Wage Convergence and the Decline after 1980

Robustness

1940–1980

1980–2010

Annual wage growth 1940–1980

Annual wage growth 1980–2010

Log hourly wages, 1940

Log hourly wages, 1980

Boston

Chicago

Detroit

Los Angeles

New York

Philadelphia

San Francisco
This Paper: Wage Convergence by Skill Group

Robustness

Annual wage growth 1940−2010

Annual wage growth 1940−1980

Annual wage growth 1980−2010
THIS PAPER

Research Question: What is the Role of Skill-Biased Technical Change (SBTC) on the End of Cross-Cities Wage Convergence?

- **Novel Facts**: Skill premium and migration patterns support differential ends of convergence by skill group

- **Model**: Spatial equilibrium model with heterogeneous skill workers
 - Skill-Biased Technical Shock
 - Agglomeration
 - Migration

- **Structural Estimation**: SBTC explains the majority of the end of wage convergence

- **Other Results**: Implications on quantities ⇒ “Great Divergence” of skills
 - Secular Migration Decline
Contributions

Empirical

- Novel set of facts on the evolution of:
 - regional convergence
 - skill premium
 - migration patterns

Theoretical

- Introduction of heterogeneous skill and endogenous agglomeration in a long-run spatial equilibrium model
 - Structural estimation and identification in a dynamic macro model
 - Quantification of the decline in wage convergence across US cities between 1980 and 2010 due to skill-biased technology and agglomeration forces
Related Work Contributions

Convergence - North/South Caselli and Coleman (2002), Barro and Sala-i-Martin (1992), Brown (1993), Berry and Glaeser (2005); Ganong and Shoag (2015); ⇒ **Quantitative spatial model**

Skill-Biased Technical Change (SBTC) Katz and Murphy (1992), Autor and Dorn (2013), Autor and Dorn (2014), Baum-Snow *et al.* (2015), Burstein *et al.* (2016); ⇒ **Application to cities and agglomeration forces**

Outline

Empirical Regularities

Model

Estimation

Counterfactuals

Other Results
Novel Empirical Regularities

Fact 1: Cross-Cities Wage Convergence decreased only among high-skill workers after 1980

- **Fact 2**: \(\uparrow \) share of high skilled workers \(\uparrow \) **skill premium** post 1980, \(\downarrow \) **skill premium** pre 1990

- **Fact 3**: \(\uparrow \) initial share of high skill workers \(\uparrow \) probability of getting high skill **migrants** over time

Take-away: *Supply* forced dominated by *demand* forces over time
FACT 2: SKILL PREMIUM OVER TIME AND ACROSS SPACE

\[\ln \left(\frac{\hat{W}^H_{jt}}{\hat{W}^L_{jt}} \right) = \alpha_t + \sum_{t=1970}^{2010} \beta_t \ln \left(\frac{H_{jt}}{L_{jt}} \right) + f_{t \text{MSA}} + f_{t \text{year}} + \epsilon_{jt} \]
Fact 3: High-Skill Migrants to High-Skill Locations

\[1 \left(\text{Migrant} \right)_{ijt} = \alpha_t + \beta_1 (H_{ijt}) + \gamma \frac{H_{jt}}{L_{jt}} + \sum_{t=1963}^{2013} \delta_t 1(H_{ijt}) \ast \left(\frac{H_{jt}}{L_{jt}} \right) + \Gamma X_{ijt} + \mu_{ijt} \]
Main Idea

- Before 1980, technology diffusion was skill neutral \Rightarrow push for convergence
- **Skill-biased technology** shifted the demand for skills nationally
- Endogenous **agglomeration** economies of skill pushed sorting where the concentration of initial skills was higher
- High-skill migrate more to high skill places
- Higher match of high skilled workers to high-skilled locations
- Wages diverge
Outline

Empirical Regularities

Model

Estimation

Counterfactuals

Other Results
Key Ingredients

- Heterogeneous Demand for skills
- Migration
- Agglomeration

Other Mechanisms

- Housing
Model Environment

Space
- J locations

Workers
- 2 types: high-skilled and low-skilled
- Workers decide in which location to live
- Preferences over:
 - tradable and non-tradable housing
 - exogenous amenities and endogenous amenities
 - utility loss from moving
 - i.i.d. preference shock
- Supply labor inelastically

Firms
- Tradable: CES production with intermediates inputs
- A set of non-tradable intermediates
 - CES production function with high and low-skilled workers
- Housing sector
- Productivities depend on:
 - skill and population agglomeration
 - skill-biased technology
 - technology diffusion process
Outline

Empirical Regularities

Model

Estimation

Counterfactuals

Other Results
Objective: Identifying agglomeration and amenities

Challenges:
- Separate endogenous agglomeration and amenities from local productivity and local amenities
- Keep into account the path dependence in technology diffusion

Solution: Instrumental approach isolating local changes in supply from changes in demand

- Changes in supply through housing regulation and land unavailability
- Changes in demand through routinization shock by skills
Parameters Estimated and Used for Calibration

\[
E[\Delta \xi_{kdjt} \Delta Z_{jt}] = 0
\]

Supply

<table>
<thead>
<tr>
<th>Moments</th>
<th>Parameter</th>
<th>Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>spillover on skill for H: (\gamma^H)</td>
<td>0.616[0.231]</td>
</tr>
<tr>
<td></td>
<td>spillover on skill for L: (\gamma^L)</td>
<td>-0.185[0.117]</td>
</tr>
<tr>
<td></td>
<td>spillover on population for H: (\phi^H)</td>
<td>-0.137[0.088]</td>
</tr>
<tr>
<td></td>
<td>spillover on population for L: (\phi^L)</td>
<td>-0.111[0.047]</td>
</tr>
<tr>
<td></td>
<td>(\frac{1}{1-\rho}) elasticity of substitution between H and L: (\rho)</td>
<td>0.531[0.310]</td>
</tr>
<tr>
<td></td>
<td>elasticity on SB: (\lambda)</td>
<td>-0.014[0.062]</td>
</tr>
</tbody>
</table>

Demand

\[
E[\Delta A_{kdjt} \Delta Z_{jt}] = 0
\]

| | Elasticity to local prices: \(\theta \) | 0.503[0.107] |
| | Elasticity to population: \(\gamma^p \) | 0.679[0.130] |
Externally Calibrated Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share of Services: v</td>
<td>0.2</td>
<td>Serrato and Zidar (2016)</td>
</tr>
<tr>
<td>Subsistance level of Housing: \bar{O}</td>
<td>0.25</td>
<td>Ganong and Shoag (2015)</td>
</tr>
<tr>
<td>Elasticity of Supply Housing: μ</td>
<td>0.4</td>
<td>Ganong and Shoag (2015)</td>
</tr>
<tr>
<td>Share of technology: γ_2</td>
<td>0.99</td>
<td>Desmet et al. (2016)</td>
</tr>
<tr>
<td>Migration costs: σ^L and β^L</td>
<td>-.065 and -.861</td>
<td>Notowididgo (2013)</td>
</tr>
<tr>
<td>Migration costs: σ^H and β^H</td>
<td>-.066 and -1.044</td>
<td>Notowididgo (2013)</td>
</tr>
</tbody>
</table>
Model vs Data: Wage Convergence β β_H β_L

Estimate rolling 30-year window β_t for the following equation:

$$\Delta w_{jt} = \alpha + \hat{\beta}_t w_{jt-30} + \epsilon_{jt}$$
Model vs Data: Wage Convergence β_H and β_L

Estimate rolling 30-year window β_{Ht} for the following equation for H:

$$\Delta w_{kjt} = \alpha + \hat{\beta}_{kt} w_{kjt-30} + \epsilon_{kjt}, \quad \forall k \in \{H, L\}$$
OUTLINE

EMPIRICAL REGULARITIES

MODEL

ESTIMATION

COUNTERFACTUALS

OTHER RESULTS
Decomposing the Decline in Wage Convergence β

Proceed stepwise:

1. Simulate counterfactual convergence rate with no agglomeration;

2. Remove SBTC;

3. Remove Housing;

4. Remove Migration Costs;
Decomposing the Decline in Wage Convergence β

No Agglomeration
Decomposing the Decline in Wage Convergence β

No SBTC
Decomposing the Decline in Wage Convergence β

No Housing
DECOMPOSING THE DECLINE IN WAGE CONVERGENCE β

No Migration

![Graph showing wage convergence with various scenarios: full, no Agg, No SBTC, No Housing, No Migr. Cost. The x-axis represents years from 1980 to 2010, and the y-axis represents a range of values from -4.5 to -0.5. Each scenario is represented by a different line or marker, indicating how each factor affects wage convergence.](image-url)
Outline

Empirical Regularities

Model

Estimation

Counterfactuals

Other Results
Other Results

Wages
- Wage Dispersion
- Real Wage Convergence

Migration
- "Great Divergence" in Skill Ratio
- Sorting of Migrants
- Migration Decline
Cities’ Wage Dispersion in the Last 30 Years

Data: Cities’ Wage dispersion increased 100% from 1969 to 2009 (Hsieh and Moretti (2015))

Model: Cities’ Wage dispersion increased by:

Take-away: Cities’ Wage dispersion increased only among high-skilled workers and mostly because of SBTC.
Real Wages Convergence

Total

High Skill

Low Skill

\[\beta^R \text{ data}, \quad \beta^R \text{ model}, \quad \beta^{RH} \text{ data}, \quad \beta^{RH} \text{ model}, \quad \beta^{RL} \text{ data}, \quad \beta^{RL} \text{ model}\]
"The Great Divergence" in the Skill Ratio $\frac{H}{L}$: Data
"The Great Divergence" in the Skill Ratio $\frac{H}{L}$: Model vs Data

$$\log \left[\frac{H_{jt}}{L_{jt}} / \frac{H_{j,\tau}}{L_{j,\tau}} \right] \frac{1}{(t - \tau)} = \alpha + \hat{\beta}_{t}^{\text{skill}} \log \frac{H_{j,\tau}}{L_{j,\tau}} + \epsilon_{jt}$$

![Graph showing the comparison between skill data and model over years from 1950 to 2010.](image)
Model: Extra Sorting over Time

\[\Delta H_{jt} = \alpha + \sum_{t=1941}^{1970} \delta^H_t \ln W_{Hjt} + \epsilon_{jt} \]

![Graph showing the model](image_url)
What is happening to regional convergence in other countries and across countries over time?
AVERAGE REGIONAL CONVERGENCE WITHIN OTHER COUNTRIES

- Estimate rolling 20 and 30-year window β_t for the following equation in GDP per capita in each country:

$$\Delta GDP_{jt} = \alpha + \hat{\beta}_t GDP_{jt-30} + \epsilon_{jt}$$

- Plot average $\hat{\beta}_t$

Note: This figure shows the average of the β estimates for the countries in the sample with rolling 20-year (30-year) windows on the left (right) plot.
Regional Convergence Across Countries

- Estimate rolling 20 and 10-year window β_t for the following equation in GDP per capita:

$$\Delta GDP_{jt} = \alpha + \hat{\beta}_t GDP_{jt-30} + \epsilon_{jt}$$
CONCLUSIONS AND FUTURE DIRECTIONS

Spatial Equilibrium Model that several key moments and changes in the last 30 years:
- Regional Convergence in wages
- Increase in wage dispersion
- Great Divergence of skills
- Secular decline of migration

Key elements: Interaction Skill-biased technical change and agglomeration
- explain jointly 80% of the decline in regional convergence

What happens across countries? Preliminary results suggest:
- regional wage convergence decreasing within countries;
- but increasing across countries

Extension to Cross-country convergence and decline
ROBUSTNESS CONVERGENCE

- Adjusted Wages
- Rent Adjusted
- Table Convergence
- Rolling Convergence
- Rent adjusted Convergence
- Adjusted Convergence by Skill
- Table Convergence by Skill
- Rolling skill convergence
- Industry control
Computationally Adjusted Wages
Convergence
Annual wage growth 1940–1980

Annual wage growth 1980–2010

No col_degree BA degree

No col_degree BA degree
Rolling Wages Convergence

β convergence estimate

ROLLING WAGES CONVERGENCE BY SKILL GROUP

Figure: High Skill

Figure: Low Skill
Table: Wage Convergence Rates

<table>
<thead>
<tr>
<th></th>
<th>(1) Δw_{40-80}^{pw}</th>
<th>(2) Δw_{80-10}^{pw}</th>
<th>(3) Δw_{40-80}</th>
<th>(4) Δw_{80-10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log wages, 1940</td>
<td>-0.0112***</td>
<td>-0.0144***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-10.90)</td>
<td>(-16.81)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log wages, 1980</td>
<td>-0.0000389</td>
<td>-0.00852*</td>
<td>-0.00852*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.02)</td>
<td>(-2.57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.000360*</td>
<td>0.00145***</td>
<td>-1.37e-09</td>
<td>-0.0000229</td>
</tr>
<tr>
<td></td>
<td>(2.29)</td>
<td>(4.90)</td>
<td>(-0.00)</td>
<td>(-0.09)</td>
</tr>
</tbody>
</table>

t statistics in parentheses

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$
Wage Convergence over Time by Skill Group

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No,'40-'80</td>
<td>Yes,'40-'80</td>
<td>No,'80-'10</td>
<td>Yes,'80-'10</td>
</tr>
<tr>
<td>Panel A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log hourly wage, 1940</td>
<td>-0.0123***</td>
<td>-0.0141***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000862)</td>
<td>(0.00117)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log hourly wage, 1980</td>
<td>-0.0169***</td>
<td>-0.00791***</td>
<td>0.000609</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00174)</td>
<td>(0.00212)</td>
<td>(0.000212)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No,'40-'80</td>
<td>Yes,'40-'80</td>
<td>No,'80-'10</td>
<td>Yes,'80-'10</td>
</tr>
<tr>
<td>Panel B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log hourly wage, 1940</td>
<td>-0.0143***</td>
<td>-0.0205***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000866)</td>
<td>(0.00106)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log hourly wage, 1980</td>
<td>-0.0200***</td>
<td>-0.00791***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00163)</td>
<td>(0.00203)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| N | 132 | 131 | 247 | 246 |
FACT 2

\[
\ln \left(\frac{\hat{w}^H_{jt}}{\hat{w}^L_{jt}} \right) = \alpha_t + \sum_{t=1940}^{2010} \beta_t \ln \left(\frac{H_{jt}}{L_{jt}} \right) 1(\text{time} = t) + f_{\text{MSA}} + f_{\text{year}} + \epsilon_{jt}
\]
CONVERGENCE FOR LOW HOUSING ELASTICITY CITIES

MAIN INGREDIENTS
Worker of type $k \in \{H, L\}$ that lives in i decides which location j to pick and solve the following problem:

$$V_k(j, \zeta_i') = \max_{j'} \left[\frac{V_{ikj'}}{m_k(j,j')} + \beta E \left(\frac{V(j', \zeta_{i''})}{m_k(j,j')} \right) \right]$$

where $m(j, j')$ are the migration costs assumed to be separable such that

$$m_k(s, j) = m_{k1}(s) \cdot m_{k2}(j)$$

$$V_k(j, \zeta_i') = \frac{1}{m_{k1}(j)} \max_{j'} \left[\frac{V_{ikj'}}{m_{k2}(j')} \right]$$
WORKERS UTILITY MAXIMIZATION

Indirect utility function for agent i of type k that lives in city j at time t:

$$V_{ikjt} = \max_{T_{jt}, N_{jt}} [\theta \log(T_{kjt}) + (1 - \theta)(\nu \log(N_{kjt}) + (1 - \nu)\log(O_{kjt} - \bar{O}_{kjt}) + A_{jt} + \gamma^{p}(H_{jt} + L_{jt}) + \zeta_{ijt}]$$

s.t. $T_{jt} + N_{jt}P_{jt} + O_{jt}R_{jt} = W_{kjt}$

Assumption: ζ_{ij} follows a Gumbell distribution (Mc Fadden [1973]) \implies

$$H_{jt} = \frac{\exp(\delta_{Hjt} / m_{H2}(j))}{\sum_{s} \exp(\delta_{Hst} / m_{L2}(s))}$$

$$L_{jt} = \frac{\exp(\delta_{Ljt} / m_{L2}(j))}{\sum_{s} \exp(\delta_{Lst} / m_{L2}(s))}$$

where

$$\delta_{kjt} = \left[\theta \log(W_{kjt} - R_{jt}\bar{H}) + (1 - \theta)(1 - \nu)\log((1 - \theta)(1 - \nu)\frac{W_{kjt}}{R_{jt}} + \bar{O}) + (1 - \theta)\nu \log((1 - \theta)\nu \frac{W_{kjt} - R_{jt}\bar{O}}{P_{Njt}}) + A_{jt} + \gamma^{p}\log(H_{jt} + L_{jt}) \right]$$
Change in Variable for Y^T

$$Y_j^{T\rho} = \left(H_j^{\gamma_H-\rho-1}(L_{Nj} + L_{Tj})^{-\gamma_H} W_{Lj} L_j^{T\rho} + W_{Hj} L_j^{\gamma_H} (L_{Nj} + L_j^T)^{-\gamma_H} W_{Lj} L_j^{T\rho-1} \right) \left(H_j + L_j \right)^{\gamma_H - \gamma_L} \frac{W_{Hj} (L_{Nj} + L_j^T)^{\rho-1+\gamma_H-\gamma_L} + W_{Lj} H_j^{\rho-1+\gamma_H-\gamma_L}}{W_{Hj} L_j^{T\rho}}$$
Housing HD (following Ganong and Shoag (2015)):

$$HD_{jt} = R_{jt}^{l\mu}$$
where x_j relates to MSA characteristics such as population
Estimation Results with Housing

<table>
<thead>
<tr>
<th></th>
<th>Supply</th>
<th>Demand</th>
<th>Housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.820***</td>
<td>β^w</td>
<td>4.4***</td>
</tr>
<tr>
<td>γ_H</td>
<td>0.285***</td>
<td>β^r</td>
<td>-0.6***</td>
</tr>
<tr>
<td>γ_L</td>
<td>0.004</td>
<td>β^A</td>
<td>5.9***</td>
</tr>
<tr>
<td>ρ</td>
<td>0.447***</td>
<td>β^{HL}</td>
<td>-4.1***</td>
</tr>
<tr>
<td>γ_P</td>
<td>0.312***</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Get residuals $\Delta w_{Hjt, TFP}, \Delta w_{Ljt, TFP}$ of the equation:

$$
\Delta w_{Hjt, res} = \Delta w_{Hjt} - \Delta \hat{w}_{Hjt} - \left[(1 - \hat{\rho}) \Delta \ln \hat{Y}_{Tjt} + (\hat{\rho} - 1) \Delta \ln H_{jt} + \hat{\gamma}_H \Delta \ln \left(\frac{H_{jt}}{L_{jt}} \right) + \hat{\gamma} \Delta \ln (H_{jt} + L_{jt}) + \hat{\lambda}^H \Delta S_{Hj, t-10} \right]
$$

$$
\Delta w_{Ljt, res} = \Delta w_{Ljt} - \Delta \hat{w}_{Ljt} - \left[(1 - \hat{\rho}) \Delta \ln \hat{Y}_{Tjt} + (\hat{\rho} - 1) \Delta \ln L_{jt} + \hat{\gamma}_L \Delta \ln \left(\frac{H_{jt}}{L_{jt}} \right) + \hat{\gamma} \Delta \ln (H_{jt} + L_{jt}) + \hat{\lambda}^L \Delta S_{Lj, t-10} \right]
$$

$$
\Delta w_{Ljt, res} = \Delta w_{Ljt} - \left(\hat{\alpha} \Delta \ln Y_{Njt} + \hat{\lambda}^L \Delta S_{Lj, t-10} \right)
$$
Model Estimation: Location Decision

- Estimate average utility v_j^H and v_j^L with log-likelihood estimation (BLP [2002]);
- Generate moment conditions:

\[\Delta \alpha_{jt}^k = \Delta \delta_{jt}^k - \beta^{kw} \Delta w_{jt}^k - \beta^{ks} \Delta p_{jt}^s - \beta^{kA} \Delta A_{jt} - \gamma_p \Delta (H_{jt} + L_{jt}), \quad \forall k \in \{H, L\} \]

- Identification:

\[E[\Delta \alpha_{jt}^k \Delta Z_{jt-10}^k] = 0, \quad \forall k \in \{L, H\} \]
Model Estimation: GMM

Moment Conditions

\[\Delta \xi_{jt}^H = \Delta w_{jt}^H - ((1 - \rho)\Delta \ln Y_{jt}^g + (\rho - 1)\Delta \ln H_{jt} + \gamma_H \Delta \ln \left(\frac{H_{jt}}{L_{jt}}\right) + \gamma \Delta \ln (H_{jt} + L_{jt}) - \beta_{HH}^{H} \Delta SB_{jt-10}^H - \beta_{HL}^{H} \Delta SB_{jt-10}^L)\]

\[\Delta \xi_{jt}^L = \Delta w_{jt}^H - ((1 - \rho)\Delta \ln Y_{jt}^g + (\rho - 1)\Delta \ln L_{jt}^g + \gamma_L \Delta \ln \left(\frac{H_{jt}}{L_{jt}}\right) + \gamma \Delta \ln (H_{jt} + L_{jt}) - \beta_{LH}^{L} \Delta SB_{jt-10}^H - \beta_{LL}^{L} \Delta SB_{jt-10}^L)\]

\[\Delta \xi_{jt}^S = \Delta w_{jt}^L - \alpha \Delta \ln Y_{jt}^s - \beta_{LS}^{L} \Delta SB_{jt-10}^L\]

- Identification:

\[E[\Delta \xi_{jt}^k \Delta Z_{jt-10}^k] = 0 \quad \forall \ k \in \{L^g, L^s, H\}\]
\[\Delta \hat{\zeta}_{kjt} = constant + \beta \hat{\zeta}_{kjt} + \epsilon_{jt}, \quad \forall k \in H, L \]

1940-1980 State level

1980-2010 City Level
Structural Residual Convergence

<table>
<thead>
<tr>
<th>$\hat{\beta}^{1940-1980}$</th>
<th>(-0.014****)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No SBTC</td>
<td>-0.0126***</td>
<td>-0.0033***</td>
<td>-0.0136***</td>
</tr>
<tr>
<td>No Spillover</td>
<td>-0.0145***</td>
<td>-0.0012***</td>
<td>-0.0165***</td>
</tr>
</tbody>
</table>
Decomposing the Wage Convergence

<table>
<thead>
<tr>
<th>$\hat{\beta}$ convergence (not population weighted)</th>
<th>\geq Coll. Degree</th>
<th>$<$ Coll. Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wage Convergence rate: $\hat{\beta}_{1980-2010}$</td>
<td>-0.00243</td>
<td>-0.0189***</td>
</tr>
<tr>
<td>Wage Convergence rate: $\hat{\beta}_{1940-1980}$</td>
<td>-0.0196***</td>
<td>-0.0142***</td>
</tr>
<tr>
<td>Model 1980-2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Model</td>
<td>0.00123</td>
<td>-0.01548***</td>
</tr>
<tr>
<td>No SBTC</td>
<td>-0.0112***</td>
<td>-0.0128***</td>
</tr>
<tr>
<td>No Spillover</td>
<td>-0.0192***</td>
<td>-0.01695***</td>
</tr>
</tbody>
</table>
Reduced Form Conditional Convergence on the Shock

\[\Delta^{1980-2010} w_{jt} = \beta^o + \beta w_{jt} + \alpha^Z \Delta Z_{jt}^{RSH} \]
Table: Convergence Rates and SBTC

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>Log hourly wages 1980</td>
<td>-0.0000389</td>
<td>-0.00657*</td>
<td>-0.00802*</td>
<td>-0.00912*</td>
<td>-0.0105*</td>
</tr>
<tr>
<td></td>
<td>(-0.02)</td>
<td>(-2.59)</td>
<td>(-2.16)</td>
<td>(-2.13)</td>
<td>(-2.30)</td>
</tr>
<tr>
<td>\textit{RSH_H} 1980</td>
<td>0.0160*</td>
<td>0.0188</td>
<td>0.0182</td>
<td>0.0201</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.40)</td>
<td>(1.62)</td>
<td>(1.39)</td>
<td>(1.47)</td>
<td></td>
</tr>
<tr>
<td>\textit{RSH_L} 1980</td>
<td>0.0406***</td>
<td>0.0220</td>
<td>0.0258</td>
<td>0.0233</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.44)</td>
<td>(1.12)</td>
<td>(1.22)</td>
<td>(1.07)</td>
<td></td>
</tr>
<tr>
<td>\textit{RSH_H} 1970</td>
<td>0.0183*</td>
<td>0.0184*</td>
<td>0.0200*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.41)</td>
<td>(2.25)</td>
<td>(2.37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{RSH_L} 1970</td>
<td>0.0342*</td>
<td>0.0411*</td>
<td>0.0464*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.00)</td>
<td>(2.13)</td>
<td>(2.22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{RSH_H} 1950</td>
<td></td>
<td></td>
<td></td>
<td>-0.00162</td>
<td>-0.00258</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(-0.51)</td>
<td>(-0.78)</td>
</tr>
<tr>
<td>\textit{RSH_L} 1950</td>
<td>-0.000279</td>
<td>0.00213</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.03)</td>
<td>(0.23)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\textit{t} statistics in parentheses

* \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \)
RIGHT TO WORK LAWS BY STATE

Number of States that Passed the 'Right to Work Laws'

Year Range

'40−'50 '51−'60 '61−'70 '71−'80 '81−'90 '91−'00 '01−'10 '11−'15

Adjusted
Table: Convergence Rates by College Degree and IT

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Log hourly wages 1980</td>
<td>-0.0000389</td>
<td>0.00593**</td>
<td>-0.0126***</td>
</tr>
<tr>
<td></td>
<td>(-0.02)</td>
<td>(2.95)</td>
<td>(-10.58)</td>
</tr>
<tr>
<td>IT</td>
<td>0.00656***</td>
<td>0.00538***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13.49)</td>
<td>(16.54)</td>
<td></td>
</tr>
<tr>
<td>col_degree</td>
<td></td>
<td></td>
<td>0.0106***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(19.85)</td>
</tr>
</tbody>
</table>

- *t* statistics in parentheses
- *p* < 0.05, **p* < 0.01, ***p* < 0.001
First-Stage Instrumental Regression

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \hat{Z}^H_{j, t-10}$</td>
<td>3.046***</td>
<td>3.643***</td>
<td>2.852***</td>
<td>4.418***</td>
<td>3.062***</td>
<td>3.043***</td>
</tr>
<tr>
<td></td>
<td>(0.620)</td>
<td>(1.024)</td>
<td>(0.632)</td>
<td>(1.118)</td>
<td>(0.719)</td>
<td>(0.737)</td>
</tr>
<tr>
<td>Panel B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \hat{Z}^L_{j, t-10}$</td>
<td>1.021***</td>
<td>0.891**</td>
<td>0.850***</td>
<td>2.483***</td>
<td>2.535***</td>
<td>2.511***</td>
</tr>
<tr>
<td></td>
<td>(0.341)</td>
<td>(0.344)</td>
<td>(0.285)</td>
<td>(0.531)</td>
<td>(0.527)</td>
<td>(0.591)</td>
</tr>
<tr>
<td>N</td>
<td>144</td>
<td>119</td>
<td>270</td>
<td>249</td>
<td>283</td>
<td>283</td>
</tr>
</tbody>
</table>
MODEL VS DATA: WAGE CONVERGENCE β
MODEL VS DATA WAGE CONVERGENCE β_H AND β_L

$\beta_H.pdf$ $\beta_H.png$ $\beta_H.jpg$ $\beta_H.mps$ $\beta_H.jpeg$ $\beta_H.jbig2$ $\beta_H.jb2$ $\beta_H.PDF$ $\beta_H.PNG$ $\beta_H.JPG$
\[
\ln \left(\frac{\hat{H}_{jt}}{\hat{L}_{jt}} \right) = \alpha_t + \sum_{t=1940}^{2010} \beta_t \ln \left(\frac{H_{jt}}{L_{jt}} \right) 1 \left(\text{time} = t \right) + f_{\text{MSA}} + f_{\text{year}} + \epsilon_{jt}
\]
This figure reports the standardized coefficient β of the regression

$$\text{Migration Premium}_{t,i} = \alpha + \beta \ln(\text{wage})_{t,i} + \epsilon$$

run for each MSA.
First Stage Regression SBTC

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \hat{Z}_{H,j, \ t - 10}$</td>
<td>3.046***</td>
<td>3.643***</td>
<td>2.852***</td>
<td>4.418***</td>
<td>3.062***</td>
<td>3.043***</td>
</tr>
<tr>
<td></td>
<td>(0.620)</td>
<td>(1.024)</td>
<td>(0.632)</td>
<td>(1.118)</td>
<td>(0.719)</td>
<td>(0.737)</td>
</tr>
<tr>
<td>Panel B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \hat{Z}_{L,j, \ t - 10}$</td>
<td>1.021***</td>
<td>0.891**</td>
<td>0.850***</td>
<td>2.483***</td>
<td>2.535***</td>
<td>2.511***</td>
</tr>
<tr>
<td></td>
<td>(0.341)</td>
<td>(0.344)</td>
<td>(0.285)</td>
<td>(0.531)</td>
<td>(0.527)</td>
<td>(0.591)</td>
</tr>
<tr>
<td>N</td>
<td>144</td>
<td>119</td>
<td>270</td>
<td>249</td>
<td>283</td>
<td>283</td>
</tr>
</tbody>
</table>
This figure reports the standardized coefficient β of the regression

$$\text{Migration Premium}_{t,i} = \alpha + \beta \ln(\text{wage})_{t,i} + \epsilon$$

run for each MSA.
Model vs Data: Migration Rates

High Skilled

Low Skilled
CROSS-COUNTRY CONVERGENCE AND THE DECLINE

CONCLUSIONS

Start at 1970, Datasource = Penn World Table, Number of Country = 156
MODEL: SORTING IMPLICATIONS

\[\Delta H_{jt} = \alpha + \sum_{t=1941}^{1970} \delta^H_t \ln W_{Hjt} \]
Mechanism with 2 Cities

Main Idea

Detroit

San Francisco
MECHANISM WITH 2 CITIES

Main Idea

Detroit

San Francisco
MECHANISM WITH 2 CITIES

Main Idea

Detroit

San Francisco
Worker of type \(k \in \{ H, L \} \) that lives in \(j \) decides which location \(j' \) to pick and solve the following problem:

\[
V_k(j, \zeta^t_i) = \max_{j'} \left[\frac{V_{ikj'}}{m_k(j,j')} + \beta E \left(\frac{V(j', \zeta''_i)}{m_k(j',j'')} \right) \right]
\]

Indirect utility function for agent \(i \) of type \(k \) that lives in city \(j \) at time \(t \):

\[
V_{ikj't} = \max_{T_{kj't}, O_{kj't}} \left[\theta \log(T_{kj't}) + (1 - \theta) \log(O_{kj't} - \bar{O}_{kj't}) + A_{j't} + \gamma^p (H_{j't} / L_{j't}) + \zeta_{ij't} \right]
\]

s.t. \(T_{kj't} + N_{kj't} P_{Nj't} = W_{kj't} \)
WORKERS UTILITY MAXIMIZATION

Assumption: $m_k(j, j')$ are separable such that

$$m_k(j, j') = m_{k1}(j) \ast m_{k2}(j')$$

Assumption: ζ_{ij} follows a Type-I Extreme Value distribution (McFadden [1973])

$$H_{jt} = \frac{\exp(\delta_{Hjt})}{\sum_s \exp(\delta_{Hst})}$$

$$L_{jt} = \frac{\exp(\delta_{Ljt})}{\sum_s \exp(\delta_{Lst})}$$

where

$$\delta_{kjt} = \theta \log (W_{kjt} - R_{jt} \bar{O}) + (1 - \theta) \left[\log \left((1 - \theta) \frac{W_{kjt}}{R_{jt}} + \bar{O} \right) + A_{kjt} + \gamma_p \log \left(\frac{H_{jt}}{L_{jt}} \right) \right]$$

26 / 26
Tradable T sector:

$$T_{jt} = \left(\sum_{d} \mu_{d} Y_{djt}^{\alpha} \right)^{1/\alpha}$$
Y_{djt} = \left[\eta_{Ldjt} L_{djt}^\rho + \eta_{Hdjt} H_{djt}^\rho \right]^{\frac{1}{\rho}}, \quad \forall j = \{1, \ldots, N\}

- Productivity Process:

\[\eta_{Hdjt} = \left(\frac{H_{jt}}{L_{jt}} \right)^{\gamma^H} \left(L_{jt} + H_{jt} \right)^{\phi^H} S_{Ht}^{\lambda^H} \exp(\xi_{Hdjt}) \] \hspace{1cm} (1)

\[\eta_{Ldjt} = \left(\frac{H_{jt}}{L_{jt}} \right)^{\gamma^L} \left(L_{jt} + H_{jt} \right)^{\phi^L} S_{Lt}^{\lambda^L} \exp(\xi_{Ldjt}) \] \hspace{1cm} (2)

\[\xi_{kdjt} = \xi_{kdjt-1} \left(\int_s \omega(j, s) \xi_{kdst-1} \right)^{1-\gamma^2} \]

convergence force
Model: Wage Equations

Wages for H and L are given by:

$$W_{Hjt} = p_{djt} \eta_{Hdj} \left[\eta_{Ldj} L_{djt}^\rho + \eta_{Hdj} H_{djt}^\rho \right]^{\frac{1}{\rho} - 1} H_{djt}^{\rho - 1}$$ \hspace{1cm} (3)

$$W_{Ljt} = p_{djt} \eta_{Ldj} \left[\eta_{Ldj} L_{djt}^\rho + \eta_{Hdj} H_{djt}^\rho \right]^{\frac{1}{\rho} - 1} L_{djt}^{\rho - 1}$$ \hspace{1cm} (4)
Housing Sector

- Housing HD (following Ganong and Shoag (2015)):

$$HD_{jt} = R^{l\mu}_{jt}$$
Equilibrium Definition

Definition The equilibrium consists of a set of allocations \(\{\{L_{djt}, H_{djt}\}^D_{d=1}\}^J_{j=1} \) and a set of prices \(\{\{P_{djt}\}^D_{d=1}, R_{jt}\}^J_{j=1} \), wages \(\{W_{Hjt}, W_{Ljt}\}^J_{j=1} \), such that given \(\{\{\xi_{Ldj0}, \xi_{Hdj0}\}^D_{d=1}\}^J_{j=1} \), a set of parameters normalizing \(P_{jt} = P_t = 1 \) and \(\sum_j (L_{jt} + H_{jt}) = 1 \) in each time period \(t \):

1. Given a set of migration costs and idiosyncratic preferences, workers choose location and consumption to maximize utility;
2. Firms maximize profits;
3. Labor markets clear;
4. The non-tradable intermediates markets clear in every city, \(\forall j \in J \) and \(\forall d \in D \);
5. Final good market \(T \) clears;
6. Housing market clears.
DATA AND ESTIMATION STRATEGY

 ▶ Wages, Education, City, Rents, Population;

▶ Estimation method: GMM

▶ Parameters:
 1. parameters of labor demand $p^d = \{\rho, \gamma^H, \gamma^L, \phi^H, \phi^L, \lambda^H, \lambda^L\}$;
 2. parameters of labor supply $p^s = \{\theta, \gamma^p\}$;
 3. productivity shocks $\xi_{kjt}, \forall k$;
 4. amenities $A_{kjt}, \forall k$;

▶ Moment Construction:
 1. Exploit geographic variation in $S_{kt}, \Delta S_{kjt}, \forall k$ using ”routinization” index as in Autor and Dorn [2013]
 2. Wages Changes Residual: $\Delta \xi_{kdjt} = \Delta w_{kdjt} - \Delta w_{kdjt}^{model}, \forall k$;
 3. Utility Changes Residuals: $\Delta A_{kjt} = \Delta \delta_{kjt} - \Delta \delta_{kjt}^{model}, \forall k$;
Measure ΔS_{kjt}: Local Effect of Technology (Autor and Dorn [2013]) based on Routinization task intensity RTI of the occupations ω:

$$
\Delta S_{kjt-10} = \sum_{\omega=1}^{\Omega} \left(\frac{k_{\omega jt}}{k_{jt}} - \frac{k_{\omega,j,t-10}}{k_{j,t-10}} \right) 1(RTI_{\omega} > RTI_{P66}) \quad \forall k \in \{H, L\}
$$

Instruments:

1. “Bartik-like” (Autor and Dorn [2013])

$$
\Delta \tilde{S}_{kj,t-10} = \sum_d (k_{d,-j,t} - k_{d,-j,t-10}) (R_{d,j,t-10}) \quad \forall k \in \{H, L\}
$$

Intuition: national component interacted with local component of routinization at industry level $R_{d,j,t-10}$

2. Housing regulations and land availability: (Saiz [2010])

- land use regulation index: reg_{jt}
- land unavailability index: $uvan_{jt}$

Define the set of instruments Z:

$$
\Delta Z_{jt} = \begin{bmatrix}
\Delta \tilde{S}_{Lj,t-10} & \Delta \tilde{S}_{Lj,t-10}reg_{jt} & \Delta \tilde{S}_{Lj,t-10}unav_{jt} \\
\Delta \tilde{S}_{Hj,t-10} & \Delta \tilde{S}_{Hj,t-10}reg_{jt} & \Delta \tilde{S}_{Lj,t-10}unav_{jt}
\end{bmatrix}
$$