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Abstract

We estimate the effect of industrial robots on employment, wages, and the composition

of jobs in German labor markets between 1994 and 2014. We find that the adoption of

industrial robots had no effect on total employment in local labor markets specializing

in industries with high robot usage. Robot adoption led to job losses in manufacturing

that were offset by gains in the business service sector. We analyze the impact on indi-

vidual workers and find that robot adoption has not increased the risk of displacement

for incumbent manufacturing workers. They stay with their original employer, and many

workers adjust by switching occupations at their original workplace. The loss of manufac-

turing jobs is solely driven by fewer new jobs for young labor market entrants. Moreover,

we find that, in regions with higher exposure to automation, labor productivity increases

while the labor share in total income declines.
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1 Introduction

The fear of an imminent wave of technological unemployment is – once more – one of the

dominant economic memes of our time. The popular narrative often goes as follows (see, e.g.,

Ford 2015): As software and artificial intelligence advance, production processes (especially in

manufacturing) become increasingly automated. Workers can be replaced by new and smarter

machines – industrial robots, in particular – which are capable of performing tasks, formerly

carried out by humans, faster and more efficiently. Robots will therefore make millions of

workers redundant, especially those with low and medium qualification. Various estimates

have been suggested regarding how many occupations are at risk of being automated given

the type of work they usually conduct.1 This led to very disruptive scenarios which received

massive media attention and shaped the popular narrative.

While those studies mainly try to predict the future, the data of the last 25 years show

that one wave of automation has yet affected the labor market: following significant technical

advances, robotic capabilities have made great strides in limiting the need for human inter-

vention while autonomously operating production processes. According to the International

Federation of Robotics (2016), the stock of industrial robots rose by a factor of five between

1993 and 2015 in North America, Europe, and Asia. An estimated 1.5 million industrial

robots are currently used. A large number of industries have thus already undergone dramatic

changes in the organization of production in the last two decades.

In this paper, we examine how this automation affects labor markets and how firms and

individual workers adjust to the exposure to industrial robots. Our context is the German

labor market over the period 1994–2014. Using linked employer-employee data, we trace out

detailed employment biographies and earnings profiles of workers. This allows us to analyze

whether robots (and other technology and trade shocks) have causally affected workers’ risk of

job displacement and their wage profiles. We also study if workers have switched jobs within

and across establishments, industries, and occupations in view of the new technology. At the

regional level, we measure how the composition of employment adjusts.

In the previous literature, sizable and negative impacts of the rise in robot exposure on

employment have been estimated by Acemoglu and Restrepo (2018b) across US commuting

zones. In contrast, across countries, no effects on employment have been found by Graetz

and Michaels (forthcoming); however, their study does find positive effects on labor produc-

tivity. We extend this literature by widening the focus from aggregate equilibrium impacts to

mechanisms and adjustment processes at the level of individual workers and firms.
1Frey and Osborne (2017) classify occupations based on their average task profiles and estimate that

it would be technologically feasible to replace almost 50% of all workers in the US by machines. The World
Bank (2016) arrives at a similar conclusion. Arntz, Gregory, and Zierahn (2017) account for task specialization
within occupations and put a substantially smaller share of jobs (only 9%) at risk.
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Economic theory predicts that labor-saving technologies, such as robots, not only substitute

humans in production. There are also indirect effect in general equilibrium. In particular,

labor demand should increase in other parts of the economy, which are specialized in tasks and

inputs complementary to the production steps carried out by robots. By analyzing adjustment

processes in depth, we provide empirical support for this central theoretical proposition. We

do find sizable employment reductions in manufacturing industries where industrial robots

are installed. But those losses were fully offset by job gains outside manufacturing, most

importantly in business services. In other words, robots have strongly changed the composition

but not the aggregate level of employment in Germany.

By following exposed workers over time, we are the first to shed light on the individual

transitions and adjustments behind those aggregate trends. In a pessimistic view of the labor

market, automation is highly disruptive: it may cause layoffs and involuntary job separa-

tions. Affected workers may then eventually take up new jobs elsewhere after some initial

unemployment phase, but possibly at worse conditions than before.2

Our novel evidence suggests, however, that this view may indeed be too pessimistic. Our

data allow us to decompose individual employment spells by firms, occupation, and industry,

and thus to analyze various adjustment mechanisms. By looking at the occupation margin,

we estimate how smoothly workers are able to adapt their tasks and whether those transitions

can happen in stable employment relationships inside firms. We find, maybe surprisingly, that

a significant part of the adjustment process indeed happens within establishments and across

occupations. Robot exposure has even increased job stability, but many incumbent workers

end up performing different occupations at their workplaces than before. The equilibrium loss

of manufacturing jobs is solely driven by fewer new jobs for young labor market entrants.

This increased job stability comes at the cost of lower wage growth, however. While au-

tomation benefits managers and high-skilled worker engaged in abstract tasks, we do find

negative earnings effects for the bulk of medium-skilled and low-skilled workers whose task

profiles are easier to substitute by robots. Moreover, using regional variation, we detect that

automation imposes losses on labor overall and benefits capital and firm owners, thus reducing

the labor income share. These findings suggest that robots have created aggregate rents but

also caused notable distributional shifts in the economy.

We believe Germany provides an important benchmark case when it comes to the equilib-

rium effects of robots and how labor markets adjust to increasing automation. First, robots

are much more prevalent in Germany than in the United States and elsewhere outside Asia.

2For example, the Insight Report of the World Economic Forum (2018) suggests that without retraining,
only 2% of US workers would be able to adjust to an equally well-paid job when displaced by automation, and
16% would not be able to find any adequate work.
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(a) Industrial robots.

(b) Manufacturing employment.

Figure 1: Robot installations and manufacturing employment share, 1994-2014

Notes: Europe = Germany, France, Italy, Spain, Finland, Sweden, Norway, UK. Number of employees in full-time equivalents

(FTE). Employment data from the Establishment History Panel (BHP) for Germany, and from OECD.Stat (Organisation for

Economic Co-Operation and Development) for the remaining European countries and the United States.

Source: International Federation of Robotics (IFR).

Figure 1a shows that almost two industrial robots were installed per thousand workers in 1994,

more than twice as many as in the European average and four times as many than in the US.

Usage almost quadrupled over time in Germany and now stands at 7.6 robots per thousand

workers compared to only 2.7 and 1.6, respectively. But even though there are many more
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robots around, Germany is still among the world’s major manufacturing powerhouses with an

exceptionally large employment share. It ranges around 25% in 2014, compared to less than

9% in the US, and has declined less dramatically during the last 25 years (see Figure 1b).3 Our

analysis therefore elicits the causal effect of robots in an environment with many more of them

installed in the manufacturing sector, and with many more manufacturing jobs per capita that

could potentially be replaced.4 A second reason to focus on Germany is practical. To study the

detailed mechanisms how workers adjust to automation technologies, detailed individual-level,

longitudinal data are necessary. Leveraging German social security data, we can estimate the

impact of robot exposure on cumulative earnings, employment, and movement across sectors,

industries, firms, and occupations.

Two previous contributions have studied the labor market effects of industrial robots. Ace-

moglu and Restrepo (2018b) use a regional difference-in-differences framework for local labor

markets in the United States. They find that every robot leads to a total employment loss of

three to six jobs. This evidence is, thus, in line with displacement effects being the dominant

force, as robots seem to reduce labor force participation in the US. In their empirical study on

the labor market effects of robots across industries and countries, Graetz and Michaels (forth-

coming) do not find evidence of total job displacements. We extend the literature by shedding

light on the adjustment processes of workers and firms in the labor market and how they

interact in equilibrium. While we find zero effects of automation on total employment, this

finding masks offsetting positive and negative effects in service industries and manufacturing.

A central prediction of existing theories of automation (Acemoglu and Restrepo, forthcoming)

is that output and labor demand should increase in industries that perform tasks which are

complements in the production function relative to tasks performed by robots. We find strong

support for these predictions. Second, we expand the literature by following workers after the

automation shock and characterize their adjustment responses across different margins.

Our paper is more generally related to the large literature studying how technological

change affects wages and employment, as surveyed in Acemoglu and Autor (2011). Various

studies have argued that technological progress has contributed to rising wage inequality and

labor market polarization in advanced countries (e.g., Autor, Levy, and Murnane 2003; Autor

and Dorn 2013; Goos, Manning, and Salomons 2014). Moreover, a recent literature has

studied the adjustment of labor markets to trade shocks (Autor, Dorn, and Hanson, 2016).
3Germany also has more robots per manufacturing worker than the United States (30 versus 18 in the

most recent year 2014).
4Additionally, Germany is not only a heavy user but also an important engineer of industrial robots. The

"robotics world rankings" list 8 Japanese firms among the 10 largest producers in the world; the remaining
2 (Kuka and ABB) have German origin and mostly produce in Germany. Among the 20 largest firms, 5 are
originally German and only 1 (Omron) is from the US. This opens up a new labor market channel, namely
direct job and wage gains in the robotic industry from increasing demand for robots, which may potentially
be more relevant for Germany than for other countries except Japan.
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We pay particular attention to controlling for trade exposure in our analysis. An influential

literature – starting with Jacobson, LaLonde, and Sullivan (1993) – studying job displacement

of individual workers has found very high costs of job loss and ensuing unemployment for

affected workers. Relatedly, recent papers have shown the difficulties of workers in adjusting

to industry-level import shocks (see Autor, Dorn, Hanson, and Song 2014), where adjustments

are likely hampered by labor market frictions, in contrast to the stringent assumptions made

in frictionless models. Findings from those literatures might suggest that we should detect

long-lasting negative impacts of automation on affected workers. This is not the case, however.

First, our results show that in contrast to popular predictive narratives in the public debate,

workers in industries with larger robot exposure see more employment stability over a 20 year

period, albeit marginally, which is explained by a higher probability of avoiding separation

with the original employer. Second, we find that a large part of this effect is driven by

increased occupational mobility within the same firm. Economically, workers and firms react

to automation by changing the set of tasks for previously hired employees, thus avoiding

layoffs. However, increased employment stability comes at the price of lower wage growth for

affected workers who are retained by their original plants.

The rest of this paper is organized as follows. Section 2 describes our empirical approaches.

In Section 3, we introduce our data and give a descriptive overview. Section 4 studies the

impact of robots on equilibrium employment across local labor markets, and Section 5 dissects

the aggregate zero impact. In Section 6, we turn to the effects on productivity and the labor

share. Section 7 studies the adjustment process of workers. In Section 8, we analyze worker

heterogeneity. Section 9 concludes.

2 Empirical Approach: Overview

In this paper, we are interested in how the labor market and its main actors, firms and work-

ers, adjust to increasing automation possibilities. We work with two different main research

designs. First, we use a local labor market approach, exploiting regional differences in the

exposure to technological change in the form of industrial robots. Second, we leverage that

we can follow workers over time and trace out employment changes and adjustments for dif-

ferentially affected workers who react to the shock. Both approaches shed light on different

adjustment margins of the labor market and are complementary. The first approach en-

compasses equilibrium adjustments and spillovers from directly affected to indirectly affected

industries.5 The second research design expands the literature by shifting the attention to
5Regional difference-in-difference designs have well-known limitations when it comes to gauging absolute

or national impacts. The results from various papers show, however, that many equilibrium adjustments take
indeed place locally (Moretti, 2011). Prominent local labor market designs have uncovered large discrepancies
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adjustments at the worker level. Ex ante, it seems plausible that the displacement of labor by

robots requires significant and potentially painful adjustment efforts by workers. The evidence

on this is so far very limited, however. We asses the empirical importance of different margins

of worker adjustments especially the reallocation margin (switching firms) and the occupation

margin (switching tasks).

2.1 Local Labor Markets

At the local labor market level, our main variable of interest is the following measure:

∆robotsr =
J∑

j=1

(
empjr

empr

×∆robotsj
)

with J = 72. (1)

This expression defines the change in robot exposure in a region r. The term ∆robotsj is

the change in robot adoption per worker – with the number of workers fixed at the starting

level in 1994 – in industry j:

∆robotsj =
∆Robotsj
emp1994j

. (2)

In this expression, Robotsj is national industry robot adoption, where we observe robot counts

at the industry level j. We allocate ∆Robotsj according to regional shares of national industry

employment by multiplying ∆robotsj with empjr which is initial employment in industry-

region cell jr. For each local labor market r, we sum the exposures of all local industries

and scale it by the region’s total employment empr, also measured in the base year 1994, to

proportion appropriately for labor market size.6 This part of the paper closely follows the

important contribution by Acemoglu and Restrepo (2018b), who also provide a theoretical

micro foundation for the robot exposure measure. Our findings for the local labor market

analysis are still of independent and general interest, however, because the German economy

exhibits a much stronger industrial robot exposure than the United States. Understanding

first the regional equilibrium impacts of robots in Germany is also crucial to interpret the

results for the worker-level adjustments in the second part of the paper.

We also adopt their instrumental variable strategy to address endogeneity concerns. In this

approach, we employ robot adoptions across industries in other high-income countries as an

instrument for German robot exposure.7 More specifically, we deflate the robot installations

between regions caused by trade (Autor, Dorn, and Hanson, 2013), TFP shocks (Hornbeck and Moretti, 2018),
or the Great Recession (Yagan, forthcoming).

6Broadly speaking, measuring exposure in this way bears resemblance to a Bartik (1991) style approach.
Whereas the original contribution interacts local industry shares and national industry growth rates, national
industry robot usage growth rates are employed here. Similarly, Autor, Dorn, and Hanson (2013) have used
growth rates in Chinese import concentration and apportioned them according to initial industry shares.

7See Autor, Dorn, and Hanson (2013) and Bloom, Draca, and van Reenen (2016) for similar approaches
to study the effects of Chinese import competition.
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across the same set of industries j in each of those k countries with German industry-level em-

ployment in j from 1984 to construct k instrumental variables for ∆robotsj. The instruments

for local exposure, ∆robotsr, are analogous and also use lagged employment figures from ten

years prior to the base period.8

In our empirical analysis we also disentangle robots from two other major economic shocks

that have affected Germany since the beginning of the 1990s. First, following Autor, Dorn, and

Hanson (2013) and Dauth, Findeisen, and Suedekum (2014), we consider rising international

trade with China and Eastern Europe. The idea is that some manufacturing branches in

Germany saw strongly rising import penetration as China and Eastern Europe developed a

comparative advantage after their sudden rises in the world economy, while for other German

branches, those new markets in "the East" primarily meant new export opportunities. Second,

we consider investments in information and communication technologies (ICT) as a distinct

form of technological change. Similarly to robots, ICT equipment may also replace some

humans while complementing the productivity of others, thus leading to heterogeneous wage

and employment effects for different individuals.

Finally, as is the case in many local labor market research designs, mobility responses by

workers would imply that we are unlikely to detect a significant effect of automation on local

labor market outcomes because there would be a diffusion of the initial “robot shock”. As

we show in Section 6, however, we find no evidence that the population distribution was

systematically altered by the strong increase in industrial robot adoption.

2.2 Worker Level Analysis

Our approach to studying adjustments to task automation at the worker level is related to the

international trade and labor literature (for example Autor, Dorn, Hanson, and Song 2014).

There are two main similarities. First, we exploit industry variation and, second, we study

adjustments in a setting where the source of the shock (i.e., robot automation) is known.

This is different from the large literature following Jacobson, LaLonde, and Sullivan (1993),

which studies worker layoffs and by definition focuses on outcomes conditional on job loss. As

it turns out, the results for the automation shock are quite distinct from the typical effects

found for negative labor demand shocks such as import competition.

Empirically, we capture changes in robot exposure for workers, who at the start of the

investigation period work in industry j by our measure ∆robotsj, characterized in equation

(2). Note that each worker gets assigned only the change in exposure at her original industry
8In the baseline specification of the two-stage least squares (2SLS) IV approach we use all k instruments

and estimate an over-identified model. In a robustness check, we also aggregate the robot exposures of all k
countries to build a single instrument in a just identified 2SLS model. Notice that it is not possible to use
time lags for East German regions; here we are confined to use 1994 in the deflator.
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of employment; intuitively, this avoids contamination of the treatment variable by endogenous

moves across industries, which are – plausibly – related to automation.

A natural concern with the measure of robot exposure from equation (2) is that it may

partly reflect domestic shocks to German industries. In line with our discussion from the pre-

vious section, we instrument using non-German high-income countries and their cross-industry

patterns of robot adoption. As described above, we deflate the increase in the industry-level

robot installations over the 20 year period by the industry size in 1984, rather than 1994,

to resolve the issue that the industry size may have already been affected by previous robot

installations.

When robot exposure started to increase, this may not have causally affected workers, but

the rising robot installations could be symptoms of the previous industry-specific trajecto-

ries. To address this concern, we identify all effects within broad industry groups by adding

fixed effects for broad manufacturing industry groups (food, consumer, industrial, and capital

goods). In this way we purge the estimates of differential long-run trends across industry

groups. Moreover, one might worry about confounding region-specific trends, since the Ger-

man reunification and the associated economic changes took place just before the start of our

observation period. We therefore identify all effects within federal states, or alternatively add

the broad location dummies to capture systematic regional differences.9 Finally, we consider

placebo regressions and test if previous employment trends predict future robot installations.

3 Data and Descriptives

3.1 Labor market data

3.1.1 Workers

Our main source is administrative German labor market data provided by the Institute for Em-

ployment Research (IAB) at the German Federal Employment Agency. In the individual-level

analysis, we use the Integrated Employment Biographies (IEB). This is a linked employer-

employee spell data set, which allows us to follow single workers within and across estab-

lishments and occupations over time.10 We focus on incumbent manufacturing workers with

strong labor force attachment. In particular, we identify all full-time employees with a recorded
9As a further robustness check we also exclude East Germany entirely and focus only on West German

manufacturing workers, but the results turn out to be very similar as in our baseline approach.
10We work with a 30% random sample of the IEB V12.00.00 - 2015.09.15, which covers the universe of all

workers in Germany except civil servants and the self-employed. A spell is generated by any notification of
the employer to the social security insurance, so any employment or earnings information we use has daily
precision. The data is described in detail by Card, Heining, and Kline (2013) and Oberschachtsiek, Scioch,
Seysen, and Heining (2009).
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main job in a manufacturing industry on June 30 in the base year 1994, who are i) between

22 and 44 years old, ii) earned more than the marginal-job threshold, and iii) had job tenure

for at least two years. We then trace the detailed employment biographies of those roughly

1 million workers over the subsequent 20 years.11 In a complementary short-run approach, we

split the observation period and construct analogous work biographies over 10 years for all

workers (age 22-54) starting out in manufacturing in 1994 or 2004, respectively. The resulting

data sets assign every worker to an establishment at any point in time, and therefore to a

3-digit industry and location where the respective employer is affiliated. We also observe the

workers’ occupations following the KldB 1988 standard classification. Whenever workers have

non-employment spells in their job biographies, this may constitute unemployment, early re-

tirement, or labor market exit, all of which are endogenous labor market outcomes. We treat

those spells as periods with zero earnings and employment for the respective worker and retain

the previous establishment affiliation until a new job spell is recorded elsewhere. We also ob-

serve the profile of labor income for every worker. As the wage information is truncated at the

social security contribution ceiling, we apply the imputation procedure by Card, Heining, and

Kline (2013). Moreover, we convert all earnings into constant 2010 euros using the consumer

price index of the Bundesbank.

Appendix Table A.1 reports some descriptive statistics. Panel A shows that the average

manufacturing worker was employed on 5,959 out of 7,305 possible days over 20 years, and

started off with a daily wage of 120e . The third line reports cumulative relative to the

base year earnings. The average manufacturing worker in our sample has thus experienced

a real loss because earnings in the 20-year time window only add up to 19.25 times the base

year value. These trends are similar in the two separate 10-year-time windows. Panel B

reports some standard individual characteristics of the manufacturing workers in our sample

as recorded in the base year. Notice that roughly 9% hold a university degree (high skilled),

while almost 76% have a completed apprenticeship (medium skilled), and 15% have no formal

qualification (low skilled).

3.1.2 Local Labor Markets

For the local labor market analysis, we work with the Establishment History Panel (BHP) by

the IAB, which covers the universe of all employees in the German labor market subject to

social security.12 We aggregate these data to the local industry level and distinguish 402 local

labor markets (Landkreise and kreisfreie Staedte), which are roughly comparable to counties

in the US. The data encompass both the former West and East Germany. For every county
11The age limit of 44 years is chosen to rule out that workers in the sample reach the regular retirement

age (65 years) during the sample period. We also eliminate those who died or moved to a different country.
12A detailed description can be found in Spengler (2008).

9



and for every year between 1994 and 2014, we have detailed information about the level and

the composition of employment (in full-time equivalents), including the industry structure and

the characteristics (age, gender, qualification, etc.) of the local workforces. Some descriptive

statistics are reported in Appendix Table A.2.

3.2 Robot Usage

Our data set comes from the International Federation of Robotics (IFR) and reports the

stock of robots for 50 countries over the period from 1994 to 2014. This data set has been

used before by Graetz and Michaels (forthcoming) in a cross-country study at the industry

level and by Acemoglu and Restrepo (2018b) for the US. A robot in these data is defined

as an “automatically controlled, re-programmable, and multipurpose machine”. As explained

in more detail in International Federation of Robotics (2016), this means that robots are

“fully autonomous machines that do not need a human operator and that can be programmed

to perform several manual tasks such as welding, painting, assembling, handling materials,

or packaging.” Single-purpose machines such as elevators or transportation bands are, by

contrast, not robots in this definition, as they cannot be reprogrammed to perform other tasks,

require a human operator, or both. These data are based on yearly surveys of robot suppliers

and capture around 90 % of the world market. The information is broken down at the industry

level, but data availability differs across countries.13 For Germany coverage is comprehensive,

and we arrange the IFR data to match the official industrial classification scheme of the

German labor market.14 This allows us to differentiate 53 manufacturing industries for which

we observe the number of installed robots over the entire observation period. We also observe

robots in 19 non-manufacturing industries from 1998 onward. Appendix Table A.3 summarizes

the information, and Figure A.2 illustrates the change in the number of robots per thousand

workers separately for the two decades in all 72 industries. By far, the strongest increase can be

observed in the different branches of the automobile industry (motor vehicles, auto bodies and

parts). Here, 60–100 additional robots were installed per thousand workers in 2014 compared

to 1994. This increase took place mostly during the first decade but continued during the

second decade. Other industries that became vastly more robot-intensive include furniture,

domestic appliances, and leather. On the other side of the spectrum we find cases where

robot usage has hardly changed, and sometimes (e.g., in the watches and clocks industry) it
13As Graetz and Michaels (forthcoming), we do not use the IFR industries all other manufacturing, all

other non-manufacturing, and unspecified. Those categories cover less than 5% of the total robot stock in
Germany.

14The IFR data are reported according to ISIC Rev. 4, and we adopt an official cross-walk by Eurostat to
reclassify them to the German WZ 1993 scheme which corresponds mostly to NACE Rev 1. Details about
the cross-walk are reported in Appendix A. In Section 5.2 we perform robustness checks and rearrange the
German data to match the ISIC Rev. 4 definition of the original robot data.
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even decreased over time. In non-manufacturing industries, robots are used much less than in

manufacturing.

3.3 Descriptive Overview

The average manufacturing worker in our sample has experienced an exposure equal to

∆robotsj = 16.98 (see panel C in Appendix Table A.1). This equals the change in the number

of installed robots per thousand workers over the period 1994-2014 in the industry, where

the initial job was recorded in the base year. Notice the large variation across individuals.

The worker at the 75th percentile has seen an increase in exposure that is almost three times

larger than for the worker at the 25th percentile (9.6 versus 3.4 additional robots per thousand

workers), and the comparison between the 90th and the 10th percentiles is even more dramatic

(77.1 versus -1.7). This reflects the extremely skewed distribution of robot installation across

industries that is illustrated in Figure A.2.

Next we turn to variation in the local exposure. The map in panel A of Figure A.1 shows

that robot exposure has dramatically increased mainly in a few local labor markets. The

two most extreme outliers are Wolfsburg and Dingolfing-Landau, which are essentially factory

towns for two large German carmakers. Exposure has increased by up to 78 robots per

thousand workers there. In our empirical analysis we will pay attention to the special role

of the automobile industry and to these regions where automobile production is strongly

concentrated. To make the variation more visible, we arrange the data in 10 decile bins in

panel B. This map indicates that robot exposure in East Germany tends to be lower, which

reflects the smaller overall manufacturing share there. Outside the upper decile, we observe

notable differences mostly within West Germany. Values range from close to zero in some

places in the North up to 7.6 additional robots per thousand workers in other local labor

markets.

3.4 Trade and ICT Exposure

In our empirical analysis, we disentangle robots from two other major economic shocks that

have affected Germany since the beginning of the 1990s. First, following Autor, Dorn, and

Hanson (2013) and Dauth, Findeisen, and Suedekum (2014), we consider rising international

trade with China and Eastern Europe. The idea is that some manufacturing branches in

Germany saw strongly rising import penetration as China and Eastern Europe developed a

comparative advantage after their sudden rises in the world economy, while for other German

branches those new markets in "the East" primarily meant new export opportunities. Second,

we consider investments in ICT as a distinct form of technological change. Similarly to robots,
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ICT equipment may also replace some humans while complementing the productivity of others,

thus leading to heterogeneous wage and employment effects for different individuals.

For the measurement of trade exposure, we closely follow Dauth, Findeisen, and Suedekum

(2017) and Dauth, Findeisen, and Suedekum (2018), who compute the increase in German

net exports vis-à-vis China and 21 Eastern European countries over the period 1994-2014 for

every manufacturing industry j using UN Comtrade data, normalized by the initial wage bill

to account for industry size. For ICT, we exploit information about installed equipment at

the industry level as provided in the EU KLEMS database. It is defined as the change in real

gross fixed capital formation volume per worker for computing and communications equipment

from 1994 to 2014. In Appendix Table A.3, we report the trade and ICT exposures for all

industries. The correlation of robot and net export exposure within manufacturing is mildly

negative (−0.09). Although the automobile industry stands out as a strongly export-oriented

branch with high robot installations, we generally find that import-competing industries tend

to install slightly more robots. For robots and ICT, the correlation is small (0.04), mostly

reflecting the fact that robots are pervasive in manufacturing while ICT investments have

been stronger in services. The correlation between ICT and trade exposure is also small

(0.05). Finally, we construct regional exposure measures for trade and ICT analogously to

equation (1) and also find low correlations with local robot exposure.15 These low correlations

suggest that we capture three types of industry shocks in our empirical analysis that have

been largely orthogonal to each other.

4 The Impact on Total Employment

In the first part of the paper, we estimate models of the following form at the local labor

market level:

∆Yr = α · x′r + β1 ·∆robotsr + β2 ·∆trader + β3 ·∆ICTr + φREG(r) + εr. (3)

Here we regress the change in a local outcome variable (such as total employment, manufac-

turing employment, the employment-to-population ratio, and the labor share) over the period

1994-2014 on the change in the number of robots per worker (i.e., on ∆robotsr as defined in

(1). In the vector x′r we control for detailed demographic characteristics of the local workforce

(such as age, gender, and qualification) in levels, aggregated up from the universe of individual
15In Appendix Figure A.3, we depict scatter plots of local robot and trade/ICT exposures. At the regional

level, the correlations tend to be opposite to what we find at the industry level. But this is strongly driven
by the few automobile regions, which are strongly export and robot oriented but have installed little ICT
equipment owing to their low service shares. Those correlations become substantially smaller once we eliminate
the regional outliers or condition on the local manufacturing shares.
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Table 1: Robot Exposure and Employment.

[A] 2SLS
Dependent variable:

100 x Log-4 in total employment between 1994 and 2014

(1) (2) (3) (4) (5)

4 robots per 1000 workers -0.0072 -0.0918 -0.0270 -0.0019 0.0023
(0.111) (0.108) (0.118) (0.112) (0.119)
(0.462) (0.497) (0.496) (0.519) (0.493)

4 net exports in 1000 eper worker 0.8954** 0.7297** 0.7449** 0.6322*
(0.366) (0.330) (0.313) (0.375)

4 ICT equipment in eper worker 0.0178 0.0139 0.0045
(0.012) (0.014) (0.014)

% manufacturing -0.0680
(0.204)

% food products 2.3543***
(0.393)

% consumer goods 0.5768*
(0.311)

% industrial goods 0.6021**
(0.238)

% capital goods 0.9498***
(0.251)

% construction 1.5534***
(0.319)

% maintenance 1.6306***
(0.370)

% services 0.5126*
(0.264)

% education 0.9458***
(0.266)

[B] OLS

4 robots per 1000 workers -0.0036 -0.0305 -0.0423 0.0139 0.0098
(0.110) (0.106) (0.112) (0.116) (0.131)

Notes: N = 402 local labor market regions (Landkreise und kreisfreie Staedte). We are interested in the impact of the change in
robot exposure between 1994 and 2014 on the log-difference in total employment. The table reports results of a two-stage least
squares (2SLS) IV approach where German robot exposure is instrumented with robot installations across industries in other
high-income countries. All regressions include a constant. The specification in column (1) includes broad region dummies
indicating if the region is located in the north, west, south, or east of Germany, and demographics. Demographic control
variables are measured in the base year 1994 and are constructed as the number of workers in a particular group relative to total
employment. They contain % female, % foreign, % age ≥ 50, % medium skilled (percentage of workers with completed
apprenticeship), and % high skilled (percentage of workers with a university-degree). Columns (2) and (3) successively take into
account the change in German net exports vis-à-vis China and 21 Eastern European countries (in 1000 eper worker), and the
change in ICT equipment (in e per worker), both between 1994 and 2014. Column (4) adds the baseline manufacturing share
(i.e. manufacture of food products, consumer goods, industrial goods, and capital goods). In column (5), instead of the
manufacturing share, broad industry shares are included to control better for regional industry patterns. Industry shares cover
the percentage of workers in nine broad industry groups (agriculture; food products; consumer goods; industrial goods; capital
goods; construction; maintenance, hotels and restaurants; education, social work, other organizations) in the base year 1994. In
columns (2)-(5), similar to the IV for German robot exposure, the changes in net exports vis-a-vis China and Eastern Europe
and ICT equipment are instrumented with the analogous trade-flows and industry-level investments in ICT of other high-income
countries, respectively. Standard errors clustered at the level of 50 aggregate labor market regions in parentheses. Levels of
significance: *** 1 %, ** 5 %, * 10 %.

Sources: IFR, Comtrade, EU KLEMS, and BHP 7514 v1, own calculations.
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social security records. To avoid contamination by the endogenous adjustment of the local

labor force after the shock, we use levels before the start of the periods and not changes. We

also include controls for the employment shares of nine broadly defined industry groups as

reported in Appendix Table A.4 in one model. Moreover, we add four broad region dummies

to purge the estimates of systematic regional differences, and we add the local exposures to

net exports and ICT specifications. Standard errors are clustered at a higher level of local

market aggregation to account for spatial correlation, and we allow for 50 clusters.

The first and main dependent variable is the change in log employment. Table 1 presents the

estimates. Panel A shows the 2SLS coefficients and panel B the corresponding OLS estimates,

and for brevity, the OLS panel only contains the main effect of robot exposure but the other

included control variables are the same as in the 2SLS models. All of the five models contain

the start-of-period labor force and demographic composition controls and regional fixed effects

(comparable to US census division dummies).

The 2SLS coefficient of -0.0072 is statistically insignificant at conventional levels. In Panel

B, one sees that the OLS estimate is slightly larger (less negative) and also lacks statistical

significance. This is consistent with an upward bias of OLS, such that regions on a more

favorable labor market trend tend to be more exposed to increased robot usage.

Next, in column 2 we add local net export exposure with China and Eastern Europe to the

list of controls. This is important because Germany is a strongly export-oriented economy and

automation cannot be analyzed in a vacuum without accounting for increasing international

trade.16 The coefficient for robot exposure decreases, but it remains close to zero and is

statistically insignificant. Consistent with Dauth, Findeisen, and Suedekum (2014), we find

a positive impact of net export exposure on local employment growth. Adding local ICT

exposure, as in column 3 we find that stronger local investments in ICT do not seem to have

notable employment effects per se, since the respective coefficients are small and insignificant in

both panels. Moreover, the central coefficients for robot exposure are also unaffected, reflecting

the small correlation between robots and ICT across industries and local labor markets that

we have documented above.

Column 4 augments the regression by controlling for the initial manufacturing employment

share. Since robots are almost exclusively used in the manufacturing sector, the exposure

variable could in part pick up a general trend decline in manufacturing and not only variation

across different manufacturing industries. Controlling for the initial manufacturing share

decreases the size of the robot coefficient and does not alter the conclusions. There may be

more fine-grained industry trends within the manufacturing sector, which are correlated with
16If export intensive industries also rely more heavily on robots, this might alleviate possible job losses from

technological change. Conversely, robots might have lowered production costs and thus spurred demand for
German products.
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employment outcomes and robot installations. To address this issue, we now use the initial

employment shares of nine industry groups instead of the overall manufacturing share. In

this way we condition our estimates on more detailed local employment compositions, which

in turn purges the coefficients from possibly confounding industry trends. The results in

column 5 remain very similar, however, and the point estimate turns marginally positive but

statistically indistinguishable from zero.

Finally, notice the coefficient for trade exposure remains positive throughout and that the

OLS estimates also tend to be small, albeit a bit larger than the 2SLS estimates, suggesting

a moderate upward bias of OLS (i.e. robot-adopting regions performing better in terms of

employment for reasons other than their robot exposure). The results in columns 1 to 5

establish a stable picture: one cannot detect a significant association between robot exposure

and employment across labor markets. The remainder of the empirical analysis builds on the

most demanding model in column 5, which we prefer on the grounds that it conditions on

industry shares, regional dummies, and the detailed local labor force composition.

5 Spillovers: How Employment Adjusts

5.1 Main Results

The results so far strongly suggest no effects of robot exposure on total employment. This

finding could mask important compositional effects, however. Indeed, models of automation

(Acemoglu and Restrepo, 2018b) predict that output should expand in local industries with

higher robot adaption. At the same time, the demand for labor in all other local industries

increases when industries are gross complements in the production of a final consumption

good. Spillovers may also be interpreted as stemming from changes in local demand for

output produced in non-tradable industries.17 The direction of these spillovers is therefore an

empirical question. Increased productivity of adopting firms will lead to higher local demand

for non-tradable output. Negative effects may arise if a decline in employment and wages in

affected industries triggers a reduction in expenditures by workers, which outweighs the first

positive expenditure effect from businesses.

How Employment Adjusts. We now explore the relevance of composition effects. The

coefficients in Table 2 come from 2SLS regressions analogous to our earlier models (with the

full set of control variables in column 5 of Table 1). The dependent variable is now the change

in log employment in manufacturing in the first model and in non-manufacturing in the second
17Mian and Sufi (2014) have prominently argued that these local spillovers are important in understanding

the US employment drop during the Great Recession.
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Table 2: Composition Effects

Employment Average Wages

(1) (2) (3) (4) (5) (6)
Total Manuf. Non-manuf. Total Manuf. Non-manuf.

[A] Baseline: 100 x Log-4 in employment (average wages) between 1994 and 2014

4 robots per 1000 workers 0.0023 -0.3832** 0.4257** -0.0336 -0.1373* 0.0852*
(0.119) (0.149) (0.205) (0.056) (0.073) (0.050)

[B] Alternative employment measure: 100 x 4 in employment/population between 1994 and 2014

4 robots per 1000 workers -0.0177 -0.0594** 0.0417
(0.065) (0.027) (0.050)

N 402 402 402 7149 6038 7095

Notes: In all regressions, the variable of interest is the change in robot exposure between 1994 and 2014. The employment
estimates in columns (1) to (3) are based on one observation per region, while the unit of observation in the wage estimates in
columns (4) to (6) are region x demographic cells. Demographic cells are defined by gender, three age groups, and three
education groups. We only include cells containing at least 10 observations, and perform the regressions at the region x
demographic cell level including fixed effects for gender, age groups, and education groups. Columns (1) to (6) display estimates
for total employment, employment in manufacturing, employment in non-manufacturing, total average wages, average wages in
manufacturing, and average wages in non-manufacturing, respectively. The regressions are estimated by applying the 2SLS IV
approach where German robot exposure is instrumented with robot installations in other high-income countries. Net exports to
China and Eastern Europe and ICT are instrumented with their respective counterparts in other high-income countries. The
regressions include the full set of control variables as in column (5) of Table 1. Standard errors clustered at the level of 50
aggregate labor market regions (employment regressions) or local labor markets (wage regressions) in parentheses. Levels of
significance: *** 1 %, ** 5 %, * 10 %.

Sources: IFR, Comtrade, EU KLEMS, and BHP 7514 v1, own calculations.

model. As we have seen in Section 3, robot adoption is almost exclusively happening in the

manufacturing sector, which is why we first cut the data in this simple way. This simple

sample split also captures very well the distinction between the tradable and non-tradable

sectors.

The model estimates in column 2 of Table 2 show a negative effect on manufacturing

employment with a statistically significant coefficient of -0.38, in contrast to the null found

for total employment (which we repeat in column 1). The estimate in column 3, in contrast,

shows a positive significant effect on service employment with a coefficient of 0.41. These

estimates imply that the null effect on total employment is indeed the result of offsetting job

growth and job decline in manufacturing versus services.

The results represent strong evidence that the adoption of robots has led to positive employ-

ment spillovers on other local industries. Our data allow us to further look at this channel.

Table 3 presents estimates when we split up the service sector into several subsectors. We dif-

ferentiate business services, consumer services, construction, and public government services.

The first category includes employment in establishments that render their services to other

businesses on a contract or fee basis.18 This includes services related to information and com-
18See appendix Table A.4 for the detailed categorization.
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munication technology, cleaning, or security. The second category, consumer services, contains

employment in hotel and restaurant services, as well as beauty services such as haircutting.

By far, the largest employment effect is on business services with a coefficient of 0.76,

followed by 0.21 for consumer services. The consumer service coefficient lacks statistical sig-

nificance at conventional levels. The coefficients on construction employment and public sector

employment are close to zero. Positive employment spillovers are hence driven by spending

from local firms on local services. This result is consistent with the model by Acemoglu and

Restrepo (2018b) where increased robot adoption raises demand for complementarity inputs

by producers.19

Wages. In columns 4-6 of Table 2, we repeat the analysis using the change in local average

log wages as the outcome variable.20 We note that the wage estimates must be interpreted

with some caution. Robot exposure displaces workers at least in the manufacturing sector,

which creates selection since wage outcomes are only available for employed workers. We

circumvent these issues when we look at labor earnings directly for individual workers in the

second main part of the paper.

Still reassuringly, the results by and large mirror the employment effects. Column 4 shows

a small and insignificant impact of robot exposure on wage growth. Consistent with the

employment results, however, we see negative effects within manufacturing in column 5 and

positive effects in the service sector in column 6. The results strongly suppport the hypothesis

of decreased manufacturing labor demand in regions with high robot exposure and an offsetting

increase in labor demand for local services.

Placebo. A concern for our analysis is that some manufacturing industries may have already

been on a downward trajectory prior to the base period. If those industries installed more

robots in order to save labor costs, we would expect to see a negative effect of robots on

manufacturing employment even in the absence of a causal effect. The coefficients for robots on

manufacturing employment could then be biased downward. By the same token, employment

in service industries may have been trending upward in regions specialized in declining but

robot-adopting industries.

To address this issue, we regress lagged employment growth (1984-1994) on future robot

exposure (1994-2014), to check if past trends can predict future robot installations. Table 4

contains the estimates and columns 1 to 3 show the employment results. For manufacturing,
19Relatedly, Goldschmidt and Schmieder (2017) show that task outsourcing (within the same country) has

increased in Germany. It is conceivable that increased automation may be related to changing boundaries
of the firm, as it may accelerate these processes. We leave a further empirical investigation of this issue for
further research.

20We conduct our analysis at the demographic group-region cell level, as in Acemoglu and Restrepo (2018b).
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Table 3: Type of Spillovers

Dependent variable:
100 x Log-4 in employment between 1994 and 2014

(1) (2) (3) (4) (5)
Non-Manuf. Constr. Consumer serv. Business serv. Public sector

4 robots per 1000 workers 0.4257** -0.0476 0.2114 0.7572* 0.0656
(0.205) (0.192) (0.234) (0.390) (0.120)

Notes: N = 402. Column (1) displays estimates for the whole non-manufacturing sector. Columns (2) to (5) split the
non-manufacturing sector into several subsectors, namely construction, consumer services, business services, and the public
sector, respectively. The regressions are estimated by applying the 2SLS IV approach where German robot exposure is
instrumented with robot installations in other high-income countries. Net exports to China and Eastern Europe and ICT are
instrumented with their respective counterparts in other high-income countries. The regressions include the full set of control
variables as in column (5) of Table 1. Standard errors clustered at the level of 50 aggregate labor market regions in parentheses.
Levels of significance: *** 1 %, ** 5 %, * 10 %.

Sources: IFR, COMTRADE, EUKLEMS, and BHP 7514 v1, own calculations.

Table 4: Pre-Trends.

Employment Average Wages

(1) (2) (3) (4) (5) (6)
Total Manuf. Non-manuf. Total Manuf. Non-manuf.

100 x Log-4 in employment (average wages) between 1984 and 1994

4 robots per 1000 workers -0.0916 0.0151 -0.0565 0.0282 0.0519 0.0306
(0.106) (0.152) (0.098) (0.030) (0.033) (0.033)

N 326 326 326 5640 4836 5555

Notes: In order to verify if pre-trends drive the results in Table 2, the change in employment (average wages) between 1984 and
1994 is regressed on the robot exposure between 1994 and 2014. The specifications are the same as in Table 2. Standard errors
clustered at the level of 50 aggregate labor market regions (employment regressions) or local labor markets (wage regressions) in
parentheses. Levels of significance: *** 1 %, ** 5 %, * 10 %.

Sources: IFR, COMTRADE, EUKLEMS, and BHP 7514 v1, own calculations.

we see a very small positive and insignificant coefficient. For non-manufacturing, the estimate

is negative and insignificant. This finding indicates the absence of significant pre-trends.

The results for wages are contained in columns 4 to 6, and confirm the interpretation of the

employment results, as one cannot detect significant trends in regions correlated with future

robot exposure.

The Job Multiplier of Robots. In the public debate, there is a lot of speculation about

how many jobs in head counts have been destroyed or are expected to be lost because of

increased robot adoption. We follow Acemoglu and Restrepo (2018b) and conduct an exercise

gauging the total job effect of robots. To put the analysis on equal footing, we reestimate

the model in panel B of Table 2 with the change in the employment-to-population ratio as
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the dependent variable.21 We estimate that one more robot per thousand workers reduces the

manufacturing employment-to-population ratio by 0.059 percentage points with an offsetting

effect on service jobs of 0.042 percentage points for a total small negative effect of 0.018

percentage points.

We can translate these numbers into head counts, which imply that one installed industrial

robot per 1,000 workers replaced 2.11 manufacturing jobs in Germany.22 This has been offset

by job growth of almost two jobs per industrial robot in the service sector.23

5.2 Robustness

In this section, we discuss several important robustness checks and how they affect the results.

We consider the estimates for employment and wage effects on the aggregate and separated

by manufacturing and non-manufacturing.

East Germany. One might worry about confounding region-specific trends, since the Ger-

man reunification and the associated economic changes took place just before the start of

our observation period. To address this concern, we drop East Germany in panel A of Table

A.5 in the Appendix. In panel B, we change the specification of φREG(r) and include federal

state fixed effects instead of the four broad location dummies. Our main results also remain

unchanged in those robustness checks.
21We measure employment by all jobs in Germany subject to social security. This yields smaller E/POP

ratios between 0.25 and 0.5 in our sample since we have excluded civil servants and self-employed workers.
Including civil servants and self-employed workers in the E/POP with data from the German Federal Statistical
Office does not affect our results. See also column 5 of Table 3, which showed no effect of robots on public
employment.

22If we have two time periods, Et is job head counts in t, R installed robots, and Pop population, then:

E2

Pop2
− E1

Pop1
= β

(
R2 −R1

E1

)
× 1000.

If we assume a constant population, we get:

E2 − E1 = β

(
R2 −R1

E1/Pop1

)
.

Finally, normalizing to one additional robot per 1,000 workers, and using a ratio of the number of jobs covered
by social security relative to the population of 0.28, which is the average value across regions in 1994, we get
2.11.

23To put this number into perspective, consider that a total stock of 130,428 robots have been installed
in Germany over the period 1994–2014. A quick back-of-the-envelope calculation therefore implies a loss of
276,507 manufacturing jobs. Bearing in mind that manufacturing employment in Germany has declined by
1.2 million (from roughly 7 million full-time equivalent jobs in 1994 to 5.8 million in 2014; see Figure 1b), this
means that robots have been responsible for around 23% of this overall decline. Such an exercise supposes
that increased exposure to robots influences the absolute level of employment nationwide. Using the model
from Acemoglu and Restrepo (2018b) , one can calibrate the impact assuming dampening general equilibrium
effects to arrive at numbers which are around 10-15% smaller.
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Different Local Labor Market Aggregation. A very important robustness check is to

consider a broader definition of local labor markets. In panel C of Table A.5 in the Appendix,

we use an aggregation up to 258 local labor markets, based on commuter flows.24 Reassuringly,

the main conclusions are unaffected.

Cars. The automobile industry is a large and important sector in the German economy and

has by far the most robots. To shed light on the special role of cars, we differentiate the local

employment and wage effects of robots separately for the different branches of the automobile

industry (motor vehicles, car bodies, and car parts) and for all other manufacturing industries

in Appendix Table A.6. For employment, we find strongly negative effects in both cases. The

impact of robots on wages is even more pervasive in the other manufacturing branches. From

this exercise we conclude that our main results are not solely driven by cars, but that robots

affect the manufacturing sector more broadly.25

Industry Cross-walk. Next we conduct a robustness check on the industry cross-walk that

we needed to take in order to merge the robotic data from the IFR with the official industrial

classification system in the German data. In our approach, described in Appendix A, we

allocated the original 25 ISIC Rev. 4 industries from the IFR to 72 German NACE Rev.

1 industries. We consider an alternative approach here, also explained in greater detail in

Appendix A, where we aggregate the German data up to the ISIC level. We then repeat our

estimations for this alternative classification system with fewer industries, but find roughly

similar (though somewhat less precisely estimated) effects in panel D of Appendix Table A.5

as in our baseline.

Instruments. Our baseline specification uses an instrument group consisting of seven coun-

tries (Spain, France, Italy, the United Kingdom, Finland, Norway, and Sweden), which have

been chosen for their comprehensive data availability. The exclusion restriction requires that

robot installations, and the associated labor market effects in the instrument countries, shall

not have direct impacts on the German labor market. One may worry that this requirement

could not be met for important and large instrument countries with strong economic ties to

Germany. In panel E we drop all countries from the Eurozone (i.e., France, Italy, Spain, and

Finland) since shocks may be correlated within the monetary union. The results are very

similar to our baseline findings, however.
24The aggregation of counties to 258 local labor markets is provided by the German Federal Institute

for Research on Building, Urban Affairs and Spatial Development, https://www.bbsr.bund.de/BBSR/DE/
Raumbeobachtung/Raumabgrenzungen/AMR/amr_node.html

25In further unreported robustness checks, we have also differentiated robots installed in the automobile
branches from robots installed elsewhere. We consistently find that both measures of local robot exposure
negatively affect local manufacturing employment.
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6 Productivity, the Labor Share, and Population

So far, we have studied the effects of industrial robot adoption on employment and wage

growth. Additional data also permit us to investigate the effects on labor productivity, the

distribution of income between capital and labor, and population at the local labor market

level.26

The models we estimate in Table 5 follow the same specification as in column 5 of Table 1.

In column 1 of Table 5, the dependent variable is the change in labor productivity measured

by the change in log output per worker between 2004 and 2014 (we focus on the second

decade (2004-2014) in this analysis, because most data from this source are not available for

earlier years). The effect of robot exposure on labor productivity is sizable and statistically

significant. It implies that a local labor market with robot exposure at the 75th percentile

saw 1.75% higher growth compared to a labor market at the 25th percentile.

Higher labor productivity from automation, however, did not lead to an increase in the

labor share. In contrast, we find in column 2 a negative coefficient of -0.438.27 The dependent

variable is the first difference in the labor share from 2004 to 2014. The coefficient, hence,

implies that a labor market at the 75th percentile of the exposure distribution experienced

a 1.32 percentage points decline in the labor share relative to the labor market at the 25th

percentile. This is a substantial effect, and to the best of our knowledge, we are the first study

to provide evidence on the effects of increased automation on the decline in the labor share.

Finally, column 3 shows that robots also have no effects on population growth. Hence,

they do not seem to induce notable migration responses, such as moves away from more robot

exposed regions. This finding is reassuring because it suggests that our local labor market

approach seems to be adequate for studying the labor market effects of robots. Our regions

may be considered as small subeconomies of Germany across which migratory responses to

aggregate shocks appear to be weak.

7 Individual Workers

Our estimates of the effects of automation, identified from variation across local labor markets,

implies economically meaningful labor displacement effects concentrated in manufacturing in-

dustries, but no effect on total employment as the composition of jobs changed. Do our

estimates imply that affected workers could quickly and smoothly adjust, for example, by

transitioning across firms, sectors, tasks and occupations? Several findings in the literature
26With the exception of the population variable (which is provided by the BHP, see Section 3.1.2), the

measures in this section come from the German Federal Statistical Office, which break down national accounts
at the regional level, see Appendix B for a detailed description how the data can be obtained.

27Notice that, unfortunately, data is missing for 30 regions in column 2.
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Table 5: Other Important Outcomes

Dependent variable: Change between 2004 and 2014

(1) (2) (3)
Labor productivity Labor share Population

4 robots per 1000 workers 0.5345** -0.4380** 0.0242
(0.268) (0.192) (0.191)

N 402 372 402

Notes: Local labor market regions N . The dependent variable in column (1) is the log change in output per worker x 100, in
column (2) the percentage point change in gross pay per employee over output per worker x 100, and in column (3) the log
change in population x 100. The regressions are estimated by applying the 2SLS IV approach where German robot exposure is
instrumented with robot installations in other high-income countries. Net exports to China and Eastern Europe and ICT are
instrumented with their respective counterparts in other high-income countries. The full set of control variables as in column (5)
of Table 1 is included. Standard errors clustered at the level of 50 aggregate labor market regions in parentheses. Levels of
significance: *** 1 %, ** 5 %, * 10 %.

Sources: IFR, COMTRADE, EUKLEMS, German Federal Statistical Office, and BHP 7514 v1, own calculations.

suggest that one should be skeptical that this is happening. An influential literature – starting

with Jacobson, LaLonde, and Sullivan (1993) – studying the job displacement of individual

workers has found very high costs of job loss and ensuing unemployment for affected workers.28

Relatedly, recent papers have shown the difficulties of workers in adjusting to industry-level

import shocks (see Autor, Dorn, Hanson, and Song 2014), where adjustments are likely ham-

pered by labor market frictions, in contrast to the stringent assumptions made in frictionless

models.29

We now show that in the case of automation, the picture is more pronounced and multi-

faceted. First, we detect that, maybe surprisingly and in contrast to popular predictive

narratives in the public debate, workers in industries with larger robot exposure, see more

employment stability over the 20 year period. Second, we find that a large part of this effect

is driven by increased occupational mobility within the same firm, which suggests that workers

and firms react to automation by changing the set of tasks for their incumbent employees.

7.1 Mobility Across Occupations and Industries

Our sample in this section includes all workers which were employed in a manufacturing

industry in 1994, as outlined in Section 3, who are i) between 22 and 44 years old, ii) earned

more than the marginal-job threshold, and iii) had job tenure for at least two years.30 We

work with the following specification:
28See also Schmieder, Wachter, and Heining (2018), who show that the costs of layoff are also very high in

Germany.
29See also Dauth, Findeisen, and Suedekum (2018), who study adjustments and reallocations to export

shocks.
30We follow the standard practice in the literature and focus on workers with high labor force attachment.

Results are very similar, however, when including also worker with lower attachment.
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Yij = α · x′ij + β1 ·∆robotsj + φREG(i) + φJ(j) + εij.

In this section, Yij are the cumulated number of days spent in employment – irrespective

if employed in a manufacturing or a different sector – over the 1994-2014 period. In the

vector x′ij we include standard worker-level controls: dummies for gender, foreign nationality,

three skill categories, and three tenure categories. In addition we include a full set of age

dummies and dummies for six plant size groups. We also include dummies φJ(j) for four broad

manufacturing industry groups and φREG(i) for federal states. The plant size, industry, and

region variables refer to the worker’s employer in 1994. We also control for the log of yearly

earnings of a worker in the base year.

In this analysis, we hence compare workers with similar observable demographic charac-

teristics. In addition, we compare workers with similar firm characteristics (i.e. type of

manufacturing industry and plant size). Importantly, we also conduct the analysis within re-

gion (16 federal states). Within these cells, some workers were employed in industries subject

to strong automation while others were not, which is the source of our variation and captured

by ∆robotsj, defined above in equation (2).

Finally, we extend the specification and include the industry-level exposures to net exports

(from China and Eastern Europe) and ICT as introduced above,

Yij = α · x′ij + β1 ·∆robotsj + β2 ·∆tradej + β3 ·∆ICTj + φREG(i) + φJ(j) + εij, (4)

in order to disentangle the rise of the robots from other trade and technology shocks. All

standard errors are clustered by industry.

The advantage of this empirical model, where the left-hand side is given by a cumulative

variable in levels, is that employment and earnings over the 20 year period can be cleanly

decomposed into its various sources.31 In this section, we start with employment and exploit

that we measure employment with daily frequency in our data. Afterwards we decompose Yij
into several additive parts and study whether rising robot exposure has led to systematic job

mobility. More specifically, we start with the industry dimension and analyze if robot exposure

causes job switches to other firms within the original industry, to a different manufacturing

industry, or out of the manufacturing sector altogether. Similarly, we analyze whether robot

exposure induces workers to switch occupations within or across employers. This approach

allows us to analyze if and how individual manufacturing workers have adjusted to the rise of

the robots.
31This approach has also been used by Autor, Dorn, Hanson, and Song (2014) to study the worker-level

impacts of trade shocks.
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Table 6: Individual Adjustment to Robot Exposure (Employment)

[A] Industry mobility (1) (2) (3) (4) (5)
all Service

employers same sector Sector
Same industry yes yes no no
Same employer yes no no no

∆ robots per 1000 workers 0.7397* 11.4254*** -4.6569** -2.0471 -3.9816***
(0.446) (2.716) (2.287) (2.875) (1.387)

[B] Occupational mobility (1) (2) (3) (4) (5)
all jobs same employer other employer

Same occupational field yes no yes no

∆ robots per 1000 workers 0.7397* 6.3814*** 5.0440*** -7.6399*** -3.0457***
(0.446) (1.557) (1.385) (2.193) (0.641)

Notes: Based on 993,187 workers. 2SLS results for period 1994-2014. The outcome variables are cumulated days of employment.
For column (1), employment days are cumulated over all employment spells in the 20 years following the base year. Panel A:
For column (2) employment days are cumulated only when they occurred at the original workplace. For the other columns,
employment days are cumulated only when they occurred at a different plant in the same industry (3), at a plant in a different
manufacturing industry (4), and outside the manufacturing sector (5), respectively. Panel B: Employment days are cumulated
only when they occurred in the original occupation and workplace column (2), in a different occupation but at the original
workplace column (3), in the original occupation but at a different workplace column (4), and in a different occupation and
workplace, respectively. The regressions are estimated by applying the 2SLS IV approach where German robot exposure, net
exports to China and Eastern Europe, and ICT are instrumented with their respective counterparts in other high-income
countries and the industry’s share of routine tasks in production. Control variables are log base year earnings and indicator
variables for gender, foreign nationality, birth year, educational degree (3 categories), tenure (3 categories), plant size (6
categories), broad manufacturing industry groups (4 categories), and 16 federal states. Standard errors clustered by industry in
parentheses. Levels of significance: *** 1%, ** 5%, * 10%.

Sources: IFR, Comtrade, EU KLEMS, and IEB V12.00.00 - 2015.09.15, own calculations.

Table 6 presents the 2SLS baseline estimates of equation (4). In column 1 of panel A, the

dependent variable is the total number of days of employment over the 20 year period. Greater

exposure to robots is associated with higher employment. The magnitude of the effect can be

interpreted by comparing a worker at the 75th percentile of the robot exposure distribution

to an otherwise equal worker at the 25th percentile. Quantitatively, the difference is 4.6 days

of employment, a small impact. Since the distribution is highly skewed, impact increases to

58 days when comparing a 90th percentile to a 10th percentile worker.

In columns 2 to 5, employment is disaggregated into mutually exclusive (and exhaustive)

channels. As a result, the estimates from those models sum up to the first one on total em-

ployment shown in column 1. Strikingly, in column 2 the coefficient is more than an order of

magnitude larger. Employment at the original plant increases by robot exposure. The eco-

nomic impact of this effect is large and around 15 times larger than for the total employment

effect. Quantitatively, it translates into an increase of around 900 days of employment for a

90th percentile relative to a 10th percentile manufacturing worker. This increase is counter-

acted by reduced employment across other firms from the same industry, different industries,

and the service sector, as can be seen in columns 3 to 5.
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In panel B, we analyze mobility across occupations. Column 1 repeats the baseline estimate

on total employment for completeness. Columns 2 and 3 are based on models, where the

dependent variable is employment at a worker’s original firm, split into a part working in one’s

initial occupation at the start of the period versus any other occupation. By construction, the

estimates sum up to column 2 from panel A, since it is an additive decomposition (6.3814 +

5.0440=11.4254). Approximately half of the employment effect at the original plant effect is

driven by employment in a different occupation.

To get a total occupational mobility effect across all firms, we can add columns 2 and 4 to

obtain the effect of robot exposure on time spent in one’s original occupation and compare

it to the sum of column 3 and 5, which encompasses time spent in a different occupation.

This gives 6.3814− 7.6399 = −1.2585 versus 5.0440− 3.0457 = 1.9983: automation has hence

significantly increased occupational mobility.

A popular narrative in the public debate is that affected workers will have to be flexible and

mobile across tasks and occupations to be "one step ahead" of labor displacing technologies.

Our sets of results imply that workers in Germany already responded by switching to the rise

of industrial robots and – surprisingly – the reassignment of workers to new tasks tends to

happen frequently within a worker’s original firm. This mechanism is in turn consistent with

firm-specific human capital, and also firing costs which may make firms reluctant to separate

from incumbent workers.32

7.2 Individual Earnings and Wages

We now analyze earnings and wage responses. In Table 7, we replace the dependent variable

with a) cumulative earnings and b) average log wages over the 20-year period. Column

1 presents the estimates on earnings with all control variables except for trade and ICT

exposure. In sharp contrast to the employment effects, one obtains a negative effect from

robot exposure with an insignificant point estimate of -0.6794. This result remains robust

and even becomes somewhat stronger when adding net export and ICT exposure. The point

estimate is now also statistically significant. To interpret the coefficient estimates, we again

compare a worker at the 90th percentile of the robot exposure distribution to an otherwise

equal worker at the 10th percentile. The coefficient in column 3 indicates that over the

20-year period, the cumulative earnings of those two workers differ by 88 % of their initial

earnings. This means that if both earned the average earnings in 1994, their cumulative
32Some of these firing costs may be institutional. Employees are protected from layoffs in Germany, for

example, if the employer is not actively downsizing its workforce. While one would expect in general that
automation leads to downsizing so that the protection is not binding, plausibly there might also be plants
who are expanding their workforce even during automation episodes by increasing hiring in other departments
which are not directly involved in physical production.
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Table 7: Individual earnings and average wages

(1) (2) (3) (4) (5) (6) (7)
Dependent variable: 100 x cumulative earnings 100 x log average wages

all employers all employers original firm

∆ robots per 1000 workers -0.6794 -0.8241** -1.1165 -0.0327** -0.0369** -0.0602* -0.0114
(0.420) (0.389) (0.967) (0.016) (0.016) (0.032) (0.014)

∆ net exports / wagebill in % 0.4043* 0.3851* 0.0108 0.0088 0.0123**
(0.207) (0.203) (0.008) (0.007) (0.006)

∆ ICT equipment in e per worker 0.0163 0.0166 0.0009 0.0009 0.0010
(0.044) (0.044) (0.002) (0.002) (0.001)

Observations 993,187 993,187 890,556 986,349 986,349 884,079 924,299

Notes: 2SLS results for period 1994-2014. The outcome variables are 100 x earnings normalized by earnings in the base year and
cumulated over the twenty years following the base year (Columns 1-3) and 100 x log average wages over the twenty years
following the base year (Columns 4-7). German robot exposure is instrumented with robot installations across industries in
other high-income countries. Similarly, in columns 5 and 6, the changes in net exports vis-a-vis China and Eastern Europe and
ICT equipment are instrumented with the analogous trade-flows and industry-level investments in ICT of other high-income
countries, respectively. Standard errors clustered by industry in parentheses. Levels of significance: *** 1%, ** 5%, * 10%.
Sources: IFR, Comtrade, EU KLEMS, and IEB V12.00.00 - 2015.09.15, own calculations.

earnings would differ by around 34,245 euros. We conduct a robustness check with respect

to the automotive industries and drop them from the specification in column 3. The main

conclusions are unaffected and support that robot exposure has lowered earnings growth for

affected workers, despite a somewhat imprecise estimate.

If robot exposure has increased employment but decreased earnings, it follows that earned

wages must have been negatively affected. In columns 4 to 6 we confirm this mechanism by

estimating a set of models where the outcome is average log wages over the 20-year period for

every worker. The results imply that a unit increase in robot exposure has decreased wages

by respectively 0.032, 0.036, and 0.058 percent, using the formula (exp(β̂1/100)−1)×100. All

estimates are significant at the conventional 5% level. When comparing two manufacturing

workers at the 10th and the 90th percentile, we find that automation decreases wages by 4.86

%. This can be scaled relative to the growth rate of average wages in German manufacturing

over the whole two decades of 20.5 %.

To sum up, our results suggests that employment stability in a worker’s original job increases

but total earnings decrease in response to automation. This could be the result of a renewed

bargaining situation between affected workers and firms. Automation may reshuffle more

bargaining power to employers. In situations where it is still efficient to keep a worker-firm

match alive, for example, because of acquired firm-specific human capital of the worker or firing

costs, wages on the job should decrease. We explore this hypothesis by focusing on wages on

the original job only. Column 7 shows a negative impact, consistent with this mechanism, and

the effect implies a 0.011 % wage decline for each unit increase of robot exposure, but also

lacks statistical significance at standard levels.
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Unions and Wage Bargaining Protocols. Table A.7 in the Appendix explores sepa-

rate effects depending on the influence of unions and the wage bargaining protocol. We use

industry-level variation in the share of workers who are covered by a collective bargaining

agreement for wages either at the firm or industry level. Collective agreements at the firm

level allow firms to adjust wages much more flexibly compared to agreements at the industry

level. We interact these shares with the increase in robot exposure, and columns 1 and 2

display the results for employment. Column 1 shows that the interaction with the industry

share is strongly negative, while the interaction with the firm share is estimated around 0.

Automation tends to reduce employment the most when firms are not able to adjust wages but

are bound to industry-wide agreements. Column 2 confirms this when we look at employment

with the original firm, where only the industry coverage interaction is negative, although the

estimates are not statistically significant. We find the same patterns for earnings in columns

3 and 4. These findings support the interpretation that firms share the rents created by

automation in the form of employment stability, but only if wages can be flexibly adjusted

simultaneously.

7.3 Entrants

How can robots lead to fewer manufacturing jobs in equilibrium but stabilize existing indi-

vidual employment relationships, as we have seen in Section 7.1? One explanation is that

manufacturing firms do not displace incumbent workers when installing robots, but create

fewer new jobs.

In Table 8 we investigate this hypothesis. Here we return to our local labor market approach,

and now consider patterns of (re-)entry of young workers and returnees from unemployment

as the outcome variable.33 More specifically, we compute the entry share into manufacturing

in region r in 1994, that is, the average probability that a young worker who takes up his

or her first job ever does so in manufacturing in region r. For returnees who have been

unemployed for at least one year prior to the base period, we proceed analogously. Next, we

compute the same variables for the year 2014, and then the change in those regional (re-)entry

probabilities into manufacturing over time. Finally, we regress those changes on local robot

exposure, following the same baseline specification as in column 5 of Table 1.

Column 1 shows that the entry probability into manufacturing for young workers has in-

deed significantly decreased in more robot-exposed regions. The negative impact of robots on
33This setup follows Dauth, Findeisen, and Suedekum (2017) who show that changing industry compositions

of employment in Germany are driven only to a lesser extent by workers who smoothly change jobs across
industries. Most of the observed changes are driven by young workers who enter the labor market for the
first time, and by formerly unemployed workers who return into a job. In particular, they have a much lower
probability of (re-)entry into manufacturing than previous generations, thus fueling the aggregate decline of
that sector.
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Table 8: Robot Exposure and Entry Into Manufacturing Employment.

4 manuf. (re-)entry 4 avg. age

(1) (2) (3) (4)
Entry Re-entry Manuf. Non-manuf.

4 robots per 1000 workers -0.1320** 0.0308 0.0251*** -0.0291***
(0.067) (0.079) (0.008) (0.010)

Notes: N = 402 local labor market regions. The dependent variables in columns (1) and (2) measure the change in the share of
manufacturing entrants respectively returnees in all entries (in %-points) between 1994 and 2014. In columns (3) and (4), the
dependent variables are the change in the average age in manufacturing and non-manufacturing between 1994 and 2014. The
regressions are estimated by applying the 2SLS IV approach where German robot exposure is instrumented with robot
installations in other high-income countries. Net exports to China and Eastern Europe and ICT are instrumented with their
respective counterparts in other high-income countries. The full set of control variables as in column (5) of Table 1 is included.
Standard errors clustered at the level of 50 aggregate labor market regions in parentheses. Levels of significance: *** 1 %, ** 5
%, * 10 %.

Sources: IFR, Comtrade, EU KLEMS, and IEB V12.00.00 - 2015.09.15, own calculations.

equilibrium employment growth in manufacturing, which we have found in Section 4, there-

fore seems to come from lower rates of entry into new manufacturing jobs, but not from a

direct destruction of existing jobs. Stated differently, robots seem to "foreclose" entry into

manufacturing for young people, for example, through omitted replacements when a vacancy

arises from natural turnover. For returnees from non-employment, we find no such effect in

column 2.

A direct implication of this finding is that the manufacturing workforces in more robot-

exposed regions should then age more rapidly because there is a smaller inflow of young people,

while the opposite should happen in non-manufacturing where entrants go instead. In columns

3 and 4 we investigate this hypothesis. We compute, for every region r, the change in the

average employee age within manufacturing and non-manufacturing, respectively, and regress

these age changes on local robot exposure. Our findings indeed confirm this aging hypothesis

for more robotized manufacturing sectors.34

8 Effects Across Occupations and Skill Groups

In the last step of our analysis we explore heterogeneous impacts across occupations and skill

groups. A very influential literature has investigated the skill bias of technological change

(Katz and Murphy (1992) is the seminal reference). A newer literature has instead emphasized

the task bias of technological developments.35 Up to now, the evidence how automation
34Our results are consistent with a two-way interaction between automation and ageing. Acemoglu and

Restrepo (2018a) investigate the effect of an older population on more automation. We find that more automa-
tion causes an increase in the average age of the working population in regions more affected by automation.
These effects could reinforce each other.

35See Acemoglu and Autor (2011) for a survey and Autor and Dorn (2013) for a prominent application
across US labor markets and Goos, Manning, and Salomons (2014) across countries.
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and robots have affected earnings trends between these groups – either formal education or

occupations – has been very scarce, however.

The results are contained in Figure 2, where we show the point estimates and 95% confidence

intervals for different groups of workers. The specifications follow Section 7 exactly – so we

include controls for skill categories, tenure categories age, plant size groups, initial industry

and region – and the dependent variable is cumulated labor earnings.36 Panel a differentiates

six broad occupational categories that can be found among the individual manufacturing

workers in our sample, and Panel b distinguishes three skill categories.

In Panel a, one can identify two occupation groups for which the estimated impact is

economically meaningful and positive. These are managers and legal specialists as well as

technical and natural science occupations. Only the point estimate for the latter group is

statistically significant at the conventional 5% level. Our results indicate that automation has

benefited these groups by complementing their set of tasks. We find significant earnings losses

mainly for machine operators. Industrial robots – by definition – do not require a human

operator anymore but have the potential of conducting many production steps autonomously.

Robots therefore directly substitute the task sets of those occupations.

A second natural way to cut the data is to consider impacts across education groups,

following an enormous literature investigating how technological change affects relative skill

demand. In the German context, because of the prevalence of the apprenticeship system,

it makes sense to split the population not just into two but three skill groups. In panel b,

high skilled is defined as having a degree from a university or college, and medium skilled is

defined as having a vocational training degree. All other educational levels are subsumed as

low skilled (i.e., high school graduates and high school dropouts).

The most negative impact is found for medium-skilled workers. Those losses drive the aver-

age effects in Table 7 because completed apprenticeship is the typical profile for manufacturing

workers in Germany accounting for almost 76% of all individuals in our sample. Robots also

tend to reduce the earnings of low-skilled workers without formal education, but the effects

are less precisely estimated.

9 Conclusion

The industrial robot density in Germany is one of the highest in the world: around three

times higher than the average across the US and other developed countries. If anywhere, the

impact of robots on the labor market should be felt in Germany. We leverage this strong robot
36We obtain similar effects for wages but prefer the earnings models since they avoid the classical selection

problem that wage are not observed for non-employed people.
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(a) Occupation: Heterogenous Impacts

(b) Education: Heterogenous Impacts

Notes: The figures report the coefficients of interaction terms of ∆ robots per 1000 workers and dummies indicating the respective worker group.

The outcome variables are 100 x earnings (normalized by earnings in the base year) cumulated over the 20 years following the base year. All

regressions include the same full set of control variables as described in Section 7. The confidence intervals are constructed from standard errors

clustered by industry. In panel a, occupations base on the definition of occupational fields by the German Federal Institute for Vocational

Education and Training (BIBB) with the following modifications: Sales and clerical occupations are combined and agriculture, mining, and

construction (that would have a point estimate of zero with a huge standard error) are omitted. In panel b, high skilled is defined as having a

degree from a university or university of applied sciences, and medium skilled is defined as having a vocational training degree. All other

educational levels are subsumed as low skilled.

Figure 2: Heterogeneous earnings effects30



penetration of the German labor market to study how the labor market adjusts to this recent

wave of automation. A small number of previous papers has studied the impact of robots

on productivity and employment. We extend this research beyond aggregate equilibrium

outcomes and towards understanding of the mechanisms in workers’ and firms’ responses to

automation.

Our analysis finds no evidence that robots have been job killers. But they have affected the

composition of aggregate employment. First, we find that industrial robots displaced labor

in the German manufacturing sector. Economic theory suggests, however, that labor demand

for other tasks or in other industries should increase. The magnitude determining the total

effect on employment is an empirical question. Our paper is the first to show that the comple-

mentarity and expansion of economic activity in other industries is an important adjustment

mechanism. Our second finding is that we find an almost exactly offsetting employment effect

in industries which complement tasks carried out by robots. These local sectoral adjustments

happen relatively quickly, such that the overall impact on employment is zero.

Our analysis finds that the impact of automation on incumbent workers is more complex

than a simple displacement story would suggest. Workers, maybe surprisingly, do not face long-

lasting adverse employment consequences (Jacobson, LaLonde, and Sullivan, 1993). Existing

firm and worker matches, in contrast, adjust by switching the set of tasks a worker performs.

Increased job stability comes at the price of lower future wage growth, suggesting that rents

from automation are shared via more stable employment instead of higher wages. Wage

rigidity in the form of collective bargaining agreements at the industry level is associated with

a more negative impact on employment.

While robots have not depressed total employment, three of our findings highlight the

distributional consequences of automation. First, exposed workers in existing matches seem

to trade off job stability for lower wage growth. As a consequence, the total effect of robot

exposure on labor earnings for exposed workers is negative. Second, automation causes labor

shares in regions with larger exposure to decline. Third, automation widens the earnings gap

between managerial and skilled technical occupations and routine-intensive ones.

31



References

Acemoglu, Daron and David Autor (2011). “Skills, Tasks and Technologies: Implications for

Employment and Earnings”. In: Handbook of Labor Economics 4, pp. 1043–1171.

Acemoglu, Daron and Pascual Restrepo (2018a). Demographics and Automation. NBERWork-

ing Paper No. 24421.

Acemoglu, Daron and Pascual Restrepo (2018b). Robots and Jobs: Evidence from US Labor

Markets. NBER Working Paper No. 23285.

Acemoglu, Daron and Pascual Restrepo (forthcoming). “The Race Between Machine and Man:

Implications of Technology for Growth, Factor Shares and Employment”. In: American

Economic Review.

Arntz, Melanie, Terry Gregory, and Ulrich Zierahn (2017). “Revisiting the Risk of Automa-

tion”. In: Economics Letters 159, pp. 157–160.

Autor, David H. and David Dorn (2013). “The Growth of Low-Skill Service Jobs and the

Polarization of the US Labor Market”. In: American Economic Review 103(5), pp. 1553–

1597.

Autor, David H., David Dorn, and Gordon H. Hanson (2013). “The China Syndrome: Local

Labor Market Effects of Import Competition in the United States”. In: American Economic

Review 103(4), pp. 2121–2168.

Autor, David H., David Dorn, and Gordon H. Hanson (2016). “The China Shock: Learning

from Labor-Market Adjustment to Large Changes in Trade”. In: Annual Review of Eco-

nomics 8, pp. 205–240.

Autor, David H., David Dorn, Gordon H. Hanson, and Jae Song (2014). “Trade Adjustment:

Worker Level Evidence”. In: Quarterly Journal of Economics 129(4), pp. 1799–1860.

Autor, David H., Frank Levy, and Richard J. Murnane (2003). “The Skill Content of Recent

Technological Change: An Empirical Exploration”. In: Quarterly Journal of Economics

118(4), pp. 1279–1333.

Bartik, Timothy J. (1991). Who Benefits from State and Local Economic Development Poli-

cies? W.E. Upjohn Institute: Kalamazoo, MI.

Bloom, Nicholas, Mirco Draca, and John van Reenen (2016). “Trade Induced Technical

Change? The Impact of Chinese Imports on Innovation, IT and Productivity”. In: Re-

view of Economic Studies 83(1), pp. 87–117.

32



Card, David, Joerg Heining, and Patrick Kline (2013). “Workplace Heterogeneity and the Rise

of West German Wage Inequality”. In: Quarterly Journal of Economics 128(3), pp. 967–

1015.

Dauth, Wolfgang, Sebastian Findeisen, and Jens Suedekum (2014). “The Rise of the East and

the Far East: German Labor Markets and Trade Integration”. In: Journal of the European

Economic Association 12(6), pp. 1643–1675.

Dauth, Wolfgang, Sebastian Findeisen, and Jens Suedekum (2017). “Trade and Manufacturing

Jobs in Germany”. In: American Economic Review Papers & Proceedings 107(5), pp. 337–

342.

Dauth, Wolfgang, Sebastian Findeisen, and Jens Suedekum (2018). Adjusting to Globalization

in Germany. IZA DP No. 11299.

Eberle, Johanna, Peter Jacobebbinghaus, Johannes Ludsteck, and Julia Witter (2011). Gen-

eration of Time-Consistent Industry Codes in the Face of Classification Changes: Sim-

ple Heuristic Based on the Establishment History Panel (BHP). FDZ Methodenreport

05/2011.

Ford, Martin (2015). The Rise of the Robots. Basic Books, New York.

Frey, Carl Benedikt and Michael A. Osborne (2017). “The Future of Employment: How Sus-

ceptible are Jobs to Computerisation?” In: Technological Forecasting and Social Change

114, pp. 254–280.

Goldschmidt, Deborah and Johannes F. Schmieder (2017). “The Rise of Domestic Outsourcing

and the Evolution of the German Wage Structure”. In: The Quarterly Journal of Economics

132(3), pp. 1165–1217.

Goos, Maarten, Alan Manning, and Anna Salomons (2014). “Explaining Job Polarization:

Routine-Biased Technological Change and Offshoring”. In: American Economic Review

104(8), pp. 2509–2526.

Graetz, Georg and Guy Michaels (forthcoming). “Robots at Work”. In: Review of Economics

and Statistics.

Hornbeck, Richard and Enrico Moretti (2018). Who Benefits from Productivity Growth? Di-

rect and Indirect Effects of Local TFP Growth on Wages, Rents, and Inequality. CEPR

Discussion Paper No. DP12953.

International Federation of Robotics (2016). World Robotics Industrial Robots 2016.

33



Jacobson, Louis S., Robert LaLonde, and Daniel Sullivan (1993). “Earnings Losses of Displaced

Workers”. In: American Economic Review 83(4), pp. 685–709.

Katz, Lawrence F. and Kevin M. Murphy (1992). “Changes in Relative Wages, 1963-1987:

Supply and Demand Factors”. In: Quarterly Journal of Economics 107(1), pp. 35–78.

Mian, Atif and Amir Sufi (2014). “What Explains the 2007-2009 Drop in Employment?” In:

Econometrica 82(6), pp. 2197–2223.

Moretti, Enrico (2011). “Local Labor Markets”. In: Handbook of Labor Economics 4, pp. 1237–

1313.

Oberschachtsiek, Dirk, Patrycja Scioch, Christian Seysen, and Joerg Heining (2009). Integrated

Employment Biographies Sample IEBS - Handbook For the IEBS in the 2008 Version.

FDZ-Datenreport No. 03/2009.

Schmieder, Johannes F., Till von Wachter, and Joerg Heining (2018). The Costs of Job Dis-

placement over the Business Cycle and Its Sources: Evidence from Germany. mimeo.

Spengler, Anja (2008). “The Establishment History Panel”. In: Schmollers Jahrbuch - Journal

of Applied Social Science Studies 128, pp. 501–509.

World Bank (2016). World Development Report 2016: Digital Dividends. World Bank: Wash-

ington, DC.

World Economic Forum (2018). Towards a Reskilling Revolution A Future of Jobs for All.

Insight Report.

Yagan, Danny (forthcoming). “Employment Hysteresis from the Great Recession”. In: Journal

of Political Economy.

34



Appendix

A ISIC-NACE cross-walk

A technical challenge prior to our empirical analysis is to link the data on robots from the

IFR with German labor market data. This requires that we harmonize two different but

related industrial classifications. The IFR uses an industry classification that is based on

the International Standard Industrial Classification of All Economic Activities (ISIC) Rev. 4.

In essence, the IFR classification coincides with the 2-digit aggregation of ISIC with some

industries being further aggregated (e.g. 13-15: textiles, leather, wearing apparel) and some

available at the 3-digit level (the 3-digit branches within 26-27: electrical, electronics and the

3-digit branches within 29: automotive). Industries outside of manufacturing are aggregate

to very broad groups. In total, this classification distinguishes between 25 industries.

Our labor market data are classified by various revisions of the German equivalent to the

statistical classification of economic activities in the European Community (NACE). In an

attempt to provide a consistent long time series, IAB data contain NACE Rev. 1 codes that

have been extrapolated before/after the period of 1999-2003 when this revision was originally

used (Eberle, Jacobebbinghaus, Ludsteck, and Witter, 2011).

To harmonize the two classifications, we start with raw correspondence tables (both 2-digit

and 3-digit level) between ISIC Rev. 3 and NACE Rev. 1 (cross-walk A), ISIC Rev. 3.1 and

ISIC Rev. 3 (cross-walk B), and ISIC Rev. 4 and ISIC Rev. 3.1 (cross-walk C), all provided

by EUROSTAT. 37 In a first step, cross-walk C is merged to cross-walk B, and the result is

in turn merged to cross-walk A. We then keep all ISIC Rev. 4 industries with available IFR

data and aggregate the codes according to the IFR classification. This produces ambiguous

cases: the 25 IFR industries codes now relate to 73 NACE Rev. 1 codes. In total, there are

128 relations (cross-walk D). We use employment data from Germany in 1978 to gauge the

size of each NACE industry and produce weights for those ambiguous cases.

Cross-walk D now contains relations between 3-digit industries and relations between 2-

digit industries. In some cases, these overlap. For example, ISIC code 10 relates to NACE

codes 1, 2, 15, 16, and 24. At the same time, ISIC code 261 relates to NACE codes 242,

243, 244, 245, 246, 252, 300, 311, 312, 313, 321, 323. This means that cross-walk D contains

NACE code 24 both at the 2 and 3-digit levels. We hence expand this cross-walk so that

ISIC code 10 relates to NACE codes 1, 2, 15, 16, and all 3-digit industries within 24 and
37http://ec.europa.eu/eurostat/ramon/relations/index.cfm?TargetUrl=LST_REL&

StrLanguageCode=EN&IntCurrentPage=8
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proceed analogously with all similar cases. This does not increase the number of industries

but increases the number of relations from 128 to 243 (cross-walk E).

Finally, we aggregate the full sample of all employment notifications on June 30 1978 to

2/3-digit NACE codes and merge this to cross-walk E (at this point, we lose the NACE

industry 12 "Mining of uranium and thorium ores" as there were no employees in 1978). Our

final cross-walk now entails 241 relations of 25 ISIC to 72 NACE codes. For the ambiguous

cases, where one ISIC relates to several NACE codes, we construct the employment share of

each NACE code in all assigned codes as weights. For example, ISIC code 24 relates to NACE

codes 23 (41,499 employees in 1978) and 27 (509,031 employees). 23 thus gets a weight of

0.075 and 27 a weight of 0.925.

In Section 5.2, we check whether the increase in the number of industries drives our results.

We do this by constructing a reverse cross-walk assigning one of the 25 ISIC codes to each of

the 73 NACE codes. Departing from cross-walk E, we now need a measure for the relative

size of each ISIC code. Unfortunately, German employment data classified by ISIC codes are

not available, so we need to content ourselves with robot data from 2004 (the very first year

when all industry codes are filled) to construct weights for all ambiguous cases. This reverse

cross-walk then allows us to aggregate our local industry-level employment data to the level

of ISIC x county cells.
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B Data from German Federal Statistical Office

To analyze the effects of robots on labor productivity and the labor share, we exploit data

from the German Federal Statistical Office, which break down national accounts at the regional

level (Regionaldatenbank Deutschland). The data are freely available and can be downloaded

online at https://www.regionalstatistik.de/genesis/online/ (tab Themes).

For our purpose we always use the regional breakdown by Kreise und kreisfreie Städte.

Labor productivity is calculated as output per worker. The variable is obtained from the

production account of the regional economic accounts of the Laender (code 82111, Bruttoin-

landsprodukt je Erwerbstätigen). To get a measure for the labor share, we divide the gross

pay per employee by output per worker. The gross pay per employee is sourced from the re-

gional atlas exploiting the indicators of the subject area industry (code 99910, Bruttoentgelte

je Beschäftigten).
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Appendix Figures

(a) Local robot exposure (20 equal intervals) (b) Local robot exposure (10 deciles)

Figure A.1: Region-level exposure of robots, trade, and ICT.

Notes: The maps display the regional distribution of the change in the exposure to robots between 1994 and 2014 on the level of
402 German local labor markets. The colors in Panel A represent twenty groups with equal intervals of robot exposure. In Panel
B the colors represent ten equally sized decile groups.
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Figure A.2: Industry-level distribution of robots

Notes: The figure displays the change in the number of robots per thousand workers by WZ 1993 industries (German Classification
of Economic Activities, Edition 1993), for the two subperiods 1994-2004 and 2004-2014. Data for non-manufacturing industries in
the first decade are only from 1998-2004. The IFR data are originally reported according to ISIC Rev 4, and we adopt an official
cross-walk by Eurostat to re-classify them to the German WZ 1993 scheme (see Appendix A for more details).
Source: International Federation of Robotics (IFR).
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(a) Robots versus trade.

(b) Robots versus ICT.

Figure A.3: Region-level exposure of robots, trade, and ICT.

Notes: The figures contrast the change in the exposure of robots and trade (Panel A), and that of robots and ICT (Panel B)

between 1994 and 2014 on the level of 402 German local labor markets.

Sources: IFR, COMTRADE, EUKLEMS, and BHP 7514 v1, own calculations.
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Appendix Tables

Table A.1: Summary statistics, worker level.

1994-2014 1994-2004 2004-2014

Observations 993,187 1,431,579 1,246,414

mean (sd) mean (sd) mean (sd)

[A] Outcomes, cumulated over years following base year

Days employed 5,959 ( 2,014 ) 3,015 ( 1,001 ) 3,261 ( 802 )

Average daily wage 120.7 ( 71.6 ) 121.7 ( 74.4 ) 126.8 ( 73.9 )

100 x earnings / base year earnings 1,924.6 ( 1,001.1 ) 0,940.3 ( 0,449.4 ) 0,949.5 ( 0,352.5 )

[B] Control variables, measured in base year

Base year earnings 38,880 ( 20,775 ) 40,273 ( 22,441 ) 44,862 ( 28,322 )

Dummy, 1=female 0.239 ( 0.426 ) 0.237 ( 0.425 ) 0.215 ( 0.411 )

Dummy, 1=foreign 0.100 ( 0.301 ) 0.110 ( 0.312 ) 0.086 ( 0.280 )

Birth year 1960 ( 6 ) 1955 ( 9 ) 1963 ( 8 )

Dummy, 1=low skilled 0.153 ( 0.360 ) 0.170 ( 0.375 ) 0.118 ( 0.323 )

Dummy, 1=medium skilled 0.756 ( 0.430 ) 0.740 ( 0.438 ) 0.757 ( 0.429 )

Dummy, 1=high skilled 0.091 ( 0.288 ) 0.090 ( 0.286 ) 0.125 ( 0.331 )

Dummy, 1=tenure 2-4 yrs 0.405 ( 0.491 ) 0.357 ( 0.479 ) 0.285 ( 0.451 )

Dummy, 1=tenure 5-9 yrs 0.315 ( 0.464 ) 0.270 ( 0.444 ) 0.287 ( 0.452 )

Dummy, 1=tenure ≥10 yrs 0.243 ( 0.429 ) 0.338 ( 0.473 ) 0.387 ( 0.487 )

Dummy, 1=plant size ≤9 0.059 ( 0.236 ) 0.056 ( 0.230 ) 0.045 ( 0.207 )

Dummy, 1=plant size 10-99 0.232 ( 0.422 ) 0.230 ( 0.421 ) 0.251 ( 0.434 )

Dummy, 1=plant size 100-499 0.287 ( 0.453 ) 0.288 ( 0.453 ) 0.320 ( 0.466 )

Dummy, 1=plant size 500-999 0.121 ( 0.326 ) 0.122 ( 0.328 ) 0.118 ( 0.322 )

Dummy, 1=plant size 1000-9999 0.219 ( 0.414 ) 0.222 ( 0.415 ) 0.189 ( 0.392 )

Dummy, 1=plant size ≥10000 0.079 ( 0.269 ) 0.080 ( 0.271 ) 0.075 ( 0.263 )

Dummy, 1=food products 0.084 ( 0.277 ) 0.083 ( 0.276 ) 0.085 ( 0.279 )

Dummy, 1=consumer goods 0.123 ( 0.328 ) 0.124 ( 0.330 ) 0.099 ( 0.299 )

Dummy, 1=industrial goods 0.362 ( 0.480 ) 0.362 ( 0.481 ) 0.363 ( 0.481 )

Dummy, 1=capital goods 0.432 ( 0.495 ) 0.430 ( 0.495 ) 0.453 ( 0.498 )

[C] Exposure to robots

∆ robots per 1000 workers 16.976 ( 30.942 ) 10.620 ( 20.373 ) 6.915 ( 12.158 )

p10-p90 interval [ -1.748 ; 77.141 ] [ 0.020 ; 56.468 ] [ -1.886 ; 23.650 ]

p25-p75 interval [ 3.369 ; 9.606 ] [ 1.079 ; 4.337 ] [ 1.502 ; 7.829 ]

[D] Exposure to trade and ICT

∆ net exports / wagebill in % 7.803 ( 65.234 ) 2.537 ( 32.433 ) 4.542 ( 45.275 )

∆ ICT equipment in e per worker 391.5 ( 354.1 ) 150.5 ( 143.0 ) 288.7 ( 307.9 )

Sources: IFR, COMTRADE, EUKLEMS, and IEB V12.00.00 - 2015.09.15, own calculations.
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Table A.2: Summary statistics, region level.

1994-2014 1994-2004 2004-2014

observations 402 402 402

mean ( sd ) mean ( sd ) mean ( sd )

[A] Outcomes (4 in logs)

employment -0.020 ( 0.187 ) -0.099 ( 0.131 ) 0.078 ( 0.076 )

manufacturing employment -0.161 ( 0.280 ) -0.158 ( 0.189 ) -0.003 ( 0.142 )

manufacturing employment in automotive 0.238 ( 1.312 ) 0.109 ( 0.831 ) 0.127 ( 1.077 )

manufacturing employment in other sectors -0.180 ( 0.279 ) -0.172 ( 0.189 ) -0.008 ( 0.143 )

non-manufacturing employment 0.043 ( 0.229 ) -0.069 ( 0.158 ) 0.112 ( 0.092 )

[B] Control variables, shares in base year (in %)

female 34.716 ( 4.674 ) 34.716 ( 4.674 ) 34.454 ( 5.071 )

foreign 6.981 ( 4.781 ) 6.981 ( 4.781 ) 5.565 ( 3.842 )

age ≥ 50 yrs 20.101 ( 2.366 ) 20.101 ( 2.366 ) 20.903 ( 2.347 )

low skilled 11.063 ( 4.435 ) 11.063 ( 4.435 ) 8.020 ( 3.342 )

medium skilled 80.296 ( 4.117 ) 80.296 ( 4.117 ) 80.308 ( 5.205 )

high skilled 7.956 ( 3.965 ) 7.956 ( 3.965 ) 11.009 ( 4.899 )

manufacturing 31.830 ( 12.496 ) 31.830 ( 12.496 ) 29.969 ( 11.768 )

food products 3.490 ( 2.078 ) 3.490 ( 2.078 ) 3.279 ( 2.158 )

consumer goods 4.513 ( 3.866 ) 4.513 ( 3.866 ) 3.151 ( 2.670 )

industrial goods 12.176 ( 7.710 ) 12.176 ( 7.710 ) 11.651 ( 6.933 )

capital goods 11.651 ( 9.005 ) 11.651 ( 9.005 ) 11.888 ( 8.969 )

construction 11.607 ( 4.527 ) 11.607 ( 4.527 ) 7.843 ( 3.072 )

maintenance; hotels and restaurants 18.642 ( 4.303 ) 18.642 ( 4.303 ) 19.369 ( 4.157 )

services 13.452 ( 5.159 ) 13.452 ( 5.159 ) 17.572 ( 6.485 )

education; social work; other organizations 19.934 ( 6.391 ) 19.934 ( 6.391 ) 21.273 ( 6.041 )

dummy, 1=north 0.159 ( 0.366 ) 0.159 ( 0.366 ) 0.159 ( 0.366 )

dummy, 1=south 0.348 ( 0.477 ) 0.348 ( 0.477 ) 0.348 ( 0.477 )

dummy, 1=east 0.192 ( 0.394 ) 0.192 ( 0.394 ) 0.192 ( 0.394 )

[C] Exposure to robots

∆ robots per 1000 workers 4.644 ( 6.921 ) 3.044 ( 4.297 ) 1.723 ( 2.585 )

p10-p90 interval [ 1.249 ; 7.659 ] [ 0.796 ; 5.543 ] [ 0.440 ; 2.602 ]

p25-p75 interval [ 1.871 ; 4.898 ] [ 1.187 ; 3.374 ] [ 0.741 ; 1.832 ]

[D] Robot production

dummy, 1=robot producer 0.022 ( 0.148 ) 0.022 ( 0.148 ) 0.022 ( 0.148 )

[E] Exposure to trade and ICT

∆ net exports in 1000 e per worker 0.956 ( 3.146 ) 0.373 ( 1.663 ) 0.609 ( 2.259 )

∆ ICT equipment in e per worker 728.371 ( 82.917 ) 267.754 ( 36.184 ) 523.693 ( 57.602 )

Sources: IFR, COMTRADE, EUKLEMS, and BHP 7514 v1, own calculations.
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Table A.4: Categorization of industries into broader groups
Code Industry Code Industry Code Industry

Primary sector, comunity supply Industrial goods (continued) Personal services (continued)

11 growing of crops; market gardening; horticulture 246 other chemical products 524 other retail sale of new goods in specialized stores

12 farming of animals 247 man-made fibres 525 retail sale of second-hand goods in stores

13 growing of crops combined with farming of animals (mixed farming) 251 rubber products 526 retail sale not in stores

14 agricultural and animal husbandry service activities, ex. veterinary act. 252 plastic products 527 repair of personal and household goods

15 hunting, trapping and game propagation, incl. related service act. 261 glass and glass products 551 hotels

20 forestry, logging and related service activities 262 ceramic goods other than for construction purposes 552 camping sites and other provision of short-stay accommodation

50 fishing, operation of fish hatcheries and farms; incidental service act. 263 ceramic tiles and flags 553 restaurants

101 mining and agglomeration of hard coal 264 bricks, tiles and construction products, in baked clay 554 bars

102 mining and agglomeration of lignite 265 cement, lime and plaster 555 canteens and catering

103 extraction and agglomeration of peat 266 articles of concrete, plaster and cement 921 motion picture and video activities

111 extraction of crude petroleum and natural gas 267 cutting, shaping and finishing of stone 922 radio and television activities

112 service activities incidental to oil and gas extraction, excluding surveying 268 other non-metallic mineral products 923 other entertainment activities

120 mining of uranium and thorium ores 271 basic iron and steel and of ferro-alloys (ecsc1) 924 news agency activities

131 mining of iron ores 272 tubes 925 library, archives, museums and other cultural activities

132 mining of non-ferrous metal ores, except uranium and thorium ores 273 other first processing of iron and steel 926 sporting activities

141 quarrying of stone 274 basic precious and non-ferrous metals 927 other recreational activities

142 quarrying of sand and clay 275 casting of metals 930 other service activities

143 mining of chemical and fertilizer minerals 281 structural metal products 950 private households with employed persons

144 production of salt 282 tanks, reservoirs and containers of metal Business services

145 other mining and quarrying n.e.c. 283 steam generators, except central heating hot water boilers 601 transport via railways

371 recycling of metal waste and scrap 284 forging, pressing, stamping, roll forming of metal; powder metallurgy 602 other land transport

372 recycling of non-metal waste and scrap 285 general mechanical engineering 603 transport via pipelines

401 production and distribution of electricity 286 cutlery, tools and general hardware 611 sea and coastal water transport

402 gas; distribution of gaseous fuels through mains 287 other fabricated metal products 612 inland water transport

403 steam and hot water supply Capital goods 621 scheduled air transport

410 collection, purification and distribution of water 291 pumps, valves, bearings, etc. 622 non-scheduled air transport

900 sewage and refuse disposal, sanitation and similar activities 292 other general purpose machinery 623 space transport

Food products 293 agricultural and forestry machinery 631 cargo handling and storage

151 production, processing and preserving of meat and meat products 294 machine-tools 632 other supporting transport activities

152 processing and preserving of fish and fish products 295 other special purpose machinery 633 activities of travel agencies and tour operators

153 processing and preserving of fruit and vegetables 296 weapons and ammunition 634 activities of other transport agencies

154 vegetable and animal oils and fats 297 domestic appliances 641 post and courier activities

155 dairy products 300 office machinery and computers 642 telecommunications

156 grain mill products, starches and starch products 311 electric motors, generators and transformers 651 monetary intermediation

157 prepared animal feeds 312 electricity distribution apparatus 652 other financial intermediation

158 other food products 313 insulated wire and cable 660 insurance and pension funding, except compulsory social security

159 beverages 314 accumulators, primary cells and primary batteries 671 act. aux. to financial intermediation, ex. insurance and pension funding

160 tobacco products 315 lighting equipment 672 activities auxiliary to insurance and pension funding

Consumer goods 316 electrical equipment n.e.c. 701 real estate activities with own property

171 preparation and spinning of textile fibres 321 electronic valves and tubes and other electronic components 702 letting of own property

172 textile weaving 322 tv and radio transmitters 703 real estate activities on a fee or contract basis

173 finishing of textiles 323 tv and radio receivers 711 renting of automobiles

174 made-up textile articles, except apparel 331 medical and surgical equipment and orthopaedic appliances 712 renting of other transport equipment

175 other textiles 332 measuring instruments 713 renting of other machinery and equipment

176 knitted and crocheted fabrics 333 industrial process control equipment 714 renting of personal and household goods n.e.c.

177 knitted and crocheted articles 334 optical instruments and photographic equipment 721 hardware consultancy

181 leather clothes 335 watches and clocks 722 software consultancy and supply

182 wearing apparel 341 motor vehicles 723 data processing

183 dressing and dyeing of fur; articles of fur 342 bodies (coachwork) for motor vehicles and (semi-)trailers 724 database activities

191 tanning and dressing of leather 343 auto parts and accessories 725 maintenance and repair of office, accounting and computing machinery

192 luggage, handbags and the like, saddlery and harness 351 building and repairing of ships and boats 726 other computer related activities

193 footwear 352 railway and tramway locomotives and rolling stock 731 r&d on natural sciences and engineering

221 publishing 353 aircraft and spacecraft 732 r&d on social sciences and humanities

222 printing and service activities related to printing 354 motorcycles and bicycles 741 accounting; market research; tax, management consultancy; holdings

223 reproduction of recorded media 355 other transport equipment n.e.c. 742 architectural and engineering activities and related technical consultancy

361 furniture Construction 743 technical testing and analysis

362 jewellery and related articles 451 site preparation 744 advertising

363 musical instruments 452 building of complete constructions or parts thereof; civil engineering 745 labour recruitment and provision of personnel

364 sports goods 453 building installation 746 investigation and security activities

365 games and toys 454 building completion 747 industrial cleaning

366 miscellaneous manufacturing n.e.c. 455 renting of construction or demolition equipment with operator 748 miscellaneous business activities n.e.c.

Industrial goods Personal services Public sector

201 sawmilling and planing of wood; impregnation of wood 501 sale of motor vehicles 751 administration of the state and community policy

202 veneer sheets, plywood, laminboard and other panels and boards 502 maintenance and repair of motor vehicles 752 provision of services to the community as a whole

203 builders’ carpentry and joinery 503 sale of motor vehicle parts and accessories 753 compulsory social security activities

204 wooden containers 504 sale, maintenance and repair of motorcycles and parts and accessories 801 primary education

205 other products of wood, cork, straw and plaiting materials 505 retail sale of automotive fuel 802 secondary education

211 pulp, paper and paperboard 511 wholesale on a fee or contract basis 803 higher education

212 articles of paper and paperboard 512 wholesale of agricultural raw materials and live animals 804 adult and other education

231 coke oven products 513 wholesale of food, beverages and tobacco 851 human health activities

232 refined petroleum products 514 wholesale of household goods 852 veterinary activities

233 processing of nuclear fuel 515 wholesale of non-agricultural intermediate products, waste and scrap 853 social work activities

241 basic chemicals 516 wholesale of machinery, equipment and supplies 911 activities of business, employers’ and professional organizations

242 pesticides and other agro-chemical products 517 other wholesale 912 activities of trade unions

243 paints, varnishes and similar coatings, printing ink and mastics 521 retail sale in non-specialized stores 913 activities of other membership organizations

244 pharmaceuticals, medicinal chemicals and botanical products 522 retail sale of food, beverages and tobacco in specialized stores 990 extra-territorial organizations and bodies

245 soap and detergents, perfumes and toilet preparations 523 retail sale of pharmaceutical and medical goods, cosmetic, toilet articles

Sources: Own calculations.

47



Table A.5: Robustness checks. Region-level.

Employment Average Wages

(1) (2) (3) (4) (5) (6)

Total Manuf. Non-Manuf. Total Manuf. Non-Manuf.

[A] West Germany

4 robots -0.0176 -0.4156** 0.4227** -0.0532 -0.1844*** 0.0795

(0.122) (0.162) (0.198) (0.058) (0.071) (0.051)

N 325 325 325 5766 5019 5717

[B] Federal state dummies

4 robots -0.0443 -0.4145*** 0.3702* -0.0521 -0.1702** 0.0747

(0.137) (0.153) (0.216) (0.055) (0.071) (0.049)

N 402 402 402 7149 6038 7095

[C] 258 Local labor markets

4 robots -0.1019 -0.6382** 0.3644* 0.0152 -0.0951 0.1802***

(0.197) (0.321) (0.210) (0.056) (0.082) (0.046)

N 258 258 258 4606 3965 4579

[D] Cross-walk

4 robots 0.0105 -0.1600 0.2316 -0.0058 -0.0348 0.0555

(0.093) (0.100) (0.147) (0.040) (0.054) (0.038)

N 402 402 402 7149 6038 7095

[E] IV without members of the European Monetary Union

4 robots 0.0046 -0.3424** 0.4124** -0.0524 -0.1494* 0.0676

(0.116) (0.153) (0.208) (0.060) (0.079) (0.051)

N 402 402 402 7149 6038 7095

Notes: This table presents robustness checks for the baseline specifications for employment and average wages as of Table 2,

Panel A. The dependent variables are log-differences in employment respectively average wages between 1994 and 2014. Panels

A and B perform the regressions for West Germany only and include federal state dummies instead of broad regional dummies,

respectively. Panel C uses a model of 258 instead of 402 local labor markets. In Panel D, the robustness of the results with

regard to the cross-walk between ISIC Rev. 4 and NACE Rev. 1 industries - which was necessary to link the data on robots

with German labor market data - is checked. We construct a reverse cross-walk assigning one of the 25 ISIC codes to each of the

73 NACE codes (for more details see Appendix A), and recalculate the local robot exposure. Panel E presents a variant of the

IV specification where members of the European Monetary Union (i.e. France, Spain, Italy, Finland) are excluded from the

instrument group, i.e. German robot exposure is instrumented with robot installations in Norway, Sweden and the United

Kingdom. Standard errors clustered at the level of 50 aggregate labor market regions (employment regressions) or at the level of

local labor markets (wage regressions) in parentheses. The only exception are the employment regressions in Panel C where only

(heteroskedastic-consistent) robust standard errors are used. Levels of significance: *** 1 %, ** 5 %, * 10 %.

Sources: IFR, COMTRADE, EUKLEMS, and BHP 7514 v1, own calculations.
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Table A.6: The effect of robots in the automotive sector.

(1) (2) (3)

Manuf. Manuf. auto Manuf. other

[A] Employment: 100 x Log-4 in employment between 1994 and 2014

4 robots -0.3832** -3.4203*** -0.6539***

(0.149) (1.119) (0.206)

N 402 368 402

[B] Average Wages: 100 x Log-4 in average wages between 1994 and 2014

4 robots -0.1373* -0.1497 -0.3558***

(0.073) (0.165) (0.064)

N 6038 1137 5990

Notes: The employment estimates in Panel A are based on one observation per region, while the wage estimates in Panel B

exploit region x demographic cells. Columns (1) to (3) display estimates for the whole manufacturing sector, manufacturing of

motor vehicles, and manufacturing except motor vehicles, respectively. The regressions are estimated by applying the 2SLS IV

approach where German robot exposure is instrumented with robot installations in other high-income countries. Net exports to

China and Eastern Europe and ICT are instrumented with their respective counterparts in other high-income countries. The

regressions include the full set of control variables as in column (5) of Table 1. Standard errors clustered at the level of 50

aggregate labor market regions (employment regressions) or local labor markets (wage regressions) in parentheses. Levels of

significance: *** 1 %, ** 5 %, * 10 %.

Sources: IFR, COMTRADE, EUKLEMS, and BHP 7514 v1, own calculations.
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Table A.7: Individual outcomes and union influence

Employment Earnings

All Original All Original

employers firm employers firm

2SLS results (1) (2) (3) (4)

∆ robots per 1000 workers 0.6621 11.9657*** -0.7601 3.5350***

(0.517) (2.629) (0.482) (1.010)

× % firm agreements 0.2243 3.0820 0.3021 0.8250

(1.266) (5.091) (0.998) (1.953)

× % industry agreements -4.3358*** -3.9292 -2.2167* -1.9411

(1.614) (4.314) (1.213) (1.641)

∆ net exports / wagebill in % 0.5194 2.2753* 0.1946 0.8481**

(0.369) (1.175) (0.236) (0.411)

∆ ICT equipment in eper worker 0.0614 0.0834 0.0317 0.0451

(0.045) (0.123) (0.042) (0.049)

% firm agreements (standardized) -20.2974 -17.7491 -16.8619 -6.6122

(24.824) (74.071) (24.188) (27.577)

% industry agreements (standardized) 63.5841*** 91.2120 33.4625* 43.6598*

(21.876) (70.285) (18.090) (24.608)

Birth year, gender, nationality dummies Yes Yes Yes Yes

Education and tenure dummies Yes Yes Yes Yes

Ln base yr outcome Yes Yes Yes Yes

Plant size dummies Yes Yes Yes Yes

Broad industry dummies Yes Yes Yes Yes

Federal state dummies Yes Yes Yes Yes

Notes: Based on 989,913 observations from industries that are covered in the IAB establishment panel. Union influence is

measured as percentage of workers covered by a collective agreement (Standardized to have a standard deviation of 1). The

outcome variables are the number of days employed, cumulated over the twenty years following the base year (columns 1-2), 100

x earnings normalized by earnings in the base year and cumulated over the twenty years following the base year (columns 3-4).

The regressions are estimated by applying the 2SLS IV approach where German robot exposure, net exports to China and

Eastern Europe, and ICT are instrumented with their respective counterparts in other high-income countries. Standard errors

clustered by industry parentheses. Levels of significance: *** 1%, ** 5%, * 10%.

Sources: IFR, COMTRADE, EUKLEMS, and IEB V12.00.00 - 2015.09.15, own calculations.
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