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Abstract

The government budget constraint ties the market value of government debt to the expected

present discounted value of fiscal surpluses. Bond investors fail to impose this no-arbitrage

restriction in the U.S., resulting in a government debt valuation puzzle. Both cyclical and long-

run dynamics of tax revenues and government spending make the surplus claim risky. In a

realistic asset pricing model, this risk in surpluses creates a wedge of 2.5 times GDP between

the value of debt and that of the surplus claim, and implies an expected return on the debt

portfolio that far exceeds the observed yield on Treasuries.
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1 Introduction

The U.S. Treasury is the largest borrower in the world. At the end of 2019, outstanding federal

government debt held by the public was valued at $17 trillion. It doubled after the Great Financial

Crisis to 78.4% of U.S. GDP. Before the GFC, there was widespread concern that the U.S. had

embarked on an unsustainable fiscal path (see, e.g., Rubin, Orszag, and Sinai, 2004). Yet, recently,

some economists have argued that the U.S. has ample debt capacity to fund additional spending

by rolling over its debt because interest rates are below GDP growth rates (Blanchard, 2019). As

a case in point, the massive spending increase in response to the covid-19 pandemic generated a

deficit of 15% of GDP in 2020 and increased the debt to 100% of GDP. The $5 trillion debt increase

has met with little resistance from bond markets so far.

The central idea in this paper is to price the entire portfolio of outstanding Treasury debt,

rather than individual bond securities. In the absence of bubbles, the market value of outstand-

ing debt should equal the present discounted value of current and future primary surpluses. By

the same logic, the expected return on the debt portfolio has to reflect the risk profile of primary

surpluses, consistent with the risk compensation in stocks and bonds. That is why this is a valua-

tion equation, not an accounting identity. We find evidence of mispricing. The value of the bond

portfolio exceeds the value of the surplus claim, a gap we label the government debt valuation

puzzle, and that yields on the Treasury bond portfolio are lower than the relevant “interest rate”

bond investors ought to be earning, the government debt risk premium puzzle.

To explain why, we use a stock pricing analogy. The price of a stock is the expected present

discount value of future dividends. Risk-free interest rates are below dividend growth rates, yet

the price of the stock is finite. Since the stock’s dividend growth is pro-cyclical, its cash flows

are low when the investor’s marginal utility is high. The relevant “interest rate” for the stock

contains a risk premium because of the risk exposure of its cash flow. Analogously, a portfolio

strategy that buys all new Treasury issues and receives all Treasury coupon and principal pay-

ments has as its cash flow the primary surplus of the federal government. Primary surpluses are

strongly pro-cyclical just like stock dividends, as shown in Figure 1. Spending by the federal gov-

ernment increases in recessions, while the progressive nature of the tax system produces sharply

pro-cyclical revenue. In recessions, when marginal utility is high, surpluses are negative and net

bond issuance is high. The Treasury portfolio cash flows have substantial business cycle risk. As

explained below, tax revenue and spending also have substantial long-run risk due to cointegra-

tion with GDP. Taken together, the relevant “interest rate” for surpluses contains a substantial risk

premium reflecting both short- and long-run risk exposures.

The value of the surplus claim is obtained as the difference between the value of a claim to

future federal tax revenues, Pτ
t , and the value of a claim to future federal spending excluding debt
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Figure 1: U.S. Government Surplus
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The figure plots the U.S. federal government primary surplus as a fraction of GDP. The construction of the primary surplus is detailed
in Appendix D.1. The data source is NIPA Table 3.2. The sample period is from 1947 to 2019.

service, Pg
t . The pro-cyclicality of tax revenues makes the tax revenue claim risky; Pτ

t is low. The

counter-cyclicality makes the spending claim safer; Pg
t is high. The value of the surplus claim,

PS
t = Pτ

t − Pg
t , is low.

Our contribution is to quantitatively evaluate the magnitude of the value of the surplus claim.

We first do so in the familiar consumption-based asset pricing model. We then deploy a more

realistic dynamic asset pricing model that matches a rich set of asset pricing moments for stocks

and bonds. In both models, we find a large negative value for the surplus claim. The latter

averages -2 times GDP in our main model. The market value of outstanding debt has averaged

38.23% of GDP over the same period. The wedge is almost 2.5 times GDP on average over our

sample, and has widened dramatically in the last twenty years. The wedge quantifies the bond

valuation puzzle. At the same time, the model predicts Treasury portfolio returns that are at least

3.00% too high –the government debt risk premium puzzle.

The surplus value measures the fiscal capacity of the U.S. government, that is, how much debt

it can issue. As first pointed out by Bohn (1995), the surplus value can be decomposed as the

present value of future surpluses, discounted using the risk-free term structure of interest rates,

plus the covariance of future surpluses with the stochastic discount factor. Without aggregate

risk, there is no covariance term and the fiscal capacity of the government is unbounded when

the average risk-free rate is lower than the average growth rate of the economy. Much of the

literature, including recent work, has ignored these covariance terms. However, in the presence of

priced aggregate risk, the covariance term will typically bound the government’s fiscal capacity

because surpluses move with the business cycle in the short run and are co-integrated with output

in the long run. Our work is the first to estimate and quantify the covariance term in a standard
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consumption CAPM and in a more realistic dynamic asset pricing model. When we insist that our

model be consistent with moments of asset prices, we find that fiscal capacity is much lower than

conventionally thought, even lower than the market value of outstanding debt.

The above argument relies on a realistic model of quantities and prices of risk. When mod-

eling the quantity of risk in fiscal cash flows, adequately capturing the dynamics of government

spending and tax revenue is crucial. We model the growth rates of tax revenues-to-GDP and

government spending-to-GDP in a VAR alongside macro-economic and financial variables. This

structure allows us to capture the cyclical properties of fiscal cash-flows. A second important fea-

ture of fiscal cash flows is that tax revenues and spending are co-integrated with GDP, so that

revenues, spending, and GDP adjust when revenue-to-GDP or spending-to-GDP are away from

their long-run relationship. This imposes a form of long-run automatic stabilization. With coin-

tegration, GDP innovations permanently alter future surpluses. A deep recession not only raises

current government spending and lowers current tax revenue as a fraction of GDP, it also lowers

future spending and raises future revenue as a fraction of future GDP. Both the spending and the

revenue claims are exposed to the same long-run risk as GDP. We include the debt/GDP ratio in

the VAR since it might contain relevant information about future surpluses.

When modeling the price of risk, we posit a state-of-the-art stochastic discount factor (SDF)

model. Rather than committing to a specific utility function, we use a flexible SDF that accurately

prices the nominal and real term structure of Treasury bond yields. The model also closely matches

stock prices and generates an equity risk premium. The SDF model’s rich implications for the term

structure of risk allow it to adequately price short- and long-run risk to spending and tax revenue.

Combining features from both quantities and prices of risk, the long-run discount rates on

claims to tax revenues, spending, and GDP must all be equal. A claim to GDP is akin to an

unlevered equity claim. In any reasonable asset pricing model with a large permanent component

in the SDF, the unlevered equity risk premium exceeds the yield on a long-term government bond

(Alvarez and Jermann, 2005; Hansen and Scheinkman, 2009; Borovička, Hansen, and Scheinkman,

2016; Backus, Boyarchenko, and Chernov, 2018). The discount rate for revenues and spending is

high. Because of the dynamic government budget constraint, the relevant “interest rate” on the

portfolio of government debt must also be high. Treasury investors seem willing to purchase

government debt at low yields. The historical return on the U.S. government debt portfolio is

only 1.16% in excess of the T-bill rate.

An important consequence is that the risk-free rate cannot be the right discount rate for future

surpluses and hence for government debt. While one can roll over a constant dollar amount at the

risk-free rate, one cannot roll over a cash flow stream that is pro-cyclical and co-integrated with

GDP at the risk-free rate. The latter cash flow stream carries a substantial risk premium. Yet, it is
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commonplace in the literature to discount government surpluses at the one-period risk-free rate.

In the last part of the paper, we study several potential resolutions of the government bond

valuation and risk premium puzzles. First, the valuation gap can be interpreted as a violation of

the transversality condition (TVC) in the Treasury market, due to a rational bubble. However, in

the presence of substantial long-run output risk premia, i.e., in models that resolve the equity risk

premium, the TVC is likely to hold, as we explain. In addition, rational bubbles in government

debt imply rational bubbles in any long-lived asset whose cash flows are cointegrated with aggre-

gate output. Rational bubbles are unlikely in the presence of long-lived investors unless there are

severe limits to arbitrage.

Second, the U.S. Treasury earns convenience yield on the debt it issues, making Treasury yields

lower than the risk-free rate. Convenience yields generate an additional source of revenue which

increase the surplus. Furthermore, convenience yields are counter-cyclical and hence reduce the

riskiness of the surplus stream. Despite their theoretical appeal, we find that convenience yields

only help modestly to explain the puzzle, because accounting for convenience yields also increases

risk-free rates. Higher surpluses due to convenience are discounted at a higher rate only to result

in a similar valuation for the surplus claim. The convenience yields needed to close the wedge are

6% per year, an order of magnitude larger than traditional estimates of convenience yield. Our

work is the first to quantify the effect of convenience yields on the fiscal capacity of the U.S.

Third, we explore the possibility of a future large fiscal correction that is absent from our sam-

ple, but present in the minds of investors who value the surplus claim. We back out from the mar-

ket value of debt what annual probability investor assign to such an austerity event. We obtain

a probability of radical austerity of 24% on average which rises to 36% at the end of the sample.

The high probability we infer belies the nature of a peso event, and is not consistent with ratio-

nal expectations. Repeating the analysis in the model with convenience yields results in similar

austerity probabilities.

Fourth, allowing fiscal shocks that are orthogonal to stock, bond prices and output growth to

be priced helps to close the gap but implausibly requires that the stand-in investor experiences

lower marginal utility growth when spending increases during recessions. This also results in

implausibly large maximum Sharpe ratios, and it worsens the government risk premium puzzle.

Finally, missing government assets are too small to resolve the puzzle. Future liabilities from So-

cial Security, Medicare, and Medicaid obligations make our estimates of the wedge conservative.

As a result, we conclude that the aggregate value of U.S. Treasurys is hard to square with reason-

able estimates of future surpluses, especially in the past three decades, possibly because investors

have been too optimistic about future surpluses.
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Related Literature There is a growing literature that seeks to understand the riskiness of bonds

as an asset class and relate it to other macro-economic risks in the economy (see Baele, Bekaert,

and Inghelbrecht, 2010; David and Veronesi, 2013; Duffee, 2018; Campbell, Pflueger, and Viceira,

2020; Du, Pflueger, and Schreger, 2020; van Binsbergen, 2020). Our paper contributes to this lit-

erature by adding novel no-arbitrage restrictions on the aggregate Treasury portfolio, in addition

to the no-arbitrage restrictions on individual bonds. The asset pricing model combines a vector

auto-regression model for the state variables as in Campbell (1990); Campbell et al. (1993); Camp-

bell (1996) with a no-arbitrage model for the (SDF) as in Duffie and Kan (1996); Dai and Singleton

(2000); Ang and Piazzesi (2003). Lustig, Van Nieuwerburgh, and Verdelhan (2013) study the prop-

erties of the price-dividend ratio of a claim to aggregate consumption, the wealth-consumption

ratio, and Gupta and Van Nieuwerburgh (2019) evaluate the performance of private equity funds

in similar settings.

Our paper contributes to the literature on the fiscal capacity of the government (see D’Erasmo,

Mendoza, and Zhang, 2016, for a recent review). One strand derives general time-series restric-

tions on the government revenue and spending processes that enforce the government’s inter-

temporal budget constraint (Hamilton and Flavin, 1985; Trehan and Walsh, 1988, 1991; Hansen,

Roberds, and Sargent, 1991; Bohn, 2007). Many authors in this literature use the risk-free rate as

the discount rate for surpluses. They test the joint null hypothesis that the budget constraint holds

and that the debt is risk-free so that surpluses can be priced off the risk-free yield curve. Our paper

argues that risk premia on the surplus claim and hence on the government bond portfolio are not

zero. It infers large risk premia on government debt when no-arbitrage restrictions on bond and

stock markets are imposed.

Bohn (1995) was the first to study fiscal capacity in a world with aggregate risk and to in-

troduce the covariance terms between the intertemporal marginal rate of substitution and the

surplus. Our main new qualitative insight is that the overall government bond portfolio is a risky

asset since the government must issues debt in high marginal utility states of the world. In other

words, the covariance term is negative, reducing fiscal capacity. The main new quantitative result

is that this covariance is large. Fiscal capacity is much smaller due to this covariance term. The

presence of a large amount of permanent risk in output, and by virtue of cointegration, in tax

revenues, spending, and debt, is crucial for the quantitative result. There is a parallel literature in

asset pricing which tests the present value equation for stocks and other long-lived assets, starting

with the seminal work by Shiller (1981); LeRoy and Porter (1981); Campbell and Shiller (1988).

That work starts from the definition of a stock return to derive a testable relationship between

stock prices and expected discounted dividend growth rates. Similarly, we start from the defini-

tion of the government budget constraint and derive a testable relationship between the market
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value of the government debt portfolio and expected discounted future surpluses. However, we

insist that the discount rates for surpluses be consistent with those for other securities. While

the prices of stocks appear excessively volatile relative to their fundamentals, government debt is

fundamentally different: its valuation does not seem volatile enough relative to the fundamentals.

There is a large literature on rational bubbles in asset markets, starting with the seminal work

by Samuelson (1958); Diamond (1965); Blanchard and Watson (1982). One interpretation of our

puzzle is as a violation of the transversality condition in Treasury markets, consistent with the

existence of a rational bubble. In economies with aggregate risk, however, the transversality con-

dition for debt is likely to be satisfied, even if the risk-free interest rate is below the growth rate

of the economy, since the relevant discount rate for debt in the far future contains a risk premium

that reflects the long-run risk in output. When debt and output are cointegrated, debt inherits that

output risk. While Bohn (1995) recognized this conceptually, we show that the risk premium on

debt is actually large enough to make the TVC hold; the economy is dynamically efficient. In re-

cent work, Barro (2020) shows that the TVC for government debt holds in a calibrated model with

disaster risk. Sustaining rational bubbles requires severe limits to arbitrage (Shleifer and Vishny,

1997). Giglio, Maggiori, and Stroebel (2016) devise a model-free test for bubbles in housing mar-

kets. Our test is not model-free, but the results hold in a large class of models where permanent

shocks to the pricing kernel are an important driver of risk premia.

Our work connects to the large literature on the convenience yield of U.S. government bonds

(Longstaff, 2004; Krishnamurthy and Vissing-Jorgensen, 2012; Fleckenstein, Longstaff, and Lustig,

2014; Nagel, 2016; Van Binsbergen, Diamond, and Grotteria, 2019). Greenwood, Hanson, and Stein

(2015) study the government debt’s optimal maturity in the presence of such a premium, and Du,

Im, and Schreger (2018); Jiang, Krishnamurthy, and Lustig (2021a); Koijen and Yogo (2019) study

this premium in international finance. In recent work, Brunnermeier, Merkel, and Sannikov (2020)

and Reis (2021) analyze models in which government debt helps agents smooth idiosyncratic in-

come risk, and earns convenience yields as a result. We tackle the question of how expensive a

portfolio of all Treasuries is relative to the underlying collateral, a claim to surpluses. Using the

standard convenience yield estimates of Krishnamurthy and Vissing-Jorgensen (2012), we find

that our puzzle remains. Even when we use the larger convenience yield estimates due to Jiang

et al. (2021a); Koijen and Yogo (2019), we cannot close the gap.

Our approach is to estimate processes for government spending and revenue growth from the

data, and to study its implications for the riskiness of the government debt portfolio in a model

with realistic asset prices. A large literature following Barro (1979) and Lucas and Stokey (1983)

analyzes optimal fiscal policy in settings with distortionary taxation. Karantounias (2018) and

Bhandari, Evans, Golosov, Sargent, et al. (2017) bring a richer asset pricing model to this literature
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and study the optimal maturity structure of government debt.

We contribute to a recent literature at the intersection of asset pricing and public finance. Cher-

nov, Schmid, and Schneider (2020); Pallara and Renne (2019) argue that higher CDS premia for U.S.

Treasuries since the financial crisis are related to the underlying fiscal fundamentals. Our puzzle

holds in the presence of default: the value of defaultable sovereign debt is still be backed by fu-

ture surpluses. Liu, Schmid, and Yaron (2020) argue that increasing safe asset supply can be risky

as more government debt increases corporate default risk premia despite providing more conve-

nience. Croce, Nguyen, Raymond, and Schmid (2019) study cross-sectional differences in firms’

exposure to government debt. Corhay, Kind, Kung, and Morales (2018) study how quantitative

easing affects inflation by changing the maturity structure of government debt.

The rest of the paper is organized as follows. Section 2 presents theoretical results. Section

3 describes the data. Section 4 illustrates the valuation puzzle in a simple consumption CAPM.

Section 5 sets up and solves the quantitative model. Section 6 documents the government risk

premium puzzle in that model. Section 7 discusses potential resolutions of the puzzle. Section 8

concludes. The appendix presents proofs of the propositions, and details of model derivation and

estimation.

2 Theoretical Results

We derive two theoretical results which are general in that they rely on the absence of arbitrage

opportunities and two weak assumptions on government cash flows. The first assumption con-

cerns the long run: tax revenues and government spending are cointegrated with GDP; they share

a stochastic trend. The second assumption concerns the short-run: spending is counter-cyclical

spending and tax revenues are pro-cyclical.

2.1 Valuation of Government Debt

Let Gt denote nominal government spending before interest expenses on the debt, Tt denote nom-

inal government tax revenue, and St = Tt − Gt denote the nominal primary surplus. Let P$
t (h)

denote the price at time t of a nominal zero-coupon bond that pays $1 at time t + h, where h is

the maturity. There exists a multi-period stochastic discount factor (SDF) M$
t,t+h = ∏h

k=0 M$
t+k is

the product of the adjacent one-period SDFs, M$
t+k. By no arbitrage, bond prices satisfy P$

t (h) =

Et

[
M$

t,t+h

]
= Et

[
M$

t+1P$
t+1(h − 1)

]
. By convention P$

t (0) = M$
t,t = M$

t = 1 and M$
t,t+1 = M$

t+1.

The government bond portfolio is stripped into zero-coupon bond positions Q$
t (h), where Q$

t (h)

denotes the outstanding face value at time t of the government bond payments due at time t + h.

Q$
t−1(1) is the total amount of debt payments that is due today. The outstanding debt reflects all
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past bond issuance decisions, i.e., all past primary deficits. Let Dt denote the nominal market

value of the outstanding government debt portfolio.

Proposition 1 (Value Equivalence). In the absence of arbitrage opportunities and subject to a

transversality condition, the market value of the outstanding government debt portfolio equals

the expected present discounted value of current and future primary surpluses:

Dt ≡
H

∑
h=0

P$
t (h)Q

$
t−1(h + 1) = Et

[
∞

∑
j=0

M$
t,t+j(Tt+j − Gt+j)

]
≡ Pτ

t − Pg
t , (1)

where the cum-dividend value of the tax claim and value of the spending claim are defined as:

Pτ
t = Et

[
∞

∑
j=0

M$
t,t+jTt+j

]
, Pg

t = Et

[
∞

∑
j=0

M$
t,t+jGt+j

]
.

The proof is given in Appendix A. The proof relies only on the existence of a SDF, i.e., the

absence of arbitrage opportunities, not on the uniqueness of the SDF, i.e., complete markets. It im-

poses a transversality condition (TVC) that rules out a government debt bubble: Et [Mt,t+TDt+T] →
0 as T → ∞. The market value of debt is the difference between the value of a claim to tax revenue

and the value of a claim to government spending. Imposing the TVC rules out rational bubbles.

We return to possible violations of the TVC in Section 7.1.

Even if the transversality condition holds, this valuation equation is not an accounting identity.

The bond portfolio can be mispriced, just like a stock can be over- or under-valued. Equation (1)

requires that the same SDF which prices individual government bonds and stocks also prices a

claim to surpluses, i.e., the entire bond portfolio. Even when the SDF correctly prices individual

bonds and stocks, this entire bond portfolio could be mis-priced, for example, because agents have

misspecified beliefs about future surpluses. This equation is an accounting identity only when we

do not impose any restrictions on discount rates.

When the government runs a deficit in a future date and state, it will need to issue new bonds

to the investing public. If those dates and states are associated with a high value of the SDF for the

representative bond investor, that debt issuance occurs at the “wrong” time. The representative

investors who buys all debt issues and participates in all redemptions need to be induced by low

prices (high yields) to absorb that new debt. To see this, we can rewrite the intertemporal budget

constraint, with finite horizon T, as:

Dt =
T

∑
j=0

P$
t (j)Et

[
St+j

]
+

T

∑
j=0

Covt

(
M$

t,t+j, Tt+j

)
−

T

∑
j=0

Covt

(
M$

t,t+j, Gt+j

)
+ Et [Mt,t+TDt+T] (2)

The first term on the right-hand side is the present discounted value of all expected future sur-
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pluses, using the term structure of risk-free bond prices. It is the PDV for a risk-neutral investor.

If the SDF is constant, this is the only term on the right-hand side. Then, the government’s fiscal

capacity is constrained by its ability to generate current and future surpluses. The second and

third terms encode the riskiness of the government debt portfolio, and arise in the presence of

time-varying discount rates. If tax revenues tend to be high when times are good (Mt,t+j is low),

then the second term is negative. If government spending tends to be high when times are bad

(Mt,t+j is high), then the third term is positive. If both are true, then the difference between the

two covariance terms is negative. The covariance terms lower the government’s fiscal capacity.

Put differently, the risk-neutral present-value of future surpluses will need to be higher by an

amount equal to the absolute value of the covariance terms to support a given, positive amount

of government debt Dt. The covariance terms were first highlighted by Bohn (1995). Our paper

is the first to quantify these terms in a realistic model of risk and return that is not subject to the

equity risk premium puzzle. The covariance terms not only have the hypothesized sign, but they

are also quantitatively important.

Discounting future surpluses using the term structure of risk-free interest rates, as typically

done in the literature, is inappropriate. In fact, as T → ∞, the first term will not converge if the

average risk-free rate is lower than the average growth rate. Even when the debt is risk-free, the

last term will not converge to zero if we discount at the risk-free rate.

The valuation equation (1) holds ex-ante both in nominal and in real terms.1 The same valu-

ation equation holds when we allow for sovereign default: the valuation of government debt is

still backed by the value of future surpluses. Bond prices adjust to reflect the possibility of default.

The proof is given in Appendix A.2

2.2 Discount Rates

As tax revenue and government spending may have very different cyclicality properties, their

discount rates can be different and have first-order impact on the present value of the government

surplus in (1).

We define the holding period returns on the bond portfolio, the tax claim, and the spending

1Ex-post, the government can erode the real value of outstanding debt by creating surprise inflation. Hilscher, Raviv,
and Reis (2021) shows that this channel is not very powerful in practice. See Hall and Sargent (2011); Berndt, Lustig,
and Yeltekin (2012) for a decomposition of the forces driving the U.S. debt/GDP ratio including inflation. Cochrane
(2019a,b) explores the connection between inflation and the value of government debt without imposing no arbitrage
restrictions.

2Bond prices satisfy P$
t (h) = Et

[
M$

t,t+h(1 − χt,t+h)
]
, where χt,t+h is an indicator variable that is one when the

government defaults between t and t + h. We assume full default to keep the proof simple, but this is without loss of
generality. Chernov et al. (2020) and Pallara and Renne (2019) study the response of CDS spreads to news about the
fiscal surplus.
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claim as:

Rd
t+1 =

∑∞
h=1 P$

t+1(h − 1)Q$
t (h)

∑∞
h=1 P$

t (h)Q
$
t (h)

, Rτ
t+1 =

Pτ
t+1

Pτ
t − Tt

, Rg
t+1 =

Pg
t+1

Pg
t − Gt

.

The expected returns on these three assets are connected as follows:

Proposition 2 (Risk Premium Equivalence). Under the same assumptions of Proposition 1, we

have:

Et

[
Rd

t+1

]
=

Pτ
t − Tt

Dt − St
Et [Rτ

t+1]−
Pg

t − Gt

Dt − St
Et

[
Rg

t+1

]
. (3)

where Dt − St = (Pτ
t − Tt)− (Pg

t − Gt).

The proof is given in Appendix A. The average discount rate on government debt is equal

to the average discount rate on government assets, a claim to primary surpluses. Since the pri-

mary surpluses are tax revenues minus government spending, the discount rate on government

debt equals the difference between the discount rates of tax revenues and government spending,

appropriately weighted.

By subtracting the risk-free rate on both sides, we can express the relationship in terms of

expected excess returns, or risk premia. To develop intuition, consider two simple scenarios. First,

if the expected returns on tax revenue and spending claims are identical, then the risk premium

on government debt is given by:

Et

[
Rd

t+1 − R f
t

]
= Et

[
Rτ

t+1 − R f
t

]
= Et

[
Rg

t+1 − R f
t

]
. (4)

Second, if the tax revenue claim is riskier than the spending claim and earns a higher risk pre-

mium, then the risk premium on government debt exceeds that on the revenue and the spending

claims:

Et

[
Rd

t+1 − R f
t

]
> Et

[
Rτ

t+1 − R f
t

]
> Et

[
Rg

t+1 − R f
t

]
. (5)

We show below that the revenue claim is indeed riskier than the spending claim. The risk

premium equivalence then implies that the portfolio of government debt ought to carry a positive

risk premium. The right discount rate for government debt, given by (3), cannot be the risk-free

rate.

To understand the riskiness of the debt claim, we study the short-run and long-run risk prop-

erties of the T- and G-claim. To do so, we study spending and revenue strips. A spending strip is

a claim that pays off Gt+j at time t + j and nothing at other times. A revenue strip similarly pays
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off Tt+j. Let Rg,j
t,t+j and Rτ,j

t,t+j be the holding period returns on these strips.

At the short end of the maturity spectrum (business cycle frequencies j of 1—3 years), the risk

premium on the revenue strip exceeds that on the corresponding-maturity spending strip:

Et

[
Rτ,j

t,t+j − R f
t

]
> Et

[
Rg,j

t,t+j − R f
t

]
. (6)

The reason is that tax revenue is highly pro-cyclical while government spending is counter-cyclical.

Since government debt investors have a long position in a riskier claim and a short position in a

safer claim, the short end contributes to a positive risk premium on the government debt portfolio.

At the long end of the strip curve, we study the limit of the strip returns as j → ∞. We denote

log returns by lowercase letters. We distinguish two cases in terms of the time series properties of

government spending and tax revenues.

Proposition 3 (Long-run Discount Rates). If the log of government spending G and of tax revenue

T is stationary in levels (after removing a deterministic time trend), then the long-run expected log

return on spending and revenue strips equals the yield on a long-term government bond as the

payoff date approaches maturity.

lim
j→∞

Et

[
rg,j

t,t+j

]
= y$

t (∞), lim
j→∞

Et

[
rτ,j

t,t+j

]
= y$

t (∞),

where y$
t (∞) is the yield at time t on a nominal government bond of maturity +∞.

The proof is given in Appendix A. The result builds on work by Alvarez and Jermann (2005);

Hansen and Scheinkman (2009); Borovička et al. (2016); Backus et al. (2018), among others. Un-

der this assumption on cash flows, the proposition implies that long-run T- and G-strips can be

discounted off the term-structure for zero coupon bonds. In this case, the long-run discount rate

on government debt is the yield on a long-term risk-free bond. However, the underlying assump-

tion on cash flows is highly problematic. If there are no permanent shocks to T or G, then it is

imperative to assume that GDP and aggregate consumption are not subject to permanent shocks

either. But if there are no permanent shocks to marginal utility, then the long bond is the riskiest

asset in economy. That clearly is counterfactual (Alvarez and Jermann, 2005). The gap between

the long-run discount rates on strips and the long bond yield is governed by the riskiness of the

permanent component of the pricing kernel. Explaining the high returns on risky assets such as

stocks requires permanent risk to be large, not zero (e.g., Borovička et al., 2016). Next we consider

the more realistic case of permanent shocks to output and cointegration between spending (tax

revenue) and GDP.

Corollary 1. If the log of government spending/output ratio G/GDP (revenue/output ratio T/GDP)
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is stationary in levels, then the long-run expected log excess return on long-dated spending (rev-

enue) strips equals that on GDP strips:

lim
j→∞

Et

[
rg,j

t,t+j

]
= lim

j→∞
Et

[
rτ,j

t,t+j

]
= Et

[
rGDP,∞

t,t+n

]
≫ y$

t (∞). (7)

We show below that government spending and tax revenue are cointegrated with GDP in the

data; their ratio is stationary in levels. Under this realistic assumption on cash flows, expected

returns on long-dated spending and tax revenue strips tend to the expected return on a long-

dated GDP strip. A claim to GDP can be thought of as an unlevered equity claim. In the presence

of permanent shocks to marginal utility, the long-run discount rate on GDP (unlevered equity) is

much higher than the yield on long-term risk-free bonds. This corollary implies that government

bond investors have a net long position in a claim that is exposed to the same long-run risk as the

GDP claim. It follows immediately from this discount rate argument that the value of the long-run

spending minus revenue strips will be smaller than what would be obtained when discounting

with long-term bond yields.

Combining the properties of short-run and long-run discount rates, theory predicts that

Et

[
Rd

t+1 − R f
t

]
> Et

[
Rτ

t+1 − R f
t

]
> Et

[
Rg

t+1 − R f
t

]
. (8)

To summarize, a model of asset prices will have to confront two forces that push up the equilib-

rium returns on government debt. First, there is short-run cash flow risk that pushes the expected

return on the revenue claim above the expected return on the spending claim. Second, the long-

run discount rates are higher than the yield on a long-maturity bond, because of the long-run

cash flow risk in the spending and revenue claims equals that of long-run GDP risk. Government

debt investors have a net long position in a claim that is exposed to the same long-run cash flow

risk as GDP. The excess returns on government debt will tend to be much higher than those on

long-maturity bonds. As a result of these two forces, government debt investors earn a larger risk

premium on the long end than what they pay on the short end, which increases the fair expected

return on the debt claim.

The low observed interest rate, or equivalently the high observed value, of the government

debt portfolio represents a challenge to standard dynamic asset pricing models in light of the

fundamental risk of the cash flows backing that debt. Our paper is the first to highlight this

tension.

An important implication of (3) is that, if the government wants to reduce the riskiness and

hence expected return on government debt, it would need to make the tax claim safer. This would
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require counter-cyclical tax revenues and hence tax rates. The latter is strongly at odds with the

behavior of observed fiscal policy (Jiang, Lustig, Van Nieuwerburgh, and Xiaolan, 2020).

3 Data

We conduct our analysis at annual frequency, which is a better frequency to study cash flow risk

in fiscal revenues and outlays. We focus on the period from 1947 until 2019.

Nominal federal tax revenue and government spending before interest expense are from the

Bureau of Economic Analysis, as is nominal GDP. Constant-maturity Treasury yields are from

Fred. Stock price and dividend data are from CRSP; we use the CRSP value-weighted total market

to represent the U.S. stock market. Dividends are seasonally adjusted. Details are provided in

Appendix D.

As was shown in Figure 1, the surpluses expressed as a fraction of GDP are strongly pro-

cyclical. Non-discretionary spending, including Social Security, Medicare and Medicaid, food

stamps, and unemployment benefits, accounts for at least two-thirds of government spending.

Many of these transfer payments rise automatically in recessions. In addition, the government

often temporarily increases transfer spending in recessions, e.g., the extension of unemployment

benefits in 2009 and 2020. On the revenue side, the progressive nature of the tax code generates

strongly pro-cyclical variation in tax revenue as a fraction of GDP.

We construct the market value and the total returns of the marketable government bond portfo-

lio using cusip-level data from the CRSP Treasuries Monthly Series. At the end of each period, we

multiply the nominal price of each cusip by its total amount outstanding (normalized by the face

value), and sum across all issuances (cusips). We exclude non-marketable debt which is mostly

held in intra-governmental accounts.3 Marketable debt includes the Treasury holdings of the Fed-

eral Reserve Bank. Hence, we choose not to consolidate the Fed and the Treasury, which would

add reserves and subtract the Fed’s Treasury holdings on the left hand side of (1). Doing so would

mainly tilt the duration of the bond portfolio.

Following Hall and Sargent (2011) and extending their sample, we construct zero coupon bond

(strip) positions from all coupon-bearing Treasury bonds (all cusips) issued in the past and out-

standing in the current period. This is done separately for nominal and real bonds. Since zero-

coupon bond prices are also observable, we can construct the left-hand side of eq. (1) as the market

3The largest holders of non-marketable debt are the Social Security Administration (SSA) and the federal govern-
ment’s defined benefit pension plan. Consolidating the SSA and the government DB plans with the Treasury depart-
ment leads one to include the revenues and spending from the SSA/govt DB plan in the consolidated government
revenue and spending numbers, and leads one to net out the SSA holdings of Treasuries, since they are an asset of one
part of the consolidated government and a liability of the other part. Hence our treatments of debt and cash flows are
mutually consistent.
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value of outstanding marketable U.S. government debt.4 Figure 2 plots its evolution over time,

scaled by the U.S. GDP. It shows a large and persistent increase in the outstanding debt starting in

2008.

Figure 2: The Market Value of Outstanding Debt to GDP
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The figure plots the ratio of the nominal market value of outstanding government debt divided by nominal GDP. GDP Data are from
the Bureau of Economic Analysis. The market value of debt is constructed as follows. We multiply the nominal price (bid/ask average)
of each cusip by its total amount outstanding (normalized by the face value), and then sum across all issuance (cusip). The series is
annual from 1947 until 2019. Data Source: CRSP U.S. Treasury Database, BEA, authors’ calculations.

Turning to returns, Table 1 reports summary statistics for the overall Treasury bond portfolio

in Panel A and for individual bonds in Panel B. The excess returns on the entire Treasury portfolio

realized by an investor who buys all of the new issuances and collects all of the coupon and

principal payments is 1.16% per annum, on average. The portfolio has an average duration of 3.62

years. Given the secular decline in interest rates over the past forty years, the observed average

realized return on the bond portfolio is, if anything, an over-estimate of investors’ expected return.

Table 1: Summary Statistics for Government Bond Portfolio

Panel A Panel B
Rd Rd Rd − R f R f Duration log(1 + Rd) log(1 + Rd) 1 Yr 5 Yr 10 Yr 20 Yr

Nominal Real Nominal Real
Mean 5.38 2.20 1.16 4.22 3.62 5.15 2.18 4.93 5.71 5.87 6.64
Std. Errors [0.54] [0.54] [0.41] [0.38] [0.12] [0.50] [0.52] [0.44] [0.71] [0.93] [1.24]
Std. 4.61 4.57 3.51 3.25 1.06 4.31 4.44 3.79 6.03 7.95 10.58
Sharpe Ratio 0.33 0.42 0.27 0.21 0.23

Panel A reports summary statistics for the holding period return on the aggregate government bond portfolio: the mean, the standard
errors, and the standard deviation of the holding period return, Rd, the excess return, Rd − R f , the three-month Tbill rate, R f , the
nominal and real log bond portfolio return log(Rd), and the weighted average Macaulay duration. Panel B reports the mean and the
standard deviation of the holding period returns T-bonds with time-to-maturity of one year, five years, ten years and twenty years.
All returns are expressed as annual percentage points. Duration is expressed in years. Data source: CRSP Treasuries Monthly Series.
The sample period is from 1947 to 2019.

4Since the model fits nominal bond prices very well, as shown below, we can equivalently use model-implied bond
prices. Similarly, we can use model-implied prices for real zero-coupon bonds.
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4 Consumption-CAPM Model

To develop intuition, we start with a stylized version of the consumption-based asset pricing

model (Breeden, 1979; Lucas, 1978). This stylized model only has one aggregate shock and a

small number of parameters, but it illustrates the bond valuation puzzle.

The representative investor has CRRA preferences with risk aversion γ and time discount

factor β. The log of the real stochastic discount factor is given by:

mt,t+1 = −β − γ∆yt+1,

where log output growth is i.i.d. with Gaussian innovations:

∆yt+1 = µ + σyε
y
t+1.

In this simple model, we do not distinguish between output and consumption risk.

Spending and tax revenue are co-integrated with GDP. Specifically, we assume the log tax-to-

output ratio τt = log(Tt/Yt) follows an AR(1) process:

τt+1 = θτt + (1 − θ)τ̄ + στε
y
t+1 + ητετ

t+1,

whose innovation depends on the output growth shock ε
y
t+1 and a tax shock ετ

t+1. This stationarity

property guarantees that tax revenues and GDP are cointegrated.

We guess and verify (in Appendix B) that the value of a tax strip of maturity j equals:

Et
[
Mt,t+jTt+j

]
= Et[exp(mt,t+j) exp(yt+j + τt+j)] = Yt exp(aτ

j + bτ
j (τt − τ̄)), where

aτ
j = (1 − γ)µ − β + aτ

j−1 +
1
2
((1 − γ)σy + bτ

j−1στ)
2 +

1
2
(bτ

j−1ητ)
2

bτ
j = bτ

j−1θ.

The present value of the tax claim can then be computed as the sum of all strip values:

Pτ
t = Et

[
∞

∑
j=0

Mt,t+jTt+j

]
= Yt

∞

∑
j=0

exp(aτ
j + bτ

j (τt − τ̄)).

Similarly, we assume that the log of government spending to output follows an AR(1) process.

By the same logic, the value of a spending strip is also exponentially affine in the log spending-to-

output ratio. Then, by Proposition 1, the market value of debt equals the difference between the

present value of tax claim Pτ
t and the present value of the spending claim, Pg

t .
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Calibration and Estimation We calibrate three parameters and estimate the remainder. We set

risk aversion to γ = 10, the volatility of output growth to σy = 5%, and the subjective time

discount factor β such that we match the average annual real risk-free rate of 1.29% in the post-

war data. We need a high γ and high σy to match the equity premium (Mehra and Prescott, 1985).5

These parameter values deliver a maximum Sharpe ratio of std(Mt,t+1)/E(Mt,t+1) ≈ γσy = 0.50

per annum, accommodating the observed Sharpe ratio on U.S. equities (0.44 per annum in our

sample).

We estimate the remaining parameters by GMM to fit the first and second moments of output

growth, the tax-to-output ratio, and the spending-to-output ratio. The moment conditions are

reported in Appendix B. Table B.1 reports the estimated parameter values and shows that the

tax/output ratio is pro-cyclical (στ > 0), while the spending/output ratio is counter-cyclical (σg <

0). As a result, risk-averse investors use a significantly higher discount rate for the tax claim than

for the spending claim. For example, the risk premium on the first period’s tax strip is 3.0% (see

Eq. (B.1)), whereas the risk premium on the first period’s spending strip is 1.3%. In the long-term,

as tax and spending are cointegrated with the GDP, the risk premia on tax and spending strips

will converge to that of the GDP strip, which is about 2.4%, consistent with eqn. (8).

Panel A of Figure 3 shows the results. While the U.S. tax and spending levels are close to each

other, as shown in the left panel, the valuation of the tax claim is well below that of the spending

claim, as shown in the right panel, because of the discount rate gap. As a result, the market’s

valuation of future surpluses is negative, at around -350% of GDP. Panel B of Figure 3 reports the

present value of surpluses normalized by GDP, as well as the one- and two-standard deviation

bootstrapped confidence intervals.6 The figure shows that the present value of government sur-

pluses is below zero for nearly the entire sample in 95% of simulations. The right panel plots the

difference of the debt/output ratio and the value of the surplus claim/output ratio, which we call

the Wedge/GDP ratio. The Wedge/GDP ratio is around 4, with confidence intervals that are wide.

However, we can reject the null hypothesis that the wedge is zero at the 5% statistical significance

level.

In this model, the expected real return on the tax claim is 4.1%, which, as we know from the

inequality in eqn. (5), puts a lower bound on the return on Treasurys. The realized return on

5We choose an artificially low β to avoid the risk-free rate puzzle (Weil, 1989). Alternatively, we could have used
Epstein and Zin (1989) preferences and chosen the elasticity of intertemporal substitution to match the risk-free rate.
Given that output growth is i.i.d., this is mathematically equivalent to freeing up the β parameter in a setting with
CRRA utility (Kocherlakota, 1996).

6The confidence interval is obtained by bootstrapping the ten parameters in Table B.1 from a normal distribution
with mean equal to the point estimates and the variance-covariance matrix equal to the estimated one. For each pa-
rameter draw, we solve the valuation ratios of the tax and spending claims, and then compute the present value of
government surpluses using the observed tax and spending series. We repeat this procedure 10,000 times. We drop the
parameter draws that violate the transversality condition, which, for example, can happen when the drawn persistence
parameters θτ and θg are above 1.
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Figure 3: CCAPM Valuation of U.S. Government Debt

Panel A: Taxes and Spending.
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The actual U.S. tax and spending are on the left. The present values of the tax claim and the spending claim based on the CRRA model
are on the right. All time series are normalized by the concurrent U.S. GDP. The sample is annual, 1947—2019.

Panel B: Present Value of Government Surpluses and the Debt Valuation Gap.
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The left panel plots the present value of government surpluses and the market value of debt as fractions of the current GDP. We plot
the one- and two-standard-error confidence intervals based on 10,000 bootstrap iterations. The right panel plots the wedge between
the market value of debt and the present value of government surpluses.

Treasurys is only 2.20%. This gap is the government bond risk premium puzzle. Really, the only

way to generate a positive value of debt when the government runs deficits is to increase the

valuation ratio of the tax claim, but its higher risk premium (2.81%) compared to the spending

claim (2.22%) pushes in the other direction.

Bohn (1995)’s insight about the SDF covariance terms when valuing government surpluses

is quantitatively important when permanent output (and consumption) shocks earn large risk

premia. However, the CCAPM model is too stylized. The model has a constant risk-free rate, a
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flat yield curve, and a constant equity risk premium. In addition, we did not allow for feedback

from the debt/output ratio to taxes and spending. Next, we estimate a full-fledged Dynamic Asset

Pricing Model that remedies those shortcomings, but we ultimately arrive at similar estimates for

the wedge. We show that our results are quite robust.

5 Quantitative Dynamic Asset Pricing Model

In order to quantify the value of the claims to tax revenue and government spending in (1), we

need to (i) take a stance on the time-series properties of revenue and spending, and (ii) a stochastic

discount factor Mt,t+j to discount these cash flows.

5.1 Cash Flow Dynamics

We start by describing the cash flow dynamics.

State Variables We assume that the N × 1 vector of state variables z follows a Gaussian first-

order VAR:

zt = Ψzt−1 + ut = Ψzt−1 + Σ
1
2 εt, (9)

with N × N companion matrix Ψ and homoscedastic innovations ut ∼ i.i.d.N (0, Σ). The Cholesky

decomposition of the covariance matrix, Σ = Σ
1
2

(
Σ

1
2

)′
, has non-zero elements on and below

the diagonal. In this way, shocks to each state variable ut are linear combinations of its own

structural shock εt, and the structural shocks to the state variables that precede it in the VAR, with

εt ∼ i.i.d.N (0, I). These state variables are defined in Table 2, in order of appearance of the VAR.

The vector z contains the state variables demeaned by their respective sample averages.

Table 2: State Variables

Position Variable Mean Description
1 πt π0 Log Inflation
2 xt x0 Log Real GDP Growth
3 y$

t (1) y$
0(1) Log 1-Year Nominal Yield

4 yspr$
t yspr$

0 Log 5-Year Minus Log 1-Year Nominal Yield Spread
5 pdt pd Log Stock Price-to-Dividend Ratio
6 ∆dt µd Log Stock Dividend Growth
7 ∆ log τt µτ Log Tax Revenue-to-GDP Growth
8 log τt log τ0 Log Tax Revenue-to-GDP Level
9 ∆ log gt µg Log Spending-to-GDP Growth
10 log gt log g0 Log Spending-to-GDP Level
11 ∆ log bt µb Log Debt-to-GDP Growth
12 log bt log b0 Log Debt-to-GDP Level

This approach takes spending and tax policy as given, rather than being optimally determined.
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By including spending and taxes in the state vector, we assume that the government commits a tax

and spending policy that is affine in the state vector. Both policies are allowed to depend on a rich

set of state variables with dependencies that are estimated from 73 years of data. The VAR includes

∆ log τt and ∆ log gt, the log change in tax revenue-to-GDP and the log change in government

spending-to-GDP in its seventh and eight rows. It also includes the log level of revenue-to-GDP,

τt, and spending-to-GDP, gt, in its ninth and tenth rows. This fiscal cash flow structure has three

important features.

First, our approach allows spending and revenue growth to depend not only on its own lag,

but also on a rich set of macroeconomic and financial variables. Lagged inflation, GDP growth,

interest rates, the slope of the term structure, the stock price-dividend ratio, and dividend growth

all predict future revenue and spending growth. In addition, we allow innovations to the fiscal

variables to be correlated with contemporaneous innovations in these macro-finance variables.

Second, we include the level variables τt and gt. When there is a positive shock to spend-

ing, spending tends to revert back to its long-run trend with GDP. Similarly, after a negative

shock to tax revenue, future revenues tend to increase back to their long-run level relative to GDP.

This mean reversion captures the presence of automatic stabilizers and of corrective fiscal action,

as pointed out by Bohn (1998). By having spending-to-GDP growth ∆ log gt (revenue-to-GDP

∆ log τt) depend on lagged spending gt (lagged revenue-to-GDP τt) with a negative coefficient,

our VAR captures this mean reversion. Mean reversion is further amplified when spending-to-

GDP growth ∆ log gt (∆ log τt) depends on lagged revenue-to-GDP τt (gt) with a positive sign.

Formally, the inclusion of the levels of spending and tax revenue relative to GDP in the VAR

is motivated by a cointegration analysis; the system becomes a vector error correction model.

Appendix E.1 performs Johansen and Phillips-Ouliaris cointegration tests. The results support

two cointegration relationships, one between log tax revenue and log GDP and one between log

spending and log GDP.7 In the absence of cointegration, all shocks to spending and tax revenues

would be permanent rather than mean-reverting. Importantly, we are being conservative about

future fiscal rectitude by imposing cointegration.

Third, based on prior findings that highlight a fiscal response to the level of debt (Bohn (1998);

Cochrane (2019a,b)), we include the log debt-to-gdp ratio as a predictor variable in the state vector,

and allow spending and revenue growth to depend on the lagged debt/output ratio. However,

we do not impose the no-arbitrage condition (1) on the debt. Imposing that condition is equivalent

to assuming that the government commits to a policy for the debt/output ratio. In our approach,

we assume that the government commits to a tax and spending policy. The government cannot

7The coefficients estimates of the cointegration relationships tend to vary across sample periods. As a result, we take
an a priori stance that the tax-to-GDP ratio log τ and the spending-to-GDP ratio log g are stationary. That is, we assume
cointegration coefficients of (1,−1) for both relationships.
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simultaneously commit to a debt, tax, and spending policy (see Jiang, Lustig, Van Nieuwerburgh,

and Xiaolan, 2021b, for a complete analysis).8

Cochrane (2019a,b) includes debt/GDP in the VAR and argues that this affects the dynamics

of the surplus in important ways. In particular, a negative shock to GDP (or a negative shock to

the surplus) leads to a deficit on impact. The deficit not only reverts back to zero in subsequent

periods, but turns into a surplus. It is these S-shaped surplus dynamics, he argues, that makes

government debt risk-free. We allow for these dynamics in our VAR. Our empirical approach

does not rule out risk-free zero-beta debt.9

Estimation Two empirical issues require further discussion. First, the US tax/GDP ratio trends

down in our sample, while the spending/GDP ratio has a slight upward trend. The sample av-

erage of ∆ log τt is µ̂τ = −0.7% and the sample average of ∆ log gt is µ̂g = 0.2%. Because we

impose cointegration on the log tax-to-GDP ratio and the log spending-to-GDP ratio, the true un-

conditional growth rates of the tax-to-GDP ratio and the spending-to-GDP ratio have to be zero

(µτ
0 = µ

g
0 = 0).

To avoid biased estimates of the VAR coefficients, we cannot include trending variables in the

VAR. Hence, when we estimate the dynamics of the state variables—and only then,—we remove

the sample averages of the growth rates. We reconstruct the log tax-to-GDP and log spending-to-

GDP ratios that enter in the VAR as follows:

log τt = log τ1 +
t

∑
k=1

(∆ log τk − µ̂τ), log gt = log g1 +
t

∑
k=1

(∆ log gk − µ̂g),

where the initial level log g1 is the the actual log spending-to-GDP ratio at the start of our sample

in 1947, while log τ1 is chosen so that the resulting average surplus-to-GDP ratio is the same as

in the unadjusted data. Importantly, when we price assets and value claims to spending and tax

revenues, we always evaluate the state vector at the actual values of τ and g, not the de-trended

ones. This approach is conservative, because the actual tax/GDP ratio (spending/GDP) is well

below (slightly above) the detrended one. Hence, the model’s cash flow forecasts imply larger

tax revenue increases (spending declines) in the future than we would obtain if we had used the

detrended variables instead.

Second, the log debt/GDP ratio, log bt, is highly persistent. Its first-order autocorrelation is

0.925. We include both the first-difference and the level of the log debt/GDP ratio in the VAR and

8Jiang et al. (2021b) show that the value of the debt implied by the model, divided by GDP, cannot be affine in the
state vector, when the government commits to a tax and spending policy that is affine in the state vector.

9Risk-free debt imposes additional measurability restrictions, which can be tested. The results are available upon
request. Note that the Hansen et al. (1991) analysis of risk-free debt does not extend to stochastically growing economies
with permanent output risk.
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impose the same error-correction dynamics as we did for spending/GDP and revenues/GDP.

Furthermore, we allow for a structural break in the debt/output ratio in 2007. The Chow test for

structural breakpoints rejects the null hypothesis of no structural break at the 1% level in 2007

and at no other date. Following the approach for stocks in Lettau and Van Nieuwerburgh (2008),

demean the log debt/output ratio before 2007 with the pre-2007 sample mean (-1.167) and the

log debt/output ratio after 2007 with the post-2007 sample mean (-0.411). The structural break

introduces a -0.755 log point permanent increase in the debt/output ratio. The persistence of the

resulting series is lower at 0.903.

This way of incorporating debt in the VAR results not only in a better behaved time series but

also in more realistic predictions for future debt and surplus dynamics. It is conservative in that it

results in a stronger response of surpluses to an increase in the debt/GDP ratio.

We estimate the VAR system in equation (9) using OLS. The point estimates of Ψ are reported

in Table 3. Lagged macro-finance variables affect fiscal variables, and vice versa. Consistent with

the error correction dynamics imposed by cointegration, we find that the response of the tax-to-

GDP growth to the lagged tax-to-GDP level (i.e., Ψ[7,8]) and the response of the spending-to-GDP

growth to the lagged spending-to-GDP level (i.e., Ψ[9,10]) are negative. In addition, the tax-to-GDP

growth is also increasing in the lagged debt-to-GDP level, and the spending-to-GDP growth is

decreasing in the lagged debt-to-GDP level.

The dynamics of log τt, log gt, and log bt in rows 8, 10, and 12 of the VAR are implied by

the corresponding dynamics of their first differences ∆ log τt, ∆ log gt, and ∆ log bt in rows 7, 9,

and 11, respectively, with the exception of the autoregressive coefficient which is 1 minus the

corresponding coefficient. Likewise, there is no independent innovation to these level variables.

Table 3 also reports the estimate of Σ
1
2 , the Cholesky decomposition of the residual variance-

covariance matrix. The innovation in tax revenue-to-GDP growth is positively correlated with the

GDP growth rate innovation, while the spending-to-GDP growth shock is negatively correlated

with the GDP growth shock. In other words, tax revenues are strongly pro-cyclical and govern-

ment spending is strongly counter-cyclical, as anticipated by our earlier discussion.

Implied Revenue and Spending Dynamics Figure 4 plots the impulse-response functions (IRFs)

of the tax revenue-to-GDP ratio (τt, left panels), government spending-to-GDP ratio (gt, middle

panels), and surplus-to-GDP ratio (st, right panels) to a GDP shock (top row), a revenue shock

(middle row), and a spending shock (bottom row). The shocks are calibrated such that the log

GDP growth decreases by 1%, the revenue-to-GDP ratio goes down by 1%, and the spending-to-

GDP ratio goes up by 1%. The top row shows that the tax revenue-to-GDP ratio declines and the

government spending-to-GDP ratio increases in response to a negative GDP shock. The surplus-
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Table 3: VAR Estimate Ψ

πt−1 xt−1 y$
t−1(1) yspr$

t−1 pdt−1 ∆dt−1 ∆ log τt−1 log τt−1 ∆ log gt−1 log gt−1 ∆ log bt−1 log bt−1
πt 0.380 -0.076 0.026 -0.319 -0.008 0.033 0.064 -0.036 -0.015 -0.015 0.002 -0.036
xt -0.090 0.210 0.391 0.272 0.021 0.081 -0.038 -0.059 0.067 0.078 -0.037 0.042
y$

t (1) 0.048 0.043 0.899 0.048 0.005 0.046 -0.005 -0.035 -0.005 0.022 -0.019 -0.004
yspr$

t -0.073 -0.092 -0.050 0.485 -0.008 -0.031 0.017 0.016 0.008 -0.024 0.018 -0.007
pdt -2.697 -1.347 0.354 2.909 0.769 -0.219 -0.020 0.207 0.089 -0.260 -0.129 -0.032
∆dt 0.477 0.453 -0.395 -1.913 0.063 0.276 -0.178 -0.173 -0.105 0.122 0.263 0.066
∆ log τt -0.683 0.488 0.642 -3.876 0.106 0.121 0.258 -0.535 0.164 0.258 0.131 0.092
log τt -0.683 0.488 0.642 -3.876 0.106 0.121 0.258 0.465 0.164 0.258 0.131 0.092
∆ log gt -0.451 0.054 -2.189 -1.198 -0.170 -0.235 0.188 0.129 0.266 -0.536 0.119 -0.215
log gt -0.451 0.054 -2.189 -1.198 -0.170 -0.235 0.188 0.129 0.266 0.464 0.119 -0.215
∆ log bt 0.154 -0.931 0.773 4.527 -0.025 -0.306 0.109 0.001 -0.042 0.019 -0.072 -0.041
log bt 0.154 -0.931 0.773 4.527 -0.025 -0.306 0.109 0.001 -0.042 0.019 -0.072 0.959

We report our estimate of the VAR transition matrix Ψ. Numbers in bold have t-statistics in excess of 1.96 in absolute value. Numbers

in italics have t-statistics in excess of 1.645 but below 1.96.

VAR Estimate 100 × Σ
1
2

επ
t εx

t ε
y$(1)
t ε

yspr$

t ε
pd
t ε∆d

t ε
∆ log τ
t ε

∆ log g
t ε

∆ log b
t

πt 0.92 0 0 0 0 0 0 0 0 0 0 0
xt 0.55 1.84 0 0 0 0 0 0 0 0 0 0
y$

t (1) 0.36 0.49 1.21 0 0 0 0 0 0 0 0 0
yspr$

t -0.10 -0.19 -0.27 0.43 0 0 0 0 0 0 0 0
pdt -3.41 -2.08 1.17 0.78 14.79 0 0 0 0 0 0 0
∆dt -0.14 1.02 0.91 -0.80 -0.72 4.23 0 0 0 0 0 0
∆ log τt 2.32 1.77 0.10 -0.49 0.92 0.82 4.47 0 0 0 0 0
log τt 2.32 1.77 0.10 -0.49 0.92 0.82 4.47 0.00 0 0 0 0
∆ log gt -0.90 -2.17 -1.30 -0.40 0.05 -1.31 0.14 0.00 3.28 0 0 0
log gt -0.90 -2.17 -1.30 -0.40 0.05 -1.31 0.14 0.00 3.28 0.00 0 0
∆ log bt -2.50 -3.24 -1.30 -0.32 2.73 2.04 -0.86 0.00 0.37 0.00 6.35 0
log bt -2.50 -3.24 -1.30 -0.32 2.73 2.04 -0.86 0.00 0.37 0.00 6.35 0.00

We report our estimate of the VAR innovation matrix Σ
1
2 , multiplied by 100 for readability.

to-GDP is pro-cyclical. In addition, mean reversion in spending and revenues brings their re-

sponses to their own shocks back to zero within a few years. The instantaneous response of the

surplus to all three shocks is negative. There is some evidence of an S-shaped response as the

deficits turn into small surpluses after 3 years. In the case of tax and spending shocks these sur-

pluses are short-lived. The confidence intervals on the IRFs are wide, so that for all three shocks,

even the peak surplus response after 4-5 years is not significantly different from zero. All re-

sponses revert to zero in the long run, because of cointegration between spending and GDP and

between tax revenues and GDP.

Figure 5 adds further credibility to the cash-flow projections by plotting expected cumula-

tive spending and revenue growth over the next one, five, and ten years against realized future

spending and revenue growth. To assess predictive accuracy, we compare the prediction of the

benchmark annual VAR to that of the best linear forecaster at that horizon. By design, the VAR

prediction is the best linear forecaster at the one-year horizon, but not at the five- and ten-year
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Figure 4: Fiscal Impulse Responses

Panel A: −1% Shock to GDP Growth.
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Panel B: −1% Shock to Tax-to-GDP.
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Panel C: 1% Shock to Spending-to-GDP.
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Solid blue line shows the impulse responses for the benchmark VAR. The impulse in the top row is a −1 percentage point shock to

GDP growth xt. The impulse in the middle row is a −1 percentage point shock to tax revenues. The impulse in the bottom row is a +1

percentage point shock to spending growth. We plot the one- and two-standard-deviation confidence intervals based on bootstrapping

over 10,000 rounds.

horizons.10 Predictive accuracy of the VAR is similar to that of the best linear forecast. The graph

shows that the VAR implies reasonable behavior of long-run fiscal cash flows. Note how the long-

run tax revenue forecasts from the VAR at the end of the sample are on the high side, while the

spending forecasts are on the low side. This implies that the VAR predicts, if anything, too much

mean reversion in the surplus compared to the data. This is conservative in that this will result in

10Since we use the actual tax/GDP and spending/GDP series to compute the VAR predictions but the companion
matrix is estimated using the detrended series, the VAR series has a higher RMSE than the OLS prediction at the one-
year horizon.
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a higher present value of future surpluses.11

5.2 Asset Pricing

We take a pragmatic approach and choose a flexible SDF model that only assumes no arbitrage,

and prices the term structure of interest rates as well as stocks well. This approach guarantees that

our debt valuation is consistent with observed Treasury bond prices. It also results in an SDF that

has enough permanent risk to account for the equity risk premium. This model extends the SDF

from Section 4 to allow for additional priced sources of risk beyond GDP growth risk.

Motivated by the no-arbitrage term structure literature, we specify an exponentially affine SDF.

The nominal SDF M$
t+1 = exp(m$

t+1) is conditionally log-normal:

m$
t+1 = −y$

t (1)−
1
2

Λ′
tΛt − Λ′

tεt+1, (10)

The real SDF is Mt+1 = exp(mt+1) = exp(m$
t+1 + πt+1), which is also conditionally Gaussian.

The priced sources of risk are the structural innovations in the state vector εt+1 from equation (9).

These aggregate shocks are associated with a N × 1 market price of risk vector Λt of the affine

form:

Λt = Λ0 + Λ1zt,

The N × 1 vector Λ0 collects the average prices of risk while the N × N matrix Λ1 governs the

time variation in risk premia. Asset pricing in this model amounts to estimating the market prices

of risk in Λ0 and Λ1. All asset pricing results are proven in Appendix C.

Bond Pricing We use y$
t (h) to denote the nominal bond yield of maturity h, which is affine in

the state vector:

y$
t (h) = −A$(h)

h
− B$(h)′

h
zt;

the scalar A$(h) and the vector B$(h) follow ordinary difference equations that depend on the

properties of the state vector and of the market prices of risk. There is a similar formula for real

bonds. We use this pricing equation to calculate the real interest rate, real bond risk premia, and

inflation risk premia on bonds of various maturities.

Since both the nominal short rate (y$
t (1)) and the slope of the term structure (y$

t (5) − y$
t (1))

are included in the VAR, internal consistency requires the SDF model to price these bonds closely.

The nominal short rate is matched automatically; it does not identify any market price of risk

11This occurs because we evaluate these forecasts at the actual value of the tax/GDP and spending/GDP ratios.
The former is well below its long-run mean towards the end of the sample, while the latter is above its mean. The
error correction dynamics resulting from co-integration result in higher future tax revenue/GDP and lower future
spending/GDP estimates.
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Figure 5: Cash Flow Forecasts

Panel A: Forecast of 1-Year Growth in Log Tax/GDP and Log Spending/GDP.
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Panel B: Forecast of 5-Year Growth in Log Tax/GDP and Log Spending/GDP.
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Panel C: Forecast of 10-Year Growth in Log Tax/GDP and Log Spending/GDP.
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We plot the actual log tax and spending growth rates over 1-year, 5-year and 10-year rolling windows in solid blue lines. The value at

each year represents the k-year growth rates that end at that year. We also plot these rates as forecasted by our VAR model in dashed

red lines and these rates as forecasted by the OLS model in dash-dotted yellow lines. The value at each year represents the k-year

growth rates condition on the information k years ago.
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parameters. Matching the slope of the yield curve generates N + 1 parameter restrictions:

−A$(5)/5 = y$
0(1) + yspr$

0 = y$
0(5)

−B$(5)/5 = ey1 + eyspr

They pin down the fourth element of Λ0 and the fourth row of Λ1. We also allow for a non-

zero third element of Λ0 and two non-zero elements in the third row of Λ1. We pin down these

elements by matching bond yields of maturities 2, 10, 20, and 30 years in each year t ∈ 1, · · · , T.

Since they represent T × 4 moments for only 3 parameters, there are T × 4 − 3 over-identifying

restrictions. Since the behavior of long-term interest rates is important for our valuation results—

recall the discussion on long-term bond yields in Section 2,—we impose extra weight on matching

the 30-year bond yields.

We also price the yields on real bonds (Treasury inflation-index securities) for maturities 5,

7, 10, 20, and 30 years. They are available over a shorter sample of T2 years. This adds T2 × 5

over-identifying restrictions. Again, we overweight matching the 30-year maturity.

Equity Pricing The VAR includes both log dividend growth and the log price-dividend ratio.

The two time-series imply a time series for stock returns. We impose that the expected excess

return time series implied by the VAR matches the equity risk premium time series in the model.

The latter depends on the covariance of the SDF with stock returns and hence on the market price

of risk parameters. The equity risk premium conditions pin down the sixth element of Λ0 and the

sixth row of Λ1.

Let PDm
t (h) denote the price-dividend ratio of the dividend strip with maturity h (Wachter,

2005; Van Binsbergen, Brandt, and Koijen, 2012). Then, the aggregate price-to-dividend ratio can

be expressed as

PDm
t =

∞

∑
h=0

PDm
t (h). (11)

In this SDF model, log price-dividend ratios on dividend strips are affine in the state vector:

pdm
t (h) = log (PDm

t (h)) = Am(h) + (Bm(h))′zt.

Since the log price-dividend ratio on the stock market in part of the state vector, it is affine in the

state vector by assumption; see the left-hand side of (12):

exp
(

pd + (epd)′zt

)
=

∞

∑
h=0

exp
(

Am(h) + (Bm(h))′zt
)

, (12)
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Equation (12) rewrites the present-value relationship (11), and articulates that it implies a restric-

tion on the coefficients Am(h) and (Bm(h))′. Matching the time series for the price-dividend ratio

in model and data provides T × 1 additional over-identifying restrictions.

Good Deal Bounds and Regularity Conditions We impose good deal bounds on the standard

deviation of the log SDF in the spirit of Cochrane and Saa-Requejo (2000). Specifically, we impose

a penalty for annual Sharpe ratios in excess of 1.5.

Second, we impose regularity conditions on (unobserved) nominal and real bond yields of

maturities of 100 to 4000 years. Specifically, we impose that yields stabilize and that nominal

yields remain above real yields by at least long-run expected inflation. This is tantamount to a

weak positivity restriction on the long-run inflation risk premium.

Third, we impose that bond return volatilities on very long-maturity bonds are bounded from

below by 20%.

5.3 Estimation

We estimate the model’s risk prices by minimizing the distance between the aforementioned bond

and stock price moments in model and data. Appendix E reports the point estimates for the

market price of risk parameters. Appendix F shows that the model matches the asset prices in

the data closely. It provides a tight fit for the entire time series of nominal bond yields of the

various maturities. It also shows a reasonable fit for real bond yields. The model closely matches

the dynamics of the nominal bond risk premium, and generates reasonable behavior on nominal

and real yields at very long horizons. Finally, the model produces reasonable equity risk premium

level and dynamics, and provides a close fit to the time-series of the price-dividend ratio. Because

it is able to generate an expected equity return that fits the data well, and is large compared to the

long-term real rate, the SDF has a large permanent component. Having formulated and estimated

a realistic SDF, we now turn to our main exercise.

6 Government Debt Valuation in DAPM

6.1 Surplus Pricing

With the VAR dynamics and the SDF in hand, we can calculate the expected present discounted

value of the primary surplus:

Et

[
∞

∑
j=0

M$
t,t+jSt+j

]
=

∞

∑
j=0

Et

[
M$

t,t+jTt+j

]
−

∞

∑
j=0

Et

[
M$

t,t+jGt+j

]
= Pτ

t − Pg
t , (13)
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where Pτ
t is the cum-dividend value of a claim to future nominal tax revenues and Pg

t is the cum-

dividend value of a claim to future nominal government spending. The following proposition

shows how to price the government cash flows.

Proposition 4 (Pricing Government Cash Flows). The price-dividend ratios on the tax claim and

the spending claim are the sum of the price-dividend ratios of their strips, whose logs are affine in

the state vector zt:

PDτ
t =

Pτ
t

Tt
=

∞

∑
h=0

exp(Aτ(h) + Bτ(h)′zt), (14)

PDg
t =

Pg
t

Gt
=

∞

∑
h=0

exp(Ag(h) + Bg(h)′zt). (15)

The proof is in Appendix C.4. The coefficients Bg(h) and Bτ(h) in (14)-(15) measure the risk

exposure of spending and tax revenue strips to each state variable, generalizing the univariate

expressions of Section 4.

Combining these equations, note that the value of debt is given by :

TtPDτ
t − GtPDg

t .

When the government runs deficits, we need to a larger valuation ratio for the tax claim: PDτ
t >

PDg
t to get a positive valuation of the debt. However, the tax claim is riskier, which will tend to

push the valuation ratio of the tax claim below that of the spending claim. This needs to be offset

by generating higher expected growth of tax revenue in the short run when the government runs

deficits. As we show, this effect is not strong enough in the data.

6.2 Main Results

6.2.1 The Valuation Puzzle

The left panel of Figure 6 plots the present value of tax revenue normalized by GDP, Pτ
t /GDPt.

The time-series average of this ratio is 12.19. In other words, the representative investor is willing

to pay 12.19 times the annual GDP on average for the right to receive all current and future tax

revenues. The value of the tax claim displays substantial time-variation. A pronounced V-shape

arises, which is inherited from the inverse V-shape of long-term real interest rate. Real rates are

high in the mid-1970s to mid-1980s and low at the beginning and end of the sample. Discounting

future tax revenues by a low (high) long-term real rate results in a high (low) valuation ratio.

The time-series average of the present value of government spending normalized by GDP,

Pg
t /GDPt, is 14.27. The spending claim is more valuable than the revenue claim, which (in part)

28



reflects the counter-cyclicality of government spending in the short run. Its value shows the same

inverse V-shaped dynamics as the revenue claim.

The right panel of Figure 6 plots the same present values of tax revenue and government

spending, but now normalized by the present value of GDP—namely, Pτ
t /PGDP

t and Pg
t /PGDP

t .

This alternative scaling is a ratio of two stocks, rather than a ratio of a stock to a flow. It expresses

the values of tax and spending claims relative to total wealth in society. Current and future tax

revenues represents on average 10.52% of total wealth, while current and future spending aver-

ages to 11.99% of total wealth. We also find that the present value ratios of tax revenue and GDP

and of spending and GDP are more stable over time. This reflects the common long-run dynamics

of T, G, and GDP implied by cointegration.

Figure 6: DAPM Valuations of Taxes and Spending
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(b) Normalized by the Present Value of GDP

The figure plots the cum-dividend present values of tax revenues and of government spending. Both time series are scaled by the
current U.S. GDP in the left panel, and by the present value of GDP in the right panel. The sample is 1947 until 2019. The unit is
percentage points.

Now we are in a position to evaluate the claim to future government surpluses as the tax claim

minus the spending claim, the right-hand side of equation (13). Figure 7 plots the present value

of government surpluses as the solid blue line. The market value of the US government debt

is plotted as the dashed red line. The unconditional average present value of the government

surplus is -207.88% of GDP, far below the average market value of outstanding government debt,

38.23% of GDP.

The valuation wedge measures the difference between the market value government debt

and the present value of surpluses. It quantifies the government debt valuation puzzle. The

wedge/GDP ratio is 246% on average. In the time series, the gap widens dramatically in the last

20 years of the sample, as the level of government debt rises to 52.0% of the GDP and the valuation

of the surplus claim increases dramatically in absolute value to 444% of GDP. In other words, the
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U.S. government has been issuing government debt while simultaneously decreasing the expected

surpluses to back up the debt. The result has been a widening of the valuation gap to 552% of

the GDP at the end of 2019. The puzzle will deepen further with the large deficits incurred in the

wake of the coronavirus crisis of 2020.

Equation (2) lets us interpret the puzzle further. The first term on the right-hand side, the

risk-neutrally discounted present value of surpluses, is just about zero since the average primary

surplus is about zero in our sample. Therefore, the entire wedge of 246% of GDP stems from the

differential riskiness of the revenue and the spending claims.

Lastly, we note that imposing cointegration between tax revenues and GDP and spending and

GDP is not only imperative to accurately describe fiscal dynamics but also leads to conservative

estimates for the wedge/GDP ratio. Without the error correction dynamics present in our VAR

system, an increase in government spending following a recession is not offset by future reduc-

tions in spending or future increases in tax revenues, but rather becomes permanent. As a result,

the spending claim would be much safer and the tax revenue claim much riskier, leading to a

much more negative present value of government surpluses and a much larger valuation wedge.

6.2.2 Risk Premia on Tax Revenue and Spending Strips

Figure 8 plots the risk premia on revenue and spending strips for maturities from 1 to 20 years.

For comparison, it also plots the risk premia on GDP strips. At the short end of the maturity

spectrum, risk premia on spending strips are very low (−1% at the one-year horizon), as shown in

eqn. 6. Because spending is counter-cyclical, these strips are a hedge. In contrast, short-maturity

Figure 7: Present Value of Government Surpluses and Market Value of Government Debt
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(b) Normalized by the Present Value of GDP

The figure plots the cum-dividend present values of the government surplus and the market value of government debt. Both time
series are scaled by the current U.S. GDP in the left panel, and by the present value of GDP in the right panel. The sample is 1947 until
2019. The unit is percentage points.
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tax revenue strips have high risk premia (+1%) because tax revenues are low in high marginal

utility times, making the tax claim a risky asset.

Figure 8: Term Structure of Risk Premia on the T-Claim and the G-Claim
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This figure plots the term structures of risk premia on the spending claim, the tax claim, equity, and the GDP claim in our benchmark

model. Each point is an annualized holding-period risk premium, as derived in equation (C.13) of the Appendix.

As we move to long maturities, risk premia on revenue and spending strips converge towards

each other. As noted in eqn. (7), since tax and spending are cointegrated with the GDP, their risk

premia also converge towards the risk premium on a GDP strip. Claims to GDP are like unlevered

equity claims. They have risk premia well in excess of real bond risk premia but below (levered)

equity risk premia. By horizon of 20 years, most of this convergence in risk premia has taken

place.12

In our sample, the average one-year nominal interest rate is y$
0(1)= 4.5% whereas the uncondi-

tional average one-year nominal GDP growth rate is x0 + π0= 6.2%. The risk-free interest rate is

on average below the growth rate, as emphasized by Blanchard (2019). However, government tax

and spending processes are sufficiently risky. The average nominal discount rates, rτ
0 = 7.08% and

rg
0 = 6.99%, are similar to the unconditional nominal discount rate for the GDP claim, rx

0 = 7.09%,

and above the average nominal GDP growth rate.13 If we use this average nominal discount rate

in a simple Gordon growth model PDg = 1
rg

0−(x0+π0)
, then this delivers an average valuation ratio

for the spending claim of 130.97, very close to the actual average valuation ratio for the spending

claim of 131.47 in the full model.

These discount rates have implausible implications for bond returns on the entire portfolio.

12Not shown in the graph is the term structure of dividend strip
13As derived in Appendix C.4, rg

0 = x0 + π0 + κ
g
0 − pg(1 − κ

g
1 ), where pg is the long-run mean of the log price-

dividend ratio on the G-claim, and κ
g
0 and κ

g
1 are linearization constants, with similar expressions for the T-claim.
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The expected returns in levels on the tax claim is given by E[Rτ] = 8.46%.14 From the inequality

in eqn. (8), it follows that the expected nominal return on Treasurys is bounded below by 8.46%, or

5.28% in real terms. The actual realized real return on the entire portfolio of marketable Treasurys

in the sample is only 2.20%, even though the realized return is enhanced by the secular decline

in real rates in the last part of the sample (e.g., van Binsbergen, 2020). This 3.08% gap is the

government risk premium puzzle. This gap is six times the standard error on the measured real

return on Treasurys.

We generate these discount rates while maintaining an excellent fit for the term structure of

Treasury yields. The claim to surpluses reflects the risk of the government’s future debt issuance

strategy. Future net debt issuances at inopportune (high SDF) times make the overall bond port-

folio riskier than individual Treasury bonds. Therefore, even if risk-free interest rates are below

growth rates, the risk premia on government tax and spending processes are large enough to gen-

erate a finite valuation for the surplus claim. We recall from Section 2 that when the unconditional

expected returns on T- and G-claims are similar, the unconditional expected return on the gov-

ernment debt portfolio is equal to the expected return on the G- and T-claims. That is, the debt

portfolio is highly risky.

7 Alternative Explanations

We discuss five alternative explanations for the U.S. government valuation puzzle but find that,

ultimately, all of them fall short.

7.1 Bubbles and Limits to Arbitrage

The valuation gap can be interpreted as violation of the transversality condition (TVC) in Trea-

sury markets, consistent with the presence of a rational bubble (Samuelson, 1958; Diamond, 1965;

Blanchard and Watson, 1982). The TVC is violated if the value of debt in the far future does not

converge to zero:

lim
T→∞

Et

[
Mt,t+T

Dt+T

Yt+T
Yt+T

]
̸= 0.

Several pieces of evidence speak against this explanation. First, the key piece of evidence is

the plot of GDP risk premia in Figure 8. In the long run, the GDP strip earn a risk premium of

more than 2% above the real risk-free rate. Even if the debt is risk-free, as long as the debt is

co-integrated with GDP, then we need to discount the claim to future at the risk-free rate plus at

least 2%. This follows immediately from Corollary 1. The TVC is unlikely to be violated because

14See eqn. (C.19) in the Appendix for the mathematical expression.
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the risk-adjusted discount rate on the portfolio of Treasury debt is higher than the growth rate

of GDP. To develop intuition for this result, note that when the debt/output ratio is constant

(bt = Dt/GDPt = b), the value of the debt in the far future is given by the price of an output strip:

lim
T→∞

Et

[
Mt,t+T

Dt+T

Yt+T
Yt+T

]
= b lim

T→∞
Et [Mt,t+TYt+T]

Put differently, if the TVC were violated, a claim to GDP would also have infinite value. Models

that violate the TVC for debt typically produce violations of TVCs in all long-lived assets.

Second, Brock (1982); Tirole (1982); Milgrom and Stokey (1982); Santos and Woodford (1997)

argue that rational bubbles are hard to sustain in the presence of long-lived investors absent other

frictions. Third, as Figure 7 shows, the valuation gap is growing faster than GDP, which is in-

consistent with rational bubbles. In rational bubble models, the debt/GDP ratio declines over

time. Fourth, the rise in the sovereign CDS spread after the Great Financial Crisis, documented by

Chernov et al. (2020); Pallara and Renne (2019), seems at odds with a rational bubble in Treasury

debt.

7.2 Convenience Yields

U.S. government bonds occupy a privileged place in the world’s financial system. They carry a

“convenience yield” which makes Treasury yields lower than the safe rate of interest. The con-

venience yield produces an additional source of revenue, because the U.S. Treasury can sell its

bonds for more than their fundamental value. The question is how far this explanations can go

towards accounting for the bond valuation puzzle. We enrich the baseline model to account for

convenience.

The convenience yield, λt, is the government bonds’ expected returns that investors are will-

ing to forgo under the risk-neutral measure. Assuming a uniform convenience yield across the

maturity spectrum, the Euler equation for a Treasury bond with maturity h + 1 is:

e−λt = Et

[
M$

t+1
P$

t+1(h)

P$
t (h + 1)

]
.

Proposition 5. If the TVC holds, the value of the government debt portfolio equals the value of

future surpluses plus the value of future seigniorage revenue:

H

∑
h=0

Q$
t−1,h+1P$

t (h) = Et

[
∞

∑
j=0

M$
t,t+j

(
Tt+j − Gt+j

)]
+ Et

[
∞

∑
j=0

M$
t,t+j(1 − e−λt+j)

H

∑
h=1

Q$
t+j,hP$

t+j(h)

]
(16)

where ∑H
h=0 Q$

t−1(h + 1)P$
t (h) on the left-hand side denotes the cum-dividend value of the gov-
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Figure 9: Convenience Yield and Seigniorage Revenue

1947 1957 1967 1977 1987 1997 2007 2017

0

0.5

1

1.5

2

2.5

3

3.5

(%
)

(a) Convenience Yield λt (%)

1947 1957 1967 1977 1987 1997 2007 2017
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(%
)

(b) Seigniorage Revenue/GDP Ratio (%)

The left panel reports the annual convenience yield time series time series for λt, computed as the weighted average of Aaa-Treasury

and high-grade commercial papers-bills yield spreads. The right panel reports time series of the seigniorage revenue from convenience

scaled by GDP, (1 − e−λt )Dt/GDP. The sample period is from 1947 until 2019. The shaded areas indicate NBER recessions.

ernment’s debt portfolio at the start of period t, and ∑H
h=1 Q$

t+j(h)P$
t+j(h) on the right-hand side

denotes the ex-dividend value of the government’s debt portfolio at the end of period t + j.

When there is no convenience yield (i.e., λt = 0), we end up back in the standard case of

Proposition 1. If the quantity of current and future outstanding government debt is positive,

then a positive convenience yield will always increase the value of government debt, acting as an

additional source of revenue. This additional income is akin to seigniorage revenue and could

potentially turn government fiscal deficits into (broadly defined) surpluses.

As an empirical strategy, we measure the convenience yield following Krishnamurthy and

Vissing-Jorgensen (2012). To proxy for λt, we use the weighted average of the Aaa-Treasury yield

spread and the high-grade commercial papers-bills yield spread where the time series of weights

are computed to match the duration of the government bond portfolio period by period. The left

panel of Figure 9 shows the time series of the convenience yield. Over the sample period from

1947 to 2019, the average convenience yield is 0.60% per year, which implies average seigniorage

revenue of $42.75 billion per year, or 0.20% of U.S. GDP, as shown in the right panel of Figure

9. The figure also illustrates the counter-cyclical nature of the convenience yield and seigniorage

revenue.15

We rewrite equation (16) as:

K

∑
h=0

Q$
t−1(h + 1)P$

t (h) = Et

[
∞

∑
j=0

M$
t,t+jTt+jKt+j

]
− Et

[
∞

∑
j=0

M$
t,t+jGt+j

]
,

15Appendix D shows that this convenience yield measure is close to other measures proposed in the literature.
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where the variable K represents the combined tax and seigniorage revenues as a fraction of the

current tax revenue:

Kt+j = 1 +
(1 − e−λt+j)∑H

h=1 Q$
t+j(h)P$

t+j(h)

Tt+j
.

We call a claim to the combined tax and seigniorage revenues, Tt+jKt+j, the modified tax claim.

We introduce ∆ log Kt as an additional state variable in the VAR, with an unconditional mean of

zero because log Kt is stationary. The augmented state vector is z̃t = [zt, ∆ log Kt]. We then re-

estimate the VAR dynamics and the market prices of risk, and use the same method as in Propo-

sition 4 to price the modified tax claim. The pricing formula for the modified revenue claim is:

Et

[
∞

∑
j=0

M$
t,t+jTt+jKt+j

]
= TtKt · PDk

t ,

where PDk
t is a function of the state variables z̃t.

The left panel of Figure 10 reports the present value of government surpluses plus seignior-

age revenues in the green dashed line and the present value of government surpluses (without

seigniorage) in dashed red line. The convenience yield increases the model-implied value of the

debt. On average, the present value of government surpluses and seigniorage revenues is -130.1%

while the present value of government surpluses alone is -183.9%.

Although the effect of convenience is sizable, it only closes about one quarter of the gap be-

tween the market value of U.S. government debt and the present value of surpluses. This may be

a surprising result given the large perceived convenience yield on Treasuries. There are two off-

setting effects at work. On the one hand, there is positive seigniorage revenue which increases the

surplus and its present value. On the other hand, the convenience yield raises the true risk-free

rate given observed bond yields. Higher safe rates increase the discount rate of future revenues

and spending, lowering the present value of surpluses. The positive cash flow effect is partly off-

set by the negative discount rate effect, weakening the power of convenience yields as a resolution

to the puzzle.

How large does the convenience yield need to be to resolve the puzzle? To answer this ques-

tion, we fix the VAR and market price of risk parameters, and solve for the counter-factual conve-

nience yield that makes the government’s valuation equation hold:

TtK
c f
t PDk,c f

t − GtPDg
t =

H

∑
h=0

Q$
t−1(h + 1)P$

t (h),

where the convenience yield impacts both the tax revenue multiplier Kt and the price-dividend
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Figure 10: Present Value of Government Surpluses and Implied Convenience Yield
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The left panel plots the present value of government surpluses with and without seigniorage revenue, scaled by GDP. The right
panel plots the actual and the counterfactual convenience yields λt and λ̃t. The ‘Counterfactual’ convenience yield is defined as the
convenience yield reverse-engineered to enforce the government’s intertemporal budget constraint. The KVJ convenience yield is the
Krishnamurthy and Vissing-Jorgensen (2012) measure, while the ‘JKL’ is the Jiang et al. (2021a) measure.

ratio PDk
t for the modified tax claim. The right panel of Figure 10 reports the resulting counter-

factual convenience yield process λ
c f
t in the dashed yellow line alongside the actual convenience

yield λt from Krishnamurthy and Vissing-Jorgensen (2012) in the solid blue line. The convenience

yield needed to match the present values of government surpluses and seigniorage revenues to

the actual debt value is 6.00% on average, an order of magnitude larger than the actual average of

0.60%.

Some have argued that the convenience yields are larger than implied by the AAA-Treasury

spread. For example, Jiang et al. (2021a) argue that foreigners earn convenience yields from a

broad range of dollar assets, including investment-grade corporate bonds. Subtracting Treasury

from U.S. AAA corporate yields removes that dollar safety premium. The right panel of Figure 10

also plots the convenience yields from the JKL paper. They average to 1.75% per annum.16 This

is a generous estimate of the convenience yield since it assumes that all holders of Treasury bonds

assign the same convenience yield as foreign investors. Nevertheless, it still substantially below

the counterfactual convenience yields. As the supply of safe assets increases, convenience yields

may decline (Krishnamurthy and Vissing-Jorgensen, 2012, 2015), or even disappear altogether if

the U.S. dollar were to lose its privileged role in the world financial system (Farhi, Gourinchas, and

Rey, 2011; Farhi and Maggiori, 2018; He, Krishnamurthy, and Milbradt, 2019). The above analysis

ignores this possibility, which leads us to possibly overstate the importance of convenience.

16In related work, Koijen and Yogo (2019) obtain a 2.10% average convenience yield on Treasuries earned by foreign-
ers.
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7.3 Austerity as a Peso Event

Next, we consider a model in which bond investors price in the possibility of a major government

spending cut. However, such radical austerity never occurs in our 73-year sample. How large

does the spending cut probability need to be in order to equate the market value of government

debt to the present value of surpluses?17

More precisely, we consider a permanent spending cut that lowers today’s and future gov-

ernment spending by 40%. For reference, defense spending accounted for 16% of the federal

budget, Social Security for 23%, and Medicare for 15% in 2019. For a typical year with an average

spending-to-GDP ratio of 11%, the cut lowers it to 6.6%. Moreover, this spending cut is perma-

nent. That is, we assume the long-run mean of spending-to-GDP, g0, falls by 40%. The dynamics

of the demeaned state variables, including the demeaned log spending-to-GDP ratio, from that

point forward are still given by the benchmark VAR. As a result, the price of the G-claim scaled by

GDP is simply scaled by a factor of ℓ = 1 − 40% = 60% when the peso event happens. Moreover,

the peso event itself is not priced; we do not change the market prices of risk Λt.18

Under this simple setting, we ask how likely the spending cut should be in each year to pre-

cisely match the present value of government surpluses to the market value of debt. We denote

this probability of the spending cut that closes the valuation gap by ϕt, which should then satisfy

Dt = TtPDτ
t − GtPDg

t (1 − ϕtℓ), ∀t.

Figure 11 reports the resulting time series of ϕt. The average gap between the market value of

debt and the present value of surpluses under the benchmark model exceeds two hundred percent

of GDP and grows in magnitude in the last several decades of the sample. To match such a large

gap, the probability of the spending cut has to be large and growing. The spending cut probability

is 24.19% on average and rises to 36.69% at the end of the sample. Such a large probability is at

odds with the notion of a peso event that never happens in a 70-year sample. We interpret this

result as a restatement rather than a resolution of the puzzle.

Next, we repeat the austerity analysis in the model with convenience yields. The dashed green

line in Figure 11 shows that the implied austerity probabilities that resolve the valuation puzzle

are very similar to those in the benchmark model without convenience yield. The model in which

U.S. Treasury debt enjoys convenience has a higher risk-free rate. Absent the actual seigniorage

revenue, this discount rate effect increases the implied austerity probability, as shown by the dash-

17The possibility of a large future increase in tax revenues is an alternative way to engineer a fiscal correction. We
have confirmed that the results are similar.

18If the fiscal correction took place in high marginal utility states, as in a rare disaster model, the implied probability
of these fiscal corrections would likely be smaller. But that strikes us as implausible. Governments do not suddenly
switch to running large primary surpluses in bad states of the world.
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dotted red line. The cash flow effects from convenience revenues are offset by the discount rate

effect, resulting in a similar time series for the austerity probability.

Figure 11: Probabilities of Spending Cut Implied by Debt-to-GDP Ratio
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This figure reports the time series of probabilities of spending cuts implied by the debt-to-GDP ratio, ϕt.

7.4 Priced Orthogonal Fiscal Shocks

The benchmark model assumes that the fiscal shocks which are orthogonal to all macro-economic

and financial variables (that precede it in the VAR) are not priced. While that seems like a rea-

sonable assumption, we nevertheless explore the possibility of non-zero market price of risk for

orthogonal spending shocks.19 We choose the price of spending innovations to minimize the gap.

The details are reported in Appendix G. We find that this extended model can largely close the

wedge, but only by making the spending claim very risky, i.e. by assigning a very large and pos-

itive Sharpe ratio of 1.89 to the orthogonal spending shocks. To render the spending claim risky,

the stand-in investor is forced to experience much lower marginal utility growth when there are

large positive innovations to spending that are not correlated with stocks, bonds, or GDP growth.

This naturally leads to a much higher maximum Sharpe ratio for the model.

In this version of the model, government spending processes is very risky. The average nomi-

nal discount rates, rg
0 = 8.05%, or 4.87% in real terms, is now higher than the discount rate for the

GDP claim 7.83%.This spending discount rate is 1% point higher than the corresponding discount

rate in the baseline model. The discount rate for taxes is 7.86% in nominal terms, or 4.68% in real

terms.

Figure 12 plots the term structure of risk premia. We have distorted the risk premium for

the spending claim by more than 5% points at the one-year horizon relative to the benchmark

19The results are similar for orthogonal tax revenue shocks.
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model, and by about 1% point at longer horizons. The risk premia on the spending claim are

much higher than those on the GDP claim at all maturities, even though U.S. spending is clearly

counter-cyclical. That makes little economic sense.20 In addition, the government’s spending

policy inflicts a lot more risk onto taxpayers in this model by spending more in low marginal

utility states, which seems equally implausible.

Figure 12: Term Structure of Risk Premia on the T-Claim and the G-Claim with Priced Orthogonal
Spending Shocks
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This figure plots the term structures of risk premia on the spending claim, the tax claim, equity, and the GDP claim in the model where

fiscal shocks that are orthogonal to GDP growth, inflation, bond yields, an stock prices and dividend growth, are priced. this model

is estimated in Appendix G. Each point on the graph is an annualized holding-period risk premium, as derived in equation (C.13) of

the Appendix.

What is the implied expected return on Treasurys? The model implies an expected return in

levels on the spending claim of 9.48% or 6.3% in real terms. Assuming that the expected return on

the tax claim still exceeds the expected return on the spending claim, based on the fundamental

risk properties, the model-implied real return on Treasurys is bounded below by 6.3%. The actual

realized excess return on the entire portfolio of marketable Treasurys in the sample is only 2.20%,

4.1 % less than the model-implied real return on Treasurys. This 4.1% gap is 7.5× the standard

error on the mean Treasury return. In sum, while the discount rate distortion helps to close the

valuation gap, it worsens the government risk premium puzzle.

20In fact, if we introduce another commonly used state variable that moves at business cycle frequencies, the spread
between the valuation ratios of value and growth stocks, we find that this renders the tax claim riskier and the spending
claim safer, worsening the valuation puzzle.
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7.5 Other Government Assets and Liabilities

The government owns various assets, including outstanding student loans and other credit trans-

actions, cash balances, and various financial instruments. Based on Congressional Budget Office

data, the total value of these government assets is 8.8% of the GDP as of 2018. While these assets

bring the net government debt held by the public from 77.8% to 69.1% of GDP, the bulk of the

government debt valuation puzzle remains.21

Other significant sources of government revenues and outlays are those associated with the

Social Security Administration (SSA). Based on the CBO data, net flows from the SSA are close to

0 as of 2019, but will turn into a deficit of 0.7% of GDP per annum from 2020 to 2029. As the SSA

turns from a net contributor of primary surpluses into a net contributor to the deficit in 2020 and

beyond, the government will need to issue additional debt to the public. Absent new spending

cuts or tax increases, this will deepen the puzzle.

8 Conclusion

Because government deficits tend to occur in recessions, times when bond investors face high

marginal utility, governments must tap debt markets at inopportune times. This consideration

imposes a novel no-arbitrage restriction which affects inference on the riskiness of the overall

government debt portfolio. The government debt portfolio is a risky claim whose expected return

far exceeds risk-free bond yields. We quantify that the increase in riskiness lowers the govern-

ment’s fiscal capacity by 2.5 times GDP. The negative effects of the 2020 covid pandemic on current

and future primary surpluses will add to this number. The pricing of U.S. Treasury debt violates

the no-arbitrage restrictions implied by the government budget constraint, a violation we call

the government debt valuation puzzle. We show that the valuation of debt cannot be reconciled

with rational expectations, provided that a no-bubble condition holds. Conventional estimates of

convenience yields cannot explain it either. These findings are robust to changes in model specifi-

cation. Perhaps investors expect an unprecedented fiscal correction. If so, we show that they have

been expecting a correction for a long time, and have been assigning ever-increasing probability

to the event, in violation of rational expectations.

21Bansal, Croce, Kiao, and Rosen (2019) study reallocation of resources towards government investment in times of
high uncertainty.
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Online Appendix for The U.S. Public Debt Valuation Puzzle

A Proofs of Propositions
Proposition 1

Proof. All objects in this appendix are in nominal terms but we drop the superscript $ for ease of notation. The government faces the
following one-period budget constraint:

Gt − Tt + Q$
t−1(1) =

H

∑
h=1

(Q$
t (h)− Q$

t−1(h + 1))P$
t (h),

where Gt is total nominal government spending, Tt is total nominal government revenue, Q$
t (h) is the number of nominal zero-coupon

bonds of maturity h outstanding in period t each promising to pay back $1 at time t + h, and P$
t (h) is today’s price for a h-period zero-

coupon bond with $1 face value. A unit of h + 1-period bonds issued at t − 1 becomes a unit of h-period bonds in period t. That is, the
stock of bonds evolves of each maturity evolves according to Q$

t (h) = Q$
t−1(h+ 1) +∆Q$

t (h). Note that this notation can easily handle
coupon-bearing bonds. For any bond with deterministic cash-flow sequence, we can write the price (present value) of the bond as the
sum of the present values of each of its coupons.

The left-hand side of the budget constraint denotes new financing needs in the current period, due to primary deficit G − T and
one-period debt from last period that is now maturing. The right hand side shows that the money is raised by issuing new bonds of
various maturities. Alternatively, we can write the budget constraint as total expenses equalling total income:

Gt + Q$
t−1(1) +

H

∑
h=1

Q$
t−1(h + 1)P$

t (h) = Tt +
H

∑
h=1

Q$
t (h)P$

t (h),

We can now iterate the budget constraint forward. The period t constraint is given by:

Tt − Gt = Q$
t−1(1)− Q$

t (1)P$
t (1) + Q$

t−1(2)P$
t (1)− Q$

t (2)P$
t (2) + Q$

t−1(3)P$
t (2)− Q$

t (3)P$
t (3)

+ · · · − Q$
t (H)P$

t (H) + Q$
t−1(H + 1)P$

t (H).

Consider the period-t + 1 constraint,

Tt+1 − Gt+1 = Q$
t (1)− Q$

t+1(1)P$
t+1(1) + Q$

t (2)P$
t+1(1)− Q$

t+1(2)P$
t+1(2) + Q$

t (3)P$
t+1(2)− Q$

t+1(3)P$
t+1(3)

+ · · · − Q$
t+1(H)P$

t+1(H) + Q$
t (H + 1)P$

t+1(H).

multiply both sides by M$
t+1, and take expectations conditional on time t:

Et

[
M$

t+1(Tt+1 − Gt+1)
]

= Q$
t (1)P$

t (1)− Et[Q$
t+1(1)M$

t+1P$
t+1(1)] + Q$

t (2)P$
t (2)− Et[Q$

t+1(2)M$
t+1P$

t+1(2)] + Q$
t (3)P$

t (3)

−Et[Q$
t+1(3)M$

t+1P$
t+1(3)] + · · ·+ Q$

t (H)P$
t (H)

−Et[Q$
t+1(H)M$

t+1P$
t+1(H)] + Q$

t (H + 1)P$
t (H + 1),

where we use the asset pricing equations Et[M$
t+1] = P$

t (1), Et[M$
t+1P$

t+1(1)] = P$
t (2), · · · , Et[M$

t+1P$
t+1(H − 1)] = P$

t (H), and
Et[M$

t+1P$
t+1(H)] = P$

t (H + 1).
Consider the period t + 2 constraint, multiplied by M$

t+1 M$
t+2 and take time-t expectations:

Et

[
M$

t+1 M$
t+2(Tt+2 − Gt+2)

]
= Et[Q$

t+1(1)M$
t+1P$

t+1(1)]− Et[Q$
t+2(1)M$

t+1 M$
t+2P$

t+2(1)] + Et[Q$
t+1(2)M$

t+1P$
t+1(2)]

−Et[Q$
t+2(2)M$

t+1 M$
t+2P$

t+2(2)] + Et[Q$
t+1(3)M$

t+1P$
t+1(3)]− · · ·

+Et[Q$
t+1(H)M$

t+1P$
t+1(H)]− Et[Q$

t+2(H)M$
t+1 M$

t+2P$
t+2(H)] + Et[Q$

t+1(H + 1)M$
t+1P$

t+1(H + 1)],

where we used the law of iterated expectations and Et+1[M$
t+2] = P$

t+1(1), Et+1[M$
t+2P$

t+2(1)] = P$
t+1(2), etc.

Note how identical terms with opposite signs appear on the right-hand side of the last two equations. Adding up the expected
discounted surpluses at t, t + 1, and t + 2 we get:

Tt − Gt + Et

[
M$

t+1(Tt+1 − Gt+1)
]
+ Et

[
M$

t+1 M$
t+2(Tt+2 − Gt+2)

]
= ∑H

h=0 Q$
t−1(h + 1)P$

t (h) +

−Et[Q$
t+2(1)M$

t+1 M$
t+2P$

t+2(1)]− Et[Q$
t+2(2)M$

t+1 M$
t+2P$

t+2(2)]− · · · − Et[Q$
t+2(H)M$

t+1 M$
t+2P$

t+2(H)].
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Similarly consider the one-period government budget constraints at times t + 3, t + 4, etc. Then add up all one-period budget
constraints. Again, the identical terms appear with opposite signs in adjacent budget constraints. These terms cancel out upon adding
up the budget constraints. Adding up all the one-period budget constraints until horizon t + J , we get:

H

∑
h=0

Q$
t−1(h + 1)P$

t (h) = Et

[
J

∑
j=0

M$
t,t+j(Tt+j − Gt+j)

]
+ Et

[
M$

t,t+J

H

∑
h=1

Q$
t+J(h)P$

t+J(h)

]

where we used the cumulate SDF notation M$
t,t+j = ∏

j
i=0 M$

t+i and by convention M$
t,t = M$

t = 1 and P$
t (0) = 1. The market value of

the outstanding government bond portfolio equals the expected present discount value of the surpluses over the next J years plus the
present value of the government bond portfolio that will be outstanding at time t + J. The latter is the cost the government will face
at time t + J to finance its debt, seen from today’s vantage point.

We can now take the limit as J → ∞:

H

∑
h=0

Q$
t−1(h + 1)P$

t (h) = Et

[
∞

∑
j=0

M$
t,t+j(Tt+j − Gt+j)

]
+ lim

J→∞
Et

[
M$

t,t+J

H

∑
h=1

Q$
t+J(h)P$

t+J(h)

]
.

We obtain that the market value of the outstanding debt inherited from the previous period equals the expected present-discounted
value of the primary surplus stream {Tt+j − Gt+j} plus the discounted market value of the debt outstanding in the infinite future.

Consider the transversality condition:

lim
J→∞

Et

[
M$

t,t+J

H

∑
h=1

Q$
t+J(h)P$

t+J(h)

]
= 0.

which says that while the market value of the outstanding debt may be growing as time goes on, it cannot be growing faster than the
stochastic discount factor. Otherwise there is a government debt bubble.

If the transversality condition is satisfied, the outstanding debt today, Dt, reflects the expected present-discounted value of the
current and all future primary surpluses:

Dt =
H

∑
h=0

Q$
t−1(h + 1)P$

t (h) = Et

[
∞

∑
j=0

M$
t,t+j(Tt+j − Gt+j)

]
.

This is equation (1) in the main text.

Case with Default
Proof. We consider only full default, without loss of generality. Alternatively, we can write the budget constraint that obtains in case
of no default at t:

Gt + Q$
t−1(1) +

H

∑
h=1

Q$
t−1(h + 1)P$

t (h) = Tt +
H

∑
h=1

Q$
t (h)P$

t (h),

and, in case of default at t, the one-period budget constraint is given by:

Gt = Tt +
H

∑
h=1

Q$
t (h)P$

t (h).

We can now iterate the budget constraint forward. In case of no default, the period t constraint is given by:

Tt − Gt = Q$
t−1(1)− Q$

t (1)P$
t (1) + Q$

t−1(2)P$
t (1)− Q$

t (2)P$
t (2) + Q$

t−1(3)P$
t (2)− Q$

t (3)P$
t (3)

+ · · · − Q$
t (H)P$

t (H) + Q$
t−1(H + 1)P$

t (H).

In case of default, the period t constraint is given by:

Tt − Gt = −Q$
t (1)P$

t (1)− Q$
t (2)P$

t (2)− Q$
t (3)P$

t (3)− Q$
t (H)P$

t (H)

First, consider the period-t + 1 constraint in case of no default,

Tt+1 − Gt+1 = Q$
t (1)− Q$

t+1(1)P$
t+1(1) + Q$

t (2)P$
t+1(1)− Q$

t+1(2)P$
t+1(2) + Q$

t (3)P$
t+1(2)− Q$

t+1(3)P$
t+1(3)

+ · · · − Q$
t+1(H)P$

t+1(H) + Q$
t (H + 1)P$

t+1(H).
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Second, consider the period-t + 1 constraint in case of default,

Tt+1 − Gt+1 = −Q$
t+1(1)P$

t+1(1)− Q$
t+1(2)P$

t+1(2)− Q$
t+1(3)P$

t+1(3)− Q$
t+1(H)P$

t+1(H).

We use χt as an indicator variable for default. To simplify, we consider only full default with zero recovery. This is without loss of
generality. Next, multiply both sides of the no default constraint by (1 − χt+1)M$

t+1, and take expectations conditional on time t:

Et

[
M$

t+1(1 − χt+1)(Tt+1 − Gt+1)
]

= Q$
t (1)Et

[
M$

t+1(1 − χt+1)
]
− Et[Q$

t+1(1)(1 − χt+1)M$
t+1P$

t+1(1)] + Et[(1 − χt+1)M$
t+1P$

t+1(1)]Q
$
t (2)

−Et[Q$
t+1(2)(1 − χt+1)M$

t+1P$
t+1(2)] + Et[M$

t+1(1 − χt+1)P$
t+1(2)]Q

$
t (3)

−Et[Q$
t+1(3)(1 − χt+1)M$

t+1P$
t+1(3)] + · · ·+ Q$

t (H)Et[M$
t+1(1 − χ)P$

t+1(H − 1)]

−Et[Q$
t+1(H)(1 − χt+1)M$

t+1P$
t+1(H)] + Q$

t (H + 1)Et[M$
t+1(1 − χt+1)P$

t+1(H)],

and multiply both sides of the default constraint by M$
t+1χt+1

Et

[
M$

t+1χt+1(Tt+1 − Gt+1)
]

= −Et[Q$
t+1(1)χt+1 M$

t+1P$
t+1(1)]− Et[Q$

t+1(2)χt+1 M$
t+1P$

t+1(2)]

−Et[Q$
t+1(3)χt+1 M$

t+1P$
t+1(3)]− · · · − Et[Q$

t+1(H)χt+1 M$
t+1P$

t+1(H)].

By adding these 2 constraints, we obtain the following expression:

Et

[
M$

t+1(Tt+1 − Gt+1)
]

= Q$
t (1)Et

[
M$

t+1(1 − χt+1)
]
− Et[Q$

t+1(1)M$
t+1P$

t+1(1)] + Et[(1 − χt+1)M$
t+1P$

t+1(1)]Q
$
t (2)

−Et[Q$
t+1(2)M$

t+1P$
t+1(2)] + Et[M$

t+1(1 − χt+1)P$
t+1(2)]Q

$
t (3)

−Et[Q$
t+1(3)M$

t+1P$
t+1(3)] + · · ·+ Q$

t (H)Et[Mt+1(1 − χ)P$
t+1(H − 1)]

−Et[Q$
t+1(H)Mt+1P$

t+1(H)] + Q$
t (H + 1)Et[M$

t+1(1 − χt+1)P$
t+1(H)].

This can be restated as:

Et

[
M$

t+1(Tt+1 − Gt+1)
]

= Q$
t (1)P$

t (1)− Et[Q$
t+1(1)M$

t+1P$
t+1(1)] + Q$

t (2)P$
t (2)− Et[Q$

t+1(2)M$
t+1P$

t+1(2)] + Q$
t (3)P$

t (3)

−Et[Q$
t+1(3)M$

t+1P$
t+1(3)] + · · ·+ Q$

t (H)P$
t (H)− Et[Q$

t+1(H)M$
t+1P$

t+1(H)] + Q$
t (H + 1)P$

t (H + 1),

where we use the asset pricing equations Et

[
M$

t+1(1 − χt+1)
]

= P$
t (1), Et[M$

t+1(1 − χt+1)P$
t+1(1)] = P$

t (2), · · · , Et[M$
t+1(1 −

χt+1)P$
t+1(H − 1)] = P$

t (H), and Et[M$
t+1(1 − χt+1)P$

t+1(H)] = P$
t (H + 1).

The rest of the proof is essentially unchanged. Consider the period t + 2 constraint, multiplied by M$
t+1 M$

t+2(1 − χt+2) in the
no-default case, and M$

t+1 M$
t+2(χt+2) for the default case, and take time-t expectations (after adding default and no-default states):

Et

[
M$

t+1 M$
t+2(Tt+2 − Gt+2)

]
= Et[Q$

t+1(1)M$
t+1P$

t+1(1)]− Et[Q$
t+2(1)M$

t+1 M$
t+2P$

t+2(1)] + Et[Q$
t+1(2)M$

t+1P$
t+1(2)]

−Et[Q$
t+2(2)M$

t+1 M$
t+2P$

t+2(2)] + Et[Q$
t+1(3)M$

t+1P$
t+1(3)]− · · ·

+Et[Q$
t+1(H)M$

t+1P$
t+1(H)]− Et[Q$

t+2(H)M$
t+1 M$

t+2P$
t+2(H)] + Et[Q$

t+1(H + 1)M$
t+1P$

t+1(H + 1)],

where we used the law of iterated expectations and Et+1[M$
t+2(1 − χt+2)] = P$

t+1(1), Et+1[M$
t+2(1 − χt+2)P$

t+2(1)] = P$
t+1(2), etc.

Note how identical terms with opposite signs appear on the right-hand side of the last two equations. Adding up the expected
discounted surpluses at t, t + 1, and t + 2 we get:

Tt − Gt + Et

[
M$

t+1(Tt+1 − Gt+1)
]
+ Et

[
M$

t+1 M$
t+2(Tt+2 − Gt+2)

]
= ∑H

h=0 Q$
t−1(h + 1)P$

t (h) +

−Et[Q$
t+2(1)M$

t+1 M$
t+2P$

t+2(1)]− Et[Q$
t+2(2)M$

t+1 M$
t+2P$

t+2(2)]− · · · − Et[Q$
t+2(H)M$

t+1 M$
t+2P$

t+2(H)].

Similarly consider the one-period government budget constraints at times t + 3, t + 4, etc. Then add up all one-period budget
constraints. Again, the identical terms appear with opposite signs in adjacent budget constraints. These terms cancel out upon adding
up the budget constraints. Adding up all the one-period budget constraints until horizon t + J , we get:

H

∑
h=0

Q$
t−1(h + 1)P$

t (h) = Et

[
J

∑
j=0

M$
t,t+j(Tt+j − Gt+j)

]
+ Et

[
M$

t,t+J

H

∑
h=1

Q$
t+J(h)P$

t+J(h)

]
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where we used the cumulate SDF notation M$
t,t+j = ∏

j
i=0 M$

t+i and by convention M$
t,t = M$

t = 1 and P$
t (0) = 1. The market value of

the outstanding government bond portfolio equals the expected present discount value of the surpluses over the next J years plus the
present value of the government bond portfolio that will be outstanding at time t + J. The latter is the cost the government will face
at time t + J to finance its debt, seen from today’s vantage point.

We can now take the limit as J → ∞:

H

∑
h=0

Q$
t−1(h + 1)P$

t (h) = Et

[
∞

∑
j=0

M$
t,t+j(Tt+j − Gt+j)

]
+ lim

J→∞
Et

[
M$

t,t+J

H

∑
h=1

Q$
t+J(h)P$

t+J(h)

]
.

We obtain that the market value of the outstanding debt inherited from the previous period equals the expected present-discounted
value of the primary surplus stream {Tt+j − Gt+j} plus the discounted market value of the debt outstanding in the infinite future.

Consider the transversality condition:

lim
J→∞

Et

[
M$

t,t+J

H

∑
h=1

Q$
t+J(h)P$

t+J(h)

]
= 0.

which says that while the market value of the outstanding debt may be growing as time goes on, it cannot be growing faster than the
stochastic discount factor. Otherwise there is a government debt bubble.

If the transversality condition is satisfied, the outstanding debt today, Dt, reflects the expected present-discounted value of the
current and all future primary surpluses:

Dt =
H

∑
h=0

Q$
t−1(h + 1)P$

t (h) = Et

[
∞

∑
j=0

M$
t,t+j(Tt+j − Gt+j)

]
.

This is equation (1) in the main text.

Proposition 2 From the time-t budget constraint, we get that the primary surplus

−St = −Q$
t−1(1) +

H

∑
h=1

(Q$
t (h)− Q$

t−1(h + 1))P$
t (h).

It follows that

Dt − St =
H

∑
h=0

Q$
t−1(h + 1)P$

t (h)− Q$
t−1(1) +

H

∑
h=1

(Q$
t (h)− Q$

t−1(h + 1))P$
t (h) =

H

∑
h=1

Q$
t (h)P$

t (h).

We obtain equation (3) in the main text.

rd
t+1(Dt − St) =

∞

∑
h=0

P$
t+1(h)Q

$
t,h+1 = Dt+1 = Pτ

t+1 − Pg
t+1

= (Pτ
t − Tt)rτ

t+1 − (Pg
t+1 − Gt)r

g
t+1.

Proposition 3
Proof. We follow the proof in the working paper version of Backus et al. (2018) on page 16 (Example 5). Hansen and Scheinkman
(2009) consider the following equation:

Et[Mt,t+1vt+1] = νvt, (A.1)

where ν is the dominant eigenvalue and vt is the eigenfunction. Claims to stationary cash flows earn a return equal to the yield on the
long bond. We consider the following decomposition of the pricing kernel:

M1
t,t+1 = Mt,t+1vt+1/νvt, (A.2)

M2
t,t+1 = νvt/vt+1. (A.3)

By construction, Et[M1
t,t+1] = 1. The long yields converge to − log ν. The long-run bond return converges to limn→∞ Rn

t,t+1 = 1
M2

t,t+1
=

vt+1/νvt. This implies that E[log R∞
t,t+1] = − log ν.

To value claims to uncertain cash flows with one-period growth rate gt,t+1, we define p̂n
t to denote the price of a strip that pays

off dt,t+n, n periods from now.
p̂n

t = Et[Mt,t+1gt,t+1 p̂n−1
t+1 ] = Et[M̂t,t+1 p̂n−1

t+1 ],
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where M̂t,t+1 = Mt,t+1gt,t+1. Consider the problem of finding the dominant eigenvalue:

Et[M̂t,t+1v̂t+1] = νv̂t. (A.4)

If the cash flows are stationary, then the same ν that solves this equation for Mt,t+1 in eqn. A.1 solves the one for M̂t,t+1. Hence, if
(ν, vt) solves eqn. A.1, then (ν, vt/dt) solves the hat equation eqn. A.4.

Proposition 4 The proof of proposition 4 is in Appendix C.4.

Proposition 5
Proof. Start from government budget constraint:

Tt − Gt = Q$
t−1(1) +

K−1

∑
k=1

Q$
t−1(k + 1)P$

t (k)−
K

∑
k=1

Q$
t (k)P$

t (k)

We assume these bond prices contain the same convenience yield λt:

Et[M$
t+1] = P$

t (1)e
−λt ,

Et[M$
t+1P$

t+1(1)] = P$
t (2)e

−λt ,

Et[M$
t+1P$

t+1(K)] = P$
t (K + 1)e−λt .

Consider the period-t + 1 constraint, multiplied by Mt+1, and take expectations conditional at time t:

Et

[
M$

t+1(Tt+1 − Gt+1)
]

= Et[M$
t+1Q$

t (1) +
K−1

∑
k=1

M$
t+1Q$

t (k + 1)P$
t+1(k)−

K

∑
k=1

M$
t+1Q$

t+1(k)P$
t+1(k)]

= P$
t (1)e

−λt Q$
t (1) +

K−1

∑
k=1

P$
t (k + 1)e−λt Q$

t (k + 1)− Et[M$
t+1

K

∑
k=1

Q$
t+1(k)P$

t+1(k)].

Consider the period-t + 2 constraint, multiplied by M$
t,t+2:

Et

[
M$

t,t+2(Tt+2 − Gt+2)
]

= Et[M$
t,t+2Q$

t+1(1) +
K−1

∑
k=1

M$
t,t+2Q$

t+1(k + 1)P$
t+2(k)−

K

∑
k=1

M$
t,t+2Q$

t+2(k)P$
t+2(k)]

= Et[M$
t+1P$

t+1(1)e
−λt+1 Q$

t+1(1)] + Et[M$
t+1

K−1

∑
k=1

P$
t+1(k + 1)e−λt+1 Q$

t+1(k + 1)]− Et[M$
t,t+2

K

∑
k=1

Q$
t+2(k)P$

t+2(k)],

where we have used that

Et[M$
t,t+2Q$

t+1(1)] = Et[M$
t,t+1Q$

t+1(1)Et+1 M$
t+1,t+2] = Et[M$

t,t+1Q$
t+1(1)e

−λt+1 P$
t+1(1)],

and, similarly, that:

Et[M$
t,t+2Q$

t+1(k)P$
t+2(k)] = Et[M$

t,t+1Q$
t+1(k)Et+1 M$

t+1,t+2P$
t+2(k)] = Et[M$

t,t+1Q$
t+1(k)e

−λt+1 P$
t+1(k + 1)].

By adding up the t, t + 1 and t + 2 constraint, we get that Et[Tt − Gt + M$
t+1(Tt+1 − Gt+1) + M$

t,t+2(Tt+2 − Gt+2)] equals:

= Q$
t−1(1) +

K−1

∑
k=1

Q$
t−1(k + 1)P$

t (k)

+ P$
t (1)(e

−λt − 1)Q$
t (1) +

K−1

∑
k=1

P$
t (k + 1)(e−λt − 1)Q$

t (k + 1)

+ Et[M$
t+1P$

t+1(1)(e
−λt+1 − 1)Q$

t+1(1)] + Et[M$
t+1

K−1

∑
k=1

P$
t+1(k + 1)(e−λt+1 − 1)Q$

t+1(k + 1)]− Et[M$
t,t+2

K

∑
k=1

Q$
t+2(k)P$

t+2(k)].
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Next, consider the period-t + 3 constraint, multiplied by M$
t,t+3

Et

[
M$

t,t+3(Tt+3 − Gt+3)
]

= Et[M$
t,t+3Q$

t+2(1) +
K−1

∑
k=1

M$
t,t+3Q$

t+2(k + 1)P$
t+2(k)−

K

∑
k=1

M$
t,t+3Q$

t+2(k)P$
t+2(k)]

= Et[M$
t,t+2P$

t+2(1)e
−λt+2 Q$

t+2(1)] + Et[M$
t,t+2

K−1

∑
k=1

P$
t+2(k + 1)e−λt+2 Q$

t+2(k + 1)]− Et[M$
t,t+3

K

∑
k=1

Q$
t+3(k)P$

t+3(k)],

where we use:
Et[M$

t,t+3Q$
t+2(1)] = Et[M$

t,t+2Q$
t+2(1)Et+2 M$

t+2,t+3] = Et[M$
t,t+2Q$

t+2(1)e
−λt+2 P$

t+2(1)],

and, similarly, that:

Et[M$
t,t+3Q$

t+2(k)P$
t+3(k)] = Et[M$

t,t+2Q$
t+2(k)Et+1 M$

t+2,t+3P$
t+3(k)] = Et[M$

t,t+2Q$
t+2(k)e

−λt+2 P$
t+2(k + 1)].

Iterating forward, and aggregating the discounted surpluses (Tt+j − Gt+j), we obtain:

Et

[
∞

∑
j=0

M$
t,t+j(Tt+j − Gt+j)

]
+ Et

[
∞

∑
j=0

M$
t,t+j(1 − e−λt+j )

K

∑
k=1

Q$
t+j(k)P$

t+j(k)

]
=

K

∑
k=0

Q$
t−1(k + 1)P$

t (k)− lim
τ→∞

Et[M$
t,t+τ

K

∑
k=1

Q$
t+τ(k)P$

t+τ(k)].

Let Dt(t + j) denote the time-t value of the government’s debt portfolio at t + j. We can restate the previous equation as follows:

Et

[
∞

∑
j=0

M$
t,t+j(Tt+j − Gt+j)

]
+ Et

[
∞

∑
j=0

M$
t,t+j(1 − e−λt+j )Dt+j(t + j)

]
= Dt(t − 1)− lim

τ→∞
Et[M$

t,t+τ

K

∑
k=1

Q$
t+τ(k)P$

t+τ(k)].

If the discounted value of distant future bond portfolio is 0,

lim
τ→∞

Et[M$
t,t+τ

K

∑
k=1

Q$
t+τ(k)P$

t+τ(k)] = 0,

then debt value is the present value of future surpluses and future seignorage revenue from issuing bonds that earn convenience
yields:

Et

[
∞

∑
j=0

M$
t,t+j(Tt+j − Gt+j)

]
+ Et

[
∞

∑
j=0

M$
t,t+j(1 − e−λt+j )Dt+j(t + j)

]
= Dt(t − 1).
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B Derivation of the Consumption-Based Model
The asset pricing equation for tax strip is

Et[exp(mt,t+j) exp(yt+j + τt+j)] = YtPDτ
t (j)

with

PDτ
t (j) = Et[exp(mt,t+1)

Yt+1

Yt
PDτ

t+1(j − 1)]

Conjecture

PDτ
t (j) = exp(aτ

j + bτ
j (τt − τ̄))

where aτ
0 = τ̄ and bτ

0 = 1.
Then

exp(aτ
j + bτ

j (τt − τ̄))

= Et[exp(mt,t+1 + ∆yt+1) exp(aτ
j−1 + bτ

j−1(τt+1 − τ̄))]

= Et[exp(−β + (1 − γ)µ + (1 − γ)σyεc
t+1 + aτ

j−1 + bτ
j−1(θτ(τt − τ̄) + στεc

t+1 + ητετ
t+1))]

= exp(−β + (1 − γ)µ + aτ
j−1 + bτ

j−1θτ(τt − τ̄) +
1
2
((1 − γ)σy + bτ

j−1στ)
2 +

1
2
(bτ

j−1ητ)
2)

So

aτ
j = (1 − γ)µ − β + aτ

j−1 +
1
2
((1 − γ)σy + bτ

j−1στ)
2 +

1
2
(bτ

j−1ητ)
2

bτ
j = bτ

j−1θτ

The moment conditions are

Et[∆yt+1 − µ] = 0

Et[τt+1 − τ̄] = 0

Et[(∆yt+1 − µ)(τt+1 − θττt − (1 − θτ)τ̄)− σyστ ] = 0

Et[(τt+1 − θττt − (1 − θτ)τ̄)
2 − σ2

τ − η2
τ ] = 0

Et[(τt+1 − τ̄)(τt − τ̄)− θτ(τt − τ̄)2] = 0

Et[gt+1 − ḡ] = 0

Et[(∆yt+1 − µ)(gt+1 − θggt − (1 − θg)ḡ)− σyσg] = 0

Et[(gt+1 − θggt − (1 − θg)ḡ)2 − σ2
g − η2

g ] = 0

Et[(gt+1 − ḡ)(gt − ḡ)− θg(gt − ḡ)2] = 0

Table B.1: Parameter Value Estimates

Estimate Std. Error t value Pr(>|t|)
µ 0.03 0.00 11.72 0.00
τ̄ −2.24 0.02 −117.13 0.00

στ 0.02 0.01 2.76 0.01
ητ 0.08 0.01 9.40 0.00
θτ 0.88 0.08 11.22 0.00
ḡ −2.21 0.02 −125.79 0.00

σg −0.02 0.00 −3.86 0.00
ηg −0.07 0.01 −12.11 0.00
θg 0.90 0.05 16.59 0.00

This table reports the GMM estimates of the parameters in the CRRA model.
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The log risk-free rate is

r f
t = β + γµ − 1

2
(γσy)

2

and the log risk-premium on the tax strip at τt = τ̄ is

Et[log
(

Yt+1

Yt

PDτ
t+1(j − 1)
PDτ

t (j)

)
− r f

t ] = µ + aτ
j−1 − aτ

j − r f
t = − 1

2
((1 − γ)σy + bτ

j−1στ)
2 − 1

2
(bτ

j−1ητ)
2 +

1
2
(γσy)

2 (B.1)

Risk Premia of the Fiscal Claims Next, we consider the return of the claim to current and future spending strips. We
log-linearize the return around gt = ḡ:

rg
t+1 = κ

g
0 + ∆ log Gt+1 + κ

g
1 pdg

t+1 − pdg
t .

where pdg = log
(

PDg
t − 1

)
. The unconditional mean log return of the G claim is rg

0 = E[rg
t ].

We obtain pg from the precise valuation formula at gt = ḡ. We define linearization constants κ
g
0 and κ

g
1 as:

κ
g
1 =

epg

epg + 1
< 1 and κ

g
0 = log

(
epg + 1

)
− epg

epg + 1
pg.

Then, under a log-linear approximation, the unconditional expected return is:

rg
0 = κ

g
0 + µ − pg(1 − κ

g
1 )

The log ex-dividend price-dividend ratio on the entire spending claim is affine in the state vector and verify the conjecture by
solving the Euler equation for the claim.

pgt = pg + b
g
(gt − ḡ)

This allows us to write the return as:

rg
t+1 = κ

g
0 + gt+1 − gt + µ + σyε

y
t+1 + κ

g
1 (pg + b

g
(gt+1 − ḡ))− (pg + b

g
(gt − ḡ))

= rg
0 + σyε

y
t+1 + (1 + κ

g
1 b

g
)(gt+1 − ḡ)− (1 + b

g
)(gt − ḡ)

Starting from the Euler equation:

1 = Et
[
exp{mt+1 + rg

t+1}
]

= Et[exp{−r f − 1
2
(γσy)

2 + rg
0 + (−γσy + σy + (1 + κ

g
1 b

g
)σg)ε

y
t+1

+ ((1 + κ
g
1 b

g
)θg − (1 + b

g
))(gt − ḡ) + (1 + κ

g
1 b

g
)ητε

g
t+1}]

which implies the level of risk premium is

rg
0 − r f + Jensen = γσy(σy + (1 + κ

g
1 b

g
)σg)

and

b
g

=
θg − 1

1 − κ
g
1 θg

Following this calculation, the level of risk premium for the spending strip is 2.22% and that for the tax strip is 2.81%.

C Asset Pricing Model

C.1 Risk-free rate
The real short yield yt(1), or risk-free rate, satisfies Et[exp{mt+1 + yt(1)}] = 1. Solving out this Euler equation, we get:

yt(1) = y$
t (1)− Et[πt+1]−

1
2
(eπ)′Σeπ + (eπ)′Σ

1
2 Λt
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= y0(1) +
[
(eyn)′ − (eπ)′Ψ + (eπ)′Σ

1
2 Λ1

]
zt. (C.1)

y0(1) ≡ y$
0(1)− π0 −

1
2
(eπ)′Σeπ + (eπ)′Σ

1
2 Λ0. (C.2)

where we used the expression for the real SDF

mt+1 = m$
t+1 + πt+1

= −y$
t (1)−

1
2

Λ′
tΛt − Λ′

tεt+1 + π0 + (eπ)′Ψzt + (eπ)′Σ
1
2 εt+1

= −yt(1)−
1
2
(eπ)′Σeπ + (eπ)′Σ

1
2 Λt −

1
2

Λ′
tΛt −

(
Λ′

t − (eπ)′Σ
1
2

)
εt+1

The real short yield is the nominal short yield minus expected inflation minus a Jensen adjustment minus the inflation risk premium.

C.2 Nominal and real term structure
Proposition 6. Nominal bond yields are affine in the state vector:

y$
t (h) = − A$(h)

h
− (B$(h))′

h
zt,

where the coefficients A$(h) and B$(h) satisfy the following recursions:

A$(h + 1) = −y$
0(1) + A$(h) +

1
2
(
(

B$(h)
)
)′Σ

(
B$(h)

)
−

(
B$(h)

)′
Σ

1
2 Λ0, (C.3)(

B$(h + 1)
)′

=
(

B$(h)
)′

Ψ − (eyn)′ −
(

B$(h)
)′

Σ
1
2 Λ1, (C.4)

initialized at A$(0) = 0 and B$(0) = 0.

Proof. We conjecture that the t + 1-price of a τ-period bond is exponentially affine in the state:

log(P$
t+1(h)) = A$(h) +

(
B$(h)

)′
zt+1

and solve for the coefficients A$(h + 1) and B$(h + 1) in the process of verifying this conjecture using the Euler equation:

P$
t (h + 1) = Et[exp{m$

t+1 + log
(

P$
t+1(h)

)
}]

= Et[exp{−y$
t (1)−

1
2

Λ′
tΛt − Λ′

tεt+1 + A$(h) +
(

B$(h)
)′

zt+1}]

= exp{−y$
0(1)− (eyn)′zt −

1
2

Λ′
tΛt + A$(h) +

(
B$(h)

)′
Ψzt} ×

Et

[
exp{−Λ′

tεt+1 +
(

B$(h)
)′

Σ
1
2 εt+1}

]
.

We use the log-normality of εt+1 and substitute for the affine expression for Λt to get:

P$
t (h + 1) = exp

{
−y$

0(1)− (eyn)′zt + A$(h) +
(

B$(h)
)′

Ψzt +
1
2

(
B$(h)

)′
Σ
(

B$(h)
)

−
(

B$(h)
)′

Σ
1
2 (Λ0 + Λ1zt)

}
.

Taking logs and collecting terms, we obtain a linear equation for log(pt(h + 1)):

log
(

P$
t (h + 1)

)
= A$(h + 1) +

(
B$(h + 1)

)′
zt,

where A$(h + 1) satisfies (C.3) and B$(h + 1) satisfies (C.4). The relationship between log bond prices and bond yields is given by

− log
(

P$
t (h)

)
/τ = y$

t (h).
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Define the one-period return on a nominal zero-coupon bond as:

rb,$
t+1(h) = log

(
P$

t+1(h)
)
− log

(
P$

t (h + 1)
)

The nominal bond risk premium on a bond of maturity τ is the expected excess return corrected for a Jensen term, and equals
negative the conditional covariance between that bond return and the nominal SDF:

Et

[
rb,$

t+1(h)
]
− y$

t (1) +
1
2

Vt

[
rb,$

t+1(h)
]

= −Covt

[
m$

t+1,r
b,$
t+1(h)

]
=

(
B$(h)

)′
Σ

1
2 Λt

Real bond yields, yt(h), denoted without the $ superscript, are affine as well with coefficients that follow similar recursions:

A(h + 1) = −y0(1) + A(h) +
1
2
(B(h))′ Σ (B(h))− (B(h))′ Σ

1
2

(
Λ0 − Σ

1
2 ′eπ

)
, (C.5)

(B(h + 1))′ = −(eyn)′ + (eπ + B(h))′
(

Ψ − Σ
1
2 Λ1

)
. (C.6)

For τ = 1, we recover the expression for the risk-free rate in (C.1)-(C.2).

C.3 Stocks

C.3.1 Aggregate Stock Market

We define the real return on the aggregate stock market as Rm
t+1 =

Pm
t+1+Dm

t+1
Pm

t
, where Pm

t is the ex-dividend price on the equity market.
A log-linearization delivers:

rm
t+1 = κm

0 + ∆dm
t+1 + κm

1 pdm
t+1 − pdm

t . (C.7)

The unconditional mean log real stock return is rm
0 = E[rm

t ], the unconditional mean real dividend growth rate is µm = E[∆dm
t+1], and

pdm = E[pdm
t ] is the unconditional average log price-dividend ratio on equity. The linearization constants κm

0 and κm
1 are defined as:

κm
1 =

epdm

epdm
+ 1

< 1 and κm
0 = log

(
epdm

+ 1
)
− epdm

epdm
+ 1

pdm. (C.8)

Our state vector z contains the (demeaned) log real dividend growth rate on the stock market, ∆dm
t+1 − µm, and the (demeaned)

log price-dividend ratio pdm − pdm.

pdm
t (h) = pdm + (epd)′zt,

∆dm
t = µm + (edivm)′zt,

where (epd)′ (edivm) is a selector vector that has a one in the fifth (sixth) entry, since the log pd ratio (log dividend growth rate) is the
fifth (sixth) element of the VAR.

We define the log return on the stock market so that the log return equation holds exactly, given the time series for {∆dm
t , pdm

t }.
Rewriting (C.7):

rm
t+1 − rm

0 =
[
(edivm + κm

1 epd)′Ψ − (epd)′
]

zt +
(

edivm + κm
1 epd

)′
Σ

1
2 εt+1.

rm
0 = µm + κm

0 − pdm(1 − κm
1 ).

The equity risk premium is the expected excess return on the stock market corrected for a Jensen term. By the Euler equation, it
equals minus the conditional covariance between the log SDF and the log return:

1 = Et

[
Mt+1

Pm
t+1 + Dm

t+1
Pm

t

]
= Et

[
exp{m$

t+1 + πt+1 + rm
t+1}

]
= Et

[
exp

{
−y$

t,1 −
1
2

Λ′
tΛt − Λ′

tεt+1 + π0 + (eπ)′zt+1 + rm
0 + (edivm + κm

1 epd)′zt+1 − (epd)′zt

}]
= exp

{
−y$

0(1)−
1
2

Λ′
tΛt + π0 + rm

0 +
[
(edivm + κm

1 epd + eπ)′Ψ − (epd)′ − (eyn)′
]

zt

}
×Et

[
exp{−Λ′

tεt+1 +
(

edivm + κm
1 epd + eπ

)′
Σ

1
2 εt+1

]
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= exp
{

rm
0 + π0 − y$

0(1) +
[
(edivm + κm

1 epd + eπ)′Ψ − (epd)′ − (eyn)′
]

zt

}
× exp

{
1
2

(
edivm + κm

1 epd + eπ
)′

Σ
(

edivm + κm
1 epd + eπ

)
−

(
edivm + κm

1 epd + eπ
)′

Σ
1
2 Λt

}
Taking logs on both sides delivers:

rm
0 + π0 − y$

0(1) +
[
(edivm + κm

1 epd + eπ)′Ψ − (epd)′ − (eyn)′
]

zt (C.9)

+
1
2

(
edivm + κm

1 epd + eπ
)′

Σ
(

edivm + κm
1 epd + eπ

)
=

(
edivm + κm

1 epd + eπ
)′

Σ
1
2 Λt

Et

[
rm,$

t+1

]
− y$

t,1 +
1
2

Vt

[
rm,$

t+1

]
= −Covt

[
m$

t+1,r
m,$
t+1

]
The left-hand side is the expected excess return on the stock market, corrected for a Jensen term, while the right-hand side is the
negative of the conditional covariance between the (nominal) log stock return and the nominal log SDF. We refer to the left-hand
side as the equity risk premium in the data, since it is implied directly by the VAR. We refer to the right-hand side as the equity risk
premium in the model, since it requires knowledge of the market prices of risk.

Note that we can obtain the same expression using the log real SDF and log real stock return:

Et
[
rm

t+1
]
− yt,1 +

1
2

Vt
[
rm

t+1
]

= −Covt
[
mt+1,rm

t+1
]

rm
0 − y0(1) +

[
(edivm + κm

1 epd + eπ)′Ψ − (epd)′ − (eyn)′ − (eπ)′Σ1/2Λ1

]
zt

+
1
2
(edivm + κm

1 epd)′Σ(edivm + κm
1 epd) =

(
edivm + κm

1 epd
)′

Σ1/2(Λt −
(

Σ1/2
)′

eπ)

We combine the terms in Λ0 and Λ1 on the right-hand side and plug in for y0(1) from (C.2) to get:

rm
0 + π0 − y$

0,1 +
1
2
(eπ)′Σeπ

+
1
2
(edivm + κm

1 epd)′Σ(edivm + κm
1 epd) + (eπ)′Σ

(
edivm + κm

1 epd
)

+
[
(edivm + κm

1 epd + eπ)′Ψ − (epd)′ − (eyn)′
]

zt

=
(

edivm + κm
1 epd

)′
Σ1/2Λt + (eπ)′Σ

1
2 Λ0 + (eπ)′Σ1/2Λ1zt

This recovers equation (C.9).

C.3.2 Dividend Strips
Proposition 7. Log price-dividend ratios on dividend strips are affine in the state vector:

pdd
t (h) = Am(h) + (Bm(h))′zt,

where the coefficients Am(h) and Bm(h) follow recursions:

Am(h + 1) = Am(h) + µm − y0(1) +
1
2

(
edivm + Bm(h)

)′
Σ
(

edivm + Bm(h)
)

−
(

edivm + Bm(h)
)′

Σ
1
2

(
Λ0 − Σ

1
2 ′eπ

)
, (C.10)

Bm′(h + 1) =
(

edivm + eπ + Bm(h)
)′

Ψ − (eyn)′ −
(

edivm + eπ + Bm(h)
)′

Σ
1
2 Λ1, (C.11)

initialized at Am
0 = 0 and Bm

0 = 0.

Proof. We conjecture the affine structure and solve for the coefficients Am(h + 1) and Bm(h + 1) in the process of verifying this conjec-
ture using the Euler equation:

PDd
t (h + 1) = Et

[
Mt+1PDd

t+1(h)
Dm

t+1
Dm

t

]
= Et

[
exp{m$

t+1 + πt+1 + ∆dm
t+1 + pdd

t+1(h)}
]

= Et

[
exp{−y$

t,1 −
1
2

Λ′
tΛt − Λ′

tεt+1 + π0 + (eπ)′zt+1 + µm + (edivm)′zt+1 + Am(h) + B(h)m′zt+1}
]

= exp{−y$
0(1)− (eyn)′zt −

1
2

Λ′
tΛt + π0 + (eπ)′Ψzt + µm + (edivm)′Ψzt + Am(h) + B(h)m′Ψzt}
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×Et

[
exp{−Λ′

tεt+1 +
(

edivm + eπ + Bm(h)
)′

Σ
1
2 εt+1

]
.

We use the log-normality of εt+1 and substitute for the affine expression for Λt to get:

pdd
t (h + 1) = −y$

0(1) + π0 + µm + Am(h) +
[(

edivm + eπ + Bm(h)
)′

Ψ − (eyn)′
]

zt

+
1
2

(
edivm + eπ + Bm(h)

)′
Σ
(

edivm + eπ + Bm(h)
)

−
(

edivm + eπ + Bm(h)
)′

Σ
1
2 (Λ0 + Λ1zt)

Taking logs and collecting terms, we obtain a log-linear expression for pd
t (h + 1):

pdd
t (h + 1) = Am(h + 1) + Bm(h + 1)′zt,

where:

Am(h + 1) = Am(h) + µm − y$
0(1) + π0 +

1
2

(
edivm + eπ + Bm(h)

)′
Σ
(

edivm + eπ + Bm(h)
)

−
(

edivm + eπ + Bm(h)
)′

Σ
1
2 Λ0,

Bm(h + 1)′ =
(

edivm + eπ + Bm(h)
)′

Ψ − (eyn)′ −
(

edivm + eπ + Bm(h)
)′

Σ
1
2 Λ1.

We recover the recursions in (C.10) and (C.11) after using equation (C.2).

We define the dividend strip risk premium as:

Et

[
rd,$

t+1(h)
]
− y$

t,1 +
1
2

Vt

[
rd,$

t+1(h)
]

= −Covt

[
m$

t+1, rd,$
t+1(h)

]
=

(
edivm + eπ + Bm(h)

)′
Σ

1
2 Λt

C.4 Government Spending and Tax Revenue Claims
This appendix computes PT

t , the value of a claim to future tax revenues, and PG
t , the value of a claim to future government spending.

It contains the proof for Proposition 5.

C.4.1 Spending Claim
Nominal government spending growth equals

∆ log Gt+1 = ∆ log gt+1 + xt+1 + πt+1 = x0 + π0 + µ
g
0 +

(
e∆g + ex + eπ

)′
zt+1. (C.12)

We conjecture the log price-dividend ratios on spending strips are affine in the state vector:

pdg
t (h) = log

(
PDg

t (h)
)
= Ag(h) + (Bg(h))′zt.

We solve for the coefficients Ag(h + 1) and Bg(h + 1) in the process of verifying this conjecture using the Euler equation:

PDg
t (h + 1) = Et

[
Mt+1PDg

t+1(h)
Gt+1

Gt

]
= Et

[
exp{m$

t+1 + ∆ log gt+1 + xt+1 + πt+1 + pdg
t+1(h)}

]
= exp{−y$

0(1)− (eyn)′zt −
1
2

Λ′
tΛt + µg + x0 + π0 + (e∆g + ex + eπ + Bg(h))′Ψzt + Ag(h)}

×Et

[
exp{−Λ′

tεt+1 +
(

e∆g + ex + eπ + Bg(h)
)′

Σ
1
2 εt+1

]
.

57



We use the log-normality of εt+1 and substitute for the affine expression for Λt to get:

PDG
t (h + 1) = exp{−y$

0(1) + µg + x0 + π0 + (e∆g + ex + eπ + Bg(h))′Ψ − (eyn)′)zt + Ag(h)

+
1
2

(
e∆g + ex + eπ + Bg(h)

)′
Σ
(

e∆g + ex + eπ + Bg(h)
)

−
(

e∆g + ex + eπ + Bg(h)
)′

Σ
1
2 (Λ0 + Λ1zt)}

Taking logs and collecting terms, we obtain

Ag(h + 1) = −y$
0(1) + µg + x0 + π0 + Ag(h) +

1
2

(
e∆g + ex + eπ + Bg(h)

)′
Σ
(

e∆g + ex + eπ + Bg(h)
)

−
(

e∆g + ex + eπ + Bg(h)
)′

Σ
1
2 Λ0,

Bg(h + 1)′ = (e∆g + ex + eπ + Bg(h))′Ψ − (eyn)′ −
(

e∆g + ex + eπ + Bg(h)
)′

Σ
1
2 Λ1,

and the price-dividend ratio of the cum-dividend spending claim is

∞

∑
h=0

exp(Ag(h + 1) + Bg(h + 1)′zt)

Derivation of Risk Premium We note that the 1-period holding return on a spending strip is

exp(rg
t+1(h)) = exp{∆ log gt+1 + xt+1 + πt+1 + pdg

t+1(h)− pdg
t (h + 1)}

so that the Euler equation is Et[exp(m$
t+1 + rg

t+1(h))] = 1.
We can express the expected return as

Et[rG
t+1(h)] = −Et[m$

t+1]−
1
2

vart(m$
t+1)−

1
2

vart(r
g
t+1(h))− covt(m$

t+1, rg
t+1(h))

= y$
t (1)−

1
2

vart(r
g
t+1(h))− covt(m$

t+1, rg
t+1(h))

and the risk premium is

Et[r
g
t+1(h)]− y$

t (1) = − 1
2

vart(r
g
t+1(h)) + covt(Λ′

tεt+1, rg
t+1(h))

=
(

e∆g + ex + eπ + Bg(h)
)′

Σ
1
2 (Λ0 + Λ1zt)−

1
2

(
e∆g + ex + eπ + Bg(h)

)′
Σ
(

e∆g + ex + eπ + Bg(h)
)

To evaluate the risk premium for the entire duration of the strip, we define the holding-period risk premium as

1
h

h−1

∑
k=0

Et[r
g
t+k+1(h − k)− y$

t+k(1)]

when the state variable is at zt = 0, the expected holding-period risk premium simplifies to

1
h

h−1

∑
k=0

(
e∆g + ex + eπ

)′
Σ

1
2 Λ0 −

1
2

(
e∆g + ex + eπ + Bg(h − k)

)′
Σ
(

e∆g + ex + eπ + Bg(h − k)
)

(C.13)

Entire Spending Claim Next, we define the (nominal) return on the claim as Rg
t+1 =

Pg
t+1

Pg
t −Gt

=
Pg,ex

t+1 +Gt+1

Pg,ex
t

, where Pg
t is the

cum-dividend price on the spending claim and Pg,ex
t is the ex-dividend price. We log-linearize the return around zt = 0:

rg
t+1 = κ

g
0 + ∆ log Gt+1 + κ

g
1 pdg

t+1 − pdg
t . (C.14)

where pdg
t ≡ log

(
Pg,ex

t
Gt

)
= log

(
Pg

t
Gt

− 1
)

. The unconditional mean log return of the G claim is rg
0 = E[rg

t ].
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We obtain pg from the precise valuation formula (15) at zt = 0. We define linearization constants κ
g
0 and κ

g
1 as:

κ
g
1 =

epg

epg + 1
< 1 and κ

g
0 = log

(
epg + 1

)
− epg

epg + 1
pg. (C.15)

Then, under a log-linear approximation, the unconditional expected return is:

rg
0 = x0 + π0 + κ

g
0 − pg(1 − κ

g
1 ). (C.16)

The log ex-dividend price-dividend ratio on the entire spending claim is affine in the state vector and verify the conjecture by
solving the Euler equation for the claim.

pgt = pg + (B̄g)′zt (C.17)

This allows us to write the return as:
rg

t+1 = rg
0 +

(
e∆g + ex + eπ + κ

g
1 B̄g

)′
zt+1 − (B̄g)′zt. (C.18)

Proof. Starting from the Euler equation:

1 = Et

[
exp{m$

t+1 + rg
t+1}

]
= exp{−y$

0(1)− (eyn)′zt −
1
2

Λ′
tΛt + rg

0 + [
(

e∆g + ex + eπ + κ
g
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)′
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×Et

[
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g
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)′
Σ

1
2 εt+1

]
.

We use the log-normality of εt+1 and substitute for the affine expression for Λt to get:

1 = exp{rg
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0(1) + [
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g
1 B̄g

)′
Ψ − (B̄g)′ − (eyn)′]zt

+
1
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g
1 B̄g
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Σ
(

e∆g + ex + eπ + κ
g
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)
︸ ︷︷ ︸

Jensen

−
(

e∆g + ex + eπ + κ
g
1 B̄g

)′
Σ

1
2 (Λ0 + Λ1zt)}

Taking logs and collecting terms, we obtain the following system of equations:

rg
0 − y$

0(1) + Jensen =
(

e∆g + ex + eπ + κ
g
1 B̄g

)′
Σ

1
2 Λ0 (C.19)

and (
e∆g + ex + eπ + κ

g
1 B̄g

)′
Ψ − (B̄g)′ − (eyn)′ =

(
e∆g + ex + eπ + κ

g
1 B̄g

)′
Σ

1
2 Λ1 (C.20)

The left-hand side of this equation is the unconditional expected excess log return with Jensen adjustment. The right hand side is
the unconditional covariance of the log SDF with the log return. This equation describes the unconditional risk premium on the claim
to government spending. Equation (C.20) describes the time-varying component of the government spending risk premium. Given
Λ1, the system of N equations (C.20) can be solved for the vector B̄g:

B̄g =

(
I − κ

g
1

(
Ψ − Σ

1
2 Λ1

)′
)−1 [(

Ψ − Σ
1
2 Λ1

)′ (
e∆g + ex + eπ

)
− eyn

]
. (C.21)

C.4.2 Revenue Claim
Nominal government revenue growth equals

∆ log Tt+1 = ∆ log τt+1 + xt+1 + πt+1 = x0 + π0 + µτ
0 +

(
e∆τ + ex + eπ

)′
zt+1. (C.22)

where τt = Tt/GDPt is the ratio of government revenue to GDP. Note that this ratio is assumed to have a long-run growth rate of
zero. This imposes cointegration between government revenue and GDP. The growth ratio in this ratio can only temporarily deviate
from zero.

The remaining proof exactly mirrors the proof for government spending, with

pdτ
t ≡ log

(
Pτ,ex

t
Tt

)
= log

(
Pτ

t
Tt

− 1
)
= pdτ + (Bτ)′zt (C.23)
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rτ
t+1 = rτ

0 +
(
e∆τ + ex + eπ + κ

g
1 Bτ

)′
zt+1 − (Bτ)′zt, (C.24)

and
rτ

0 = x0 + π0 + κτ
0 − pτ(1 − κτ

1 ).

rτ
0 − y$

0(1) + Jensen =
(

e∆τ + ex + eπ + κτ
1 Bτ

)′
Σ

1
2 Λ0. (C.25)
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D Data Sources

D.1 Primary Surpluses
The primary surpluses are constructed using NIPA Table 3.2 Federal Government Current Receipts and Expenditures from 1947 to
2019. All variables are seasonally adjusted.

The government revenue is the sum of the corporate and personal tax revenue, the net income from the rest of the world, and
the federal government dividends income receipts on assets. The personal tax revenue is the total of the current personal tax receipts,
the tax revenue from production and imports, the net income from the rest of the world, and surpluses from government-sponsored
enterprise net of subsidies. The net income from the rest of the world includes the tax income from the rest of the world, the contribu-
tions from government social insurance from the rest of the world, the current transfer receipts from the rest of the world, net of the
government transfer payments to the rest of the world and the interest payments to the rest of the world.

The government spending is the domestic net transfer payments before interest payments plus discretionary spending (i.e. con-
sumption expenditures). The domestic net transfer is the domestic current transfer receipts net of the domestic contribution from
government social insurances and the domestic current transfer receipts.

The primary surpluses are the government revenue minus the government spending before interest payments.

D.2 State Variables
We obtain the time series of GDP from NIPA Table 1.1.5, and inflation is the change in the GDP price index from NIPA Table 1.1.4.
The real GDP growth xt is nominal GDP growth minus inflation. The Treasury yields for all maturities are constant maturity yields
from Fred. There are some periods where the 20-year bond was not issued and some periods where the 30 year bond was not issued.
The log-price-dividend ratio and the log real dividend growth are computed using CRSP database. Dividends are seasonally adjusted
and quarterly. We include the growth of both the government revenue to GDP ratio and the government spending to GDP ratio in the
state vector. The government revenue and government spending are defined in Section 1.

D.3 Other Measures of the Convenience Yield
In this section, we compare our measure of the convenience yield with the implied convenience yields from Van Binsbergen et al.
(2019). Figure D.1 shows the 6-month, 12-month, and 18-month convenience yields from Van Binsbergen et al. (2019), which are
spreads between the SPX option implied interest rates and government bond rates with corresponding maturities. All measures of
the convenience yield exhibit similar time-series patterns over the sample period from 2004-01 to 2017-04.

Figure D.1: Measures of the Convenience Yield

The figure shows the time series of different measures of the convenience yield. The dashed blue line is the spread of 6-month zero
coupon interest rates implied from SPX options with 6-month Treasury bill rate. The dotted red line is the spread of 12-month zero
coupon interest rates implied from SPX options with 12-month Treasury bill rate. The dashed yellow line is the spread of 18-month
zero coupon interest rates implied from SPX options with 18-month Treasury bond rate. The data is from Van Binsbergen et al. (2019).
The solid black line is the weighted average of the Aaa-Treasury yield spread and the high-grade commercial papers-bills yield spread.
All yields are in the quarter frequency, and expressed in percentage per annum. The sample period is from 2014-01 to 2017-04.
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E Coefficient Estimates

E.1 Cointegration Tests
We perform a Johansen cointegration test by first estimating the vector error correction model :

∆wt = A(B′wt−1 + c) + D∆wt−1 + εt, where wt =

 log Tt
log Gt

log GDPt

 .

Both the trace test and the max eigenvalue test do not reject the null of cointegration rank 2 (with p-values of 0.11), but reject the null
of cointegration rank 0 and 1 (with p-values lower than 0.01). These results are in favor of two cointegration relationships between
variables in wt.

We also conduct the Phillips-Ouliaris cointegration test on the {wt} matrix with a truncation lag parameter of 2, and reject the
null hypothesis that w is not cointegrated with a p-value of 0.03.

E.2 Market Prices of Risk
The constant market price of risk vector is estimated to be:

Λ′
0 = [0.00, 0.16,−0.41, 0.05, 0.00, 1.58, 0, 0, 0, 0, 0, 0]

The time-varying market price of risk matrix is estimated at:

Λ1 =



0 0 0 0 0 0 0 0 0 0 0 0
0 38.71 0 0 0 0 0 0 0 0 0 0
0 0 −12.99 −88.61 0 0 0 0 0 0 0 0

−4.13 −17.34 −5.84 −0.27 −0.67 1.80 2.74 −4.91 −0.38 −2.24 −5.82 −3.42
0 0 0 0 0 0 0 0 0 0 0 0

−41.74 −13.08 −18.04 56.82 −4.31 −0.00 −3.12 −0.24 −0.79 −3.45 3.25 −0.21
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


E.2.1 Identification
The first four rows of the VAR govern the dynamics of the term structure block of the model. We allow for three of the first four
innovations to carry non-zero risk prices, resulting in a three factor model for bond yields. Empirically, three factors explain more
than 97% of the variation in bond yields across maturities. We allow for priced shocks to the level (short rate), the slope (five-year
minus one-year yield), and real GDP growth. As explained below, matching the five-year bond yield pins down the fourth element of
Λ0 and the fourth row of Λ1, given the elements in the first three rows.

Since the spread between the five-year bond yield and the one-year bond yield is the fourth element of the state vector, and the
short rate is the third element of the state vector, the five-year bond yield can be written as:

y$
t,5 = y$

0,5 + (eyn + eyspr)
′zt = −

A$
5

5
−

B$′
5
5

zt

This restriction identifies one element in the constant Λ0, specifically

y$
0,1 + yspr0 = − 1

5
A$

5

and N elements in the time-varying market price of risk matrix Λ1:

e′y1 + e′yspr = − 1
5

(
B$

5

)′

The recursions for the coefficients in the affine term structure model are repeated here for convenience:

A$
τ+1 = −y$

0,1 + A$
τ +

1
2

(
B$

τ

)′
Σ
(

B$
τ

)
−

(
B$

τ

)′
Σ

1
2 Λ0, (E.1)(

B$
τ+1

)′
=

(
B$

τ

)′
Ψ − e′yn −

(
B$

τ

)′
Σ

1
2 Λ1, (E.2)
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initialized at A$
0 = 0 and B$

0 = 0. Define Ψ̃ = Ψ − Σ
1
2 Λ1 to be the risk-neutral companion matrix. Then (C.4) can be written as:

−
(

B$
τ+1

)′

5
=

1
5

e′yn(I − Ψ̃)−1(I − Ψ̃τ+1)

The restriction on Λ1 can be written as:

e′y1 + e′yspr =
1
5

e′yn(I − Ψ̃τ+1)(I − Ψ̃)−1

The left-hand side is a N × 1 vector with a 1 in elements 3 and 4 and a 0 in the other four positions. Hence, the same must be true of
the right-hand side. This imposes N restrictions on Λ1 which affects Ψ̃, given Ψ. There is one restriction on each of the columns of Λ1.
It is a restriction on a linear combination of the elements in the first four rows of Λ1 of that column. For example, if the elements in
the 10th column and first three rows of Λ1 are all zero, it is a simple restriction on the element in the fourth row and 10th column.

We allow for three non-zero elements in the first three rows of Λ1: Λ1(2, 2), Λ1(3, 3), and Λ1(3, 4). The price of GDP growth risk
is allowed to depend on the level of GDP growth and the price of interest rate risk is allowed to depend on the level of the interest rate
(as in Cox, Ingersoll, and Ross, 1985) and on the slope (as in Campbell and Shiller, 1991). The constant market prices of risk associated
with GDP growth and the level factor are also allowed to differ from zero. These five parameters are identified off the cross-section
of nominal and real bond yields; we include five additional nominal yield maturities beyond the 1- and 5-quarter yields, and five
real bond maturities. We expect a positive price of risk since positive innovations to GDP growth are good news. As in the classic
term structure models of Cox et al. (1985), we expect level risk to the term structure to carry a negative risk price. Level risk mostly
reflects the risk to low-frequency changes to expected inflation, for example due to changes in the Central Bank’s inflation target. We
expect the shock to the yield spread that is orthogonal to the preceding three shocks to carry a positive risk price Λ0(4), as positive
slopes indicate improving economic conditions. This risk price helps the model match the average slope of the term structure. For
parsimony, unexpected inflation shocks are not priced.

The second block of the SDF controls the pricing of risk in the stock market, and is captured by the market prices of risk in the
fifth and sixth rows of Λt. Recall that the VAR models the dynamics of the price-dividend ratio (row 5) and the dividend growth
rate (row 6). The VAR implies an expected excess log stock return including a Jensen adjustment given by the left-hand side of the
following equation:

rm
0 + π0 − y$

0,1 +
1
2

e′πΣeπ +
1
2
(edivm + κm

1 epd)
′Σ(edivm + κm

1 epd) + e′πΣ
(
edivm + κm

1 epd
)

(E.3)

+
[
(edivm + κm

1 epd + eπ)
′Ψ − e′pd − e′yn

]
zt =

(
edivm + κm

1 epd
)′ Σ1/2(Λ0 + Λ′

1zt) + e′πΣ
1
2 Λ0 + e′πΣ1/2Λ1zt

The first term on the second line is the time-varying component of the expected excess stock return. This is just data, i.e. the companion
matrix of the VAR Ψ, not asset pricing. The asset pricing is on the right-hand side of the above equation. It reports the equity risk
premium, which is negative the conditional covariance of the the log stock return and the log SDF. It depends on the market prices of
risk.

To replicate this time-variation, the sixth row of Λ1 must be such that the time-varying components of the left- and right-hand
sides of equation (E.3) are equalized:

(edivm + κm
1 epd + eπ)

′Ψ − e′pd − e′yn =
(
edivm + κm

1 epd
)′ Σ1/2Λ′

1 + e′πΣ1/2Λ1

This is a linear system of N equations in N unknowns, which uniquely pins down the N elements in the sixth row of Λ1. Given
the structure of Ψ and the structure of the market prices of risk in the first four rows of Λ1, the sixth row of Λ1 must have non-zero
elements in all columns.

The identification of the sixth row of the market prices of risk is also aided by the moment that equates the price-dividend ratio
in the data to the price-dividend ratio in the model, where the latter is calculated at the sum of the price-dividend ratios of the first
3600 dividend strips.

We expect and indeed estimate a positive risk price for innovations to dividend growth Λ0(6), since positive innovations in
dividend growth are good news for the economy.
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F Model Fit
Figure F.1 shows that the model matches the nominal term structure in the data closely. The figure plots the observed and model-
implied 1-, 2-, 5-, 10-, 20-, and 30-year nominal Treasury bond yields. In the estimation of the market prices of risk, we overweigh
matching the 5-year bond yield since it is included in the VAR and the 30-year bond yield since the behavior of long-term bond yields
is important for the results.

Figure F.1: Dynamics of the Nominal Term Structure of Interest Rates
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The figure plots the observed and model-implied 1-, 2-, 5-, 10-, 20-, and 30-year nominal Treasury bond yields. Yields are measured at
the end of the year. Data are from FRED and FRASER. the sample is 1947 until 2019.

Figure F.2 shows that the model matches the real term structure in the data closely. The figure plots the observed and model-
implied 5-, 7-, 10-, 20-, and 30-year real Treasury bond yields (Treasury Inflation Indexed securities). In the estimation of the market
prices of risk, we overweigh matching the 30-year bond yield since the behavior of long-term bond yields is important for the results.

The top panels of Figure F.3 show the model’s implications for the average nominal (left panel) and real (right panel) yield curves
at longer maturities. These yields are well behaved, with very long-run nominal (real) yields stabilizing at around 7.20% (4.01%) per
year. We impose conditions that ensure that the nominal and real term structure are well behaved at very long maturities, for which
we have no data. Specifically, we impose that average nominal (real) yields of bonds with maturities of 100, 500, 1000, 2000, 3000, and
4000 years remain above 6.23% (3.04%) per year, which is the long-run nominal (real) GDP growth rate x0 + π0 (x0) observed in our
sample. Second, we impose that nominal yields remain above real yields plus 3.18% expected inflation at those same maturities. This
imposes that the inflation risk premium remain positive at very long maturities. Third, we impose that the nominal and real term
structures of interest rates flatten out, with an average yield difference between 100- and 50-year yields that must not exceed 2% per
year and between 200- and 100-year maturity that must not exceed 1% per year. These restrictions are satisfied at the optimum.

The bottom left panel of Figure F.3 shows that the model matches the dynamics of the nominal bond risk premium, defined as the
expected excess return on the five-year nominal bond, quite well. Bond risk premia decline in the latter part of the sample, possibly
reflecting the arrival of foreign investors who value U.S. Treasuries highly. The bottom right panel shows a decomposition of the
nominal bond yield on a five-year bond into the five-year real bond yield, annual expected inflation inflation over the next five years,
and the five-year inflation risk premium. On average, the 5.0% nominal bond yield is comprised of a 1.9% real yield, a 3.2% expected
inflation rate, and a -0.1% inflation risk premium. The graph shows that the importance of these components fluctuates over time.

Figure F.4 shows the equity risk premium, the expected excess return, in the left panel and the price-dividend ratio in the right
panel. The risk premia in the data are the expected equity excess return predicted by the VAR. Their dynamics are sensible, with low
risk premia in the dot-com boom of 1999-2000 and very high risk premia in the Great Financial Crisis of 2008-09. The VAR-implied
equity risk premium occasionally turns negative. The figure’s right panel shows a tight fit for equity price levels. Hence, the model
fits both the behavior of expected returns and stock price levels.
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Figure F.2: Dynamics of the Real Term Structure of Interest Rates
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The figure plots the observed and model-implied 5-, 7-, 10-, 20-, and 30-year real bond yields. Data are from FRED and start in 2003.
For ease of readability, we start the graph in 1990 but the model of course implies a real yield curve for the entire 1947-2019 period.

Figure F.3: Long-term Yields and Bond Risk Premia
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The top panels plot the average bond yield on nominal (left panel) and real (right panel) bonds for maturities ranging from 1 to 500
years. The bottom left panel plots the nominal bond risk premium on the five year bond in model and data. The nominal bond risk
premium is measured as the five year bond yield minus the expected one-year bond yield over the next five years. The bottom right
panel decomposes the model’s five-year nominal bond yield into the five-year real bond yield, the five year expected inflation, and
the five-year inflation risk premium.
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Figure F.4: Equity Risk Premium and Price-Dividend Ratio
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The figure plots the observed and model-implied equity risk premium on the overall stock market in the left panel and the price-
dividend ratio in the right panel. The price-dividend ratio is the price divided by the annualized dividend. Data are from 1947-2019.
Monthly stock dividends are seasonally adjusted.
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G Model with Priced Fiscal Shock
This appendix explores a model in which we allow for a non-zero market price of risk for shocks to government spending growth that
are orthogonal to all macro-economic and financial state variable innovations as well as to tax revenue/GDP growth shocks. We refer
to these orthogonal shocks as “pure” spending shocks.

When estimating the market prices of risk, we re-estimate the first six elements of Λ0 and the first six rows of Λ1 (with starting
values equal to their benchmark model values) and free up the market prices of risk associated with the pure spending shock: Λ0(9)
and the ninth row of Λ1. We add to the objective function that minimizes the distance between asset pricing moments in model and
data an additional condition to minimize the sum of squared errors between the observed debt-to-GDP ratio and the model-implied
present value of primary surpluses. Even though the pure spending shock does not affect the contemporaneous innovations to stock
returns and bond yields by virtue of the ordering of the variables in the VAR (the Cholesky decomposition), it is contemporaneously
correlated with the shock to debt/GDP growth. In addition, the purse spending shock raises gt and affects all asset prices in future
periods through the dynamics of the VAR.

The constant market price of risk vector is estimated to be:

Λ̃′
0 = [0, 0.30,−0.44, 0.05, 0, 1.41, 0, 0, 1.89, 0, 0, 0]

The time-varying market price of risk matrix is estimated at:

Λ̃1 =



0 0 0 0 0 0 0 0 0 0 0 0
0 14.00 0 0 0 0 0 0 0 0 0 0
0 0 −12.44 −117.61 0 0 0 0 0 0 0 0

−3.59 −7.55 −7.79 −0.49 −0.51 3.11 2.83 −5.55 −0.51 −2.30 −4.31 −2.70
0 0 0 0 0 0 0 0 0 0 0 0

−42.53 −20.51 −19.61 28.03 −4.46 −0.00 −2.45 −0.28 −0.55 −3.22 2.08 −0.24
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

15.03 −41.53 58.97 79.51 4.37 2.29 −1.86 −1.02 −10.93 16.59 −2.91 5.04
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


Figure G.1 plots the present value of government surpluses. This extended model brings the present value of surpluses closer to

the market value of government debt, at least on average with an average wedge of -1.53% of GDP. The wedge remains substantial in
the last 20 years of the sample. Pricing errors are similar to those in the benchmark model. Since the price of pure spending shocks
is estimated to be positive 1.89, pure spending shock (unrelated to the broader economy) are good news for the representative agent
(low SDF, low marginal utility growth states). This lowers Pg

t and increases Ps
t . Put differently, the spending claim now becomes a

much riskier assets, offsetting the hedging features from counter-cyclical government spending. In addition, the model with priced
spending shocks results in a maximum Sharpe ratio that is substantially higher than the benchmark model.

Figure G.1: Present Value of Surpluses with Priced Pure Spending Shocks
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The figure plots government debt-GDP ratio and present value of government surpluses with priced pure spending shocks.
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