
�2 � 1
�1 � 1

� 1
!�1  

�2 � 1�
� + 1

�

!
"ut

and

Etyt+1 = �1Et�1yt

+
 

1� �1

 
�1 � 1
�2 � �1

!" 
�2 � 1
 

� �

�

!
(�t � "yt) +

 
�2 � 1�

� + 1

�

!
"ut

#

Using (89), we can write this latter equation as

Etyt+1 = �1Et�1yt + F (�t � "yt);(91)

where

F =
b

�2 � �1

" 
��2 � a

b
� �

�

!
+

 
�2 � a� 1

�
(� + 1)

!
D

#

and "yt is a free random variable which captures the stochastic indeterminacy of the system.

The solution for yt+1 is, then,

yt+1 = Etyt+1 + "yt+1;

where Etyt+1 is given by (91). Using (87), we have that

ut+1 =
1� �1
 

Etyt+1 +D(�t+1 � "yt+1):(92)

Consider now the proof of Proposition 6.

Proof. We compute welfare using

E0
X

�t
�

y2t + �2t

�
(93)

and the system described above. To do so, we assume that y0 is drawn from the invariant

distribution, so that from (91) we have that

varEtyt+1 =

 
F 2

1� �2

!
var("t � �yt):(94)
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>From the de�nition of the forecast error �yt+1; we have that

var(yt+1) = varEtyt+1 + var("yt+1)(95)

while from (92) we have that

var(ut+1) =

 
1� �1
 

!2
varEtyt+1 +D2var(�t+1 � "yt+1):(96)

Using (94)�(96), we have that (93) is proportional to

var(�t+1 � "yt+1)

0@ F 2

1� �2

24
 +  1� �1
 

!235+D2

1A+ 
var("yt+1)(97)

Choose "yt = A�t: Then (97) is proportional to

(1� A)2

0@ F 2

1� �2

24
 +  1� �1
 

!235+D2

1A+ A2:

The � > 1 solution corresponds to A = 1: Since
�

F 2

1��2

�
1 +

�
1��1
 

�2�
+D2

�
6= 1; it is clear

that A = 1 is not optimal. Q:E:D:

C. Proposition 7

Recall that Proposition 7 is the following:

Proposition 7. Under (53), if the detection probability q is su¢ ciently high, so

that

1

1� q
> 1 + �q + (1� q)� ;(98)

then sophisticated policies can uniquely implement any competitive equilibrium.

Proof. Consider the sophisticated policies of the form used in the proof of Proposition

5 except that the reversion phase is triggered only if a deviation is detected. By construction

there is a unique equilibrium continuation following a detection.

We now show that when there is no detection there is also a unique equilibrium. Con-

sider then the dynamical system when a deviation occurs but is not detected. For notational

simplicity, imagine that the deviation occurs in period 0. In period t; the deviation at zero is
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detected with probability q: Let ymt and �
m
t+1 denote output and in�ation under the reversion

policy when the period 0 deviation is �rst detected in period t: Choose the reversion polcy

so that ymt = �mt+1 = 0 for all t � 1: The resulting system is, then,

yt = (1� q) (yt+1 +  �t+1)(99)

�t = (1� q) (��t+1 + �yt) :(100)

A sequence of output and in�ation is part of a continuation equilibrium if and only if it

satis�es (99), (100), (40), (43) and (44). Letting zt = (yt; �t)
0; with some manipulation we

can stack these equations to give zt+1 = A0zt; where

A0 =

264 a0 b0

��
�

1
�(1�q)

375
and where a0 = 1=(1� q) + � =�, b0 = � =(�(1� q)): The solutions to this system are

yt = �t1!
0
1 + �t2!

0
2 and �t = �t1(

�1 � a0

b0
)!01 + �t2(

�2 � a0

b0
)!02(101)

for t � 1:

The eigenvalues of the transition matrix A0 are

�1; �2 =
1

2(1� q)
+
1

2�

 
� +

1

1� q

!
�
24 1

2(1� q)
+
� 

2�

!2
+

1

4(1� q)2�2
+

� 

(1� q)�2

351=2

With some algebra, it can be shown that condition (98), implies that �2 � �1 > 1 so that the

paths of output and in�ation given by (101) do not have bounded indeterminacy. Thus, the

only possible solutions are yt = �t = 0 or paths in which output or in�ation are unbounded.

We rule out large root indeterminacy by using the transversality condition. In particular,

straightforward algebra shows that if (53) is satis�ed, ���2 > 1 so that the transversality

condition implies that the system does not have large root indeterminacy, that is that !02 = 0

. To rule out small root indeterminacy we show that the only unbounded sequences satisfying

(99) and (100) have either output going to plus in�nity or in�ation to minus in�nity, so that

they violate the boundedness conditions. In particular, with some algebra we can show that

(�1 � a0)=b0 > 0 so that from (101), it follows that, if !01 > 0; yt converges to plus in�nity

and if !01 < 0; �t converges to minus in�nity. Thus, !
0
1 = !02 = 0; so that (101) implies that
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yt = �t = 0 for all t � 1: An argument identical to that in the proof of Proposition 5 shows

that reversion policies can be designed in period 0 to make best responses controllable, so

that the sophisticated policies uniquely implement any competitive equilibrium. Q:E:D:

52


