Discussion of *Imperfect Risk-Sharing and the Business Cycle*

by David Berger, Luigi Bocola and Alessandro Dovis

Dirk Krueger

University of Pennsylvania, CEPR, and NBER

August 2019
The Paper: Big Picture

- Question: Does household inequality matter for business cycles?
 - More Precisely (in this paper): Does imperfect consumption risk sharing amplify business cycle volatility?

- Why could imperfect risk sharing matter for business cycles?
 - Activates precautionary saving behavior.
 - Precautionary saving varies over the cycle (e.g. higher unemployment fears in recessions).
 - Changes aggregate consumption demand (and in NK models, output) dynamics over the cycle. How much?

- This paper: uses theory (RA representation), measurement (CEX micro data), counterfactual experiment to give answer: 20%
The Paper in a Nutshell

- Continuum of households. Time discount factor β and
 \[\frac{c^{1-\sigma}}{1-\sigma} - \frac{l^{1+\psi}}{1+\psi} \]

- Labor endowment $e(v_t)$ subject to idiosyncratic shocks (history v^t)
- Aggregate production subject to TFP shock z_t (history z^t)
 \[C(z^t) = z_t L(z^t) \]

- Financial markets: At least a one period bond b, potentially many
 other assets (possibly subject to trading) frictions.
- NK nominal rigidities. Largely abstracted from in the discussion.
The Paper: Three Key Contributions

• Theory: Take an equilibrium of economy with micro heterogeneity
 \((c(z^t, v^t), l(z^t, v^t))\). Then associated \((C(z^t), L(z^t))\) form equilibrium
 of economy with preference shocks, i.e. satisfy

\[
 z_t = \frac{\omega(z^t) L(z^t) \psi}{C(z^t) \sigma}
\]

\[
 \frac{1}{R(z^t)} = \beta \max_{v^t} \sum_{z_{t+1}} \pi(z^{t+1} | z^t) \beta(z^{t+1}, v^t) \left(\frac{C(z^{t+1})}{C(z^t)} \right)^{-\sigma}
\]

where the preference shocks (not really) satisfy

\[
 \beta(z^{t+1}, v^t) = \sum_{v^{t+1}} \pi(v^{t+1} | v^t, z^{t+1}) \left(\frac{c(z^{t+1}, v^{t+1})/C(z^{t+1})}{c(z^t, v^t)/C(z^t)} \right)^{-\sigma}
\]

\[
 \omega(z^t) = \left[\sum_{v^t} \pi(v^t | z^t) \left(\frac{c(z^t, v^t)}{C(z^t)} \right)^{-\frac{\sigma}{\psi}} e(v^t)^{\frac{1+\psi}{\psi}} \right]^{-\psi}
\]

Content of micro heterogeneity is summarized in \(\beta(z^{t+1}, v^t), \omega(z^t)\)
The Paper: Three Key Contributions

- **Empirical:** Estimating the preference shock process
 - The $\beta(z^{t+1}, v^t), \omega(z^t)$ are highly model-dependent and model-endogenous! Progress?
 - Alternative: estimate them directly from micro data (CEX). Need data on household consumption shares $\frac{c(z^t, v^t)}{C(z^t)}$
 - Theory: stochastic process for $\frac{c(z^t, v^t)}{C(z^t)}$ key for impact of micro heterogeneity on business cycles. Thus only interested in micro models that get this process right empirically anyway.
 - Cf. sufficient statistics approach in fiscal policy (Chetty, Saez)

- **Quantitative:** compute contribution of imperfect risk sharing to business cycle fluctuations.
 - Feed $\{\beta(z^{t+1}, v^t), \omega(z^t)\}$ process into model with representative household and measure fluctuations. Do the same in model with perfect risk sharing ($\beta(z^{t+1}, v^t) \equiv 1$).
 - Key quantitative finding: 20% of Great Recession accounted for by imperfect risk sharing.
Preference Shocks and Fluctuations: A Simple Example

- $t = 0, 1$
- No initial heterogeneity, no risk in $t = 0$ (i.e. $z_0 = e_0 = 1$).
- $t = 1$: we have $z \in \{z_b, z_g\}$ with $\pi = 0.5$. Also $v \in \{u, m\}$ with $\pi = 0.5$ and

 $$e(z, v) = \begin{cases}
 1 - \varepsilon(z) & \text{if } v = v_u \\
 1 + \varepsilon(z) & \text{if } v = v_m
 \end{cases}$$
- $\sigma = 1$ (log-utility) and $\psi = 1$ (quadratic cost of labor).
- Three economies
 1. Representative agent (RA) economy: $\varepsilon(z) \equiv 0$.
 2. Complete markets economy (CM): $\varepsilon(z) > 0$, but Arrow securities that pay contingent on v realizations. Perfect risk sharing.
 3. Incomplete markets economy (SIM). Only risk free bond in zero net supply (imperfect risk sharing).
Preference Shocks and Equilibrium Allocations

Table: Preference Shocks and Equilibrium Allocations

<table>
<thead>
<tr>
<th>Statistic</th>
<th>RA</th>
<th>CM</th>
<th>SIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega(z))</td>
<td>1</td>
<td>(\frac{2}{(1-\varepsilon(z))^2+(1+\varepsilon(z))^2} < 1)</td>
<td>1</td>
</tr>
<tr>
<td>(\beta(z))</td>
<td>1</td>
<td>1</td>
<td>(\frac{1}{1-\sigma^2_\varepsilon(z)} > 1)</td>
</tr>
<tr>
<td>(L_0 = C_0)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(L_1(z))</td>
<td>1</td>
<td>(\omega(z)^{-\frac{1}{2}} > 1)</td>
<td>1</td>
</tr>
<tr>
<td>(C_1(z), Y_1(z))</td>
<td>(z)</td>
<td>(z\omega(z)^{-\frac{1}{2}} > z)</td>
<td>(z)</td>
</tr>
<tr>
<td>(\frac{Y_1(z_b)}{Y_1(z_g)})</td>
<td>(\frac{z_b}{z_g})</td>
<td>(\left(\frac{\omega(z_g)}{\omega(z_b)} \right)^{0.5} \frac{z_b}{z_g})</td>
<td>(\frac{z_b}{z_g})</td>
</tr>
<tr>
<td>(q = \frac{1}{R})</td>
<td>(\frac{\beta}{2} \sum z \frac{1}{z})</td>
<td>(\frac{\beta}{2} \sum z \frac{1}{z\omega(z)^{-\frac{1}{2}}} < q^{RA})</td>
<td>(\frac{\beta}{2} \sum z \frac{1}{z(1-\sigma^2_\varepsilon(z))} > q^{RA})</td>
</tr>
</tbody>
</table>

- Labor supply reacts to idiosyncratic productivity shocks. CM v.s SIM? Wealth effect \((\sigma = 1) \).
- Full consumption insurance: \(\beta^{CM}(z) = 1 \). Imperfect insurance in SIM represented as patience: \(\beta^{SIM}(z) > 1 \). Drives down \(R^{SIM} \).
- Business cycles: More volatile in CM than in RA if \(\sigma^2_\varepsilon(z_b) > \sigma^2_\varepsilon(z_g) \).
- No difference in SIM vs. RA? No link in SIM from \(\beta^{CM}(z) \) to \(Y \) since no capital \(R \) adjusts flexibly to \(\beta^{CM}(z) \). NK elements break this.

Dirk Krueger (Penn,NBER,CEPR) Imperfect Risk Sharing and Cycles August 2019 7 / 11
Labor supply reacts to idiosyncratic productivity shocks. CM v.s SIM? Wealth effect (\(\sigma = 1\)). \(L_1^{CM}(z) > 1\) needs \(\omega_1^{CM}(z) < 1\).
Preference Shocks and Equilibrium Allocations

<table>
<thead>
<tr>
<th>Statistic</th>
<th>RA</th>
<th>CM</th>
<th>SIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega(z)$</td>
<td>1</td>
<td>$\frac{2}{(1-\varepsilon(z))^2+(1+\varepsilon(z))^2} < 1$</td>
<td>1</td>
</tr>
<tr>
<td>$\beta(z)$</td>
<td>1</td>
<td>$\frac{1}{1-\sigma_\varepsilon^2(z)} > 1$</td>
<td></td>
</tr>
<tr>
<td>$L_0 = C_0$</td>
<td>1</td>
<td>$\omega(z)^{-\frac{1}{2}} > 1$</td>
<td></td>
</tr>
<tr>
<td>$L_1(z)$</td>
<td>1</td>
<td>$z\omega(z)^{-\frac{1}{2}} > z$</td>
<td></td>
</tr>
<tr>
<td>$C_1(z), Y_1(z)$</td>
<td>z</td>
<td></td>
<td>z</td>
</tr>
<tr>
<td>$\frac{Y_1(z_b)}{Y_1(z_g)}$</td>
<td>$\frac{z_b}{z_g}$</td>
<td>$\left(\frac{\omega(z_g)}{\omega(z_b)}\right)^{0.5} \frac{z_b}{z_g}$</td>
<td>$\frac{z_b}{z_g}$</td>
</tr>
<tr>
<td>$q = \frac{1}{R}$</td>
<td>$\frac{\beta}{2} \sum z \frac{1}{z}$</td>
<td>$\frac{\beta}{2} \sum z \frac{1}{z\omega(z)^{-\frac{1}{2}} < q^{RA}}$</td>
<td>$\frac{\beta}{2} \sum z \frac{1}{z(1-\sigma_\varepsilon^2(z))} > q^{RA}$</td>
</tr>
</tbody>
</table>

- Labor supply reacts to idiosyncratic productivity shocks. CM v.s SIM? Wealth effect ($\sigma = 1$). $L_1^{CM}(z) > 1$ needs $\omega_1^{CM}(z) < 1$.
- Full consumption insurance: $\beta^{CM}(z) = 1$. Imperfect insurance in SIM represented as patience: $\beta^{SIM}(z) > 1$. Drives down R^{SIM}.
Preference Shocks and Equilibrium Allocations

<table>
<thead>
<tr>
<th>Statistic</th>
<th>RA</th>
<th>CM</th>
<th>SIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega(z)$</td>
<td>$\frac{2}{(1-\varepsilon(z))^2+(1+\varepsilon(z))^2} < 1$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\beta(z)$</td>
<td>1</td>
<td>1</td>
<td>$\frac{1}{1-\sigma^2_\varepsilon(z)} > 1$</td>
</tr>
<tr>
<td>$L_0 = C_0$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$L_1(z)$</td>
<td>1</td>
<td>$\omega(z)^{-\frac{1}{2}} > 1$</td>
<td>1</td>
</tr>
<tr>
<td>$C_1(z), Y_1(z)$</td>
<td>z</td>
<td>$z\omega(z)^{-\frac{1}{2}} > z$</td>
<td>z</td>
</tr>
<tr>
<td>$\frac{Y_1(z_b)}{Y_1(z_g)}$</td>
<td>$\frac{z_b}{z_g}$</td>
<td>$\left(\frac{\omega(z_g)}{\omega(z_b)}\right)^{0.5}$</td>
<td>$\frac{z_b}{z_g}$</td>
</tr>
<tr>
<td>$q = \frac{1}{R}$</td>
<td>$\frac{\beta}{2} \sum z \frac{1}{z}$</td>
<td>$\frac{\beta}{2} \sum z \frac{1}{z\omega(z)^{-\frac{1}{2}}} < q^{RA}$</td>
<td>$\frac{\beta}{2} \sum z \frac{1}{z(1-\sigma^2_\varepsilon(z))} > q^{RA}$</td>
</tr>
</tbody>
</table>

- Labor supply reacts to idiosyncratic productivity shocks. CM v.s SIM? Wealth effect ($\sigma = 1$). $L_1^{CM}(z) > 1$ needs $\omega_1^{CM}(z) < 1$.
- Full consumption insurance: $\beta^{CM}(z) = 1$. Imperfect insurance in SIM represented as patience: $\beta^{SIM}(z) > 1$. Drives down R^{SIM}.
- Business cycles: More volatile in CM than in RA if $\sigma^2_\varepsilon(z_b) > \sigma^2_\varepsilon(z_g)$.
Preference Shocks and Equilibrium Allocations

<table>
<thead>
<tr>
<th>Statistic</th>
<th>RA</th>
<th>CM</th>
<th>SIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega(z)$</td>
<td>1</td>
<td>$\frac{2}{(1-\varepsilon(z))^2+(1+\varepsilon(z))^2} < 1$</td>
<td>1</td>
</tr>
<tr>
<td>$\beta(z)$</td>
<td>1</td>
<td>$\frac{1}{1-\sigma_\varepsilon^2(z)} > 1$</td>
<td></td>
</tr>
<tr>
<td>$L_0 = C_0$</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$L_1(z)$</td>
<td>1</td>
<td>$\omega(z)^{-\frac{1}{2}} > 1$</td>
<td></td>
</tr>
<tr>
<td>$C_1(z), Y_1(z)$</td>
<td>z</td>
<td>$z\omega(z)^{-\frac{1}{2}} > z$</td>
<td>z</td>
</tr>
<tr>
<td>$\frac{Y_1(z_b)}{Y_1(z_g)}$</td>
<td>$\frac{z_b}{z_g}$</td>
<td>$\left(\frac{\omega(z_g)}{\omega(z_b)}\right)^{0.5} \frac{z_b}{z_g}$</td>
<td>$\frac{z_b}{z_g}$</td>
</tr>
<tr>
<td>$q = \frac{1}{R}$</td>
<td>$\frac{\beta}{2} \sum_z \frac{1}{z}$</td>
<td>$\frac{\beta}{2} \sum_z \frac{1}{z\omega(z)^{-\frac{1}{2}}} < q^{RA}$</td>
<td>$\frac{\beta}{2} \sum_z \frac{1}{z(1-\sigma_\varepsilon^2(z))} > q^{RA}$</td>
</tr>
</tbody>
</table>

- Labor supply reacts to idiosyncratic productivity shocks. CM v.s SIM? Wealth effect ($\sigma = 1$). $L_1^{CM}(z) > 1$ needs $\omega_1^{CM}(z) < 1$.
- Full consumption insurance: $\beta^{CM}(z) = 1$. Imperfect insurance in SIM represented as patience: $\beta^{SIM}(z) > 1$. Drives down R^{SIM}.
- Business cycles: More volatile in CM than in RA if $\sigma_\varepsilon^2(z_b) > \sigma_\varepsilon^2(z_g)$
- No difference in SIM vs. RA? No link in SIM from $\beta(z)$ to Y since no capital R adjusts flexibly to $\beta(z)$. NK elements break this.
Birds Eye Comment (1): How Robust is the Result

• Applies to large class of HANK models.

• Applies to models with capital accumulation (under certain assumptions).

• Can handle fairly general asset market structure.

• Likely does not generalize to discount factor or asset return heterogeneity. Important because literature has used these to get wealth heterogeneity right.

• Also needs interiority of labor supply. Rules out extensive margin, unemployment.
Birds Eye Comment (2): How Useful is the Result

- **Big Positives**
 - Powerful tool to measure answer to an important specific quantitative question.
 - Useful diagnostic tool: what aspects of (models of) household heterogeneity really matter for amplification of business cycles?

- **Limitations**
 - Theoretical result is not a substitute for actually solving the heterogeneous agent model unless model $\beta(z), \omega(z)$ fits data perfectly.
 - Cannot be used for counterfactual policy analysis (stimulus, anyone?) since the preference shocks $\{\beta(z_{t+1}, v^t), \omega(z^t)\}$ are not invariant to policy.
Conclusions

- Great paper!
 - A powerful general theoretical representation result.
 - Careful measurement using micro data.
 - Uses the theory and measurement to give quantitative answer to important question of policy relevance.
THANK YOU