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1. Introduction

This paper brings together the key ingredients of four related models of knowledge

diffusion and long-run growth that were developed in Luttmer [2007, 2012a, 2012b,

2015]. The reader is referred to the original papers for fully specified economies, and for

more context, motivation, and important references to the literature.

Suppose there are many agents with different productivities who can learn from

each other. Such social learning tends to shift the distribution of productivities to

the right. In three of the four models considered here (not Luttmer [2012a]), and in

related models elsewhere (Lucas and Moll [2014] is a prominent example), this results

in a continuum of long-run equilibrium growth rates and a continuum of stationary de-

trended productivity distributions. In particular, it can happen that any non-negative

growth rate is a possible long-run equilibrium even though nobody is making any new

discoveries. As will be illustrated with some simple examples, this occurs when the initial

distribution of productivities has a suffi ciently fat tail, so that the opportunities to learn

from others are never exhausted. A natural way to avoid such a scenario is to consider

only balanced growth paths that are accessible from initial productivity distributions

with bounded support. As will be laid out in detail, this selects the balanced growth

path with the lowest possible growth rate in Luttmer [2007, 2012b, 2015]. There is

long-run growth in these economies because agents not only learn from each other, but

also continuously make small independent discoveries. New discoveries that can spread

in a population are essential for growth to continue in the long run.

Section 2 describes some simple examples of social learning that can be analyzed

using only the most elementary tools. They are the easiest way to understand the

multiplicity of growth rates and stationary distributions that arises more generally in

large economies. The differential equations that govern these examples are degenerate

special cases of equations that appear later. Section 3 presents a basic example, inspired

by the discussion of scale effects in Staley [2011], of what happens when one combines

social learning with individual discovery in a finite economy. A closely related large

economy is introduced in Section 4, following Staley [2011] and Luttmer [2012b, 2015].

Section 5 considers the basic elements of an economy with entry and exit in which only

new entrants can learn from incumbent producers, as in Luttmer [2007]. The same

multiplicity issues arise and Section 5 recaps the solution proposed in Luttmer [2007].

Section 6 also considers entry and exit but limits the ability of entrants to learn from

incumbents in the right tail of the productivity distribution. This produces a unique

stationary distribution of productivities, as in Luttmer [2012a].
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2. Learning From Others

Useful knowledge does not seem to spread instantaneously. When some are more knowl-

edgeable than others, it may take time to find out who has the most useful knowledge.

Or it may be clear who knows more, but learning from someone who is more knowledge-

able takes time. If such learning also requires the cooperation of the more knowledgeable

individual, and if this individual faces a capacity constraint, then everyone cannot catch

up at the same time. The following describes how useful knowledge spreads with these

two alternative sources of delay. For more on some of these and related examples, see

Alvarez, Buera and Lucas [2008].

2.1 Search Delays

Consider a large population of producers with heterogeneous productivities. Write

P (t, y) for the cross-sectional distribution of productivity states at time t. Suppose

any producer can randomly select someone else in the population at an average rate β

and instantaneously adopt the technology of the randomly selected producer if it is more

productive. Producers in (−∞, y] therefore exit this interval by sampling producers in

(y,∞) at an average rate β[1− P (t, y)]. Since P (t, y) is the number of such producers,

this implies1

DtP (t, y) = −βP (t, y)[1− P (t, y)]. (1)

This is a system of logistic differential equations in t, one for each y. The unique solution

is the logistic function

P (t, y) =
1

1 +
(

1
P (0,y)

− 1
)
eβt

. (2)

The initial distribution P (0, y) matters a lot. For example, if P (0, u) = 1 for some

u ∈ (−∞,∞) then P (t, u) = 1 for all t > 0. On the other hand, if P (0, y) < 1 for all y,

then P (t, y) will forever decline. That is, the distribution of productivities will forever

move to the right.

2.1.1 Many Stationary Distributions

The economy has a large population of interacting producers, and the cross-sectional

distribution of their productivities is updated over time. After some form of de-trending,

these cross-sectional distributions may become time-invariant. With a certain abuse

of terminology, refer to those time-invariant cross-sectional distributions as stationary

1Throughout, Df(x) is the derivative of f(x) and Dyg(y, z) = ∂g(y, z)/∂y.
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distributions. Any point mass at a single point is a stationary distribution without any

de-trending: P (t, y) = P (0, y) for all y and all t > 0. But with some form of de-trending,

one can construct many more stationary distributions.

One class of stationary distributions is obtained by conjecturing that P (t, y) = F (y−
κt) for some strictly positive κ. With this conjecture, (1) implies

κDF (y) = βF (y)[1− F (y)]. (3)

This is another logistic differential equation. Without even solving it, note that

lim
y→∞

DF (y)

1− F (y)
=
β

κ
.

This means the right tail 1−F (y) will behave like the exponential e−(β/κ)y, as confirmed

by the explicit solution

F (y) =
1

1 +
(

1
F (0)
− 1
)
e−(β/κ)y

, y ∈ (−∞,∞). (4)

So the initial distribution P (0, y) = F (y) will result in a linear trend κt.

A second class of stationary distributions is obtained by conjecturing that P (t, y) =

F (ye−κt) for some positive κ. This yields

κyDF (y) = βF (y)[1− F (y)] (5)

and hence

lim
y→∞

yDF (y)

1− F (y)
=
β

κ
.

That is, F (y) will be a power law: its right tail 1 − F (y) will behave like the power

function y−(β/κ). The explicit solution is

F (y) =
1

1 +
(

1
F (1)
− 1
)
y−β/κ

, y ∈ (0,∞). (6)

Of course, the two stationary distributions (4) and (6) are linked via an exponential

change of variables. But the point is that choosing P (0, y) to be of the form (4) or (6)

determines whether growth will be linear or exponential. More generally, the right tail

properties of P (0, y) will determine the type of growth that emerges in the long-run.
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2.1.2 Relation to Extreme Value Theory

The reader will have noticed the similarity between (4) and (6) on the one hand, and,

respectively, the Gumbel F (y) = exp(−e−y) and Fréchet F (y) = exp(−y−α) distribu-

tions of extreme value theory on the other. This is not a coincidence. Suppose that

when producers i and j meet at time t, they both adopt max{yi,t, yj,t}. The yi,t and
yj,t are themselves the result of taking maxima in previous meetings, and so on. Such

a process of random meetings and taking maxima is recursive. Over time, it amounts

to taking the maximum of an exponentially growing number of random draws from the

initial distribution P (0, y).

To make this explicit, observe that the maximum of Nt independent draws {yn}Ntn=1

from some distribution F will have a distribution

Pr [max {y1, . . . , yNt} ≤ y|Nt] = [F (y)]Nt .

Suppose now that Nt follows a pure birth process with birth rate βNt. Then Nt follows

a geometric distribution,

Pr [Nt = n] = e−βt(1− e−βt)n−1, n ∈ N.

The resulting marginal distribution of the maximum of the number of draws obtained

by time t is

Pr [max {y1, . . . , yNt} ≤ y] =
∞∑
n=1

e−βt(1− e−βt)n−1[F (y)]n

=
e−βtF (y)

1− (1− e−βt)F (y)
=

1

1 +
(

1
F (y)
− 1
)
eβt

.

This is just the solution (2) of (1), with P (0, y) = F (y). Thus, if F (y) is given by (4),

then max{y1, . . . , yNt} − κt will have the same distribution. Alternatively, if F (y) is

given by (6) then max{y1, . . . , yNt}e−κt will also have that distribution. As in Kortum
[1997], exponential growth results from an exponentially growing number of draws from

a distribution that follows a power law.

As in the case of extreme-value theory, one can also consider an initial distribution

P (0, z) with bounded support and scale the ever decreasing gap between the sample

maximum and the upper bound of the support of P (0, z) to obtain a time-invariant

distribution similar to the Weibull distribution.
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2.2 Learning Delays

Delays in learning from others may also happen because not every “student” can be

learning from the same “teacher”at the same time, and learning itself takes time. Sup-

pose again we have a large population of producers with different productivities, and

assume that they can form student-teacher pairs. In any pair, the student learns what

the teacher knows after a random delay that is exponentially distributed with mean

1/β. Everyone below the mean of the productivity distribution is a student, and every-

one above the median is a teacher. The precise assignment of which student is matched

with which teacher does not matter for keeping track of the cross-sectional distribution

of productivities. See Luttmer [2015] for a market mechanism that implements this.

Let xt be the median of the cross-sectional distribution P (t, ·) at time t. For x < xt,

students in (−∞, x] exit this interval at the rate β. For y > xt, teachers in (y,∞)

succeed in lifting students out of (−∞, xt] ⊂ (−∞, y) at the same rate β. As illustrated

in Figure 1, this yields DtP (t, x) = −βP (t, x) for all x below the median and DtP (t, y) =

−β[1− P (t, y)] for all y above the median of P (t, ·).

median

p(
t,z

)

zx y

D
t
P(t,x) =  βP(t,x)

D
t
P(t,y) =  β[1P(t,y)]

teachersstudents

Figure 1 Social Learning Delays

Another way to write this piecewise linear differential equation is

DtP (t, y) = −βmin {P (t, y), 1− P (t, y)} (7)

Note the similarity between (1) and (7): the right-hand side of the differential equation

is −β times a hump-shaped function of P (t, y) ∈ [0, 1] that is equal to zero at the
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endpoints P (t, y) = 0 and P (t, y) = 1. In the case of search delays, the hump-shaped

function is a quadratic function. Here it is a tent.

Observe that the median xt can only move to the right over time. For all s ∈ [0, t]

and any y > xt, the right tail 1 − P (s, y) will grow at the rate β. It follows that the

median xt is determined by

1

2
= P (t, xt) = eβt [1− P (0, xt)] . (8)

This immediately shows the critical role of the right tail of P (0, ·) in determining the
pace at which the median xt moves to the right. As in the case of (1), the entire solution

to (7) can be computed explicitly. One can verify that it is given by

P (t, y) =


e−βtP (0, y), y ∈ (−∞, x0),
1
2

1/2
eβt[1−P (0,y)]

, y ∈ (x0, xt),

1− eβt[1− P (0, y)], y ∈ (xt,∞).

(9)

Again, the initial distribution is critical. To construct stationary distributions, it is

easiest to use the density p(t, y) = DyP (t, y) and note that it satisfies

Dtp(t, y) =

{
−βp(t, y), y ∈ (−∞, xt),
+βp(t, y), y ∈ (xt,∞).

(10)

Conjecture that p(t, y) = f(y− κt) for some positive κ and some density f with median
0. Writing z = y − κt gives

−κDf(z) =

{
−βf(z), z ∈ (−∞, 0),

+βf(z), z ∈ (0,∞).

This is a piecewise linear differential equation. The continuous solution is

f(z) = f(0)×
{
e(β/κ)z, z ∈ (−∞, 0),

e−(β/κ)z, z ∈ (0,∞).

Requiring f to integrate to 1 yields f(0) = (β/κ)/2. This defines a class of station-

ary distributions, indexed by the trend parameter κ. Figure 2 shows the time lapse

{p(n∆, z)}Nn=0 for some positive ∆ and p(0, z) equal to, respectively, a Gaussian dis-

tribution and a version of the above stationary distribution. Trivially, growth would

eventually stop completely if the initial distribution had been taken to have bounded

support. Figure 2 shows that even Gaussian initial conditions result in stagnation, while

the double exponential initial conditions result in constant growth.
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0

Gaussian initial conditions

0
z

double exponential initial conditions

Figure 2 The Effect of Initial Conditions

As in the case of search delays, there is also a class of stationary distributions of the

form P (t, y) = F (ye−κt), with densities p(t, y) = f(ye−κt)e−κt. Write z = ye−κt. Then

the differential equation (10) becomes

−κzDf(z)− κf(z) =

{
−βf(z), z ∈ (0, 1),

+βf(z), z ∈ (1,∞).

The continuous solution is

f(z) = f(1)×
{
z−1+β/κ, z ∈ (0, 1),

z−(1+β/κ), z ∈ (1,∞).

This defines a class of stationary distributions that are associated with exponential

growth. To emphasize, whether the trend is linear or exponential depends entirely on

the assumed initial conditions.

3. Meeting Delays in a Finite Economy with Individual Discoveries

Whether delay occurs because producers have to search for others who are more produc-

tive, or because one-on-one learning takes time, it is clear that there will be no long-run

growth without individual discoveries if P (0, z) has bounded support. In a finite popula-

tion, the cross-sectional distribution of productivities necessarily has bounded support.
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To introduce individual discoveries, consider an economy with only two producers,

indexed by j ∈ {1, 2}, who meet infrequently, following random delays that are ex-

ponentially distributed with mean 1/α. When these producers meet, both have the

opportunity to adopt the technology of the other. If each producer finds the other

randomly at the rate β, then the meeting rate will be α = 2β.

Write τn for the nth meeting time, and suppose that in between meeting times τn and

τn+1 > τn, the productivities of the two producers wander around, independently and

rather aimlessly, as a result of increments in two independent Brownian motions W1,t

and W2,t. More precisely, in between meetings the productivity state yj,t of producer

j ∈ {1, 2} evolves according to
dyj,t = σdWj,t, (11)

for some σ > 0. Define yt = max{y1,t, y2,t}. When they meet, the two producers compare
notes and both will end up with this productivity state. The update of this state between

meetings n and n+ 1 is therefore given by

yτn+1 − yτn = σmax
{
W1,τn+1 −W1,τn ,W2,τn+1 −W2,τn

}
. (12)

Because of the Brownian increments, this process will not get stuck. Long-run growth

will emerge. Selection is an essential ingredient: only the best of two recent histories

survives when two parties meet.

To calculate the growth rate, write Φ(x) for the standard Gaussian distribution

function and φ(x) = (2π)−1/2e−x
2/2 for its density. The distribution of the maximum

of two independent standard Gaussians is Φ2(x), which has a density 2φ(x)Φ(x). The

mean of the maximum is therefore∫ ∞
−∞

2xφ(x)Φ(x)dx =

√
2

π

∫ ∞
−∞

xe−x
2/2Φ(x)dx =

1√
π

∫ ∞
−∞

e−x
2
dx√
π

=
1√
π
.

Integration-by-parts explains the second equality. Since W1,t and W2,t are independent

Gaussian with mean zero, variance t, and independent increments,

E
[
max

{
σ
(
W1,τn+1 −W1,τn

)
, σ
(
W2,τn+1 −W2,τn

)}
|W1,τn ,W2,τn

]
= σ

√
(τn+1 − τn)/π.

The mean growth rate between two meeting dates is therefore equal to

E

[
yτn+1 − yτn
τn+1 − τn

yτn

]
=

∫ ∞
0

σ
√
τ/π

τ
× αe−ατdτ = σ

√
α. (13)

To see the second equality, change variables to t = ατ and then to s =
√

2t, so that∫ ∞
0

αe−ατdτ√
πτ

=
√
α

∫ ∞
0

e−tdt√
πt

=
√
α× 2

∫ ∞
0

e−s
2/2ds√
2π

=
√
α.
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Growth can also be measured as E[yτn+1 − yτn|yτn ]/E[τn+1− τn |yτn ] = 1
2
σ
√
α (a similar

calculation.) Jensen’s inequality explains the difference between this and (13).

The mean growth rate (13) goes to zero as σ2 goes to zero: growth vanishes as the

variance of the individual discovery processes goes to zero. Also, the productivity state

yt = max{y1,t, y2,t} is expected to have a linear trend. The exponential trend associated
with (5)-(6) does not re-appear in this economy. The individual productivity states

follow (11), and the “size”of these individual discoveries matters. Of course, one can

interpret yj,t as the log productivity of producer j.

With the meeting rate α = 2β that arises when the two producers initiate meetings

independently at the rate β, the expected growth rate (13) matches what happens in a

large economy in which producers make individual discoveries and can learn from others

at the rate β. See equations (20)-(21) and (37) below. In various guises, a formula like

(13) appears in Luttmer [2007, 2012b, 2015] and Staley [2011]. For an economy in which

only the searching producer learns, Staley [2011] gives an argument suggesting that the

growth rate will be increasing in the number of producers, but with an asymptote given

by (13). This scale effect is intuitive: the value of additional sources of information

declines if it takes time to process each and every one of them. It echoes the emphasis

in Weitzman [1998] on our limited ability to process potentially fruitful ideas.

4. Individual Discoveries and Social Learning

This section describes what happens in a large population when individuals make their

own discoveries and can learn from others after some delay. Both search delays and

learning delays are considered. The differential equations (1) and (7) have to be modified

in an important way.

4.1 Brownian Discoveries and Two Types of Delay

Consider a large population of producers, with idiosyncratic productivity states yt that

evolve according to

dyt = µdt+ σdWt (14)

in between times when producers learn from other producers. The Brownian motions

are independent across producers.

Suppose first that producers randomly sample other producers at the rate β. A

producer who samples a more productive producer can instantaneously adopt the more

productive technology. The state yt of such a producer jumps, and then continues to
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follow (14). Take some κ > µ and define

zt = yt − κt.

Let F (t, z) be the distribution of these de-trended productivity states in the time-t

population, and write f(t, z) for its density. This form of social learning adds a term to

the usual Kolmogorov forward equation for (14),

DtF (t, z) = −(µ− κ)DzF (t, z) +
1

2
σ2DzzF (t, z)− βF (t, z)[1− F (t, z)]. (15)

Intuitively, if σ = 0 and β = 0 then zt = z0 + (µ − κ)t, and differentiating F (t, z) =

F (0, z − (µ − κ)t) with respect to t gives the first term on the right-hand side of (15).

And if µ−κ = 0 and β = 0, then DtF (t, z) = 1
2
σ2Dzf(t, z) captures the fact that random

up and down movement causes the population as a whole to move downhill. The last

term on the right-hand side is familiar from (1). Equation (15) is used in Staley [2011]

and Luttmer [2012b].

Alternatively, suppose every producer below the median is assigned to a producer

above the median and learns to adopt the better after an exponentially distributed delay

with mean 1/β. Assignments are updated continuously, as circumstances change. The

analog of (7) then becomes

DtF (t, z) = −(µ− κ)DzF (t, z) +
1

2
σ2DzzF (t, z)− βmin {F (t, z), 1− F (t, z)} . (16)

The partial differential equations (15) and (16) describe the evolution of F (t, z), starting

from a given initial value F (0, z). These differential equations are examples of what are

called reaction-diffusion equations. In the standard interpretation, the second-order term
1
2
σ2DzzF (t, z) describes diffusion (in a physical sense, across space), and the last term in

both equations is the “reaction term”that gives these equations their name.2 A useful

textbook treatment can be found in Volpert, Volpert and Volpert [1994]. Luttmer [2015]

describes an economy in which (16) arises as a special case.

4.2 Stationary Distributions

The common shape of the third (reaction) term in (15) and (16) implies similarities for

their solutions. In particular, both equations will have stationary solutions F (t, z) =

2Importantly, the source of knowledge diffusion here is the “reaction term,”and not the “diffusion

term” 1
2σ

2DzzF (t, z). See Cavalli-Sforza and Feldman [1981, p. 42] for a classical interpretation of (15)

in which this diffusion term does describe knowledge diffusion, but of a single innovation, across space.
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F (z) for any κ that satisfies the lower bound

κ ≥ µ+ σ2

√
β

σ2/2
. (17)

Observe that this immediately implies that κ > µ. Social learning raises the growth rate

above what individual producers can do on their own.

To conform with convention, define R(t, z) = 1−F (t, z) and notice that the reaction-

diffusion equations (15) and (16) are of the form

DtR(t, z) = −(µ− κ)DzR(t, z) +
1

2
σ2DzzR(t, z) + βQ(R(t, z)),

where Q(R) = (1−R)R in the case of search delays, and Q(R) = min{1−R,R} in the
case of learning delays. Conjecture a stationary solution with density f(z). That is, the

right tail is R(z) = 1− F (z) and DR(z) = −f(z). The partial differential equation for

R(t, z) becomes an ordinary differential equation for R(z),

0 = −(µ− κ)DR(z) +
1

2
σ2DR(z) + βQ(R(z)).

The boundary conditions are R(∞) = 0 and R(−∞) = 1. Note that this equation is

autonomous. If R(z) is a solution, then so is R(a + z) for any constant a. Recall that

zt = yt − κt, and so this is just a change in the origin with respect to which time is

measured.

4.2.1 Phase Diagrams

As usual, a second-order differential equation for R(z) can be written as a first-order

differential equation equation for the function [R(z), f(z)],

DR(z) = −f(z), Df(z) =
−(κ− µ)f(z) + βQ(R(z))

σ2/2
.

This two-dimensional system can be examined in a phase diagram, shown in Figure

3 for both versions of Q(R). Observe that the solid trajectories satisfy the boundary

condition R(−∞) = 1, in contrast to the dotted trajectories. Both phase diagrams are

drawn under the assumption (17), and this accounts for the fact that the trajectories

shown converge to the origin. To see why this happens, note that (1 − R)R ≈ R and

min{1−R,R} = R near R = 0. So the linearized differential equation for R(z) is simply

0 ≈ −(µ− κ)DR(z) +
1

2
σ2D2R(z) + βR(z). (18)
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The solutions to this linear second-order differential equation with constant coeffi cients

are linear combinations of e−ζ±z. The coeffi cients ζ± must solve a quadratic equation

that is solved by

ζ± =
κ− µ
σ2

±

√(
κ− µ
σ2

)2

− β

σ2/2
. (19)

If β is too large, then these roots will be complex. In the phase diagrams shown in Figure

3, this will lead to trajectories that spiral around the origin. The resulting solution would

not be everywhere positive, and so no stationary distribution can be constructed in this

case. If β is positive but small enough to ensure that the ζ± are real, then κ − µ < 0

would imply that both ζ± are negative. This would result in solutions for R(z) that

explode as z →∞ rather than converge to zero. Taken together, these observations give

rise to the bound given in (17).

0 1
0

0.5

R

f

 (1R)R

 min[1R,R]

Figure 3 Phase Diagrams for Q(R) = (1−R)R and Q(R) = min{1−R,R}.

The Tail Index The solution for large z will be well approximated by a linear com-

bination of the functions e−ζ±z. Since ζ+ ≥ ζ− > 0, this implies that

−DR(z)

R(z)
≈ ζ−

for large z. That is, ζ− measures the exponential rate of decay of the right tail of the

stationary distribution. If z represents log productivity, then this says that productivity

itself, ez, follows a power law (a Pareto-like distribution) with tail index ζ−.
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4.2.2 Initial Conditions with Bounded Support

As long as κ satisfies the bound (17), and subject to the caveat that one can shift the

location of R(z), the phase diagram shown in Figure 3 pins down a unique solution

for the distribution F (z) = 1 − R(z). But there is a continuum of κ that satisfy the

bound (17). A suffi ciently strong linear trend can make the de-trended productivity

states zt = yt − κt stationary, an even stronger result than the stationarity of expected
changes in the productivity state obtained for the finite economy described in Section

3. But that two-person economy gave a definite prediction for the average growth rate:

as computed in (13) for the case µ = 0, it equals κ = µ + σ
√

2β. Here instead, as in

the social-learning-only examples introduced in Section 2, we still have many possible

growth rates and associated stationary distributions.

It turns out that only the solution associated with κ at the lower bound in (17)

can arise when the support of F (0, z) is bounded. This result is due to Kolmogorov,

Petrovskii and Piskunov [1937], who were studying (15), as was Fisher [1937], as a model

of the spread of an advantageous gene across space (the Cavalli-Sforza and Feldman

[1981] application mentioned above is directly based on this.) From hereon, refer to

the bound (17) as the KPP bound. An alternative proof of this result was given by

McKean [1976]. The subsequent related literature is extensive. Bramson [1984] obtained

important results for more general initial conditions F (0, z). Even if F (0, z) has an

unbounded support, the long-run growth rate will still be the κ implied by the KPP

bound provided the right tail of F (0, z) is suffi ciently thin. And an initial distribution

with a suffi ciently thick tail will result in a long-run growth rate κ that exceeds the KPP

bound.

When the KPP bound (17) holds with equality, the two roots ζ+ and ζ− coincide

and are equal to

ζ =

√
β

σ2/2
. (20)

The growth rate κ can then be written as

κ = µ+ σ2ζ, (21)

which matches (13). This implies that the growth rate κ is increasing in both the learning

rate β and the variance σ2. The tail index ζ is also increasing in β, but decreasing in

σ2. A low tail index corresponds to a stationary distribution with a thick tail, with very

unequal productivities. So a high β is associated with fast growth and low inequality,

while a high σ2 is associated with fast growth and high inequality.
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Continuity Obviously, as made explicit in Section 2, an initial distribution F (0, z)

that has bounded support produces no long-run growth without individual discoveries,

when σ2 = 0. When σ2 > 0, an initial distribution with bounded support selects

a stationary distribution and long-run growth rate characterized by (20)-(21). These

formulas imply that κ ↓ µ and ζ ↑ ∞ as σ2 ↓ 0. As σ2 becomes small, aggregate growth

approaches what individual producers can do on their own, on average, and the right tail

of the productivity distribution becomes very thin. These limits show that the growth

rate and right tail implications of the economy considered here are continuous in σ2.

Almost no variance in individual discoveries leads to almost no growth.

4.2.3 An Explicit Solution– The Case of Learning Delays

Some of this can be made more explicit in the case of learning delays. Let f(t, z) be the

density of F (t, z) and differentiate (16) with respect to z to obtain

Dtf(t, z) = −(µ− κ)Dzf(t, z) +
1

2
σ2Dzzf(t, z) +

{
−βf(t, z), z ∈ (−∞, xt),
+βf(t, z), z ∈ (xt,∞),

where xt is the median,
1

2
=

∫ xt

−∞
f(t, z)dz,

and the initial value f(0, z) is given. Conjecture now that there is a density f(z) so that

f(t, z) = f(z), and take its median to be zero. Then f(z) will have to satisfy

0 = −(µ− κ)Df(z) +
1

2
σ2D2f(z) +

{
−βf(z), z ∈ (−∞, 0),

+βf(z), z ∈ (0,∞).

The density will have to be positive and vanish at ±∞. This is now a second-order

ordinary differential equation that is linear on the two intervals (−∞, 0) and (0,∞).

The two equations have exponential solutions on their respective domains. On (0,∞),

we now have an exact version of (18), with solutions that are linear combinations of

e−ζ±z, with the ζ± given in (19). On (−∞, 0), the solutions are linear combinations of

e−ξ±z, where

ξ± =
κ− µ
σ2

±

√(
κ− µ
σ2

)2

+
β

σ2/2
.

Note that ξ− < 0 < ξ+, and so e
−ξ−z → 0 and e−ξ+z → ∞ as z → −∞. This means

that e−ξ+z cannot be part of the solution. Hence f(z) = f(0)e−ξ−z for all z < 0. The

solution on (0,∞) is of the form f(z) = A−e
−ζ−z + A+e

−ζ+z, for some A− and A+ that

14



remain to be determined. Forcing the density to be continuous yields f(0) = A− + A+.

Requiring the density to be differentiable at 0 yields f(0)ξ− = A−ζ− + A+ζ+. In other

words, [
1

ξ−

]
f(0) =

[
1 1

ζ− ζ+

][
A−

A+

]
.

When the KPP bound (17) holds as a strict inequality, ζ− and ζ+ will be distinct, and

this equation can be solved for a unique [A−, A+]. The resulting density is given by

f(z) = f(0)e−ξ−z on (−∞, 0] and by

f(z) = f(0)e−ξ−z × (ζ+ − ξ−)e−(ζ−−ξ−)z − (ζ− − ξ−)e−(ζ+−ξ−)z

ζ+ − ζ−

on [0,∞). Note that this is positive because ζ+ > ζ− > ξ−. The scale parameter f(0)

follows from forcing f(z) to be a probability density on (−∞,∞). As κ approaches the

KPP bound (17) from above, both ζ± converge to the ζ given in (20). Although the

coeffi cients [A−, A+] do not converge, the density does converge, to

f(z) = f(0)(1 + (ζ − ξ−)z)e−ζz.

Restricted to (0,∞), f(z) is a mixture of an exponential density and the Gamma density

obtained in Lemma 2 of Luttmer [2007]. See also page 10 of Technical Appendix II of

Luttmer [2015] (see www.luttmer.org).

5. Selection in the Aggregate

Suppose producers exit when they are not suffi ciently productive, and that only new

entrants can learn from other producers by randomly sampling the population of incum-

bent producers. This is the basic scenario proposed in Luttmer [2007]. One could call

this the putty-clay model of knowledge diffusion: new entrants can adopt what others

have learnt, whereas incumbents have to go with what they can discover on their own.3

Consider an exit barrier bt, the same for all producers, that evolves according to

bt = b0 + κt. (22)

When the state yt of some producer hits bt, this producer exits and is replaced by a new

producer. This new producer enters with a productivity state drawn at random from

3The economy described in Luttmer [2012b] is a putty-putty model with social learning by both

entrants and incumbents.
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the incumbent population of producers, a form of social learning. The drift µ and the

diffusion coeffi cient σ, as well as the trend κ of the exit barrier, are exogenously given

parameters. The only assumptions are

κ > µ, σ > 0. (23)

The initial exit threshold b0 and the initial distribution of productivity states at time

t = 0 are also given. The support of this initial distribution is contained in (b0,∞). The

population of producers is constant by construction. We want to know what happens

over time to the cross-sectional distribution of yt. It is convenient to eliminate the trend

of the exit barrier, as follows. Define

zt = yt − bt, θ = µ− κ.

Then dyt = µdt+ σdWt yields

dzt = θdt+ σdWt. (24)

Assumption (23) implies θ < 0 and the exit threshold for zt is 0 by construction.

5.1 The Cohort Distribution

Recall that φ andΦ are the standard normal density and distribution functions. Consider

a cohort of producers who all start out in some state x > 0. The initial measure of this

cohort is 1. It is well known (for example, see Harrison [1985], or the application in

Luttmer [2007]) that the density at t > 0 of survivors in this cohort is ψ(t, y|x), where

ψ(t, y|x) =
1

σ
√
t

[
φ

(
y − x− θt

σ
√
t

)
− exp

(
− θx

σ2/2

)
φ

(
y + x− θt

σ
√
t

)]
. (25)

The measure of survivors in [0, z] at time t is thus∫ z

0

ψ(t, y|x)dy = Φ

(
z − x− θt

σ
√
t

)
− exp

(
− θx

σ2/2

)
Φ

(
z + x− θt
σ
√
t

)
−
[
Φ

(
−x− θt
σ
√
t

)
− exp

(
− θx

σ2/2

)
Φ

(
x− θt
σ
√
t

)]
.

Taking the z →∞ limit gives the measure of all survivors at time t,

S(t|x) =

∫ ∞
0

ψ(t, y|x)dy = Φ

(
x+ θt

σ
√
t

)
− exp

(
− θx

σ2/2

)
Φ

(
−x+ θt

σ
√
t

)
.
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The assumption θ < 0 implies that S(t|x)→ 0 as t→∞. The probability distribution
of the state z among survivors at time t is given by

P (t, z|x) =
1

S(t|x)

∫ z

0

ψ(t, y|x)dy

=
Φ
(
z−x−θt
σ
√
t

)
− Φ

(
−x−θt
σ
√
t

)
− e−

θx
σ2/2

[
Φ
(
z+x−θt
σ
√
t

)
− Φ

(
x−θt
σ
√
t

)]
Φ
(
x+θt
σ
√
t

)
− e−

θx
σ2/2Φ

(
−x+θt
σ
√
t

)
Since Φ(−u) = 1− Φ(u), this can also be written as

P (t, z|x) =
Φ
(
x+θt
σ
√
t

)
− Φ

(
−z+x+θt
σ
√
t

)
− e−

θx
σ2/2

[
Φ
(
−x+θt
σ
√
t

)
− Φ

(
−z−x+θt
σ
√
t

)]
Φ
(
x+θt
σ
√
t

)
− e−

θx
σ2/2Φ

(
−x+θt
σ
√
t

)
and thus

1− P (t, z|x) =
Φ
(
−z+x+θt
σ
√
t

)
− e−

θx
σ2/2Φ

(
−z−x+θt
σ
√
t

)
Φ
(
x+θt
σ
√
t

)
− e−

θx
σ2/2Φ

(
−x+θt
σ
√
t

) . (26)

Since θ < 0, both the numerator and the denominator on the right-hand side of (26) go

to zero as t goes to infinity.

This cohort probability distribution among survivors will also be the actual distrib-

ution at time t in a population that starts out concentrated at x and that is maintained

by having exiting producers be replaced by new entrants with states drawn at random

from the population of survivors. This is precisely the distribution we are trying to

describe.

5.2 The Limiting Distribution

We want to examine the limit of P (t, z|x) as t becomes large. This is called the Yaglom

limit for the process zt, after Yaglom [1947]. The following calculations are adapted

from the technical appendix of Luttmer [2007].

Fix some z and x, and write h = 1/
(
σ
√
t
)
and ζ = −θ/σ2 > 0. Note that this

definition of ζ is consistent with (20)-(21). Then 1− P (t, z|x) = f(h)/g(h), where

f(h) = Φ

([
−z + x− ζ

h2

]
h

)
− e2ζxΦ

([
−z − x− ζ

h2

]
h

)
,

g(h) = Φ

([
x− ζ

h2

]
h

)
− e2ζxΦ

([
−x− ζ

h2

]
h

)
.
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Since ζ > 0, it follows that both f(h)→ 0 and g(h)→ 0 as h ↓ 0. The limit of f(h)/g(h)

can be computed using l’Hôpital’s rule, as follows. Observe first that

Df(h) =

[
−z + x+

ζ

h2

]
φ

([
−z + x− ζ

h2

]
h

)
−
[
−z − x+

ζ

h2

]
e2ζxφ

([
−z − x− ζ

h2

]
h

)
.

Note that

φ

([
−z + x− ζ

h2

]
h

)
= φ

([
x− ζ

h2

]
h

)
exp (−ζz) exp

(
z(x− z/2)h2

)
,

e2ζxφ

([
−z − x− ζ

h2

]
h

)
= φ

([
x− ζ

h2

]
h

)
exp (−ζz) exp

(
−z(x+ z/2)h2

)
.

and hence

Df(h) = φ

(
xh− ζ

h

)
exp (−ζz)×{[

−z + x+
ζ

h2

]
exp

(
z(x− z/2)h2

)
−
[
−z − x+

ζ

h2

]
exp

(
−z(x+ z/2)h2

)}
Next, observe that

Dg(h) =

([
x+

ζ

h2

])
φ

([
x− ζ

h2

]
h

)
− e2ζx

[
−x+

ζ

h2

]
φ

([
−x− ζ

h2

]
h

)
and note that

−1

2

((
x− ζ

h2

)
h

)2

= 2ζx− 1

2

((
−x− ζ

h2

)
h

)2

.

Therefore

Dg(h) = 2xφ

(
xh− ζ

h

)
.

The desired ratio of derivatives is thus

Df(h)

Dg(h)
=
e−ζz

2x

[(
z + x− ζ

h2

)
exp

(
−z(x+ z/2)h2

)
−
(
z − x− ζ

h2

)
exp

(
z(x− z/2)h2

)]
.

Clearly,

lim
h↓0

1

2x

[
(z + x) exp

(
−z(x+ z/2)h2

)
− (z − x) exp

(
z(x− z/2)h2

)]
= 1, (27)

and

lim
h↓0

1

2x

[(
− ζ

h2

)
exp

(
−z(x+ z/2)h2

)
−
(
− ζ

h2

)
exp

(
z(x− z/2)h2

)]
=

ζ

2x
lim
h↓0

[
1− exp (−z(x+ z/2)h2)

h2
+

exp (z(x− z/2)h2)− 1

h2

]
=

ζ

2x
[z(x+ z/2) + z(x− z/2)] = ζz. (28)
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The ratio of derivatives therefore converges to

lim
h↓0

Df(h)

Dg(h)
= (1 + ζz)e−ζz. (29)

By l’Hôpital’s rule, f(h)/g(h) converges to the same limit. Observe that this limit does

not depend on the initial state x. In fact, the limits (27)-(28) and thus (29) are uniform

in x on any compact X ⊂ (0,∞). In turn, this implies that the convergence of f(h)/g(h)

to (1 + ζz)e−ζz is uniform in x on any compact X ⊂ (0,∞). To summarize,

lim
t→∞

P (t, z|x) = P (z) = 1− (1 + ζz)e−ζz (30)

and the convergence is uniform in x ∈ X, for any compact X ⊂ (0,∞). The right-hand

of (30) is the Gamma distribution with density ζ2ze−ζz on (0,∞).

5.2.1 Initial Conditions with Compact Support

Now suppose the initial conditions are distributed according to a distribution F with

compact support X ⊂ (0,∞). The protocol for updating this distribution is as before:

exiting producers are replaced by new producers whose productivity is drawn at random

from the incumbent population. Let PF (t, z) denote the resulting distribution at age t.

Then

PF (t, z) =

∫
X

[∫ z
0
ψ(t, y|x)dy

]
dF (x)∫

X

[∫∞
0
ψ(t, y|x)dy

]
dF (x)

=

∫
X

P (t, z|x)w(t|x)dF (x),

where the weights w(t|x) are given by

w(t|x) =
S(t|x)∫

X
S(t|x)dF (x)

.

Clearly, these weights integrate to 1 against the distribution F . Fix some z > 0. Take

any ε > 0. The uniform convergence in (30) implies that there is a tε such that

|P (t, z|x)− P (z)| ≤ ε

for all x ∈ X and all t ≥ tε. Hence

|PF (t, z)− P (z)| ≤
∫
X

|P (t, z|x)− P (z)|w(t|x)dF (x) ≤ ε

for all t ≥ tε. We therefore obtain the limit

lim
t→∞

PF (t, z) = P (z). (31)

That is, as long as the distribution F of the initial state has compact support, the result-

ing PF (t, ·) converges in distribution to the Gamma distribution with density ζ2ze−ζz.
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5.3 Many Quasi-Stationary Distributions

A distribution Q with the property PQ(t, z) = Q(z) for all t ≥ 0 is called a quasi-

stationary distribution.4 In the environment described here, there are many quasi-

stationary distributions. Let q(z) be the probability density of a quasi-stationary distri-

bution. Such a density has to satisfy the Kolmogorov forward equation

0 = −(µ− κ)Dq(z) +
1

2
σ2D2q(z) + εq(z) (32)

for some entry rate ε > 0, with the boundary condition

0 = q(0). (33)

The last term on the right-hand side of (32) measures the flow of entrants needed to

maintain the population, which would otherwise shrink because of exit at 0. Integrating

(32) and imposing the boundary condition (33), as well as the restriction that q(z) must

be a probability density, gives

ε =
1

2
σ2Dq(0).

The right-hand side is known to be the flow across the exit boundary 0 (see Cox and

Miller [1966]) and so ε is indeed the entry rate required to maintain a constant popula-

tion.

Observe that (32) is the same equation as the approximate differential equation for

the right tail (exact in the case of learning delays) given earlier in (18), except that here ε

is not a fixed learning rate but an entry rate that has to be chosen to keep the population

constant. And the boundary condition (33) is new. Subject to these qualifications, the

implications are the essentially the same. The differential equation (32) has solutions of

the form e−ζ±z, where

ζ± =
κ− µ
σ2

±

√(
κ− µ
σ2

)2

− ε

σ2/2
. (34)

If these roots are distinct, then the boundary condition (33) implies q(z) ∝ e−ζ−z−e−ζ+z.
Complex roots can only result in real q(z) that oscillate around zero. We must therefore

require that (
κ− µ
σ2

)2

≥ ε

σ2/2
. (35)

4See Collet, Martínez, and San Martín [2013] for a monograph on the topic.

20



Suppose now that (35) holds as a strict inequality, so that the roots ζ± are real and

distinct. Normalizing q(z) to integrate to 1 gives

q(z) =
e−ζ−z − e−ζ+z

1
ζ−
− 1

ζ+

. (36)

Since ζ+ > ζ− > 0, this is positive for all positive z. As a check on the calculations,

observe that
1

2
σ2Dq(0) =

1

2
σ2 × ζ+ − ζ−

1
ζ−
− 1

ζ+

=
1

2
σ2 × ζ+ζ− = ε,

as required. With the entry rate ε at the upper bound (35), the two roots ζ± merge into

ζ = (κ−µ)/σ2. It is easy to show that the density (36) converges to the Gamma density

ζ2ze−ζz as ζ± → ζ. This Gamma density is just the Yaglom limit derived earlier in (30).

That is, the Yaglom limit is a quasi-stationary density, and it is the quasi-stationary

density with the highest possible exit rate ε.

To summarize: given a growth rate κ > µ, there is a continuum of quasi-stationary

distributions with densities defined by (34) and (36), and indexed by exit rates ε > 0

that have to satisfy (35). The quasi-stationary distribution that is the limiting dis-

tribution associated with an initial distribution with compact support is the unique

quasi-stationary distribution for which the exit rate is maximal. This is the basis for

Lemma 2 in Luttmer [2007].

5.4 What this Leaves Out

The Yaglom limit (30) and the quasi-stationary distributions (36) were constructed for

an exogenously specified exit threshold bt = b0 + κt, with κ > µ. In a fully specified

economy (such as Luttmer [2007]), these exit thresholds are endogenous and depend on

beliefs about how interest rates, wages, and the demand for differentiated goods evolve.

With the usual rational expectations assumption, beliefs are endogenous and have to

be consistent with how the economy will in fact evolve. Given an initial distribution

F (·), an equilibrium is a fixed point in a space of infinite histories of cross-sectional

distributions {PF (t, ·) : t > 0}. Characterizing the properties of such a fixed point is a
much more diffi cult problem than the one examined above.

5.4.1 Balanced Growth

Luttmer [2007] focuses on the unique balanced growth path in which the bound (35)

holds with equality, as suggested by the Yaglom limit. When (35) holds with equality,
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it defines a relation between the entry rate ε and the growth rate κ that can be written

as

κ = µ+ σ2 ×
√

ε

σ2/2
. (37)

The distribution of productivities relative to the exit threshold will then be determined

by the Yaglom limit (30). This distribution affects the incentives to enter, since potential

entrants sample from this distribution when they try to learn from incumbents. Anyone

can try to enter at a cost, and this yields a zero-profit condition that together with (37)

determines the entry rate ε and the growth rate κ. A parameter such as the subjective

discount rate of consumers will affect the zero-profit condition for entry, and changing

this parameter will affect ε and κ. For a concise exposition, see Luttmer [2014].

In an economy without entry and exit that one could construct using the results of

Section 3, there will be a unique stationary density given any growth rate κ that satisfies

the KPP bound (17). There is no entry rate to consider in such an economy, but also

no zero-profit condition for entrants. This will leave κ undetermined unless the KPP

bound is required to hold with equality.

6. The Role of the Right Tail

The multiplicity of stationary distributions in these examples is clearly related to what

happens in the right tail. This can be illustrated by considering an economy in which all

entry is at some fixed distance from the exit boundary, rather than randomly throughout

the right tail. Potential entrants can use the technology of exiting producers and improve

upon it by some small amount. The following is taken from Luttmer [2012a].

As before, the individual productivity states evolve according to dyt = µdt + σdWt

and zt = yt − bt, where bt = b0 + κt is an exit barrier and κ > µ. Suppose now that

exiting producers at bt are replaced by entrants at xt = bt + ∆, for some ∆ > 0, an

exogenous parameter. A stationary density for the de-trended state zt will then have to

satisfy the Kolmogorov forward equation

0 = −(µ− κ)Df(z) +
1

2
σ2D2f(z), z ∈ (0,∆) ∪ (∆,∞) (38)

together with the boundary conditions

f(0) = 0, f(∆−) = f(∆+). (39)

The second part of (39) equates the left and right limits of f at ∆. The scale of f(z)

is determined by requiring f(z) to be a probability density. Integrating (38) over [0,∞)
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and using the boundary conditions (39) gives

1

2
σ2Df(0) =

1

2
σ2 [Df(∆−)−Df(∆+)] .

The left-hand side is the flow of exiting producers. The discontinuity in the derivative

of the stationary density at ∆ measures the inflow of new producers at ∆. As before,

write ε for this entry-exit rate.

Recall that κ > µ. The differential equation (38) has solutions of the form e−ζ±z,

where

ζ+ = ζ =
κ− µ
σ2/2

, ζ− = 0.

In contrast to (19) and (34), the roots ζ± are now automatically real, and there is no

analog to the KPP bound (17) or entry rate bound (35). The density f(z) will be a

linear combination of e−ζ±z on (0,∆). The right tail of f(z) must vanish for large z, and

so ζ− = 0 implies that f(z) ∝ e−ζ+z on (∆,∞). Imposing the boundary conditions (39)

and forcing f(z) to integrate to 1 yields

f(z) =
1

∆
×
{

1− e−ζz, z ∈ (0,∆),

(1− e−ζ∆)e−ζ(z−∆), z ∈ (∆,∞).

The implied entry rate is ε = (σ2/2)Df(0) = (1/∆)(σ2/2)ζ = (κ − µ)/∆. The relation

between the growth rate κ > µ and the entry rate ε in this economy is not (37) but

κ = µ+ ∆× ε. (40)

Given a growth rate κ > µ, here we now have a unique stationary distribution, and

the implied entry rate ε is given by (40). This contrasts sharply with the continuum

of quasi-stationary distributions and associated entry rates obtained in (34)-(36) for

an economy in which entrants can become like randomly drawn incumbents. Luttmer

[2012a] describes a fully specified economy in which market clearing conditions and a

zero-profit condition for entrants pin down a unique balanced growth path.

This example also highlights the fact that long-run growth can emerge even if nobody

can ever learn from the most productive producers in the economy. It is enough for

potential entrants to always be able to gain a foothold in the left-tail of a productivity

distribution that is continuously shifting to the right. Fortuitous post-entry discoveries

by individual producers will put those producers in the right tail. The resulting relation

between entry and growth given in (40) is very different from what happens, see (37),

when entrants can learn from the most productive incumbents.
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7. Concluding Remarks

The knowledge diffusion models outlined here can be used as building blocks to con-

struct fully specified economies in which productivity growth contributes to consump-

tion growth. The simplest way to use these building blocks is to combine them with a

production function that exhibits decreasing returns to scale to labor. As in Luttmer

[2007], it is also easy to combine these building blocks with fixed costs, Dixit-Stiglitz

preferences, monopolistic competition, and population growth. The number of different

goods available to consumers will then grow, and this increase in variety is an inde-

pendent source of growth. The resulting model avoids the strong scale effect of Romer

[1990], in a way that is similar to Young [1998].
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