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Abstract

This memo describes a revision to the mixed-frequency vector autoregression (MF-VAR)
model originally constructed by Schorfheide and Song (2012) and subsequently revised by
Beauchemin (2013). In this most recent version, the 14-variable model is expanded to
include nonfarm payroll employment. The forecast performance of the augmented model is
compared with that of its predecessor.

∗The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank
of Minneapolis or the Federal Reserve System.
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1 Introduction

This memo describes a revision to the mixed-frequency vector autoregression (MF-VAR) model

originally constructed by Schorfheide and Song (2012) and subsequently revised by Beauchemin

(2013). In this model version, the 14-variable model is expanded to include total employment

at nonfarm businesses.1. I compare the forecast performance of the augmented model with

that of its 14-variable predecessor (heretofore “benchmark model”). The results show that

nonfarm employment improves overall forecast performance. Forecasts of variables included in

the Federal Reserve’s Summary of Economic Projections (SEP) also show a general improvement

in accuracy: PCE price forecasts are substantially better; real GDP forecasts are more accurate

in the medium to longer terms while conceding only moderate to small amounts of accuracy

in the immediate short-term; and the forecast performance for the unemployment rate and the

federal funds rate is essentially unchanged.

2 Model Overview and Notation

This section provides a brief overview of the MF-VAR model, mostly to establish the notation

used in evaluating forecast performance. Those interested in a detailed treatment of the econo-

metric foundations of the MF-VAR model (i.e., the likelihood function, the prior and posterior

distributions, and the two-step Gibbs sampler, which implements the mixed-frequency feature

of the model) should refer to Schorfheide and Song (2012).

Let Yt = (y1,t, y2,t, . . . , yn,t)
′ be the data vector of n random variables following a VAR(p)

process of the form

yt = Φ1yt−1 + · · ·+ Φpyt−p + Φc + ut, ut ∼ iidN (0,Σ) (1)

for t = 1, · · · , T . In this expression, Φ1, . . . ,Φp are n × n matrices of VAR coeffi cients,

Φc = (c1, c2, . . . , cn)′ is an n-dimensional vector of constants, and Σ = Eutu
′
t. Each equa-

tion in this n-variable system has k = np+ 1 regressors. For the benchmark 14-variable, 6-lag

model, k = 85; expanding the model to include nonfarm employment, k = 91. Like other

1Data are from the “B”tables (Current Employment Statistics survey) of the monthly Employment Situation
release: http://www.bls.gov/news.release/empsit.b.htm .
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nonstationary variables in the model, nonfarm employment (LEMP ) is subject to a natural

log transformation. The complete list of model variables and transformations is given in Table

1.

Prediction in a Bayesian framework is based on the posterior predictive density. Letting

YT+1:T+H =
(
y′T+1, y

′
T+2,, . . . , y

′
T+H

)′
represent an arbitrary forecast path in the set of all

possible future paths, the predictive density assigns a probability to each path:

p
(
YT+1:T+H | Y T

)
=

∫
p (YT+1:T+H ,Θ | Y1−p:T ) dΘ (2)

where p
(
Y T+1,T+H , θ | Y T

)
is the joint density of model parameters and future variable obser-

vations. Using the rules of probability, the integrand can be written as

p
(
YT+1:T+H ,Θ | Y T

)
= p (YT+1:T+H | Y1−p:T ,Θ) p (Θ | Y1−p:T ) , (3)

where Θ = (Φ,Σ). The two sources of forecast uncertainty are highlighted by this expression.

The first term on the right-hand side of (3) describes the uncertainty on future observables

given the observed data and model parameters, or equivalently, the forecast uncertainty due

to future VAR disturbances. The second term is the model posterior distribution describing

parameter uncertainty. Estimation of the posterior distribution of the VAR coeffi cients and the

variance-covariance matrix of disturbance terms, as well as the inference of the latent monthly

observations of the quarterly variables, require a two-step Gibbs sampling algorithm described

in Schorfheide and Song (2012).

3 Comparing Forecast Performance

The forecasting performance of the updated model relative to the current model focuses on the

five model variables that are part of the SEP (GDPR, UR, PC, PCXFE, and RFF ), but results

are reported for all model variables.

Forecast accuracy metrics for point forecasts are generated using the pseudo-iterated ap-

proach in which parameter uncertainty is integrated out and future disturbances are set to

zero. The h-step-ahead forecast is obtained using the posterior mean coeffi cient matric Φ and
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is computed by recursive substitution:

ŷT+h = Φc + Φ1ŷT+h−1 + Φ2ŷT+h−2 + . . .+ ΦpŷT+h−p

for h = 1, . . . ,H where ŷT+h = yT+h−p for h ≤ p.

Forecast evaluations are conducted on a recursive basis in which the sample period is length-

ened by one observation for each forecast. The initial sample period runs from 1968M1 to

1986M12, with the 1967M7—1967M12 observations serving as the pre-sample to accommodate

the six lags. A 36-step (month) ahead forecast is then computed covering the 1987M1—1989M12

period. In the next recursion, the sample is updated to 1968M1—1987M1 and the point forecast

is computed for the 1987M2—1990M1 period. The process continues until the last forecast that

accommodates a three-year interval covering the end of the data sample can be constructed.

That recursion uses the 1968M1—2011M6 sample to forecast the 2011M7—2014M6 period.

Before proceeding with the forecast evaluations, I obtain the optimal set of model hyperpa-

rameters at each recursion. This requires 414 consecutive maximizations of the marginal data

density over the five-dimensional hyperparameter space, implying (potentially) different prior

means for all forecasts. Monthly inferences for the three quarterly series are first obtained (for

each model) by running the full two-step Gibbs sampler over the entire sample period 1968M1—

2014M6. The three inferred monthly series are subsequently treated as data in computing the

optimal hyperparameter series and evaluating the point forecasts.2

Because the actual quarterly variables are only observed at that native frequency, forecasts

of the quarterly averages are evaluated even though the model is solved at the underlying

monthly frequency. We abuse notation slightly so that h = 1, . . . ,H is counted in quarters

rather than months. Forecasts are initially evaluated over the 1987Q1—2014Q2 period, which

allows for roughly a 20-year evaluation window. This period is also frequently identified as one

characterized by a single monetary policy regime.

Forecast evaluations are based on the mean squared forecast error (MSFE) statistic. Let

T0 denote the beginning of the evaluation period minus one period (1986Q4 or 2007Q4) and T1

2See Schorfheide and Song (2012) for details.
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the end period (2014Q2). The MSFE is defined as

MSFEi,h =

∑T1−h
t=T0

(ydatai,t+h − ỹt+h)2

T1 − h− T0 + 1

for each forecast variable i and forecast horizon h = 1, . . . ,H. Before MSFEs are computed, the

simulated projections ŷt+h are transformed back to original units ỹt+h according to the trans-

formations indicated in Table 1. Defining MSFENEWi,h as the MSFEs for the model augmented

with payroll employment andMSFEOLDi,h as the ones for the 14-variable benchmark model, the

relative mean squared forecast error (RMSFE) statistic is expressed as the ratio of the former

to the latter,

RMSFEi,h =
MSFENEWi,h

MSFEOLDi,h

,

so that values less than one imply better forecasts from the model augmented by nonfarm

employment.

Table 2 presents the forecast accuracy comparison. Overall improvements, as measured by

the number of smaller relative MSFEs recorded by the revised model over all variables and

forecast horizons, are more than half at 54.8 percent (bottom panel). Segmenting the results

by forecast horizon shows that overall improvement is best in the near term (h = 1, ..., 4) with

64.3 percent of cases showing improvement, followed by the medium term (h = 5, ..., 8) with

57.1 percent. The benchmark model does better in the longer term (h = 9, ..., 12) with only

42.9 percent of cases improved upon by the augmented model.

With respect to the SEP variables, the results are mixed but on the whole positive for

the augmented model. Beginning with the longer evaluation period (see Table 2), real GDP

(GDPR) is better predicted by the benchmark model in the near term– particularly for the first

two quarters. The advantage disappears as the forecast horizon lengthens, with more accurate

real GDP forecasts produced by the augmented model in the medium and longer term. Skill at

forecasting the unemployment rate (UR) is nearly equal in the two models, with the exception of

the one-quarter horizon where the benchmark model has the advantage. Forecasts of PCE prices

generated by the augmented model, in contrast, display substantial improvement at all time
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horizons. Note in particular that core consumer price (PCXFE) forecast accuracy improves

between 8 and 10 percent. The accuracy gains achieved by the augmented model for overall

consumer prices (PC) are smaller (roughly half of those for core prices) but nevertheless large.

This result is to be expected in consideration of the diffi cult-to-predict energy price component

in overall PCE prices. Finally, the federal funds rate (RFF ) forecast accuracy is comparable

between the two models.

A look at the second panel of Table 2 reveals a partial conjecture for the reason behind

the improvements in price-level forecasting accuracy. The introduction of nonfarm employment

improves forecast accuracy of both existing labor market quantity and price variables: the

index of aggregate labor hours (LHRS) and earnings per hour (EARNS). The accuracy

improvement in the latter is especially striking– roughly 15 to 20 percent. The addition of

nonfarm employment implicitly introduces an hours-per-worker concept to the model, perhaps

adding a finer statistical rendering of labor market utilization.

4 Summary

The results have shown that introducing total nonfarm employment to the MF-VAR model

improves its overall forecast performance. With respect to SEP variables, the accuracy of PCE

price forecasts is substantially better. Real GDP forecasts are more accurate in the medium

to longer terms while conceding only moderate to small amounts of accuracy in the immediate

short term. Forecast performance for the unemployment rate and the federal funds rate is

essentially unchanged.
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Tables

Table 1. Updated Model Variables

Code Series Change Transform
GDPR∗ Real GDP (chained 2005 dollars) log-level
UR Unemployment rate (%) level/100
PC PCE price index log-level
PCXFE Core PCE price index log-level
RFF Effective federal funds rate (%) level/100

LHRS Index of aggregate weekly hours log-level
LEMP Nonfarm business payroll employment New log-level
EARNS Average hourly earnings ($) log-level
IP Industrial production index log-level
CONSR Real personal consumption expenditures log-level
IFIXR∗ Real fixed investment log-level
GOVR∗ Real government purchases log-level
RTCM10 10-year Treasury note yield (%) level/100
RBAA Moody’s Baa corporate bond yield (%) level/100
SP500 S&P 500 composite stock price index log-level
∗Quarterly time series.

Table 2. Relative Mean Squared Errors

yi 1 2 3 4 5 6 7 8 9 10 11 12
GDPR 1.040 1.043 1.023 1.003 0.976 0.970 0.968 0.968 0.967 0.969 0.972 0.975
UR 1.035 0.982 0.985 0.991 0.998 1.005 1.009 1.011 1.011 1.013 1.013 1.012
PC 0.960 0.954 0.956 0.953 0.943 0.942 0.940 0.935 0.936 0.935 0.935 0.934
PCXFE 0.915 0.908 0.910 0.908 0.906 0.904 0.901 0.898 0.899 0.900 0.899 0.898
RFF 1.007 0.971 0.996 1.018 1.026 1.026 1.029 1.031 1.034 1.036 1.038 1.037

LHRS 0.954 0.943 0.951 0.963 0.974 0.980 0.983 0.985 0.986 0.987 0.988 0.988
LEMP N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
EARNS 0.848 0.796 0.784 0.784 0.783 0.780 0.781 0.781 0.781 0.781 0.779 0.775
IP 0.960 0.947 0.962 0.987 1.004 1.011 1.016 1.020 1.022 1.023 1.027 1.030
CONSR 0.966 0.908 0.918 0.942 0.953 0.963 0.958 0.971 0.976 0.981 0.988 0.994
IFIXR 1.125 1.070 1.053 1.036 1.025 1.022 1.028 1.041 1.052 1.064 1.081 1.096
GOVR 1.141 1.011 1.006 0.971 0.965 0.976 0.980 0.989 1.008 1.021 1.028 1.038
RTCM10 1.147 1.020 1.015 1.022 1.037 1.037 1.033 1.043 1.063 1.075 1.076 1.086
RBAA 1.006 0.940 0.953 0.961 0.985 1.004 1.033 1.071 1.108 1.133 1.139 1.154
SP500 1.013 0.973 0.987 0.996 0.995 1.000 1.006 1.007 1.006 1.008 1.0082 1.009

h = 1,...,12 h = 1,...,4 h = 5,...,8 h = 9,...,12
Mean 0.982 0.975 0.975 0.996
Median 0.990 0.972 0.987 1.009
Min 0.775 0.784 0.780 0.775
Max 1.154 1.147 1.107 1.154
% < 1 0.548 0.643 0.571 0.429
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