AN INQUIRY INTO THE CONDITIONS
UNDER WHICH A SINGLE ENDOWMENT
TRUST FUND WILL PROVIDE PERPETUAL
FUNDING FOR AN EXPENSE
STREAM GROWING AT A COMPOUND
ANNUAL RATE

By Preston Miller
Ron Kaatz

Research Department
Federal Reserve Bank of Minneapolis
January 26, 1970
THE PROBLEM

A single contribution trust fund is to be established. Determine the minimum combination of endowment and rate of return required to provide a specified annual income stream. The annual income must be sufficient to cover the fund managers fee and a given annual expense stream which grows at a constant annual rate. The fund and expense stream last forever (in perpetuity).

NOTATION

\(t \) = time, measured in years

\(X \) = endowment made at \(t = 0 \)

\(r \) = annual rate of return earned by the fund

\(f \) = percentage rate used to determine fund managers fee

\(F_t \) = management fee due at the end of the \(t \)th year

\(E_1 \) = expense amount due at the end of the first year

\(E_t \) = expense amount due at the end of the \(t \)th year

\(i \) = annual rate of growth of the expense stream

\(B_t \) = balance in the trust fund at the end of the \(t \)th year, after paying the expense amount (\(E_t \)) and management fee (\(F_t \))
FURTHER DESCRIPTION OF THE PROBLEM

Graphically we're dealing with a world that looks like this . . .

At $t = 0$ (the beginning of the first year) an initial endowment of X dollars is provided. At the end of the first year the fund has earned income and capital appreciation at the rate of $r\%$. The first year expense amount (E_1 dollars) and management fee (F_1 dollars) are paid leaving a fund balance of B_1 dollars. The second year begins (with balance B_1). Income and appreciation accrue at $r\%$ during the year and at $t = 2$ the annual expense (E_2) and the management fee (F_2) are paid leaving a balance of B_2. The process is repeated year after year. One of two outcomes will occur:

Outcome A: Income and appreciation of the fund are adequate to cover the expense stream and management fee in perpetuity.

Outcome B: The rate of return and/or the endowment is not adequate and eventually the fund balance will deplete to zero.

The expense fund grows at an annual rate of $i\%$. . .

$$E_t = E_1 (1 + i)^{t-1}$$
The management fee is \(f \% \) of the sum of the balance at the beginning of the year plus income and appreciation earned during the year.

\[
F_t = f \left(B_{t-1} + r \cdot B_{t-1} \right)
\]

SOLUTION

Given particular values for the management fee rate \(f \), the annual growth rate of the expense stream \(i \) and the beginning expense amount \(E_1 \), two conditions must be satisfied in order to bring about outcome A (i.e. provide perpetual funding for the expense stream).

The two conditions are:

1. \(r > \frac{f + i}{1 - f} \)

2. \(x \geq \frac{E_1}{(1 + r) \left((1 - f) - (1 + i) \right)} \)

The tables on the following pages provide minimum combinations of rate of return and endowment required to provide perpetual funding.

1/ Proof of these conditions is given in Appendix A.

2/ The computer program used to derive the tables is given in Appendix B.
TABLES OF MINIMUM ENDOWMENT PER ONE DOLLAR OF EXPENSE IN YEAR ONE

FUND MANAGERS FEE RATE = 0.2%

<table>
<thead>
<tr>
<th>Annual Rate of Return of the Fund (r%)</th>
<th>6%</th>
<th>7%</th>
<th>8%</th>
<th>9%</th>
<th>10%</th>
<th>11%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7%</td>
<td>127.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8%</td>
<td>56.05</td>
<td>127.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9%</td>
<td>35.95</td>
<td>56.12</td>
<td>127.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>26.46</td>
<td>35.97</td>
<td>56.18</td>
<td>128.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11%</td>
<td>20.93</td>
<td>26.47</td>
<td>36.00</td>
<td>56.24</td>
<td>128.53</td>
<td></td>
</tr>
<tr>
<td>12%</td>
<td>17.31</td>
<td>20.94</td>
<td>26.48</td>
<td>36.02</td>
<td>56.31</td>
<td>128.87</td>
</tr>
<tr>
<td>13%</td>
<td>14.76</td>
<td>17.32</td>
<td>20.95</td>
<td>26.50</td>
<td>36.05</td>
<td>56.37</td>
</tr>
<tr>
<td>14%</td>
<td>12.87</td>
<td>14.77</td>
<td>17.33</td>
<td>20.96</td>
<td>26.51</td>
<td>36.08</td>
</tr>
<tr>
<td>15%</td>
<td>11.40</td>
<td>12.87</td>
<td>14.77</td>
<td>17.33</td>
<td>20.96</td>
<td>26.53</td>
</tr>
</tbody>
</table>
TABLES OF MINIMUM ENDOWMENT PER ONE DOLLAR OF EXPENSE IN YEAR ONE

FUND MANAGERS. FEE RATE = 0.3%

<table>
<thead>
<tr>
<th>Annual Rate of Return of the Fund (r%)</th>
<th>6%</th>
<th>7%</th>
<th>8%</th>
<th>9%</th>
<th>10%</th>
<th>11%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7%</td>
<td>147.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8%</td>
<td></td>
<td>59.67</td>
<td>147.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9%</td>
<td></td>
<td>37.41</td>
<td>59.77</td>
<td>148.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>27.25</td>
<td>37.45</td>
<td>59.88</td>
<td>149.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11%</td>
<td>21.43</td>
<td>27.27</td>
<td>37.50</td>
<td>59.99</td>
<td>149.93</td>
<td></td>
</tr>
<tr>
<td>12%</td>
<td>17.66</td>
<td>21.44</td>
<td>27.29</td>
<td>37.54</td>
<td>60.10</td>
<td>150.60</td>
</tr>
<tr>
<td>13%</td>
<td>15.01</td>
<td>17.66</td>
<td>21.45</td>
<td>27.31</td>
<td>37.58</td>
<td>60.20</td>
</tr>
<tr>
<td>14%</td>
<td>13.06</td>
<td>15.02</td>
<td>17.67</td>
<td>21.47</td>
<td>27.34</td>
<td>37.62</td>
</tr>
<tr>
<td>15%</td>
<td>11.55</td>
<td>13.06</td>
<td>15.03</td>
<td>17.68</td>
<td>21.48</td>
<td>27.36</td>
</tr>
</tbody>
</table>
TABLES OF MINIMUM ENDOWMENT PER ONE DOLLAR OF EXPENSE IN YEAR ONE

FUND MANAGERS FEE RATE = 0.4%

<table>
<thead>
<tr>
<th>Annual Rate of Return of the Fund (r%)</th>
<th>5%</th>
<th>6%</th>
<th>7%</th>
<th>8%</th>
<th>9%</th>
<th>10%</th>
<th>11%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6%</td>
<td>7%</td>
<td>8%</td>
<td>9%</td>
<td>10%</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td></td>
<td></td>
<td>174.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6%</td>
<td></td>
<td></td>
<td></td>
<td>63.78</td>
<td>176.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7%</td>
<td></td>
<td></td>
<td>39.00</td>
<td>63.94</td>
<td>177.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8%</td>
<td></td>
<td></td>
<td></td>
<td>28.09</td>
<td>39.06</td>
<td>64.10</td>
<td>178.57</td>
</tr>
<tr>
<td>9%</td>
<td></td>
<td></td>
<td></td>
<td>21.95</td>
<td>28.12</td>
<td>39.12</td>
<td>64.27</td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td>18.01</td>
<td>21.97</td>
<td>28.15</td>
<td>39.18</td>
</tr>
<tr>
<td>11%</td>
<td></td>
<td></td>
<td></td>
<td>15.27</td>
<td>18.02</td>
<td>21.99</td>
<td>28.18</td>
</tr>
<tr>
<td>12%</td>
<td></td>
<td></td>
<td></td>
<td>13.26</td>
<td>15.28</td>
<td>18.04</td>
<td>22.01</td>
</tr>
<tr>
<td>13%</td>
<td></td>
<td></td>
<td></td>
<td>11.71</td>
<td>13.26</td>
<td>15.29</td>
<td>18.05</td>
</tr>
</tbody>
</table>
TABLES OF MINIMUM ENDOWMENT PER ONE DOLLAR OF EXPENSE IN YEAR ONE

FUND MANAGERS FEE RATE = 0.5%

<table>
<thead>
<tr>
<th>Annual Rate of Return of the Fund (r%)</th>
<th>6%</th>
<th>7%</th>
<th>8%</th>
<th>9%</th>
<th>10%</th>
<th>11%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>215.05</td>
<td></td>
</tr>
<tr>
<td>8%</td>
<td>68.54</td>
<td>217.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9%</td>
<td>40.73</td>
<td>68.73</td>
<td>219.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>28.99</td>
<td>40.82</td>
<td>68.97</td>
<td>222.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11%</td>
<td>22.50</td>
<td>29.03</td>
<td>40.90</td>
<td>69.20</td>
<td>224.72</td>
<td></td>
</tr>
<tr>
<td>12%</td>
<td>18.38</td>
<td>22.52</td>
<td>29.07</td>
<td>40.98</td>
<td>69.44</td>
<td>227.27</td>
</tr>
<tr>
<td>13%</td>
<td>15.54</td>
<td>18.40</td>
<td>22.55</td>
<td>29.11</td>
<td>41.07</td>
<td>69.69</td>
</tr>
<tr>
<td>14%</td>
<td>13.46</td>
<td>15.55</td>
<td>18.42</td>
<td>22.57</td>
<td>29.15</td>
<td>41.15</td>
</tr>
<tr>
<td>15%</td>
<td>11.87</td>
<td>13.47</td>
<td>15.56</td>
<td>18.43</td>
<td>22.60</td>
<td>29.20</td>
</tr>
</tbody>
</table>
TABLES OF MINIMUM ENDOWMENT PER ONE DOLLAR OF EXPENSE IN YEAR ONE

FUND MANAGERS FEE RATE = 0.6%

<table>
<thead>
<tr>
<th>Annual Rate of Growth of Expense Stream (i%)</th>
<th>6%</th>
<th>7%</th>
<th>8%</th>
<th>9%</th>
<th>10%</th>
<th>11%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Rate of Return of the Fund (r%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7%</td>
<td>279.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8%</td>
<td>73.96</td>
<td>284.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9%</td>
<td>42.63</td>
<td>74.29</td>
<td>289.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>29.94</td>
<td>42.74</td>
<td>74.63</td>
<td>294.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11%</td>
<td>23.07</td>
<td>29.99</td>
<td>42.84</td>
<td>74.96</td>
<td>299.40</td>
<td></td>
</tr>
<tr>
<td>12%</td>
<td>18.77</td>
<td>23.11</td>
<td>30.05</td>
<td>42.96</td>
<td>75.30</td>
<td>304.88</td>
</tr>
<tr>
<td>13%</td>
<td>15.82</td>
<td>18.79</td>
<td>23.14</td>
<td>30.10</td>
<td>43.07</td>
<td>75.64</td>
</tr>
<tr>
<td>14%</td>
<td>13.67</td>
<td>15.83</td>
<td>18.81</td>
<td>23.17</td>
<td>30.16</td>
<td>43.18</td>
</tr>
<tr>
<td>15%</td>
<td>12.03</td>
<td>13.68</td>
<td>15.85</td>
<td>18.83</td>
<td>23.20</td>
<td>30.21</td>
</tr>
</tbody>
</table>
APPENDIX A

THE MATHEMATICS

The Process

(P-1) \(B_o = X \)
(P-2) \(E_t = E_1 (1+i) \) for \(t = 1, 2, ... \)
(P-3) \(B_t = B_{t-1} (1+r)(1-f) - E_t \) for \(t = 1, 2, ... \)

Conditions on the Variables and Parameters

(C-1) \(t = 0, 1, 2, 3, ... \)
(C-2) \(r \geq 0 \)
(C-3) \(0 \leq f < 1 \)
(C-4) \(0 \leq E_1 < \infty \)
(C-5) \(i \geq 0 \)
(C-6) \(0 < X < \infty \)

Theorem 1: Given (P-1), ..., (P-3) and (C-1), ..., (C-6) the fund balance at the end of the \(t \)th year is...

\[
B_t = X[(1+r)(1-f)]^t - E_1 \sum_{k=1}^{t} [(1+r)(1-f)]^{(t-k)}(1+i)^{(k-1)}
\]

for \(t = 1, 2, ... \)

Proof (by induction):

A. By (P-1), (P-3), and inspection it is true for \(t = 1 \)

B. Assume it is true for \(t = M \).

Then by assumption...

\[
B_M = X[(1+r)(1-f)]^M - E_1 \sum_{k=1}^{M} [(1+r)(1-f)]^{(M-k)}(1+i)^{(k-1)}
\]

by (P-3)
by (P-3)

\[B_{M+1} = B_M (1+r)(1-f) - E_{M+1} \]

by (P-2)

\[B_{M+1} = B_M (1+r)(1-f) - E_1 (1+i)^M \]

by the induction assumption...

\[B_{M+1} = X [(1+r)(1-f)]^{M+1} (1+r)(1-f) - E_1 \sum_{k=1}^{M} [(1+r)(1-f)]^{M-k}(1+i)^{(k-1)} \]

\[- E_1 (1+i)^M \]

\[B_{M+1} = X [(1+r)(1-f)]^{M+1} - E_1 \sum_{k=1}^{M} [(1+r)(1-f)]^{M-k}(1+i)^{(k-1)} \]

\[+ (1+i)^M \sum_{k=1}^{M} [(1+r)(1-f)]^{M-k}(1+i)^{(k-1)} \]

\[= X [(1+r)(1-f)]^{M+1} - E_1 \sum_{k=1}^{M} [(1+r)(1-f)]^{M-k}(1+i)^{(k-1)} \]

\[= X [(1+r)(1-f)]^{M+1} - E_1 \sum_{k=1}^{M} [(1+r)(1-f)]^{M-k}(1+i)^{(k-1)} \quad q.e.d. \]

\[B_{M+1} = X [(1+r)(1-f)]^{M+1} - E_1 \sum_{k=1}^{M} [(1+r)(1-f)]^{M-k}(1+i)^{(k-1)} \]

\[\text{Theorem 2: Outcome A will occur if and only if } B_t > 0 \quad \forall t = 1, 2, \ldots \]

\[\text{Proof:} \]

1. \textbf{Necessary.} Outcome A asserts \(B_t (1+r)(1-f) \geq E_{t+1} \quad \forall t = 1, 2, \ldots \)

 Where \(0 \leq E_{t+1} \quad \text{by (C-4) and (P-2)} \)

 \(0 \leq f < 1 \quad \text{by (C-3)} \)

 \(0 \leq r \quad \text{by (C-2)} \)

 So \(B_t \geq 0 \).

 if \(B_t = 0 \) then \(E_{t+1} = -E_t < 0 \)

 So Outcome A = \(B_t > 0 \quad t = 1, 2, \ldots \)

2. \textbf{Sufficient.} to show that

 \(B_p > 0 \quad \forall p = B_q (1+r)(1-f) \geq E_{q+1} \quad \forall q \)

 is equivalent to showing

 \(B_q (1+r)(1-f) < E_{q+1} \) for some \(q \Rightarrow B_p < 0 \) for some \(p \).
from (P-3)
\[B_{q+1} = B_q (1+r)(1-f) - E_{q+1} \]

therefore \[B_q (1+r)(1-f) < E_{q+1}
\rightarrow B_{q+1} < 0 \]
q.e.d.

By rearranging the equation of Theorem 1
\[B_t = [(1+r)(1-f)]^t X - \frac{E_1 t}{1+i} \sum_{k=1}^{\infty} \left[\frac{1+i}{(l+r)(1-f)} \right]^k \]

Theorem 3: Let the vector \(\langle f, E_1, i \rangle \) have Domain \(\mathcal{D} \) given by (C-3), (C-4), (C-5).

For any \(D = \langle f, E_1, i \rangle \in \mathcal{D} \)

\[B_t > 0 \quad \forall \quad t=1,2,3,... \]

\[\begin{cases} \text{r >} & \text{Condition 1} \\ \frac{f+i}{1-f} & \text{and} \\ \frac{E_1}{(1+r)(1-f)-(1+i)} & \text{Condition 2} \end{cases} \]

Proof:

Necessary
\[A) \quad \frac{1+i}{(1+r)(1-f)} > 0 \text{ by (C-2), (C-3), (C-5).} \]

Given \(D \in \mathcal{D} \), \(B_t > 0 \quad \forall \quad t=1,2,... \)

\[B) \quad X > \frac{E_1}{1+i} \sum_{k=1}^{\infty} \left[\frac{1+i}{(l+r)(1-f)} \right]^k \quad \forall \quad t=1,2,... \]

A, B, and (C-6) \(\Rightarrow \)

\[C) \lim_{t \to \infty} \sum_{k=1}^{t} \left[\frac{1+i}{(l+r)(1-f)} \right]^k < \infty \]

\[C = -1 < \frac{1+i}{(1+r)(1-f)} < 1 \]

\[\therefore \text{since A holds by assumption,} \]

\[C = \frac{1+i}{(1+r)(1-f)} < 1 \]

or equivalently \(r > \frac{f+i}{1-f} \) Condition 1

Condition 1 \(\Rightarrow \lim_{t \to \infty} \sum_{k=1}^{t} \left[\frac{1+i}{(l+r)(1-f)} \right]^k = \frac{1+i}{(l+r)(1-f)-(1+i)} \)
Since this series is strictly monotonically increasing, it follows that the limit of the series is its least upper bound:

\[\mathcal{V}_{t=1,2,3} \sum_{k=1}^{t} \left[\frac{1+i}{(1+r)(1-f)} \right]^k < \frac{1+i}{(1+r)(1-f)-(1+i)} \]

and \(\forall y; y < \frac{1+i}{(1+r)(1-f)-(1+i)} \Rightarrow \exists t^* \geq 1 \exists \)

\[\mathcal{V}_t \geq t^* \sum_{k=1}^{t} \left[\frac{1+i}{(1+r)(1-f)} \right]^k > y \]

Note: \(\{ B_t > 0 \mathcal{V}_{t=1,2,\ldots} \Rightarrow \text{Condition 1} \} \) has been shown for any \(X \)

\[\therefore B_t > 0 \mathcal{V}_{t=1,2,\ldots} \text{ and Condition 1} \Rightarrow \]

\[X \geq \frac{E_1}{1+i} \lim_{t \to \infty} \sum_{k=1}^{t} \left[\frac{1+i}{(1+r)(1-f)} \right]^k \]

or equivalently

\[X \geq \frac{E_1}{(1+r)(1-f)-(1+i)} \text{ Condition 2} \]

Sufficiency

Suppose \(r > \frac{f+i}{1-f} \) and \(X = \frac{E_1}{(1+r)(1-f)-(1+i)} \)

then \((1+r)(1-f) > 1 \),

\[0 < \frac{1+i}{(1+r)(1-f)} < 1, \]

\[\lim_{t \to \infty} \sum_{k=1}^{t} \left[\frac{1+i}{(1+r)(1-f)} \right]^k = \frac{1+i}{(1+r)(1-f)-(1+i)} \]

\[\therefore B_t = [(1+r)(1-f)]^t \left[X - \frac{E_1}{1+i} \sum_{k=1}^{t} \left[\frac{1+i}{(1+r)(1-f)} \right]^k \right] > 0 \quad \forall t=1,2,\ldots \quad \text{q.e.d.} \]

Corollary

\[B_t > 0 \mathcal{V}_{t=1,2,3,\ldots} \lim_{t \to \infty} B_t = 0 \]
Proof:

\[B_t > 0 \quad \forall t \geq 1,2,3,\ldots \quad \Rightarrow r > \frac{f+i}{1-f} \quad \text{and} \quad \exists \text{by Theorem } 3 \quad x \geq \frac{E_1}{(1+r)(1-f)-(1+i)} \]

Case 1

Suppose \(r > \frac{f+i}{1-f} \), \(x > \frac{E_1}{(1+r)(1-f)-(1+i)} \), and let \(\Delta = \frac{E_1}{(1+r)(1-f)-(1+i)} > 0 \),

then \(\lim_{t \to \infty} B_t = \lim_{t \to \infty} \left[(1+r)(1-f) \right]^t \lim_{t \to \infty} \left[\frac{E_1}{1+i} \sum_{k=1}^{t} \left(\frac{1+i}{(1+r)(1-f)} \right)^k \right] = \infty \cdot \Delta = \infty \)

Case 2

Suppose \(r > \frac{f+i}{1-f} \) and \(x \geq \frac{E_1}{(1+r)(1-f)-(1+i)} \), then

\[B_t = (1+r)(1-f)^t \left[\frac{E_1}{(1+r)(1-f)-(1+i)} - \frac{E_1}{1+i} \sum_{k=1}^{t} \left(\frac{1+i}{(1+r)(1-f)} \right)^k \right] \]

\[\frac{B_t}{E_1} = \left[\frac{(1+r)(1-f)}{(1+r)(1-f)-(1+i)} \right]^t - \sum_{k=1}^{t} \frac{(1+i)^{k-1} [(1+r)(1-f)]^{t-k}}{k} \]

let \(b = (1+r)(1-f) \)

\(\quad d = (1+i) \)

then \(b > d > 1 \) by (C-5) and Condition 1

\[\frac{B_t}{E_1} = \left(\frac{b^t}{b-d} \right) - \sum_{k=1}^{t} d^{k-1} b^{-k} \]

\[\frac{B_t}{E_1} = \left(\frac{b^t}{b-d} \right) - \sum_{k=1}^{t} d^{k-1} b^{-k} \]

let \(C = \frac{b-d}{E_1} > 0 \), then \(C B_t = b^t \left[1 - \sum_{k=1}^{t} \left(\frac{d}{b} \right)^{k-1} + \sum_{k=1}^{t} \left(\frac{d}{b} \right)^k \right] \)

\[C B_t = b^t \left[1 + \left(\frac{d}{b} \right)^t - 1 \right] \]

\[C B_t = d^t \]
or \(B_t = \frac{d^t}{C} \)

\[\therefore \lim_{t \to \infty} B_t = \lim_{t \to \infty} \frac{d^t}{C} = \infty. \] \(\theta \in \mathbb{R} \)
LIST
3 E1=1
5 FOR H = 1 TO 5
10 F = (H+1)*(.001)
12 PRINT "FEE % = " F
13 WRITE (1,14)
14 FORMAT(11X,".06",".07",".08",".09",".10",".11")
15 FOR Y = 1 TO 11
20 R = .04 + Y*(.01)
25 FOR Z = 1 TO 6
30 T = .05 + Z*(.01)
35 IF R > (I+F)/(1-F) THEN 45
40 X(Z) = 0
42 GO TO 50
45 X(Z) = E1/((1+R)*(1-F)-(1+I))
46 X(Z) = INT(X(Z)*100+.5)/100
50 NEXT Z
55 WRITE (1,60) R,X(1),X(2),X(3),X(4),X(5),X(6)
60 FORMAT(F5.2,F6(4X,F7.2))
65 NEXT Y
70 PRINT
71 PRINT
72 PRINT
75 NEXT H
80 END