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Abstract

We study optimal savings policies when there is a dual concern about undersaving for

retirement and income inequality. Agents differ in present bias and earnings ability, both un-

observable to a planner with paternalistic and redistributive motives. We characterize the solu-

tion to this two-dimensional screening problem and provide a decentralization using realistic

policy instruments: mandatory savings at low incomes but a choice between subsidized sav-

ings vehicles at high incomes—resembling Social Security, 401(k), and IRA accounts in the US.

Offering more savings choice at higher incomes facilitates redistribution. To solve large-scale

versions of this problem numerically, we propose a general, computationally stable, and ef-

ficient active-set algorithm. Relative to the current US retirement system, we find significant

welfare gains from increasing mandatory savings and limiting savings choice at low incomes.
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1 Introduction

A shared feature of many modern welfare states is limited choice in savings for retirement.1 These

systems commonly force contributions toward old-age benefits on the basis of a paternalistic mo-

tive to induce adequate savings for retirement, particularly among low-income groups (Diamond,

1977; Kotlikoff et al., 1982; Feldstein, 1985). Rationales for the paternalistic motive derive both

from the behavioral sciences and from a neoclassical economics tradition. Among those rationales,

we highlight three. First, individuals may make mistakes when choosing under incomplete infor-

mation and uncertainty (Tversky and Kahneman, 1974), or they may suffer from time-inconsistent

decision making over their life cycle (Laibson, 1997). Second, altruism and lack of government

commitment lead individuals to rationally undersave in anticipation of free-riding on public funds

during retirement, giving rise to a “Samaritan’s dilemma” (Buchanan, 1975; Prescott, 2004; Sleet

and Yeltekin, 2006). Third, a planner who directly includes future selves in the welfare function

will have a higher discount factor than private agents in the economy (Marglin, 1963; Caplin and

Leahy, 2004). In all three environments, individuals exhibit present bias and paternalistic savings

policies may be welfare improving.

We study optimal retirement savings policies when there is a paternalistic motive to undo

individuals’ present bias. The central question we ask is: how much choice in savings should be

optimally offered throughout the income distribution? To address this question, we integrate a

paternalistic savings motive into an optimal taxation framework, which allows us to study the

problem of savings adequacy jointly with the issue of income inequality. Our key insight is that

a trade-off exists between paternalism and redistribution. As a result, the optimal policy enforces

high savings rates at low incomes but offers a choice between various subsidized savings options

at high incomes. Qualitatively, the optimal policies in our framework resemble many real-world

retirement savings systems, including Social Security and various subsidized savings accounts in

the US. Quantitatively, however, we find significant welfare gains relative to current US policies.

In our theoretical framework, the interaction between two ingredients gives rise to a novel

trade-off in optimal savings policy design. The first ingredient, motivated by recent experimental

1Government-mandated old-age benefits were administered in ancient Rome to prevent revolts by impoverished
army veterans (Choi, 2015). German chancellor Otto von Bismarck instituted the Old Age and Disability Insurance Law
of 1889 to guarantee adequate incomes for retired workers (Kotlikoff, 1996). The US Old-Age, Survivors, and Disability
Insurance program, or Social Security for short, signed into law in 1935 under President Roosevelt to ameliorate the
extent of poverty among retirees, is nowadays the nation’s largest federal government social policy, with 957 billion US
dollars in transfers to 62 million beneficiaries in 2017 (Social Security Administration, 2018).
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evidence (Montiel Olea and Strzalecki, 2014; Chan, 2017), is heterogeneity in individuals’ present

bias. The second ingredient is heterogeneity in earnings ability, as in Mirrlees (1971), Diamond

(1998), and Saez (2001). A paternalistic and redistributive planner defines the efficient savings

rate according to a single time preference and attaches different welfare weights across ability

types. The planner picks an allocation of consumption flows and labor for each type to maximize

welfare subject to incentive compatibility and a resource constraint. The theoretical analysis of

this problem is complex since, as is well known, multidimensional screening problems can lead to

failure of the first-order approach, which the optimal taxation literature usually relies on (Golosov

et al., 2003, 2016). We exploit the paternalistic formulation to characterize savings and labor dis-

tortions in this setting. Our main theoretical result highlights the trade-off between paternalism

and redistribution under progressive social welfare weights: low-ability agents are bunched with

savings strictly above the first-best rate, while high-ability agents are separated across present bias

levels, with some saving strictly below the first-best rate. Intuitively, the planner offers savings

choice as to incentivize work and collect tax revenues, thereby facilitating redistribution.

We show that the optimal allocation can be decentralized as a competitive equilibrium with

three realistic policy instruments: first, mandated old-age benefits as a function of lifetime in-

come; second, a number of retirement savings accounts with income-dependent subsidy rates and

contribution limits; and third, a nonlinear labor income tax. For high enough forced savings, low-

income agents and impatient high-income agents rely only on old-age benefits, whereas patient

high-income agents choose to use a subset of the optional retirement accounts. Qualitatively, these

policy instruments resemble real-world retirement savings systems, such as Social Security, 401(k),

and various individual retirement arrangement (IRA) accounts in the US.

We apply this framework to quantitatively study the current US retirement savings and tax-

transfer system vis-à-vis optimal policies in our model. This is a nontrivial task because failure

of the linear independence constraint qualification (LICQ) in multidimensional screening prob-

lems can render numerical solution methods for these problems unstable (Judd et al., 2018). To

overcome this problem, we develop a general, computationally stable, and efficient active-set algo-

rithm that solves large-scale constrained optimization problems by iteratively finding the smallest

set of binding constraints at the optimum. We use the algorithm to solve versions of our problem

and demonstrate that it performs well in benchmarks vis-à-vis a more direct solution approach.

To calibrate the joint distribution of time preferences and earnings ability, we take an extended
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positive version of our model to microdata on lifetime income and retirement wealth from the

Health and Retirement Study (HRS) and the Panel Study of Income Dynamics (PSID), which we

supplement with data from the US Life Tables and the Health Inequality Project. The extended

model allows for several competing savings motives in addition to preference heterogeneity: sur-

vival risk, longevity heterogeneity, bequest motives, and medical expenditure shocks. Taking as

given the distribution of preferences and ability, we then recover social preferences by extending

the inverse-optimum approach (Bourguignon and Spadaro, 2012) to our setting. When allowing

for a flexible shape of Pareto weights across earnings ability ranks, we recover a hump-shaped

distribution, which puts relatively more weight on the second ability quartile (Jacobs et al., 2017).

We present four main results from our quantitative analysis. First, we find substantial em-

pirical heterogeneity in present bias and hence in implied optimal savings rates throughout the

income distribution. The calibration of our richer model delivers estimates of annualized present

bias discount factors ranging from 0.915 to 0.998 between the 10th and the 90th percentile of the

distribution. We also find a positive correlation of 0.153 between discount factors and ability across

workers. Therefore, there remains significant heterogeneity in time preferences after controlling

for a host of other factors.

Second, in spite of this heterogeneity, the optimal savings rate at low incomes is set to 46

percent, far above the first-best rate of 18 percent. Savings rates uniformly decline until a threshold

of USD 95,000 in income. Above that threshold, savings rates vary across levels of present bias,

varying between 3 and 18 percent at the highest income levels.

Third, we analyze properties of the policy instruments in our decentralization. Social Security

benefits are hump-shaped, with replacement rates increasing from 68 percent to 145 percent for

incomes up to USD 60,000 and declining thereafter. Contribution limits on retirement savings

accounts are approximately affine in income. Individuals with annual incomes up to USD 95,000

receive only Social Security payments. Above that threshold, optional retirement savings accounts

offer progressive savings subsidies. The optimal income tax schedule features increasing tax levels

but decreasing average tax rates across incomes, with little dependence on private savings choices.

Finally, we discuss the welfare implications of policy reforms. On the one hand, the US tax-

transfer system is best justified through welfare weights that are less redistributive than utilitarian

(Heathcote and Tsujiyama, 2017). On the other hand, our model rationalizes high forced savings

and large dispersion in savings rates at high incomes in the US as welfare weights that are more
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redistributive than utilitarian. Consequently, our paternalistic framework suggests welfare gains

of 8.8 percent in consumption-equivalent terms from increasing mandatory savings and limiting

savings choice, particularly at low incomes. In contrast, we find that a nonpaternalistic planner

cannot rationalize real-world policies.

Related literature. This paper contributes to three strands of the literature.2 The first strand is

concerned with the optimal taxation of capital. The classic result by Atkinson and Stiglitz (1972)

states that with agreement in preferences between the planner and agents, only income—but not

savings—should be distorted. Also relying on preference agreement is the zero long-run capital

taxation proposition by Judd (1985) and Chamley (1986), subsequently revisited by Atkeson et al.

(1999), Lansing (1999), Phelan and Stacchetti (2001), Hassler et al. (2008), Saez (2013), and Straub

and Werning (2018). In our framework, paternalism provides an alternative motive for capital

taxes or subsidies. Closely related to our work, Saez (2002), Diamond and Spinnewijn (2011),

and Golosov et al. (2013) consider heterogeneous time preferences without paternalism and show

that the correlation between discount factors and ability matters for the optimal degree of capi-

tal taxation. Piketty and Saez (2013) study the related problem of optimal linear or two-bracket

inheritance taxation. Hosseini and Shourideh (2018) characterize optimal retirement policy re-

forms with heterogeneous mortality rates and time preferences. Ndiaye (2018) studies life-cycle

taxation with endogenous retirement. A novel aspect of our paper is to consider the interaction

between paternalism and redistribution with two dimensions of heterogeneity: present bias and

earnings ability. We find that under a strong enough redistributive motive, the optimal dispersion

of savings rates is larger at higher incomes.

The second strand of the literature that we relate to is the field of behavioral public finance.3

Much work focuses on optimal taxation without heterogeneity in behavioral biases or redistribu-

tion. O’Donoghue and Rabin (2003, 2006) and Gruber and Köszegi (2004) consider the incidence

of linear consumption taxes when certain goods are either overconsumed (e.g., cigarettes) or un-

derconsumed (e.g., retirement savings). Farhi and Werning (2007, 2010), Pavoni and Yazici (2017),

and Phelan and Rustichini (2018) study optimal estate taxation with a constant difference between

social and private discount factors. Farhi and Werning (2013a) examine heterogeneity in private

discount factors but no differences in earnings ability. Lockwood and Taubinsky (2017) allow for

2Appendix A.4 discusses our findings in light of some of the most closely related frameworks in the literature.
3See Bernheim and Taubinsky (2018) for an excellent survey of optimal policy design with nonstandard preferences.
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nonlinear labor earnings taxes and a linear tax on sin goods. Amador et al. (2006) study an opti-

mal delegation problem with uniform present bias and find a minimum savings rule to be opti-

mal.4 Chetty et al. (2009) and Beshears et al. (2015) consider optimal policy design with behavioral

agents but without redistribution. In our environment with transfers, the optimal policy features

oversaving at low incomes and differentially distorted savings decisions at high incomes. Amador

et al. (2004) study optimal taxation in an environment with transfers and shocks to agents’ taste

for present consumption and temptation, focusing on the special case when shocks are indepen-

dently distributed. Our paper also complements recent works including Yu (2016), who studies

savings policies as commitment devices when agents are time-inconsistent, and Lockwood (2016),

who focuses on implications of present bias for optimal income taxation. Farhi and Gabaix (2018)

study optimal taxation in the spirit of Ramsey, Pigou, and Mirrlees under a range of behavioral

biases. Complementing this literature, our focus is on characterizing the optimal structure of sav-

ings choices throughout the income distribution.

The third strand of related work studies multidimensional screening problems. Rochet (1987),

McAfee and McMillan (1988), Armstrong (1996), Rochet and Choné (1998), and Armstrong and

Rochet (1999) emphasize challenges in the analysis of optimal contracts with higher-dimensional

unobserved heterogeneity. Some important contributions in the field of public finance have made

further progress. Kleven et al. (2009) analyze the optimal taxation of couples, while Rothschild and

Scheuer (2013, 2015, 2016) characterize optimal income taxes under multidimensional skill hetero-

geneity. We contribute to this literature by characterizing a two-dimensional screening problem

with paternalism and developing a numerical algorithm that efficiently solves more general large-

scale nonlinear constrained optimization problems.

Outline. The paper is organized as follows. Section 2 introduces the two-dimensional screening

problem. Section 3 characterizes the optimal allocation under paternalism and redistribution.

Section 4 provides a decentralization using realistic policy instruments. Section 5 presents an

active-set algorithm to solve large-scale nonlinear constrained optimization problems. Section

6 calibrates the model to US microdata on lifetime earnings and retirement savings. Section 7

evaluates optimal retirement savings policies. Finally, Section 8 concludes.

4Similar setups have been studied in the context of monetary policy (Athey et al., 2005), sovereign debt dynamics
(Aguiar and Amador, 2011), fiscal rules (Halac and Yared, 2014), the market for commitment devices (Galperti, 2015),
and parent-child relations (Doepke and Zilibotti, 2017).
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2 Two-Dimensional Screening Problem

This section presents our benchmark model for the analysis of optimal savings policies when there

is a dual concern about undersaving for retirement and income inequality.

2.1 Model setup

A unit mass of agents live for two periods—working life, t = 1, and retirement, t = 2—with

common discount factor δ between periods.5 Agents differ in two unobservable attributes. The

first attribute is earnings ability, denoted θ ∈ Θ = {θ1, . . . , θN}, where 0 ≤ θ1 < . . . < θN < +∞.

The second attribute is the degree of present bias, denoted β ∈ B = {β1, . . . , βM}, where 0 <

β1 < . . . < βM = 1. Here, β is understood as a reduced-form placeholder for the disagreement

between the planner and agents at the time of the savings decision, which may arise from agents’

behavioral bias (Laibson, 1997), from lack of government commitment (Sleet and Yeltekin, 2006),

or from direct inclusion of future selves in the welfare function (Caplin and Leahy, 2004). We

assume that the distribution over two-dimensional types, π (θ, β), has full support but do not

impose any restrictions on the correlation between θ and β.

Utility is defined over consumption streams, (c1, c2), and labor supply ` = y/θ, where y ≥ 0 is

individual income. The planner evaluates period 0 or experienced utility of (θ, β)-types according to

V (c1, c2, y; θ) = u (c1)− v
(y

θ

)
+ δu (c2) ,

which directly depends on θ but not on β. Consumption utility u ∈ C (R+) is isoelastic and

satisfies u′ (c) > 0, u′ (0) = +∞, limc→+∞ u′ (c) = 0, and u′′ (c) < 0 for c ≥ 0. Labor disutility

v ∈ C (R+) is multiplicatively separable as v (y/θ) = D (θ) ṽ (y), where D, ṽ ∈ C (Θ) satisfy

D (θ) < D (θ′) for θ > θ′, limθ→+∞ D (θ) = 0, ṽ (0) = 0, ṽ′ (0) = 0, ṽ′ (y) > 0 for y > 0,

limy→+∞ ṽ′ (y) = +∞, ṽ′′ (y) > 0 for y ≥ 0, D (0) ṽ (y) = +∞ for y > 0, and D (0) ṽ (0) = 0.6

At the time of decision making, (θ, β)-types evaluate period 1 or decision utility according to

U (c1, c2, y; θ, β) = u (c1)− v
(y

θ

)
+ βδu (c2) , (1)

5In Appendix A.6, we analyze a multiperiod life-cycle model with heterogeneity in hyperbolic discount factors.
6These assumptions are common in the public finance literature (see, for example, Heathcote et al., 2017) and include

as a special case the power utility formulation that we later use in our quantitative application.
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which directly depends on θ and β. Therefore, the planner and (some) agents disagree about

intertemporal trade-offs. A storage technology offers fixed gross return R between periods.

As in Mirrlees (1971), the planner observes consumption and labor income but not agents’

types directly. Appealing to the revelation principle, the planner designs a direct mechanism, in

which an agent is assigned a consumption-income bundle that depends deterministically on the

agent’s reported type. Such an assignment defines an allocation:

A = {c1 (θ, β) , c2 (θ, β) , y (θ, β)}(θ,β)∈Θ×B .

We write ut (θ, β) ≡ u (ct (θ, β)) for period t consumption utility, v (θ, β) ≡ v (y (θ, β) /θ) for work

disutility, V (θ, β) ≡ V (c1 (θ, β) , c2 (θ, β) , y (θ, β) ; θ), and U (θ, β) ≡ U (c1 (θ, β) , c2 (θ, β) , y (θ, β) ; θ, β).

An allocation satisfies incentive compatibility (IC) if

∀ (θ, β) ∈ Θ× B : (θ, β) ∈ arg max
(θ′,β′)∈Θ×B

U
(
c1
(
θ′, β′

)
, c2
(
θ′, β′

)
, y
(
θ′, β′

)
; θ, β

)
. (2)

An incentive compatible allocation can be implemented with agents truthfully reporting their

types as an equilibrium strategy in the direct mechanism. An allocation satisfies feasibility if

∑
(θ,β)∈Θ×B

π (θ, β)

[
y (θ, β)− c1 (θ, β)− c2 (θ, β)

R

]
≥ 0. (3)

A feasible allocation allows for transfers across types but restricts the planner’s net budget to be

weakly positive. Welfare associated with an allocation A is

W (A) = ∑
(θ,β)∈Θ×B

π (θ, β) λ (θ)V (c1 (θ, β) , c2 (θ, β) , y (θ, β) ; θ) , (4)

with Pareto weights λ (θ) ≥ 0 normalized such that ∑(θ,β)∈Θ×B π (θ, β) λ (θ) = 1.7

The planner’s problem is to maximize welfare (4) subject to IC constraints (2) and the feasibility

constraint (3). In this two-dimensional screening problem, the planner has both a paternalistic

motive due to the difference between V (·) and U (·) in equations (2) and (4), and a redistributive

motive due to the relative Pareto weights in (4) and the possibility of transfers across types in (3).

7That present bias does not directly enter welfare through either λ (·) or V (·) can be motivated by adopting an
individual’s perspective before the realization of a present bias shock, as in Amador et al. (2006).
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Lemma 2 in Appendix A.1 establishes some important properties of the planner’s problem,

including convexity, existence and uniqueness of a global optimum, applicability of the maximum

theorem, and strong duality subject to the Karush-Kuhn-Tucker (KKT) conditions. In Appendix

A.2, we characterize benchmark allocations, including the first-best and laissez-faire.

2.2 Savings and Labor Distortions

To describe optimal distortions at the second best, we define three wedges characterizing the

solution to the planner’s problem. First, the decision wedge captures savings distortions in the

agent’s view, as measured by the deviation from their intertemporal Euler equation:

τD (θ, β) = 1− u′ (c1 (θ, β))

Rβδu′ (c2 (θ, β))
. (5)

A positive (negative) decision wedge can be interpreted as an implicit savings tax (subsidy).

Second, the efficiency wedge captures savings distortions in the planner’s view, as measured by

the deviation from the planner’s intertemporal Euler equation:

τE (θ, β) = 1− u′ (c1 (θ, β))

Rδu′ (c2 (θ, β))
.

A positive (negative) efficiency wedge can be interpreted as undersaving (oversaving) relative to

the welfare-maximizing savings rate.

Third, the labor wedge captures labor supply distortions, as measured by the deviation from the

intratemporal Euler equation:

τL (θ, β) = 1− v′ (y (θ, β) /θ)

u′ (c1 (θ, β)) θ
. (6)

A positive (negative) labor wedge can be interpreted as an implicit labor income tax (subsidy).

Though it may be tempting to interpret the decision wedge (5) and the labor wedge (6) as

explicit taxes on savings and income, respectively, this is generally not the case. In Section 4, we

provide a decentralization of the solution to the planner’s problem using realistic policy tools and

discuss the relation between wedges and marginal tax rates in this context.
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3 Optimal Paternalistic Savings Policies

We characterize general properties of the optimal allocation before showing how it can be decen-

tralized using a set of realistic policy instruments.

3.1 Simple Environment with 2× 2 Types

Consider a simple environment with two levels of earnings ability and two levels of present bias.8

Let θ ∈ {θL, θH} with θL = 0 < θH, let β ∈ {βL, βH} with 0 ≤ βL < βH = 1, and let Rδ = 1.

Proposition 1. If λ (θL) ≥ λ (θH), then the solution to the planner’s problem is characterized as follows:

1. The first-best allocation is not incentive compatible.

2. Low-ability types are bunched across present bias levels: s (θL, β) = s (θL) ∀β.

3. High-ability types are separated in savings rates across present bias levels: s (θH, βL) 6= s (θH, βH).

4. Low-ability types receive a strictly positive implicit savings subsidy and save strictly above the ef-

ficient rate, patient high-ability types save weakly above the efficient rate, and present-biased high-

ability types face an implicit savings subsidy or tax but always save strictly below the efficient rate:

τD (θL, βL) < τD (θL, βH) < 0

τD (θH, βH) ≤ 0 R τD (θH, βL)

τE (θL) < 0

τE (θH, βH) ≤ 0 < τE (θH, βL) .

5. High-ability types face no implicit labor distortions: τL (θH, βL) = τL (θH, βH) = 0.

Proof. It is instructive to flesh out the argument here to illustrate the model mechanics:

1. (First best violates IC.) IC for (θH, βH)-types requires V (θH, βH) ≥ maxβ V (θL, β), contra-

dicting the first best for λ (θL) > λ (θH). For λ (θL) = λ (θH), then the first-best condition

V (θL) = V (θH) combined with the IC constraint from (θH, βL)-types to θL-types implies

that s (θH) < s (θL), contradicting the fact that all agents save at the first-best rate.

8This generalizes the three-type environments contained in Cremer et al. (2009) and Tenhunen and Tuomala (2010).
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2. (Bunching at low ability.) Note that β does not enter the planner’s objective. Since only θH-

types work and income is observable, the relevant IC constraints in θ-space are the ones

from high to low ability. Consider convexifying θL-types’ allocations in utility space each

period by assigning them ūt (θL) = ∑β π (β| θL) ut (θL, β) for t = 1, 2. Bunching trivially

satisfies θL-types’ IC constraints, since they cannot deviate elsewhere. As IC constraints are

linear in u1 (θL, β) and u2 (θL, β), the convex combination in utility space also preserves the

IC of θH-types and leaves welfare unchanged. However, strict concavity of u (·) implies

that c̄t (θL) = u−1 (ūt (θL)) is strictly convex, so bunching θL-types is strictly less costly than

separating them by β-levels. In summary, bunching low-ability types is optimal as it leaves

welfare constant, preserves IC, but saves resources.

3. (Separation at high ability.) We first show that high-ability types cannot receive the same

consumption stream (c1 (θH) , c2 (θH)). By way of contradiction, suppose that θH-types are

bunched in consumption across β-levels. There are two cases to consider.

First, suppose high-ability agents are bunched with c1 (θH) > c2 (θH), illustrated as point

A in Figure 1(a). At this point, the slope of βL-types’ indifference curve is more negative

compared to βH-types. The planner can target βH-types by offering the welfare-equivalent

allocation B in the interior of the budget set, which also preserves IC—a contradiction.

Second, suppose high-ability agents are bunched with c2 (θH) ≥ c1 (θH). Clearly, c2 (θH) >

c1 (θH) is dominated, so c2 (θH) = c1 (θH), illustrated as point D in Figure 1(b). From the

IC constraint of (θH, βH)-types, we know V (θH) ≥ V (θL). In fact, V (θH) > V (θL), or

else V (θH) = V (θL) together with IC from (θH, βL)-types to θL-types would imply sFB =

s (θH) < s (θL). Then we could decrease s (θH, βL) along the budget line and decrease s (θL)

along the planner’s indifference curve, incurring a second-order welfare loss but a first-order

resource gain—a contradiction. Since V (θH) > V (θL) but λ (θL) ≥ λ (θH), the planner

can target βL-types by offering an additional allocation at point E in Figure 1(b), yielding

net welfare gains through a first-order transfer from (θH, βL)-types toward θL-types but a

second-order welfare loss from (θH, βL)-types’ deviation—a contradiction.

Therefore, (c1 (θH, βL) , c2 (θH, βL)) 6= (c1 (θH, βH) , c2 (θH, βH)). Hence, s (θH, βL) = s (θH, βH)

would require ct (θH, β) > ct (θH, β′) for t = 1, 2 and some β, β′. Clearly, this violates IC,

given that θH-types’ labor supply is undistorted (see part 5 of the proposition).
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4. (Oversaving and undersaving.) Low-ability agents are optimally bunched such that c2 (θL) ≥

c1 (θL). If this were not the case, then moving them from point A to point B in Figure 1(a)

would preserve IC, leave welfare unchanged, but save resources—a contradiction. In fact,

c2 (θL) > c1 (θL). Suppose, by way of contradiction, that c2 (θL) = c1 (θL), illustrated as point

F in Figure 1(c). Then we could move θL-types toward point G to induce a second-order

welfare loss but relax the IC constraint of θH-types to a first order, associated with a net

welfare gain from improved redistribution or paternalism. To make this point, we consider

three exhaustive cases, which we derive in Appendix A.3.1. Case 1 features V (θH, βH) =

V (θH, βL) > V (θL) initially, so the planner can use the slackness in IC from the perturbation

to transfer resources from (θH, βL)-types to θL-types, improving welfare—a contradiction.

Cases 2 and 3 feature V (θH, βH) = V (θL) ≥ V (θH, βL) initially, so the planner can use the

slackness in IC from the perturbation to increase (θH, βL)-types’ savings rate toward the first

best by moving up along βH-types’ indifference curve, keeping welfare constant, preserving

IC, but saving resources—a contradiction. It follows that s (θL) > sFB.

We must have s (θH, βH) ≥ sLF (βH) = sFB as there is no reason to distort downward the sav-

ings of βH-types. Furthermore, s (θH, βH) > sLF (βH) if and only if their allocation is envied

by (θH, βL)-types, which occurs in Case 2 but not in Case 3.9 In Cases 1 and 3, conversely,

s (θH, βH) = sFB as the IC constraint from (θH, βL)-types to (θH, βH)-types is slack.

Finally, (θH, βL)-types’ savings may be below or above their laissez-faire rate. On the one

hand, Case 1 features a binding IC constraint from (θH, βH)-types to (θH, βL)-types, so s (θH, βL) <

sLF (βL) can be optimal to relax that constraint. On the other hand, Cases 2 and 3 feature a

slack IC constraint from (θH, βH)-types to (θH, βL)-types, so s (θH, βL) ≥ sLF (βL) at the op-

timum, and s (θH, βL) > sLF (βL) if and only if λ (θH) > 0 in those cases.

5. (High-ability types’ labor supply is undistorted.) By way of contradiction, suppose τL (θH, β) 6=

0 for some β ∈ {βL, βH}. Then v′ (y (θH, β) /θH) 6= u′ (c1 (θH, β)) θH, and the planner could

adjust y (θH, β) and c1 (θH, β) to reduce
∣∣τL (θH, β)

∣∣ while keeping (θH, β)-types’ period 1

utility and hence welfare constant, preserving IC but saving resources—a contradiction. We

conclude that τL (θH, βL) = τL (θH, βH) = 0.

9In a previous version of the paper, we ignored this case.
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Figure 1. Consumption perturbations

(a) Separation, case 1 (b) Separation, case 2 (c) Oversaving

Proposition 1 shows that paternalism in the face of present bias (βL < 1) and the redistributive

motive (λ (θL) ≥ λ (θH)) interact in nontrivial ways. The planner optimally offers savings choice

as a screening device to facilitate redistribution. Savings of high-ability types are differentially

distorted to provide incentives, thereby facilitating transfers across types.

Several features of the optimal allocation are noteworthy. At low ability, uniform savings

strictly above the efficient rate reflect a combination of paternalism and the desire to deter devia-

tions by high-ability types. In contrast, the redistributive motive dominates at high ability, leading

to optimal separation. That is, patient high-ability types optimally save at least at the first-best

rate, while impatient high-ability types save strictly below the first best to allow for greater trans-

fers across types. Rational agents’ savings may be distorted upward in the presence of behavioral

agents. Although all agents in the economy want to save less than the planner, the presence of

behavioral agents can also lead savings to be distorted further downward for incentive reasons.

Leaving labor supply of the high-ability agents undistorted ensures productive efficiency.10

3.2 Characterizing the General Economy

Many insights from the preceding analysis extend to a general economy with N θ-types, where

0 ≤ θ1 < . . . < θN < +∞, and M β-types, where 0 < β1 < . . . < βM = 1.

10Variations of this simple environment yield further insights. Appendix A.3.2 shows that there exists a threshold
relative Pareto weight above which the result from Proposition 1 continues to hold. Conversely, Appendix A.3.3 shows
that there exists a threshold relative productivity level such that the same results apply. Appendix A.3.4 presents condi-
tions under which the optimum features separation of low-ability types and bunching of high-ability types. Appendix
A.3.5 characterizes the optimal allocation when all agents have the same ability but different Pareto weights.
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Lemma 1. The following intermediate results hold in the general economy:

1. (Monotonicity) For all (θ, β) and (θ, β′), if β > β′, then either (c1 (θ, β) , c2 (θ, β) , y (θ, β)) =

(c1 (θ, β′) , c2 (θ, β′) , y (θ, β′)), or c2 (θ, β) > c2 (θ, β′) and u (c1 (θ, β))− v (y (θ, β) /θ) < u (c1 (θ, β′))−

v (y (θ, β′) /θ). Furthermore, if θ > θ′, then y (θ, β) ≥ y (θ′, β) for all β.

2. (Single crossing in β-dimension) If an allocation satisfies IC of some type (θ, βm) with respect to types

(θ, βm−1) and (θ, βm+1), then it satisfies IC of type (θ, βm) with respect to all θ-types.

Proof. See Appendix A.3.6.

While global IC constraints may bind in multidimensional screening problems (Rochet and

Choné, 1998), Lemma 1 puts some structure on the optimal allocation and pattern of binding IC

constraints. Although the single-crossing property implies sufficiency of local constraints in the

β-dimension conditional on θ, other global IC constraints still remain relevant.11

Going forward, we define θ̃+n ≡ θn+1/θn as the upward productivity differential and θ̃−n ≡

θn/θn−1 as the downward productivity differential. Our first main result establishes sufficient

conditions for bunching versus separation of agents across β-levels throughout the θ-distribution.

Theorem 1. There exist cutoffs 1 < θ̃+n < +∞, 1 < θ̃−n < +∞, and 0 ≤ λn < λn < +∞ such that:

1. (i) If θ̃+1 ≥ θ̃+1 and λ (θ1) > 0, then θ1-types are bunched across β-levels.

(ii) For n = 2, . . . , N− 1, if θ̃+n ≥ θ̃+n , θ̃−n ≥ θ̃−n , and λ (θn) ≥ λn, then θn-types are bunched across

β-levels.

(iii) If θ̃−N ≥ θ̃−N and λ (θN) ≥ λN , then θN-types are bunched across β-levels.

2. If λ (θn) ≤ λn and θn > 0, then θn-types are separated across β-levels.

Proof. See Appendix A.3.8.

Part 1 of Theorem 1 states that a sufficient condition for optimal bunching of θ-types across

β-levels is that the planner attaches a high enough welfare weight on those agents while they

are relatively isolated in productivity space. If θ-types are not tempted to deviate to another θ′-

type’s allocation because they find themselves relatively well off, then they pay the planner for

this privilege by giving up their preference autonomy. Conversely, part 2 of the theorem states

11Leading up to the following results, Lemma 3 in Appendix A.3.7 contains useful insights linking the distribution
of abilities, Pareto weights, and the pattern of binding IC constraints.
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that a sufficient condition for optimal separation of agents across β-levels of a working θ-type is

for the planner to attach a small enough welfare weight on them. From the planner’s point of

view, granting agents some autonomy helps extract resources that are valued for redistribution.

Our second main result characterizes savings distortions throughout the θ-distribution.

Theorem 2. There exist cutoffs 1 < θ̃+n < θ̃+n < +∞ and 0 ≤ λn < λn < +∞ such that:

1. If θn-types are bunched across β-levels, then τD (θn, β1) < . . . < τD (θn, βM) = τE (θn) ≤ 0. If,

in addition, θ̃+1 ≥ θ̃+1 , θ̃+n ≤ θ̃+n for n = 2, . . . , N − 1 and λ (θ1) ≥ λ1, then τD (θ1, β1) < . . . <

τD (θ1, βM) = τE (θ1) < 0.

2. If θn-types are separated across β-levels, then τD (θn, βM) = τE (θn, βM) ≤ 0. If, in addition,

λ (θn) < λn, then τE (θn, β1) > τD (θn, β1) ≥ 0.

3. If IC constraints of all (θ, β)-types with β < 1 are slack with respect to (θn, βM)-types, then

τD (θn, βM) = τE (θn, βM) = 0.

Proof. See Appendix A.3.9.

Part 1 of Theorem 2 shows that if agents are bunched, then they must save at least at the

first-best rate. Whether bunching occurs strictly above the first-best savings rate depends on the

pattern of binding IC constraints. The lowest-productivity agents may be bunched strictly above

the first-best savings rate to deter present-biased high-ability agents from shirking. Conversely,

part 2 of the theorem shows that among separated agents, the most patient type saves at least

at the first-best rate, strictly above the most present-biased type. The planner optimally allows

some types to undersave in order to use them as cash cows for redistribution. Finally, part 3 of the

theorem shows that the savings of agents without present bias are distorted upward only if they

are envied by a present-biased agent.

Our third main result characterizes labor distortions for the highest and lowest ability types.

Theorem 3. There exist cutoffs 1 < θ̃+n < +∞, 1 < θ̃−n < +∞, and 0 < λn < +∞ such that:

1. (i) θ1-types’ labor income is implicitly taxed: τL (θ1, β) ≥ 0 ∀β.

(ii) θN-types’ labor income is implicitly subsidized: τL (θN , β) ≤ 0 ∀β.

2. (i) If θ̃+1 ≥ θ̃+1 and λ (θ1) ≤ λ1, then θ1-types’ labor margin is undistorted: τL (θ1, β) = 0 ∀β.

(ii) If θ̃−N ≥ θ̃−N and λ (θN) ≤ λN , then θN-types’ labor margin is undistorted: τL (θN , β) = 0 ∀β.
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Proof. See Appendix A.3.10.

Part 1 of Theorem 3 establishes the familiar result that, generally, low-ability types experience

an implicit labor tax, while high-ability types experience an implicit labor subsidy (Tuomala, 1990).

Part 2 of the theorem shows that labor distortions at the extremes of the ability distribution are

used only for incentive reasons. Specifically, it is optimal to leave labor supply undistorted for

some θ-type whenever their allocation is not envied by any other θ′-type with θ′ 6= θ.

In summary, Theorems 1–3 highlight the interaction between paternalistic and redistributive

motives. On the one hand, relatively unproductive types with high welfare weights are bunched

at high savings rates. On the other hand, relatively productive types with low welfare weights are

separated, with some of them optimally saving at lower rates.

3.3 Discussion of Assumptions, Generalizability, and Methodology

Sufficiency of conditions on relative Pareto weights and ability levels. Our theory sheds light

on the trade-offs faced by a planner in an economy with heterogeneous present bias and earnings

ability. These trade-offs are shaped by the relative welfare weights and productivity levels of

agents in the economy. Whether the stated sufficient conditions for our theoretical characterization

apply is ultimately a quantitative question, which we assess in a calibrated version of the model.

Extension to a continuum of types. Our theoretical results rely only on the pattern of binding IC

constraints, for which we provide sufficient conditions in terms of relative Pareto weights and abil-

ity levels. Thus, our main result on optimal bunching versus separation of agents in the general

economy with N ×M types (Theorem 1) can be readily extended to a continuous-type economy.

Corollary 1. Let Θ× B =
[
θ, θ
]
×
[

β, β
]

define a continuous type space. Then:

1. For all ability types θ ∈ Θ, if their IC constraints are slack with respect to all agents θ′ 6= θ, then

θ-types are bunched across β-levels.

2. For all ability types θ ∈ Θ, there exists λθ ≥ 0 such that if λ (θ) ≤ λθ and θ > 0, then θ-types are

separated across β-levels.

Proof. See Appendix A.3.11.
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Following the same logic, our results on over- versus undersaving (Theorem 2) and implicit

labor income tax rates (Theorem 3) rely only on the pattern of binding IC constraints. In numerical

simulations, we find that bunching occurs for a larger share of ability types when the type space

is more dense (see Figure 12 of Appendix B.4).

Relation to the first-order approach and resulting optimal tax formulas. Our methodological

approach, which relies on global perturbation arguments, differs from many works in the optimal

taxation literature. One advantage of our approach is that we are able to characterize properties of

the optimal allocation without certain restrictions on the structure of the economy and properties

of optimal allocation. A disadvantage of our approach is that some of the common theoretical

results derived under these restrictions do not directly carry over to our setting.

For comparison, in a static environment with unidimensional heterogeneity, the Spence-Mirrlees

single-crossing property implies that local IC is sufficient for global IC. Guided by this, influential

works have derived optimal tax formulas based on a first-order approach (Diamond, 1998; Saez,

2001; Golosov et al., 2014, 2016). It is well understood that the validity of these optimal tax formu-

las rests on three assumptions: local IC constraints are sufficient for global IC, there is no bunching

of a mass of agents at the same allocation, and the optimal allocation is continuously differentiable

in agents’ types.12 Since, by assumption, this approach rules out the possibility of bunching, which

we highlighted to be relevant in our environment, we instead opt for a more general perturbation

approach. We verify that bunching is a salient feature in our calibrated economy, that global IC

constraints bind, and that, as a result, optimal tax functions can be quite irregular.

4 Decentralization Using Retirement Savings Policies

Consider the general economy with ability types 0 ≤ θ1 < . . . < θN < +∞ and present bias types

0 < β1 < . . . < βM = 1. We now study implications of our characterization of optimal allocations

from Section 3 for policy design. To this end, we equip a government with three instruments that

share several features with real-world retirement savings systems.

The first instrument consists of old-age transfers as a function of lifetime income, b (y), which

agents cannot borrow against. We think of this as resembling Social Security in the US.13

12See Diamond (1998, p. 86), Saez (2001, p. 218), Golosov et al. (2014, p. 13), and Golosov et al. (2016, p. 364).
13Indeed, the use of Social Security payment streams as collateral on loans is prohibited by federal law under Title II

17



The second instrument comprises a set of retirement savings accounts, j = 1, . . . , J, with sub-

sidy (or tax) rate τj (y) on agents’ savings aj up to an income-dependent contribution limit āj (y).

Among these accounts is one regular savings account with no subsidy or cap. Here we have in

mind real-world voluntary retirement plans such as 401(k) and IRA accounts, which feature tax-

incentivized employer matching and tax-preferred treatment up to some contribution limits.14

The third instrument is a nonlinear labor income tax schedule, T1(y, {aj}J
j=1), which depends on

agents’ gross earnings and savings in each of the voluntary retirement savings accounts. Indeed,

one can interpret the dependence of our income tax schedule on savings as a tax deduction, as

for contributions to 401(k) and IRA accounts in the US, though potentially a nonlinear one. This

interdependence between taxes and savings is key in our environment.

In the decentralization, agents choose present and future consumption, (c1, c2), savings in

each retirement savings account, {aj}J
j=1, and income, y. Given a set of retirement savings policies

(b (·) , {τj (·) , āj (·)}j, T1 (·)), a decentralized allocationA = {c1 (θ, β) , c2 (θ, β) , y (θ, β) , {aj (θ, β)}j}(θ,β)

constitutes a competitive equilibrium if it solves each individual’s problem:15

∀ (θ, β) :
(

c1 (θ, β) , c2 (θ, β) ,
{

aj (θ, β)
}J

j=1 , y (θ, β)
)
∈ arg max(

c1,c2,{aj}J
j=1

,y
) u (c1)− v

(y
θ

)
+ βδu (c2)

s.t. c1 +
J

∑
j=1

aj = y− T1

(
y,
{

aj
}J

j=1

)
c2 = b (y) + R

J

∑
j=1

τj (y) aj

0 ≤ aj ≤ āj (y) ∀j = 1, . . . , J.

The planner takes as given agents’ maximizing behavior and picks parameters on retirement sav-

ings and tax-transfer policies to maximize welfare given social preferences δ and {λ (θ)}θ . Propo-

sition 8 in Appendix A.5.1 proves the existence of a general transfer function that implements the

second best. The following result shows that an appropriately designed set of retirement savings

policies can implement the solution to the planner’s problem.

of the Social Security Act, Sec. 207 [42 USC. 407] (a); see also Feldstein and Liebman (2002).
14For example, for 401(k) plans, the modal employer match in 2013 was one-for-one for every dollar saved up to

6 percent of the individual’s annual earnings (Aon Hewitt, 2015). Similarly, tax-deductible contributions to an IRA
account are capped as a function of gross income (Internal Revenue Service, 2018).

15We implicitly assume that agents use accounts in order by saving up to the cap on account j before starting to save
in account j + 1, so that aj+1 > 0 implies aj = āj (y). This assumption is without loss of generalization as long as the
subsidy rate on a given account dominates that on the next account, which we confirm numerically later.
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Proposition 2. There exists a set of retirement savings policies (b (·) , {τj (·) , āj (·)}j, T1 (·)) with J = M

accounts that implements the solution to the planner’s problem as a competitive equilibrium.

Proof. See Appendix A.5.

The policy instruments in Proposition 2 must be chosen in a way that deters local and global

deviations from the optimal allocation by all types. The proof closely follows the argument in

Werning (2011), extended to a setting with heterogeneous preferences. That an appropriately cho-

sen set of retirement savings policies replicates the optimal allocation allows us to study properties

of specific policy tools rather than characteristics of an abstract allocation.

The following corollary describes how the decentralization mirrors the optimal allocation in

that individuals optimally self-select into a subset of the available retirement savings accounts.

Corollary 2. There exist cutoffs 1 < θ̃+1 < +∞ and 0 < λn < +∞ such that:

1. If θ̃+1 ≥ θ̃+1 and λ (θ1) > 0, then θ1-types receive only old-age benefits and use none of the optional

retirement savings accounts;

2. If λ (θn) ≤ λn for n > 1, then some θn-types use voluntary retirement savings accounts in addition

to receiving old-age benefits.

Proof. See Appendix A.5.3.

Under the conditions stated in Corollary 2, optimal retirement savings policies replicate two

key features of the optimal allocation. First, the lowest-ability types are bunched, with old-age

benefits generous enough to force savings off their Euler equation. Second, among agents with

low enough welfare weights, some will save in voluntary retirement savings accounts, as old-age

benefits phase out toward higher income levels. More patient agents successively exhaust the

contribution limits on voluntary savings accounts in descending order of their subsidy rate.

As is customary in the mechanism design literature, there are potentially many ways to de-

centralize a given allocation. However, any decentralization must spell out how different policy

instruments jointly replicate the optimal allocation. In our setting, the interaction between savings

and labor income taxes enters through the dependence of the income tax schedule on savings, as

well as through subsidy rates and caps of the savings accounts that depend on income. Our pol-

icy tools qualitatively resemble many real-world retirement savings systems in that they force
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savings at low incomes and offer a choice between subsidized savings accounts at high incomes.

Yet there are also important differences. It is not our goal to claim that any real-world policies

are optimal. Rather, we want to highlight qualitative features that many actual policies—maybe

surprisingly—share with optimal policies as seen through the lens of our model.

5 Active-Set Algorithm

We now present a numerical solution algorithm for general of nonlinear constrained optimization

problems, which we apply to solve a large-scale version of our problem.

5.1 Problem Description

Solving multidimensional screening problems has been recognized to be a difficult task both the-

oretically and numerically (Armstrong, 1996; Rochet and Choné, 1998). This is partly because the

techniques that unidimensional optimization problems commonly rely on fail in a multidimen-

sional context. As a result, the curse of dimensionality quickly renders solutions to these prob-

lems computationally infeasible. In the general economy with N = Nθ × Nβ types, the planner’s

problem involves N2 − N global IC constraints, 1 feasibility constraint, and 3N choice variables.

This gives rise to the following tension: while larger type spaces are desirable for computational

accuracy, the size of the problem may quickly exceed computational capacity.

This tension is less pronounced in environments where the familiar Spence-Mirrlees condition

delivers that local IC implies global IC. This is the case in static, unidimensional screening prob-

lems such as the optimal nonlinear taxation problem first studied by Mirrlees (1971). However, it

is well known that no such condition exists in other important settings, such as in static problems

with multiple goods (Mirrlees, 1976), in dynamic problems (Kapička, 2013), or in problems with

multidimensional heterogeneity (Rochet and Stole, 2003). Consequently, the first-order approach

(Rogerson, 1985), which relies on sufficiency of local IC for global IC, generally fails.

Consider now the economy from Section 3.2, with the associated dual problem in Lemma 2.

The complexity of this program depends on the applicability of certain constraint qualifications,

which ensure that the linearized feasible direction set around an optimum point is an adequate

representation of the actual feasible set (Nocedal and Wright, 2006, pp. 338-340). Lemma 2 estab-

lishes that a variant of Slater’s condition (Boyd and Vandenberghe, 2004, pp. 226-227) applies to
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our problem. Furthermore, since our problem is differentiable and convex by part 1 of Lemma 2

and features only inequality constraints, Slater’s condition is equivalent to every point in the fea-

sible set satisfying the Mangasarian-Fromovitz constraint qualification (MFCQ), as shown by Solodov

(2011). The MFCQ implies the existence of a compact set of Lagrange multipliers satisfying the

KKT conditions, but it is not sufficient for uniqueness of these multipliers. The weakest such con-

dition is the linear independence constraint qualification (LICQ), which requires that the set of active

constraint gradients is linearly independent at a given point (Wachsmuth, 2013).

In our problem, LICQ may fail when types are bunched and global IC constraints are necessary,

which commonly leads to more binding constraints than choice variables.16 This poses a challenge

for Lagrangian optimization routines because LICQ is sufficient for convergence and, in practice,

necessary for the stability of many such routines (Judd et al., 2018).17

5.2 Algorithm Details

We propose a general, computationally stable, and efficient active-set algorithm to solve nonlinear

constrained optimization problems.18 Our algorithm is general in that it relies on neither the

paternalistic nor the redistributive formulation of our problem and can be readily extended to

other nonlinear (convex) programs. It is computationally stable in that it is designed to find the

unique global optimum of our problem with probability one in theory and reliably reaches this

in practice. Finally, it is efficient in that it uses a fraction of the computational resources and

converges in much shorter time compared to a more naive approach.

The goal of our algorithm is to iteratively determine the smallest subset of global IC constraints

necessary to solve the program. To this end, our algorithm solves a large number of small-scale

problems instead of directly solving the original large-scale problem. We initiate the algorithm

16In our environment with N types, N2 − N + 1 constraints, and 3N choice variables, LICQ may fail with as few
as N = 4 types and in practice fails commonly for larger N. In contrast, in a unidimensional setting, the first-order
approach essentially rules out LICQ failure. This is because only 2 (N − 2) + 2 local IC constraints, instead of N2 − N
global IC constraints, need to be included in the optimization problem. As the number of constraints is always strictly
smaller than the number of choice variables in this case, 2 (N − 2) + 3 < 3N for all N ≥ 1, LICQ is guaranteed to hold.

17For example, fsolve or fmincon in MATLAB frequently do not converge to the global optimum for our problem.
18Our active-set algorithm derives its name from similar algorithms used to solve convex quadratic programs (No-

cedal and Wright, 2006). The active-set architecture is also related to cutting-plane methods, column generation methods,
constraint reduction methods, build-up methods, and build-down methods (Nocedal and Wright, 2006), as well as ellipsoidal
methods (Hartline, 2013), which have been used in other settings. While potential applications of this type of algorithm
span a wide range of nonlinear constrained optimization problems, active-set algorithms are currently not part of the
standard toolkit for economists. Economic applications of large-scale nonlinear optimization programs abound, for ex-
ample, in the context of monopoly pricing, market design, signaling games, screening problems with adverse selection
or moral hazard, and other areas of mechanism design.
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by selecting a small subset of all global IC constraints. In the beginning of each iteration step, we

solve a relaxed problem that includes the current subset of IC constraints, as well as the feasibility

constraint. We then process the solution to the relaxed problem (which generally will not be the

solution to the full problem) by checking all global IC constraints. Finally, we add a subset of all

constraints that were not included but violated, while dropping a subset of all constraints that

were included but slack. We repeat this iterative procedure until we find that the solution to the

relaxed problem satisfies all global IC constraints.

Formally, consider a general constrained optimization program of the following type:

min
x∈Rn

f (x) s.t. gi (x) ≥ 0 for i ∈ C. (7)

Here, f (·) is the objective function and gi (·) are the inequality constraints, where C = {1, . . . , I} is

the collection of constraint indices i.19 For any subsetW ⊆ C, letFW = { x ∈ Rn| gi (x) ≥ 0, ∀i ∈ W}

denote the feasible set with respect to W . We assume that the program satisfies strong duality

(as in part 4 of Lemma 2), which delivers existence of a compact set of Lagrange multipliers of

the dual problem. Fixing a constraint set W , let ξi denote the Lagrange multiplier on constraint

i ∈ W . Given a point x ∈ FW that is feasible with respect to W , let BW (x) = { i ∈ W| ξi > 0}

be the set of binding constraints and let SW (x) = W\B (x) = { i ∈ W| ξi = 0} be the set of slack

constraints. Conversely, let V (x) = { i| gi (x) < 0} ⊆ C\W be the set of violated constraints at

that point. For any set S, we denote its cardinality by |S|. Finally, let x∗W denote the solution to the

optimization problem subject to constraints inW .

The most general form of our proposed active-set algorithm can be stated as follows:

Algorithm. [Active-set]

Compute a feasible initial point x0 ∈ FC ;

Select an initial working setW0 ⊆ C with associated working feasible set FW0 ⊇ FC ;

for k = 0, 1, 2, . . .:

Given the initial point xk, solve for x∗Wk
= minx∈FWk

f (x);

Find the set of violated constraints, V
(

x∗Wk

)
;

if
∣∣∣V (x∗Wk

)∣∣∣ = 0:

stop with solution x∗C = x∗Wk
;

19The inclusion of only inequality constraints is without loss of generality, since an equality constraint g (x) = 0 can
simply be written as two inequality constraints: g (x) ≥ 0 and −g (x) ≥ 0.
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else if
∣∣∣V (x∗Wk

)∣∣∣ > 0:

Select a random subset of omitted constraints, OR
k ⊆ C\Wk;

Select a random subset of included constraints, IR
k ⊆ Wk;

Update the working set asWk+1 =
(
Wk ∪OR

k

)
\IR

k ;

Update the initial point as xk+1 = χ
(

xk, x∗Wk
,FWk+1

)
;

end (for)

A few comments are in order. First, for our problem a feasible point always exists because a

uniform consumption stream c1 (θ, β) = c2 (θ, β) = c and income y (θ, β) = y = (1 + 1/R) c for

all agents trivially satisfies feasibility and all IC constraints.

Second, an initial working set of smaller cardinality leads the relaxed problem at each iteration

to be solved more quickly but requires a larger number of iterations. The working set must always

contain the feasibility constraint, which we omit from the iterative constraint set selection.

Third, we efficiently solve the relaxed problem in each iterative step of the algorithm by using

the Interior Point Optimizer (IPOPT; see Wächter and Biegler, 2006) library for large-scale nonlin-

ear optimization problems, written in C++, via a Python interface.

Fourth, we update the working set by adding a subset of omitted constraints, OR
k ⊆ C\Wk,

and dropping a subset of included constraints, IR
k ⊆ Wk, through a stochastic selection criterion.

Randomly adding and dropping constraints avoids infinite loops between constraint sets.

Finally, we update the initial point, xk+1, at the end of each iteration according to a function

χ (·) that depends on the previous initial point, xk, the solution to the relaxed problem with respect

to the previous working set, x∗Wk
, and the feasible set with respect to the new working set, FWk+1 .

Updating the initial point is costly but can save valuable time in the next iteration of the algorithm.

5.3 Discussion of the Active-Set Algorithm

Global convergence. Once we find a solution that satisfies global IC and feasibility, convexity of

the problem guarantees that this is the unique global solution (see parts 1 and 2 of Lemma 2). A

fundamental property that our algorithm preserves is convergence to the global optimum.

Proposition 3. The active-set algorithm converges with probability one to the unique global solution of the
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planner’s problem:

plim
k→∞

x∗Wk
= x∗

Proof. See Appendix B.1.

Recall that bothWk and x∗Wk
are random variables since the active-set algorithm selects random

subsets of constraints at each iteration. Proposition 3 guarantees that the algorithm converges to

the unique global solution almost surely. Selecting an efficient schedule of probabilities {pi}i is an

art, but adding some stochasticity is key in order for the algorithm to avoid infinite loops.20

Further efficiency gains. Our active-set algorithm applies to general nonlinear constrained op-

timization problems. We customize this algorithm, guided by economic theory and mathematical

properties specific to our problem, to further enhance its performance in our application.

First, we increase computational speed through a change of variables from consumption-labor-

space to utility-disutility-space, reducing the number of nonlinear constraints from N2− N to 1.21

Second, we pick as an initial point, x0, the laissez-faire solution, for which, under the assump-

tion of power utility later adopted in our quantitative exercise, we have closed-form expressions.22

This starting point guarantees that all IC constraints and the feasibility constraint are satisfied and

leads to more efficient solutions than a uniform allocation across types.

Third, for the initial working set, we pick the set of “local” IC constraints:

{
IC
(
θi1 , βi2 , θj1 , β j2

)∣∣ i1 = j1 + 1, |i2 − j2| ≤ 1
}

,

which consists of all IC constraints from type i to type j such that θi1 is the ability level above θj1

and βi2 is adjacent to β j2 .23 Guided by the usual Mirrleesian intuition that downward-binding IC

constraints in ability space are relevant, this initial guess (although generally not sufficient) allows

for further efficiency gains relative to more naive initial guesses we tried.

20Global convergence would also be guaranteed by, for example, brute force iteration through all possible subsets of
IC constraints. Our algorithm retains this important property while—compared to the brute-force method—converging
much faster and sidestepping LICQ failure by including only a small subset of all constraints.

21See the proof of Lemma 2 for details regarding this change of variables. We describe the semi-matrix representation
of the transformed planner’s problem in Appendix B.2.

22We provide further details and derive closed-form expressions for the alternative initializations in Appendix B.3.
23Note that in the planner’s problem, there are 3Nθ Nβ − 2Nθ − 3Nβ + 2 < 3Nθ Nβ such constraints, guaranteeing that

the initial working set contains fewer constraints than choice variables, so LICQ always holds in the initial step.
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Fourth, to select a random subset of omitted constraints, OR
k ⊆ C\Wk, we form a constraint

index list in descending order of the absolute distance of the constraint violation:

(
i1, . . . , i∣∣∣V(x∗Wk

)∣∣∣, . . . , i|C\Wk |

)
, −gi1

(
x∗Wk

)
≥ . . . ≥ −gi∣∣∣∣V(x∗Wk

)∣∣∣∣
(

x∗Wk

)
> 0 ≥ . . . ≥ −gi|C\Wk |

(
x∗Wk

)
,

from which we include in OR
k the n-th element with probability pn, such that pn ≥ pn+1 for each

n = 1, . . . , |C\Wk|. Analogously, to select a random subset of included constraints, IR
k ⊆ Wk, we

form a constraint index list of, first, in ascending order the Lagrange multiplier and, second, in

descending order the absolute distance of the constraint slackness:

(
i1, . . . , i∣∣∣S(x∗Wk

)∣∣∣, . . . , i|Wk |

)
, ξi1 = . . . = ξ∣∣∣S(x∗Wk

)∣∣∣ = 0 < . . . ≤ ξi|Wk |
, gi1

(
x∗Wk

)
≥ . . . ≥ gi∣∣∣∣S(x∗Wk

)∣∣∣∣
(

x∗Wk

)
,

from which we include in IR
k the n-th element with probability qn, such that qn ≥ qn+1 for each

n = 1, . . . , |Wk|.

Fifth, when updating the initial point, our choice of function χ (·) either reuses the globally

feasible initial point, xk+1 = x0, or, alternatively, determines xk+1 through an alternating projec-

tion algorithm (Cheney and Goldstein, 1959), which finds the point closest to the previous relaxed

problem’s solution, x∗Wk
, that lies in the feasible set with respect to the updated working set, FWk+1 .

Finally, we make use of our theory by imposing single-crossing in the β-dimension conditional

on θ (part 2 of Lemma 1): whenever the IC constraint of some type (θ, β) is satisfied with respect

to type (θ, β′) for some β′ < β (or β′ > β), then all IC constraints of type (θ, β) with respect to type

(θ, β′′) are also satisfied for β′′ < β′ (or β′′ > β′).

Benchmarking. Appendix B.4 presents benchmarks from a range of practical applications of the

active-set algorithm, showcasing its computational efficiency.

Potential limitations. While the active-set algorithm has many advantages and performs well

in practical applications, we want to highlight three potential limitations.

First, although Proposition 3 guarantees convergence in theory, it may take a long time for

the algorithm to converge in practice. Proofs concerning the rate of convergence of numerical

algorithms are often challenging, and we have no such result for our algorithm. Luckily, we find

that in practice, the algorithm converges quickly even for large-scale problems of the type that we

study.
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Second, LICQ failure may still be an issue when there are actually more binding constraints

than choice variables at the optimum. In cases in which the algorithm builds up to a working set

with cardinality exceeding the number of choice variables, using an optimization routine robust

to mild LICQ failure, such as IPOPT, yields stable results in a reasonable amount of time.

Third, solving the global problem through an active-set algorithm may be redundant under

certain conditions.24 However, our active-set algorithm could still be useful. For certain problems

it may not be known whether or not the first-order approach applies. Even if the first-order ap-

proach applies, defining the appropriate notion of “local” may be complex (see, e.g., Armstrong,

1996). Finally, even if the first-order approach applies and the notion of “local” is well defined in

theory, the first-order approach may still fail in applications using numerical approximations.25

6 Calibration

We now operationalize our model by calibrating its key parameters to US microdata on lifetime

income and savings decisions. Our calibration proceeds in two steps. In the first step—the positive

model calibration—we compute the distribution of earnings ability and present bias that matches

the empirical lifetime incomes and conditional lifetime savings rates. In the second step—the

normative model calibration—we use the inverse-optimum approach to infer social preferences

that best match existing tax-transfer and retirement savings policies.26

6.1 Positive Model Calibration

The goal of the positive model calibration is to infer the joint distribution of ability and present

bias from empirical lifetime earnings and conditional lifetime savings rates.

24For example, this may be the case when local IC constraints are sufficient for global optimality (Carroll, 2012;
Battaglini and Lamba, 2018), when a multidimensional screening problem can be rewritten as a unidimensional one
(Rothschild and Scheuer, 2013), when the type space dimension is larger than the allocation space dimension (Pass,
2012), for problems with random participation (Rochet and Stole, 2002; Jacquet et al., 2013), or when screening optimally
occurs along each unobserved type component separately (Carroll, 2017).

25For example, Proposition 5 of Carroll (2012) shows that the first-order approach applies in a setting with transfers
and interdependent utility that is linear in types, if all agents have a convex type space. But Proposition 6 of the same
paper shows that the first-order approach does not apply under a strong form of nonconvexity of the type space, which
may be relevant when approximating a convex continuous type space with a (nonconvex) set of discrete points.

26Appendix C.1 describes the data we use for the calibration of our model, which we draw from the Health and
Retirement Study (HRS), the Panel Study of Income Dynamics (PSID), the US Life Tables (Arias, 2010), the Health
Inequality Project (Chetty et al., 2016), and other data sources. Appendix C.2 details our data cleaning and sample
selection procedures. Appendix C.3 documents how we construct key variables.
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6.1.1 Identification

We first present some moments of the distributions of savings rates in the HRS data. Let us define

the total lifetime savings rate as the ratio of wealth at retirement to lifetime income. We further

split the total lifetime savings rate into private savings (net value of real estate, businesses, IRA

accounts, stocks, etc.) and public savings (predicted Social Security wealth). Through the lens of

our model, these moments will be informative about an individual’s time preference conditional

on other factors that may affect savings decisions. We make two observations on the distribution

of retirement savings rates within and across income groups.

Our first observation is that total savings rates are swoosh-shaped across income levels, with

private savings rates increasing but public savings rates decreasing in income. Figure 2(a) plots the

three lifetime savings rates as a function of annualized lifetime income. The total lifetime savings

rate declines for the first USD 50,000 in annual income, from around 53 percent to 23 percent,

before stabilizing and slowly increasing again up to 31 percent. This is largely accounted for by

declining public savings rates over this income range, due to the decreasing replacement ratio of

Social Security benefits. In contrast, mean private savings rates increase monotonically from 13

percent to 27 percent throughout this income range.

Our second observation is that there is substantial dispersion of savings rates within income

levels. Panel (b) of Figure 2 shows percentiles of total savings rates, while panel (c) shows per-

centiles of private savings rates throughout the income distribution. We find substantial hetero-

geneity in both savings rates conditional on income. Total savings rates vary by more than 30

percentage points between the 10th and 90th percentiles of the savings distribution. While the

25th percentile of private savings rates is close to zero at most income levels, the 90th percentile

ranges from 30 to 56 percent.

To isolate the role of present bias heterogeneity in determining lifetime savings rates, we bring

to the data a much richer version of our framework, allowing for many factors other than present

bias heterogeneity to affect savings decisions: survival risk, longevity heterogeneity, bequest mo-

tives, and medical expenditure shocks. It is important to note that, naturally, we adopt only a

subset of all possible savings motives in our framework. For instance, we abstract from life-cycle

uninsurable income shocks due to the technical difficulty of handling dynamics in our already

complex model. To the extent that we ignore other important factors driving empirical savings
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Figure 2. Moments of the savings rate distributions conditional on lifetime income

(a) Mean private savings rates
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(b) Total savings rate percentiles

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

T
o

ta
l 
s
a

v
in

g
s
 r

a
te

0 50 100 150 200 250 300 350
Annualized lifetime income (thousand USD)

Savings rate percentile P10 P25 P50 P75 P90

(c) Private savings rate percentiles

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

P
ri
v
a

te
 s

a
v
in

g
s
 r

a
te

0 50 100 150 200 250 300 350
Annualized lifetime income (thousand USD)

Savings rate percentile P10 P25 P50 P75 P90

Notes: Annualized lifetime income is the net present discounted value of net income during working life, divided by the number of
years worked. Private savings are defined as private wealth at retirement age. Public savings are defined as predicted Social Security
wealth at retirement age. Total savings is the sum of private and public savings. Savings rates are defined as the share of savings out
of total net income, both in net present discounted value terms. Source: Authors’ calculations based on HRS.

behavior, our procedure will misinterpret these omitted factors as preferences. In this sense, pref-

erences in our model pick up the residual of savings rates—conditional on other factors that we

account for—in the data.

6.1.2 Implementation

We now introduce the richer model that we use to infer heterogeneity in θ and β from the data.27

Model setup. At the beginning of their retirement life, agents are characterized by their net in-

come after the realization of a medical expenditure shock m2 (h), their warm-glow bequest param-

eter φ1, and their retirement life length TR. Old agents then choose how much to consume, c2, and

how much to bequeath, blate. Conditional on surviving and the old-age medical shock realization,

an old agent solves the following problem:

U2 (y2; φ1, TR) = max
c2,blate

{
u (c2) + Φ

(
blate; φ1

)}
s.t. c2 + b̃ = max {y2, c2}

blate = b̃− Tb
(
b̃
)

,

where y2 is retirement wealth net of taxes and old-age medical expenditures, Φ
(
blate; φ1

)
is warm-

glow utility from bequeathing blate, b̃ is the gross bequest amount, R is the annual gross interest

27We here present the agent’s problem in a two-period formulation. Appendix C.4 details the complete life-cycle
model with annual computations underlying our calibration.
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rate, c2 > 0 is a minimum consumption floor, and Tb
(
b̃
)

is the estate tax schedule.

At the beginning of their working life, agents are characterized by their earnings ability θ and

present bias level β, a health type h, warm-glow bequest motive φ1, their working life length TW ,

their retirement life length TR, and their probability of dying before retirement, P [death]. Young

agents then choose how much to consume, c1, how much to save in 401(k), IRA, and regular tax-

able accounts,
(
s401k, sIRA, staxable), and how much labor to supply, `, given medical expenditures

m1 (h). Given the continuation problem when old, a young agent solves the following problem:

U1 (θ, ψ; h, φ1, TW , TR, P [death]) = max
c1,s401k ,sIRA ,staxable ,y1


u (c1)− v (y1/θ)

+ψ

 (1− P [death])×Em2 U2 (y2 (m2) ; φ1, TR)

+P [death]×Φ
(

bearly; φ1

)



s.t. c1 + s401k + sIRA + staxable = max
{

y1 − Ty

(
max

{
y1 − s401k − sIRA −m1, 0

})
−m1, c1

}
ỹpre−tax

2 = 0.85× SS (y1) + R×match
(

s401k
)
+ RsIRA + (R− 1) staxable

ỹpost−tax
2 = 0.15× SS (y1) + staxable

y2 (m2) = ỹpre−tax
2 − Ty

(
max

{
ỹpre−tax

2 −m2, 0
})
−m2 + ỹpost−tax

2

˜̃b = R×match
(

s401k
)
+ RsIRA

b̃ = ˜̃b− Ty

(
˜̃b
)
+ Rstaxable

bearly = b̃− Tb
(
b̃
)

s401k ≤ s401k (y1)

sIRA ≤ sIRA,

where ψ = βδ is the compound discount factor between periods, y1 is income during working

life, bearly denotes accidental bequests before retirement, Ty (·) is the income tax schedule, c1 > 0

is a minimum consumption floor, ỹpre−tax
2 and ỹpost−tax

2 are pre- and post-tax retirement wealth,

and y2 (·) is retirement wealth net of taxes and out-of-pocket old-age medical expenditures, m2 ∼

H (·; h). Furthermore, SS (·) denotes Social Security old-age benefits, match (·) is the inclusive-of-

match wealth in 401(k) accounts, ˜̃b denotes accidental bequests gross of income and estate taxes,

b̃ is the accidental bequest gross of estate taxes, and s401k and sIRA (·) are the limits for tax-exempt

contributions to 401(k) and IRA accounts, respectively.

29



Preferences. We parameterize household preferences by constant relative risk aversion (CRRA)

utility of consumption and power disutility of labor effort:

u (c) =


c1−1/σ−1

1−1/σ for σ 6= 1

ln (c) for σ = 1
, v (`) = κ

`1+1/γ

1 + 1/γ
,

where ` = y/θ is labor supply. We fix values for the intertemporal elasticity of substitution,

σ = 1.5, labor disutility intercept, κ = 1, and Frisch elasticity of labor supply, γ = 1.

Following De Nardi (2004), warm-glow utility from a net bequest of b function is Φ (b; φ1) =

φ1 (1 + b/φ2)
1−φ3 , where (φ1, φ2, φ3) are parameters guiding, respectively, the scale, nonhomoth-

eticity, and income elasticity of the bequest motive. We adopt φ2 = 11.6 and φ3 = 1.5 from De

Nardi (2004) and calibrate φ1 individual by individual to match the empirical bequest expectation

at retirement in the data and in the model.

As Dynan et al. (2004), we choose a consumption floor of c = 10, 000 US dollars to capture

home production and informal safety nets such as insurance within the family.

Survival risk and longevity. We estimate P [death] as the probability of death before retirement

in the HRS, combining mean survival hazards from the US Life Tables with the survival proba-

bility gradient across income deciles from the Health Inequality Project. We account for longevity

differences by summing years of working life and retirement in the combined data.

Income tax and transfer function. We adopt a reduced-form tax function commonly used in the

literature (Feldstein, 1969; Bénabou, 2002): T (y) = y − λy1−τ, where T (y) is net transfer as a

function of income, τ is a tax-progressivity parameter, and λ is a tax-level parameter. Following

Heathcote et al. (2017, henceforth HSV), we estimate τ and λ by regressing log net income on log

gross income in the RAND HRS Tax Calculations data, yielding τ = 0.197 and λ = 5.114.28

Estate tax function. We approximate the estate tax as Tb (b) = τb ×max (0, b− e), where τb =

0.1 is the marginal tax on bequests and the estate tax exemption level is e = 2, 000, 000 dollars,

corresponding to roughly 40 years of average earnings (De Nardi, 2004).

28While Heathcote et al. (2017) estimate this tax function on the PSID data, we here use the HRS tax data to be consis-
tent with the HRS sample of households at the center of our analysis. Using their data, they report a tax progressivity
parameter of τHSV = 0.181, slightly below our point estimate.
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Social Security. We approximate the Social Security benefit schedule as a function of average

annual working life income, y1 ≥ 0, using the real-world 2014 policy parameters:

SS (y1) =



0.9y1 for y1 < 9, 912

0.9× 9, 912 + 0.32 (y1 − 9, 912) for 9, 912 ≤ y1 < 59, 760

0.9× 9, 912 + 0.32 (59, 760− 9, 912) + 0.15 (y1 − 59, 760) for 59, 760 ≤ y1 < 118, 500

0.9× 9, 912 + 0.32 (59, 760− 9, 912) + 0.15 (118, 500− 59, 760) for y1 ≥ 118, 500

Savings accounts. We model three optional savings accounts. The first account is a 401(k) ac-

count with pre-tax contributions and an employer matching rate of 50 percent up to a cap of

s401k (y1) = 0.06y1 (Financial Engines, 2015). The second account is an IRA account with tax-

deferred contributions up to sIRA = 5, 500 dollars but no matching (Internal Revenue Service,

2018). The third account is a regular savings account offering a real annual interest rate of 3.44

percent (Gourinchas and Parker, 2002). In the second period, withdrawals from all three accounts

are taxed at the statutory income tax rate that applies to the individual.

Medical expenditures. We denote by h ∈ {h1, . . . , hNH} the agent’s health risk type, which is as-

sociated with medical expenditures during working life, m1 (h), and during retirement, mw (h) ∼

H (·; h). We model H (·; h) as a lognormal distribution with mean µh
m and standard deviation

σh
m estimated separately for groups by education and income decile. We approximate H (·; h) on

a two-point grid, using the 10th and 90th percentiles of the group-specific medical expenditure

distribution. This simple but flexible specification captures some key features of the empirical

income-health gradient and the wealth-health gradient (De Nardi et al., 2018).

Calibration targets and parameters. Appendix C.4.1 describes details of how we calibrate the

distribution over (θ, ψ, φ1)—earnings ability, compound discount factors, and strength of bequest

motive—to minimize the distance between individual lifetime income, savings rates, and expected

bequest in the model and in the data. Through this, we recover a parameter vector consisting of

the mean and standard deviation of a lognormal approximation to individual earnings ability

(µθ , σθ), and intercepts and slopes of the shape parameters for a beta distribution for compound

discount factors,
(
aψ,0, aψ,1, bψ,0, bψ,1

)
, estimated as affine functions of ability quantiles.
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6.1.3 Results

Table 1 summarizes our positive calibration results.29 The lognormal distribution of earnings abil-

ities has mean 9.659 and standard deviation 0.420. The mean compound (annualized) discount

factor is 0.103 (0.941). The distribution of compound (annualized) discount factors is heavily left-

skewed, ranging from 0.009 (0.885) to 0.214 (0.965) between the 10th and 90th percentiles. Com-

pound (annualized) discount factors and earnings ability are positively correlated, with a correla-

tion coefficient of 0.163 (0.153). Thus, our results reflect significant variation in time preferences,

both within and across ability levels.

Table 1. Positive calibration results

PANEL A. CALIBRATED PARAMETERS Values
Mean of lognormal earnings abilities, µθ 9.659
St.d. of lognormal earnings abilities, σθ 0.420
Intercept of first beta shape parameter of discount factors, aψ,0 13.997
Slope of first beta shape parameter of discount factors, aψ,1 8.840
Intercept of second beta shape parameter of discount factors, bψ,0 2.083
Slope of second beta shape parameter of discount factors, bψ,1 0.384

PANEL B. IMPLIED MOMENTS Mean P10 P90
Earnings ability, θ 16,379 10,706 22,924
Compound discount factor, ψ 0.103 0.009 0.214
Annualized discount factor, ψannual 0.941 0.885 0.965
Corr. between ability and compound discount factor, Corr (θ, ψ) 0.163
Corr. between ability and annualized discount factor, Corr (θ, ψannual) 0.153

Note: See text for details. Source: Authors’ calculations based on model.

Table 2 shows that the positive model matches salient features of empirical income and savings

rates. In the model, as in the data, savings rates are convex across savings percentiles for two

reasons. First, individuals may choose to rely on the minimum consumption floor rather than

saving privately (Buchanan, 1975). Second, warm-glow bequests are a luxury good, with a small

share of households leaving large bequests (De Nardi, 2004).

Table 3 shows savings rates across income and wealth groups. In the model, as in the data,

there are large differences in savings rates conditional on income (Venti and Wise, 1998). Our

model generates this through present bias dispersion within earnings ability. The calibrated model

matches the positive gradient of savings rates across lifetime earnings levels (Dynan et al., 2004).

29Figure 17 in Appendix C.4 shows the implied marginal and average tax rates under the HSV tax function, as well
as the fit of the estimated tax function to pre- versus post-tax income in the HRS data.
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Table 2. Income and savings in data vs. calibrated model

Annual income (USD) Savings rate
Data Model Data Model

Mean 97,685 93,461 0.118 0.111
10th pctl 47,194 43,266 0.000 0.003
25th pctl 63,266 63,089 0.028 0.020
50th pctl 85,093 72,908 0.101 0.050
75th pctl 120,197 116,153 0.181 0.139
90th pctl 162,127 163,207 0.262 0.243

Notes: Annual income and savings rates are computed at the level of the household. See text for details. Source: Authors’ calculations
based on model, HRS, and PSID.

Table 3. Savings rates in data vs. calibrated model, by lifetime income and retirement wealth quartiles

Lifetime income Q1 (lowest) Q2 Q3 Q4 (highest)
Data Model Data Model Data Model Data Model

Wealth Q1 (lowest) 0.000 0.025 0.000 0.023 0.035 0.046 0.043 0.032
Wealth Q2 0.011 0.031 0.045 0.081 0.102 0.114 0.095 0.066
Wealth Q3 0.074 0.102 0.143 0.185 0.165 0.123 0.149 0.122
Wealth Q4 (highest) 0.295 0.222 0.260 0.226 0.265 0.184 0.217 0.203

Notes: Lifetime income, retirement wealth, and mean savings rates are computed at the level of the household. See text for details.
Source: Authors’ calculations based on model, HRS, and PSID.

6.2 Normative Model Calibration

Taking as given the positive calibration results, we now calibrate social preferences.

6.2.1 Identification

In theory, we could use any social preferences for the optimal policy analysis. Following a growing

strand of the literature, we use the inverse optimum approach (Bourguignon and Spadaro, 2012;

Lockwood and Weinzierl, 2016; Heathcote and Tsujiyama, 2017) to select Pareto weights that yield

the optimal allocation closest to that under current real-world policies.30 In our baseline normative

calibration, we fix δ = 1/R = 0.214, where R is the compounded gross interest rate between

periods that corresponds to an annual net interest rate of 3.44 percent (Gourinchas and Parker,

2002).31

30Stantcheva (2016) discusses some of the advantages and drawbacks of the inverse optimum approach.
31Fixing δ = 1/R is without much loss of generality. In an extended version of the normative calibration, we add the

planner’s discount factor, δ, to the optimization procedure and find an optimal compound value of δ = 0.261, which
constitutes a small difference in annualized discount factors.
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6.2.2 Implementation

We allow for nonmonotonic welfare weights, λ (θ; λw, λ1, λ2) = λw× beta (ρ (θ) , λ1, λ2)+ (1− λw),

where beta (·, λ1, λ2) is a beta distribution with shape parameters λ1 and λ2, ρ (θ) ∈ [0, 1] is the

rank of earnings ability, with ρ = 0 (ρ = 1) representing the lowest (highest) ability, and λw is

the relative weight on the beta distribution versus uniform weights. This specification is flexible

enough to encompass utilitarian, monotonically upward- or downward-sloping Pareto weights,

and various hump shapes.32 Appendix C.4.2 details how we pick (λ1, λ2, λw) to minimize the

distance between the optimal allocation and that under real-world policies. We use a grid over

1000 θ-types and 6 β-types for this calibration and all results. We impose exogenous government

spending of USD 40,058 per capita to match the difference between aggregate gross earnings and

consumption from our positive calibration.

6.2.3 Results

Table 4 summarizes our normative calibration results. We find that λ1 = 1.743, λ2 = 9.999, and

λw = 0.358 brings the normative model allocation closest to that under current policies.33 We

find that the implied distribution of Pareto weights, shown in Figure 3, is indeed hump-shaped,

putting relatively lower weight on agents at the top and the bottom of the ability distribution rela-

tive to the center. A compound discount factor of δ = 0.214 between working life and retirement,

together with the values of ψ from the positive calibration in Section 6.1, implies an annualized

mean level of present bias of E [βannual ] = 0.973, corresponding to a mean compound present bias

level of E [β] = 0.482 between two periods. We find substantial dispersion in our present bias

estimates, ranging from annualized values of 0.915 to 0.998 between the 10th and 90th percentiles

of the distribution.
32Figure 18 in Appendix C.4.2 demonstrates the flexibility of this welfare weight specification. Heathcote and Tsu-

jiyama (2017) parameterize Pareto weights across ability levels as λ(θ) = exp(−αθ)/(∑θ′ ,β′ π (θ′, β′) exp(−αθ′)), where
α ∈ R indexes the government’s redistributive motive. This specification encompasses decreasing (α > 0), utilitarian
(α = 0), and increasing (α < 0) welfare weights but may be too restrictive for certain applications, as it constrains
Pareto weights to be monotonic in θ. For example, recent findings by Jacobs et al. (2017) suggest that Pareto weights
under the inverse optimum approach are hump-shaped in the Netherlands.

33Our estimated Pareto weights are more progressive relative to those in Heathcote and Tsujiyama (2017) because
our paternalistic model rationalizes high levels of forced savings through Social Security at low through relatively high
Pareto weights on low-ability types.
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Table 4. Parameter values and implied moments

PANEL A. EXTERNALLY SET PARAMETERS Values

Compound social discount factor, δ 0.214

PANEL B. CALIBRATED PARAMETERS Values

First beta shape param. of Pareto weights, λ1 1.751

Second beta shape param. of Pareto weights, λ2 5.050

Weight on beta dist. of Pareto weights, λw 0.499

PANEL C. IMPLIED MOMENTS Mean P10 P90

Annualized social discount factor, δannual 0.967

Compound present bias, β 0.482 0.042 0.981

Annualized present bias, βannual 0.973 0.915 0.998

Figure 3. Calibrated Pareto weights
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6.3 Interpretation of Results and Context

In the preceding analysis, we found substantial dispersion in savings rates conditional on a range

of other factors, which included survival risk, longevity heterogeneity, bequest motives, and med-

ical expenditure shocks. Our enriched model rationalized this dispersion through heterogeneity

in the compound discount factor ψ = βδ. The interpretation of this heterogenity is a pivotal issue.

One interpretation is that all heterogeneity in time preferences is in line with the planner’s evalua-

tion of time preferences, maybe because observed differences in behavior are based on individuals’

rational, altruistic, and farsighted optimization, and the government respects their decisions. A

diametrically opposed interpretation is that the government respects a unique time preference,

and agents to varying degrees deviate from that preference.34

Given the large and growing body of evidence for behavioral biases shaping household fi-

nances, the behavioral interpretation of our evidence seems like a natural starting point.35 The

question then arises: how much of the observed heterogeneity in time preferences reflects present

34At this point, it is helpful to recall the three justifications for paternalism that motivated our analysis: behavioral
biases such as hyperbolic discounting (Laibson, 1997), the Samaritan’s dilemma (Sleet and Yeltekin, 2006), and positive
social welfare weight on future selves (Caplin and Leahy, 2004).

35See Beshears et al. (2018) for a comprehensive recent survey.
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bias heterogeneity, as opposed to differences in geometric discount factors? With observational

data on retirement wealth and lifetime income such as that in the HRS, it is all but impossible for

us to provide a definitive answer to this question. Thus, we take a four-pronged approach.

First, interpreting ψ-heterogeneity as present bias heterogeneity is internally consistent. In the

HRS microdata, households with below-median savings rates are 73 percent more likely to have

thought “hardly at all” about retirement, and 25 percent less likely to have thought “a lot” about

retirement (Engen et al., 2005). This suggests that the nature of the decision process differs across

savings groups, consistent with experimental evidence by Burks et al. (2009).

Second, this interpretation is also externally consistent with a range of laboratory and field

estimates, which we summarize in Appendix C.5. Bernheim et al. (2001) use income and con-

sumption data to evaluate competing explanations for savings differences, including heterogene-

ity in geometric discount factors, risk tolerances, uncertainty, and age-dependent tastes for work

and leisure. They find that consumption growth rates near retirement do not vary systematically

with wealth at retirement, leading them to reject a model with differences in exponential discount

factors in favor of a model with present bias heterogeneity.

Third, we extend the inverse optimum approach to infer the implied degree of paternalism

from current policies. To this end, we add as an additional parameter to the normative calibra-

tion the degree of paternalism, p ∈ [0, 1], which guides the planner’s evaluation of intertemporal

trade-offs of β-types by applying the effective discount factor δ
(
δ̃, β; p

)
= pδ̃ + (1− p) βδ̃, where

δ̃ = 1/R is the benchmark discount factor. If p = 1, as studied so far, then the planner is perfectly

paternalistic and ignores agents’ behavioral discount factor. If p = 0, then the planner fully re-

spects every agent’s behavioral discount factor. We find that the degree of paternalism that most

closely approximates current policies is p = 0.633.36 Therefore, to rationalize current real-world

policies, the planner must be mostly paternalistic, which justifies our benchmark assumption.

Fourth, in Section 7.3.1, we explore optimal policies under alternative interpretations of the

estimated discount factor heterogeneity. We find that welfare calculations are similar for degrees

of paternalism between our benchmark and the calibrated value. In contrast, optimal savings rates

are starkly different from reality under no paternalism. Therefore, we conclude that justifying

real-world retirement savings policies requires a substantial degree of paternalism.

36Our estimates of the other parameters remain qualitatively unchanged. In a full normative calibration, where we
estimate the planner’s discount factor in addition to the degree of paternalism, we find δ = 0.208 and p = 0.666.
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7 Optimal Policies and Reforms to the Current System

In this section, we use the calibrated model to evaluate optimal paternalistic savings policies and

compare them to the current US retirement savings system.

7.1 Properties of the Optimal Allocation

Dispersion in Savings Rates. How much savings choice is optimal throughout the income dis-

tribution? Figure 4 plots optimal retirement savings rates from our calibrated normative model as

a function of income and present bias levels. The lowest income levels optimally save at a uniform

rate of 46.2 percent—more than twice the first-best savings rate of 17.7 percent. Savings rates re-

main essentially uniform until around USD 95,000 in income, when they start fanning out across

present bias levels. At an income of USD 320,000, agents with β = 1 save 17.7 percent, while

agents with β = 0.04 save as little as 2.7 percent. Compared to the empirical total savings rates in

Figure 2, optimal savings rates start out at a similarly high level but decline more slowly between

USD 50,000 and USD 95,000 in income. However, there is more dispersion in empirical savings

rates than judged optimal by our framework, particularly among households earning between

USD 50,000 and USD 95,000.

Figure 4. Savings rates across incomes and present bias levels
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Note: Savings rate is defined as s = (c2/R) / (c1 + c2/R). Source: Authors’ calculations based on model.

Consumption Inequality during Working Life and Retirement. Figure 5(a) shows that, among

the young, optimal consumption inequality conditional on income is relatively small at all in-

comes, suggesting that it is costly to separate agents across present bias levels during working
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life. Therefore, most consumption inequality among the young is between income groups. Panel

(b) shows that, among the old, consumption inequality conditional on income is substantial above

USD 95,000 in working life income.37 Optimal old-age consumption differs by a factor of 7 be-

tween agents with β = 0.04 and those with β = 1 at an income of USD 320,000, suggesting that

most of the screening of between present bias levels occurs on the intertemporal margin. Conse-

quently, higher old-age consumption inequality within lifetime income groups is optimal.

Figure 5. Consumption streams across incomes and present bias levels
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(b) Consumption during retirement
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Net Transfers. Figure 6 shows the optimal net transfer schedule.38 Below a threshold of USD

100,000 in income, net transfers essentially do not vary across present bias levels. Above that

threshold, agents with β = 0.04 pay up to USD 5,700 higher net taxes than agents with β = 1. That

net taxes decrease with β is the result of two opposing forces. On the one hand, lower β-types have

lower (higher) absolute (marginal) welfare than agents without present bias, so the planner would

like to provide them with more resources.39 On the other hand, the planner can extract resources

from present-biased high-ability types by offering them the choice of paying higher net taxes in

exchange for a lower savings rate. Quantitatively, we find that the second motive dominates.

37It is worth noting the salient nonmonotonicity in period-2 consumption as a function of income and also—it turns
out—as a function of ability due to the hump-shaped Pareto weight distribution (Myerson, 1981).

38Recall that these are means transfers over the lifetime. That all agents pay net taxes is due to the need to finance
government expenditures in our normative model. While in reality temporary low-income households receive positive
net transfers, they may reach higher income levels and become net tax payers later in life.

39This follows directly from IC of agents with β = 1, whose utility evaluation agrees with that of the planner.
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Figure 6. Net transfers across incomes and present bias levels
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7.2 Optimal Policy Tools in the Decentralization

We now turn to the analysis of the decentralization we proposed in Section 4, which consists of

Social Security old-age benefits, a set of retirement savings accounts with subsidies and caps, and

a working life income tax schedule: (b (·) , {τj (·) , āj (·)}j, T1 (·)).

Social Security Old-Age Benefits. Figure 7 presents the optimal Social Security old-age benefits

schedule as a function of lifetime income. Panel (a) of the figure shows optimal old-age benefit

levels, which inherit a hump shape from the calibrated social welfare weights. Optimal benefit

levels increase from USD 22,000 in benefits at USD 33,000 in household income to USD 88,000 in

benefits at USD 68,000 in income. Benefit levels then decrease again until USD 150,000 in income

before stabilizing at around USD 27,000. Panel (b) of Figure 7 shows the optimal replacement rates,

defined as benefits relative to preretirement earnings. As a result of benefits increasing faster than

income, replacement rates increase from 68 percent to 145 percent leading up to USD 60,000 in

household income. Thereafter, due to declining benefit levels, the replacement rate decreases at a

decreasing rate, reaching 20 percent at around USD 150,000 in income.

Compared to the current US Social Security schedule, the optimal schedule shows some simi-

larities but also some important differences. The current schedule has more intricacies but—similar

to the optimal schedule schedule—offers decreasing replacement rates for annualized average in-

dexed monthly earnings (AIME) above USD 68,000 and constant benefits above some income

threshold. One difference is that optimal replacement rates are increasing in income up to around
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USD 60,000, whereas current replacement rates are a decreasing step function of income. A second

difference is that optimal benefit levels decrease between USD 68,000 and USD 150,000, whereas

they are weakly increasing in income in the current system.40

Figure 7. Social Security schedule
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(b) Replacement rates
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Note: See Section 4 for details of the decentralization component shown in the figure. Source: Authors’ calculations based on model.

Retirement Savings Accounts. Our decentralization features as many savings accounts as there

are present bias types. For our benchmark calibration with six β-types, there are five retirement

savings accounts with subsidies and caps, in addition to a regular bank account at free disposal.

We omit the regular bank account from our analysis and label the subsidized savings vehicles

“Account 1” to “Account 5.” These accounts mirror real-world retirement savings vehicles such

as 401(k) and IRA accounts with employer matching and tax-preferred treatment up to some cap.

Figure 8(a) presents optimal contribution limits on the five accounts as a function of income.

Individuals earning less than USD 95,000 do not have access to any subsidized savings accounts,

hence they rely only on Social Security benefits when old.41 Around that income threshold, the

decentralization starts offering five retirement savings accounts with caps that are approximately

affine in income. Account 1 has a limit of approximately 13.2 percent on income above USD 95,000.

The contribution limits on Accounts 2–5, as a share of income above USD 95,000, are 12.2, 6.6, 2.8,

and 0.6 percent, respectively. Panel (b) shows that all accounts offer a negative savings tax—that

40While statutory replacement rates are bounded above by 90 percent of AIME, which is calculated over a subset
of the highest incomes during one’s working life, Social Security replacement rates actually make up 173 percent of
annualized present value career earnings for retired beneficiaries in the lowest individual lifetime earnings quintile
(Biggs and Springstead, 2008). As in Hosseini and Shourideh (2018), for computational reasons we do not distinguish
between AIME and lifetime earnings in our life-cycle model.

41Equivalently, they may have access to such accounts but receive no subsidy or tax on their savings in any of them.
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is, a savings subsidy—that tends toward zero at higher incomes. Account 1, which has the most

generous contribution limit, offers a 29 percent subsidy rate for individuals with USD 95,000 in

income, which declines to zero at around USD 150,000 in income. The other four accounts have

more generous subsidy rates, which remain positive at all income levels.

Figure 8. Retirement savings accounts across incomes and present bias levels
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(b) Savings tax rates

0 50000 100000 150000 200000 250000 300000 350000
gross income (y)

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Sa
vi
ng

s T
ax

 o
n 
Re

tir
em

en
t A

cc
ou

nt

Account 1
Account 2
Account 3
Account 4
Account 5

Notes: See Section 4 for details of the decentralization component shown in the figure. Optimal savings tax rates (if positive, or subsidy
rates if negative) are shown over the range where the respective accounts have nonzero contribution limits, where contribution limits
below USD 100 are classified as zero. Source: Authors’ calculations based on model.

Income Tax Schedule. The optimal tax schedule as a function of income and private savings,

ranging from zero to the 99th percentile, is presented in Figure 9. Panel (a) shows that the optimal

tax bill rises from around USD 27,000 at an income of USD 40,000 to a tax bill of USD 97,000 at

an income of USD 320,000. Consequently, as shown in Panel (b), the average rate decreases from

around 69.1 percent at the lowest income to 30.0 percent at the highest income. Although taxes are

relatively high at the bottom, the government offers those households generous Social Security

benefits at old age. A notable feature of the decentralized income tax schedule is that it does not

vary significantly with individuals’ private savings rates conditional on income. Consequently,

most of the interaction between savings and taxes plays out through the nonlinear retirement

savings accounts described above.
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Figure 9. Income tax schedule across incomes and private savings rates
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(b) Average tax rates
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Note: See Section 4 for details of the decentralization component shown in the figure. Source: Authors’ calculations based on model.

7.3 Comparative Statics

7.3.1 The Role of Paternalism

How do optimal savings rates depend on the strength of the paternalistic motive? To answer this

question, we index the planner’s degree of paternalism as p ∈ [0, 1] and compute optimal policies

under the social discount factor δ
(
δ̃, β; p

)
= pδ̃ + (1− p) βδ̃, where δ̃ = 1/R is the benchmark

discount factor. While we assumed p = 1 in our benchmark calibration, we find that p = 0.633

provides the best fit in an extended normative calibration (see Section 6.3 for details).

Under this estimated degree of paternalism, Figure 10(a) shows that the resulting optimal sav-

ings rates are broadly in line with our benchmark results. One important difference is that, under

partial paternalism, savings rates are significantly lower for agents earning less than USD 100,000.

In contrast, panel (b) shows that optimal savings rates without paternalism (p = 0) are close to

constant across incomes. Some agents are allowed to save at vanishingly small savings rates,

which implies that there is little scope for Social Security to provide a floor on old-age consump-

tion. This suggests that a high degree of paternalism is needed to rationalize real-world retirement

savings policies.
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Figure 10. Optimal savings rates under various degrees of paternalism

(a) Estimated paternalism
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(b) No paternalism
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Note: Savings rate is defined as s = (c2/R) / (c1 + c2/R). Estimated degree of paternalism is p = 0.633, where the planner’s discount
factor is δ

(
δ̃, β; p

)
= pδ̃ + (1− p) βδ̃, and δ̃ = 1/R is the benchmark discount factor. Source: Authors’ calculations based on model.

7.3.2 The Role of Redistribution

How do optimal savings rates depend on the strength of the planner’s redistributive motive?

To answer this question, we solve for optimal savings rates under a range of different Pareto

weights.42 Figure 11(a) plots optimal retirement savings rates for a progressive planner with

monotonically decreasing Pareto weights (λ1 = 1.000, λ2 = 2.000, λw = 0.499). Under these more

progressive social preferences, savings rates are bunched at higher rates for incomes up to USD

85,000. Moving consumption into the second period is a relatively cheap way for the planner to

redistribute resources toward low-ability types in the presence of present-biased agents.43

Panel (b) shows optimal savings rates for a regressive planner with monotonically increas-

ing Pareto weights (λ1 = 2.000, λ2 = 1.000, λw = 0.499). As previously, low-income agents are

bunched, but now savings rates at high incomes are also less dispersed. Among high-ability types,

a regressive planner does not need to raise as much resources but rather ensures that they save

close to the socially optimal rate.

42In Appendix D.1.1, we consider further Pareto weight shapes, including the utilitarian benchmark. In Appendix
D.1.2, we compute optimal savings rates under different levels of exogenous government spending.

43For this reason, combined with the fact that empirical mean savings rates are significantly below 83 percent at low
incomes, our normative calibration infers relatively low welfare weights at the bottom of the ability distribution.
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Figure 11. Optimal savings rates under various redistributive preferences

(a) Progressive welfare weights
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(b) Regressive welfare weights
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Note: Savings rate is defined as s = (c2/R) / (c1 + c2/R). Source: Authors’ calculations based on model.

7.4 Welfare Gains from Reforms

Tension between tax-transfer and retirement savings policies. Our framework lends itself to

jointly analyzing the current US retirement savings and tax-transfer systems. Our main finding is

that no social preferences (λ1, λ2, λw) exist that jointly rationalize both systems.44 On the one hand,

the US tax-transfer system is best justified through welfare weights that are less redistributive

than utilitarian (Heathcote and Tsujiyama, 2017). On the other hand, rationalizing the current

retirement savings system requires welfare weights that put relatively high weight on the second

quartile of earnings ability. Consequently, the two parts of the current policy system—the tax-

transfer system and the retirement savings system—are mutually inconsistent.

This implies that, qualitatively, current US policies are off the Pareto frontier. How much off

are they, quantitatively? Under our benchmark calibration, we find wefare gains of 8.8 percent in

consumption-equivalent terms associated with moving from the current system to the optimum.45

The potential welfare gains are large in comparison to those found when evaluating reforms to

only the tax-transfer system (Heathcote and Tsujiyama, 2017). This suggests that changes to the

savings system must be an important component of any optimal reform.

44We come to a similar conclusion when extending our normative calibration to search over the parameter vector
(λ1, λ2, λw, δ, p), which includes the planner’s discount factor δ and degree of paternalism p as additional arguments.
This result can be rationalized by two insights. First, the calibrated value of the planner’s discount factor, δ = 0.261, is
quite close to 1/R (see Section 6.2). Second, the optimal allocation under the calibrated degree of paternalism, p = 0.633,
is quite similar to that under complete paternalism (see Figure 7.3.1).

45We compute consumption-equivalent welfare gains as a uniform change in consumption during working life and
retirement, holding fixed labor supply.
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Savings distortions facilitate redistribution. Changing the savings system may result in welfare

gains through two separate channels. First, it may directly improve the intertemporal consump-

tion allocation. Second, it may facilitate redistribution by improving incentives. Quantitatively,

we find that essentially all welfare gains derive from the second source. To convey this point,

Table 5 shows consumption-equivalent welfare gains from moving either savings or net income

or both from the current system to the optimum. Around 10.6 percent consumption-equivalent

welfare gains—more than the total welfare gain—would accrue from implementing the optimal

tax-transfer policies while keeping savings at their empirical rates. This is, of course, not a fea-

sible reform as it violates IC. The savings reform, which by itself would lead to a 1.5 percent

consumption-equivalent reduction in welfare, renders the optimal income reform feasible, result-

ing in net welfare gains of 8.8 percent.

Table 5. Consumption-equivalent welfare gains from changes in savings and net income

Savings rates as in...
...current system ...optimal policies

Net income as in current system 0.000 -0.015
Net income as in optimal policies 0.106 0.088

Note: Consumption-equivalent welfare gains are computed as additional consumption while young and old, holding constant labor
supply, required to achieve the welfare of the respective allocation, relative to that under the current system (positive model). Source:
Authors’ calculations based on model.

Welfare under different degrees of paternalism. The welfare gains we identified under com-

plete paternalism are robust to the planner’s degree of paternalism. Table 6 presents welfare cal-

culations under different degrees of paternalism. Our benchmark result of 8.8 percent welfare

gains is comparable to those found under the calibrated degree of paternalism, p = 0.633, which

amount to 8.4 percent. In contrast, a planner without paternalism perceives current policies to be

31.0 percent below the optimal welfare level. Current savings policies yield savings rates (Figure

2) that are far from the nonpaternalistic optimum (Figure 10(b)), and the current tax-transfer sys-

tem is far from the progressive social preferences estimated to match the system holistically. The

optimal allocations under complete paternalism (p = 1) and the calibrated degree of paternalism

(p = 0.633) are close to one another in consumption-equivalent welfare terms.
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Table 6. Consumption-equivalent welfare gains under various degrees of paternalism

Planner’s degree of paternalism
p = 0.000 p = 0.633 p = 1.000

Current system 0.000 0.000 0.000
Optimal policies under p = 0.000 0.310 0.003 -0.069
Optimal policies under p = 0.633 0.293 0.084 0.077
Optimal policies under p = 1.000 0.270 0.074 0.088

Notes: Consumption-equivalent welfare gains are computed as additional consumption while young and old, holding constant labor
supply, required to achieve the welfare of the respective allocation, relative to that under the current system (positive model). Esti-
mated degree of paternalism is p = 0.633, where the planner’s discount factor is δ

(
δ̃, β; p

)
= pδ̃ + (1− p) βδ̃, and δ̃ = 1/R is the

benchmark discount factor. Source: Authors’ calculations based on model.

8 Conclusion

In this paper, we have developed a theory of optimal paternalistic savings design. Our main

insight is that a redistributive planner optimally restricts choice at low incomes but offers var-

ious distorted choices at higher incomes. Intuitively, the planner offers choice as a carrot and

stick to incentivize work effort among high-ability individuals, thereby facilitating redistribution.

We apply this insight to study optimal retirement savings policies. The optimum can be imple-

mented through Social Security old-age benefits and a number of savings accounts with subsi-

dies and caps, such as 401(k) and IRA accounts in the US. To solve large-scale versions of this

two-dimensional screening problem, we propose a general, computationally stable, and efficient

active-set algorithm. We find significant variation in time preferences underlying the empirical

dispersion in savings rates. Interpreting this heterogeneity as due to present bias helps to ratio-

nalize many qualitative features of real-world policies. Quantitatively, we find find significant

welfare gains from reforms to the current system, due to a tension between redistributive prefer-

ences embedded in US retirement savings and tax-transfer policies.

The theoretical insights and numerical solution method we develop in this paper open the

door to studying a large class of multidimensional screening problems used in public finance,

contract theory, and industrial organization. Our work also points to interesting avenues for future

research. First, it would be interesting to explore to what extent other fiscal and social policies can

be rationalized with a paternalistic motive. Second, while our paper explores the implications of

paternalism for optimal policy design in the US, future work could employ a similar framework

to estimate the implied degree of paternalism inherent in other countries’ policies.

46



References

Aguiar, Mark and Erik Hurst, “Consumption versus Expenditure,” Journal of Political Economy,
2005, 113 (5), 919–948.

and Manuel Amador, “Growth in the Shadow of Expropriation,” Quarterly Journal of Economics,
2011, 126 (2), 651–697.

Amador, Manuel, George-Marios Angeletos, and Iván Werning, “Redistribution and Corrective
Taxation,” Working Paper, 2004.

, Iván Werning, and George-Marios Angeletos, “Commitment vs. Flexibility,” Econometrica,
2006, 74 (2), 365–396.

Angeletos, George-Marios, David Laibson, Andrea Repetto, Jeremy Tobacman, and Stephen
Weinberg, “The Hyperbolic Consumption Model: Calibration, Simulation, and Empirical Eval-
uation,” Journal of Economic Perspectives, 2001, 15 (3), 47–68.

Aon Hewitt, “2015 Trends & Experience in Defined Contribution Plans,” 2015.

Arias, Elizabeth, “United States Life Tables, 2006,” National Vital Statistics Reports, 2010, 58 (21).

Armstrong, Mark, “Multiproduct Nonlinear Pricing,” Econometrica, 1996, 64 (1), 51–75.

and Jean-Charles Rochet, “Multi-Dimensional Screening: A User’s Guide,” European Economic
Review, 1999, 43 (4), 959–979.

Ashraf, Nava, Dean Karlan, and Wesley Yin, “Tying Odysseus to the Mast: Evidence from a
Commitment Savings Product in the Philippines,” Quarterly Journal of Economics, 2006, 121 (2),
635–672.

Athey, Susan, Andrew Atkeson, and Patrick J Kehoe, “The Optimal Degree of Discretion in
Monetary Policy,” Econometrica, 2005, 73 (5), 1431–1475.

Atkeson, Andrew, V. V. Chari, and Patrick J. Kehoe, “Taxing Capital Income: A Bad Idea,” Federal
Reserve Bank of Minneapolis Quarterly Review, 1999, 23 (3), 3–17.

Atkinson, Anthony B and Joseph E Stiglitz, “The Structure of Indirect Taxation and Economic
Efficiency,” Journal of Public Economics, 1972, 1 (1), 97–119.

Augenblick, Ned, Muriel Niederle, and Charles Sprenger, “Working over Time: Dynamic In-
consistency in Real Effort Tasks,” Quarterly Journal of Economics, 2015, 130 (3), 1067–1115.

Battaglini, Marco and Rohit Lamba, “Optimal Dynamic Contracting: The First-Order Approach
and Beyond,” Working Paper, 2018.

Bénabou, Roland, “Tax and Education Policy in a Heterogeneous-Agent Economy: What Levels
of Redistribution Maximize Growth and Efficiency?,” Econometrica, 2002, 70 (2), 481–517.

Bernheim, B. Douglas and Dmitry Taubinsky, “Behavioral Public Economics,” in B. Douglas
Bernheim, Stefano DellaVigna, and David Laibson, eds., Handbook of Behavioral Economics, Vol. 1,
Amsterdam: Elsevier B.V, 2018, chapter 5, pp. 381–516.

, Jonathan Skinner, and Steven Weinberg, “What Accounts for the Variation in Retirement
Wealth among U.S. Households?,” American Economic Review, 2001, 91 (4), 832–857.

Beshears, John, James J. Choi, Christopher Harris, David Laibson, Brigitte C. Madrian, and
Jung Sakong, “Self Control and Commitment: Can Decreasing the Liquidity of a Savings Ac-
count Increase Deposits?,” NBER Working Paper No. 21474, 2015.

, , David Laibson, and Brigitte C. Madrian, “Behavioral Household Finance,” in B. Dou-

47



glas Bernheim, Stefano DellaVigna, and David Laibson, eds., Handbook of Behavioral Economics,
Amsterdam: Elsevier B.V, 2018, chapter 3, pp. 177–276.

Biggs, Andrew G. and Glenn R. Springstead, “Alternate Measures of Replacement Rates for
Social Security Benefits and Retirement Income,” Social Security Bulletin, 2008, 68 (2).

Bourguignon, François and Amedeo Spadaro, “Tax-Benefit Revealed Social Preferences,” The
Journal of Economic Inequality, 2012, 10 (1), 75–108.

Boyd, Stephen and Lieven Vandenberghe, Convex Optimization, Cambridge: Cambridge Univer-
sity Press, 2004.

Browning, Martin and Annamaria Lusardi, “Household Saving: Micro Theories and Micro
Facts,” Journal of Economic Literature, 1996, 34 (4), 1797–1855.

Buchanan, J. M., “The Samaritan’s Dilemma,” in E.S. Phelps, ed., Altruism, Morality and Economic
Theory, New York: Russel Sage Foundation, 1975, pp. 71–85.

Burks, Stephen V., Jeffrey P. Carpenter, Lorenz Goette, and Aldo Rustichini, “Cognitive Skills
Affect Economic Preferences, Strategic Behavior, and Job Attachment,” Proceedings of the National
Academy of Sciences of the United States of America, 2009, 106 (19), 7745–7750.

Caplin, Andrew and John Leahy, “The Social Discount Rate,” Journal of Political Economy, 2004,
112 (6), 1257–1268.

Carroll, Christopher, Jiri Slacalek, Kiichi Tokuoka, and Matthew N. White, “The Distribution of
Wealth and the Marginal Propensity to Consume,” Quantitative Economics, 2017, 8 (3), 977–1020.

Carroll, Gabriel, “When Are Local Incentive Constraints Sufficient?,” Econometrica, 2012, 80 (2),
661–686.

, “Robustness and Separation in Multidimensional Screening,” Econometrica, 2017, 85 (2), 453–
488.

Chamley, Christophe, “Optimal Taxation of Capital Income in General Equilibrium with Infinite
Lives,” Econometrica, 1986, 54 (3), 607–622.

Chan, Marc K., “Welfare Dependence and Self-Control: An Empirical Analysis,” Review of Eco-
nomic Studies, 2017, 84 (4), 1379–1423.

Cheney, Ward and Allen A. Goldstein, “Proximity Maps for Convex Sets,” Proceedings of the Amer-
ican Mathematical Society, 1959, 10, 448–450.

Chetty, Raj, Adam Looney, and Kory Kroft, “Salience and Taxation: Theory and Evidence,” Amer-
ican Economic Review, 2009, 99 (4), 1145–1177.

, Michael Stepner, Sarah Abraham, Shelby Lin, Benjamin Scuderi, Nicholas Turner, Augustin
Bergeron, and David Cutler, “The Association between Income and Life Expectancy in the
United States, 2001-2014,” JAMA, 2016, 315 (16), 1750.

Choi, James J., “Contributions to Defined Contribution Pension Plans,” Annual Review of Financial
Economics, 2015, 7, 161–178.

Cremer, Helmuth, Philippe De Donder, Dario Maldonado, and Pierre Pestieau, “Forced Saving,
Redistribution, and Nonlinear Social Security Schemes,” Southern Economic Journal, 2009, 76 (1),
86–98.

Cronqvist, Henrik and Stephan Siegel, “The Origins of Savings Behavior,” Journal of Political
Economy, 2015, 123 (1), 123–169.

De Nardi, Mariacristina, “Wealth Inequality and Intergenerational Links,” Review of Economic

48



Studies, 2004, 71 (3), 743–768.

and Giulio Fella, “Saving and Wealth Inequality,” Review of Economic Dynamics, 2017, 26, 280–
300.

, Svetlana Pashchenko, and Ponpoje Porapakkarm, “The Lifetime Costs of Bad Health,” NBER
Working Paper No. 23963, 2018.

Diamond, Peter A., “A Framework for Social Security Analysis,” Journal of Public Economics, 1977,
8 (3), 275–298.

, “Optimal Income Taxation: An Example with a U-Shaped Pattern of Optimal Marginal Tax
Rates,” American Economic Review, 1998, 88 (1), 83–95.

Diamond, Peter and Johannes Spinnewijn, “Capital Income Taxes with Heterogeneous Discount
Rates,” American Economic Journal: Economic Policy, 2011, 3 (4), 52–76.

Doepke, Matthias and Fabrizio Zilibotti, “Parenting with Style: Altruism and Paternalism in
Intergenerational Preference Transmission,” Econometrica, 2017, 85 (5), 1331–1371.

Dynan, Karen E., Jonathan Skinner, and Stephen P. Zeldes, “Do the Rich Save More?,” Journal of
Political Economy, 2004, 112 (2), 397–444.

Engen, Eric M., William G. Gale, and Cori E. Uccello, “Lifetime Earnings, Social Security Benefits,
and the Adequacy of Retirement Wealth Accumulation,” Social Security Bulletin, 2005, 66 (1), 38.

Esteban, Susanna and Eiichi Miyagawa, “Optimal Menu of Menus with Self-Control Prefer-
ences,” Working Paper, 2004.

Falk, Armin, Anke Becker, Thomas Dohmen, Benjamin Enke, David Huffman, and Uwe
Sunde, “Global Evidence on Economic Preferences,” Quarterly Journal of Economics, 2018, 133
(4), 1645–1692.

Farhi, Emmanuel and Iván Werning, “Inequality and Social Discounting,” Journal of Political Econ-
omy, 2007, 115 (3), 365–402.

and , “Progressive Estate Taxation,” Quarterly Journal of Economics, 2010, 125 (2), 635–673.

and , “Capital Taxation: Quantitative Explorations of the Inverse Euler Equation,” Journal of
Political Economy, 2012, 120 (3), 398–445.

and , “Estate Taxation with Altruism Heterogeneity,” American Economic Review, 2013, 103
(3), 489–495.

and , “Insurance and Taxation over the Life Cycle,” Review of Economic Studies, 2013, 80 (2),
596–635.

and Xavier Gabaix, “Optimal Taxation with Behavioral Agents,” Working Paper, 2018.

Feenberg, Daniel and Elisabeth Coutts, “An Introduction to the TAXSIM Model,” Journal of Policy
Analysis and Management, 1993, 12 (1), 189–194.

Feldstein, Martin and Jeffrey B. Liebman, “Social Security,” in Alan J. Auerbach and Martin
Feldstein, eds., Handbook of Public Economics, Vol. 4, Amsterdam, North Holland: Elsevier, 2002,
chapter 32, pp. 2245–2324.

Feldstein, Martin S., “The Effects of Taxation on Risk Taking,” Journal of Political Economy, 1969,
pp. 755–764.

, “The Optimal Level of Social Security Benefits,” Quarterly Journal of Economics, 1985, 100 (2),
303–320.

49



Fernandes, Ana and Christopher Phelan, “A Recursive Formulation for Repeated Agency with
History Dependence,” Journal of Economic Theory, 2000, 91 (2), 223–247.

Financial Engines, “Missing Out: How Much Employer 401(K) Matching Contributions Do Em-
ployees Leave on the Table?,” Technical Report, Financial Engines 2015.

Friedman, Milton, “Choice, Chance, and the Personal Distribution of Income,” Journal of Political
Economy, 1953, 61 (4), 277–290.

Galperti, Simone, “Commitment, Flexibility, and Optimal Screening of Time Inconsistency,”
Econometrica, 2015, 83 (4), 1425–1465.

Golosov, Mikhail, Aleh Tsyvinski, and Nicolas Werquin, “A Variational Approach to the Anal-
ysis of Tax Systems,” Working Paper, 2014.

and , “Designing Optimal Disability Insurance: A Case for Asset Testing,” Journal of Political
Economy, 2006, 114 (2), 257–279.

, Maxim Troshkin, Aleh Tsyvinski, and Matthew Weinzierl, “Preference Heterogeneity and
Optimal Capital Income Taxation,” Journal of Public Economics, 2013, 97, 160–175.

, , and , “Redistribution and Social Insurance,” American Economic Review, 2016, 106 (2),
359–386.

, Narayana Kocherlakota, and Aleh Tsyvinski, “Optimal Indirect and Capital Taxation,” Review
of Economic Studies, 2003, 70 (3), 569–587.

Gourinchas, Pierre-Olivier and Jonathan A. Parker, “Consumption over the Life Cycle,” Econo-
metrica, 2002, 70 (1), 47–89.

Gruber, Jonathan and Botond Köszegi, “Tax Incidence When Individuals Are Time-Inconsistent:
The Case of Cigarette Excise Taxes,” Journal of Public Economics, 2004, 88 (9-10), 1959–1987.

Halac, Marina and Pierre Yared, “Fiscal Rules and Discretion under Persistent Shocks,” Econo-
metrica, 2014, 82 (5), 1557–1614.

and , “Fiscal Rules and Discretion in a World Economy,” American Economic Review, 2018, 108
(8), 2305–2234.

Hartline, Jason D., “Bayesian Mechanism Design,” Foundations and Trends in Theoretical Computer
Science, 2013, 8 (3), 143–263.

Hassler, John, Per Krusell, Kjetil Storesletten, and Fabrizio Zilibotti, “On the Optimal Timing
of Capital Taxes,” Journal of Monetary Economics, 2008, 55 (4), 692–709.

Heathcote, Jonathan and Hitoshi Tsujiyama, “Optimal Income Taxation: Mirrlees Meets Ram-
sey,” Working Paper, 2017.

, Kjetil Storesletten, and Giovanni L. Violante, “Optimal Tax Progressivity: An Analytical
Framework,” The Quarterly Journal of Economics, 2017, 132 (4), 1693–1754.

Hendricks, Lutz, “How Important Is Discount Rate Heterogeneity for Wealth Inequality?,” Journal
of Economic Dynamics and Control, 2007, 31 (9), 3042–3068.

Hosseini, Roozbeh and Ali Shourideh, “Retirement Financing: An Optimal Reform Approach,”
Working Paper, 2018.

Internal Revenue Service, “Publication 590-A (2017), Contributions to Individual Retirement Ar-
rangements (IRAs),” 2018.

Jacobs, Bas, Egbert L. W. Jongen, and Floris T. Zoutman, “Revealed Social Preferences of Dutch

50



Political Parties,” Journal of Public Economics, 2017, 156, 81–100.

Jacquet, Laurence, Etienne Lehmann, and Bruno Van der Linden, “Optimal Redistributive Taxa-
tion with Both Extensive and Intensive Responses,” Journal of Economic Theory, sep 2013, 148 (5),
1770–1805.

Jones, Damon and Aprajit Mahajan, “Time-Inconsistency and Saving: Experimental Evidence
from Low-Income Tax Filers,” NBER Working Paper No. 21272, 2015, (21272).

Judd, Kenneth L., “Short-Run Analysis of Fiscal Policy in a Simple Perfect Foresight Model,”
Journal of Political Economy, 1985, 93 (2), 298–319.

, Ding Ma, Michael A. Saunders, and Che-Lin Su, “Optimal Income Taxation with Multidi-
mensional Taxpayer Types,” Working Paper, 2018.
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Online Appendix (Not for Publication)

The Online Appendix is organized as follows: Appendix A presents further theoretical results

and proofs for the two-dimensional screening problem that we present in Section 2, characterize

in Section 3, and decentralize in Section 4. Appendix B provides further details of the active-set

algorithm introduced in Section 5. Appendix C describes the data and calibration procedure used

in Section 6. Appendix D contains further results on optimal policies.

A Theory

A.1 Properties of the planner’s problem

Lemma 2. The planner’s problem has the following properties:

1. (Convexity) The planner’s problem is a convex program.

2. (Existence and uniqueness of a global optimum) There exists a unique allocation A that solves the

planner’s problem. This allocation satisfies 0 < ct (θ, β) < +∞ and 0 ≤ y (θ, β) < +∞ for t = 1, 2

and all (θ, β) ∈ Θ× B.

3. (Maximum theorem) The solution to the planner’s problem,
{
ASB, W

(
ASB)}, is continuous in

(θ, β, π, λ) ∈ R++ ×R+ × [0, 1]×R+.

4. (Strong duality) Define the Lagrangian L : R
3(N·M)
+ ×R(N·M)2−(N·M) ×R×R3(N·M) → R asso-

ciated with the planner’s problem as

L (A, ξ, µ, ν) = W (A)

+ ∑
(θ,β) 6=(θ′,β′)

ξ
(
θ, β, θ′, β′

) U (c1 (θ, β) , c2 (θ, β) , y (θ, β) ; θ, β)

−U (c1 (θ
′, β′) , c2 (θ′, β′) , y (θ′, β′) ; θ, β)


+ µ

{
∑
(θ,β)

π (θ, β)

[
y (θ, β)− c1 (θ, β)− c2 (θ, β)

R

]}

+ ∑
(θ,β)

ν1 (θ, β) c1 (θ, β) + ∑
(θ,β)

ν2 (θ, β) c2 (θ, β) + ∑
(θ,β)

ν3 (θ, β) y (θ, β) .

Then an allocation A∗ = {c∗1 (θ, β) , c∗2 (θ, β) , y∗ (θ, β)}(θ,β) is optimal if and only if there exist

Lagrange multiplieres on the IC constraints, ξ = {ξ (θ, β, θ′, β′)}(θ,β) 6=(θ′,β′) ∈ R
(N·M)2−(N·M)
+ , a
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Lagrange multiplier on the feasibility constraint, µ ∈ R+, and Lagrange mutlipliers on the variable

domain constraints, ν = {(ν1 (θ, β) , ν2 (θ, β) , ν3 (θ, β))}(θ,β) ∈ R
3(N·M)
+ that satisfy the following

KKT conditions:

U (c∗1 (θ, β) , c∗2 (θ, β) , y∗ (θ, β) ; θ, β)−U
(
c∗1
(
θ′, β′

)
, c∗2
(
θ′, β′

)
, y∗

(
θ′, β′

)
; θ, β

)
≥ 0, ∀ (θ, β) ,

(
θ′, β′

)
∈ Θ× B

∑
θ,β

π (θ, β)

[
y∗ (θ, β)− c∗1 (θ, β)−

c∗2 (θ, β)

R

]
≥ 0

c∗1 (θ, β) ≥ 0, ∀ (θ, β) ∈ Θ× B

c∗2 (θ, β) ≥ 0, ∀ (θ, β) ∈ Θ× B

y∗ (θ, β) ≥ 0, ∀ (θ, β) ∈ Θ× B

ξ
(
θ, β, θ′, β′

)
≥ 0, ∀ (θ, β) ,

(
θ′, β′

)
∈ Θ× B

µ ≥ 0

ν1 (θ, β) ≥ 0, ∀ (θ, β) ∈ Θ× B

ν2 (θ, β) ≥ 0, ∀ (θ, β) ∈ Θ× B

ν3 (θ, β) ≥ 0, ∀ (θ, β) ∈ Θ× B

ξ
(
θ, β, θ′, β′

) U
(
c∗1 (θ, β) , c∗2 (θ, β) , y∗ (θ, β) ; θ, β

)
−U

(
c∗1 (θ

′, β′) , c∗2 (θ
′, β′) , y∗ (θ′, β′) ; θ, β

)
 = 0, ∀ (θ, β) ,

(
θ′, β′

)
∈ Θ× B

µ ∑
θ,β

π (θ, β)

[
y∗ (θ, β)− c∗1 (θ, β)−

c∗2 (θ, β)

R

]
= 0

ν1 (θ, β) c∗1 (θ, β) = 0, ∀ (θ, β) ∈ Θ× B

ν2 (θ, β) c∗2 (θ, β) = 0, ∀ (θ, β) ∈ Θ× B

ν3 (θ, β) y∗ (θ, β) = 0, ∀ (θ, β) ∈ Θ× B

∇W (A∗)

+∑(θ,β) 6=(θ′ ,β′) ξ (θ, β, θ′, β′)∇

 U
(
c∗1 (θ, β) , c∗2 (θ, β) , y∗ (θ, β) ; θ, β

)
−U

(
c∗1 (θ

′, β′) , c∗2 (θ
′, β′) , y∗ (θ′, β′) ; θ, β

)


+µ ∑θ,β π (θ, β)∇
[
y∗ (θ, β)− c∗1 (θ, β)− c∗2(θ,β)

R

]
+∑θ,β ν1 (θ, β) + ∑θ,β ν2 (θ, β) + ∑θ,β ν3 (θ, β)


= 0

Proof. We start by applying a convenient change of variables. Any results that we prove for the

transformed problem directly carry over to the original problem, but exposition of the proofs is

facilitated through a convenient choice of transformation. Let ut (θ, β) ≡ u (ct (θ, β)) for t = 1, 2,
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and ṽ (θ, β) ≡ ṽ (y (θ, β)), so v (` (θ, β)) = D (θ) ṽ (θ, β). Write ct (θ, β) = C (ut (θ, β)), where

C (·) = u−1 (·), and y (θ, β) = Y (ṽ (θ, β)), where Y (·) = v−1 (·). Define the transformed allocation

as Ã = {u1 (θ, β) , u2 (θ, β) , ṽ (θ, β)}(θ,β). Let N = Nθ×Nβ. Then we can reformulate the planner’s

problem as a nonlinear program with 3N choice variables, a linear objective, N2 − N linear IC

constraints, and 1 nonlinear feasibility constraint:

−
[

min
Ã
−∑

θ,β
π (θ, β) λ (θ) [u1 (θ, β)− D (θ) ṽ (θ, β) + δu2 (θ, β)]

]
(8)

s.t. ∀ (θ, β) ,
(
θ′, β′

)
: −∞ ≤

 u1 (θ
′, β′)− D (θ) ṽ (θ′, β′)

+βδu2 (θ′, β′)

−
 u1 (θ, β)− D (θ) ṽ (θ, β)

+βδu2 (θ, β)

 ≤ 0

−∞ ≤∑
θ,β

π (θ, β)

[
C (u1 (θ, β)) +

C (u2 (θ, β))

R
−Y (ṽ (θ, β))

]
≤ 0

∀t : u ≤ ut (θ, β) ≤ u

ṽ ≤ ṽ (θ, β) ≤ ṽ

We now proceed stepwise to prove parts 1–4 of the lemma:

1. Clearly, the objective and IC constraints are linear, hence continuous, in {u1, v, u2}. Next, we show

that the feasibility constraint function F (·) = ∑ π [C (·) + C (·) /R + G−Y (·)] defines a strictly

convex set. Since u (·) is increasing and strictly concave, then C (·) = u−1 (·) is strictly convex.

Similarly, since v (·) is increasing and strictly convex, then Y (·) = v−1 (·) is strictly concave.

Clearly, the negative of a strictly concave function is strictly convex. Since the sum of strictly convex

functions is strictly convex and multiplication by or adding a scalar preserves strict convexity, we

know that the feasibility constraint F (·) is strictly convex. We conclude that the planner’s problem

is a convex problem.

2. The result follows from a an application of the Extreme Value Theorem—see, e.g., Theorem 4.16 on

pp.89–90 of Rudin (1976)—to a modified version of the planner’s problem. We have already shown in

part 1 of the lemma that the IC constraints, feasibility constraint, and choice variable bounds describe

a strictly convex set, which we denote S. Since limc→+∞ u′ (·) = 0 implies limu→u C (u) = +∞, we

know that ut = u cannot be optimal for any t. Hence, we can find a ũ < u such that if an optimum

exists, then u∗t ≤ ũ for t = 1, 2. Similarly, since u′ (0) = +∞ implies limu→u C (u) = 0, we know
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that ut = u cannot be optimal for any t. Hence, we can find a ũ > u such that if an optimum exists,

then u∗t ≥ ũ for t = 1, 2. Finally, since lim`→+∞ ṽ′ (·) = +∞ implies limv→+∞ Y (·) = 0, we

know that v = +∞ cannot be optimal. Hence, we can find a ṽ < +∞ such that if an optimum exists,

then v∗ ≤ ṽ. Now take the subset S′ ⊂ S defined by S′ = S ∩
{
(u1, u2, v)| u ∈

[
ũ, ũ
]

, v ∈
[
0, ṽ
]}

,

which is closed and bounded, hence compact in R, and it inherits the strict convexity property from S.

The Extreme Value Theorem states that a continuous real function on a compact metric space attains

its minimum and maximum. Hence a solution to the planner’s problem exists. By strict convexity of

S′, the optimum must also be unique. To see this, suppose this were not the case, then there exist two

optimal points (u1, u2, v) and (u′1, u′2, v′) that solve the planner’s problem. Then one could construct

a third optimal point (u′′1 , u′′2 , v′′) = µ (u1, u2, v) + (1− µ) (u′1, u′2, v′) for µ ∈ (0, 1), which by

strict convexity lies in the strict interior of the feasible set, contradicting optimality of the original

two points as the objective function is linear.

3. The result follows from an application of the maximum theorem—see, e.g., p.306 of Ok (2007)—to the

same modified version of the planner’s problem as above. The statement of the maximum theorem is as

follows. Let P ⊆ Rd for some integer d be the compact metric space containing all possible vectors of

model parameters p = (θ, β, π, λ) ∈ P = R++ ×R+ × [0, 1]×R+. Let S̃ ⊆ R3N·M be the metric

space containing all possible allocations. Let Γ : P ⇒ S̃ be the constraint set correspondence defined

by IC constraints, the feasibility constraint, and reformulated choice variable bound constraints as

defined above. Γ is continuous, that is both upper hemicontinuous and lower hemicontinuous, due to

continuity of all constraint functions. Γ is also compact-valued, that is Γ (p) is closed and bounded

at any p ∈ P, because all constraint functions are continuous over a compact space P, so the graph

of Γ (·) attains a maximum and a minimum in each of its dimensions. Denote the linear objective

function in the reformulated planner’s problem (8) by W̃ : P× S̃→ R. Since W̃ is linear in s ∈ S̃ and

well-behaved around θ = 0 by our assumption that D (0) ṽ (0) = 0, then W̃ ∈ C
(

P× S̃
)
. Define

the unique (by part 2 of the lemma) maximizer of the planner’s problem given model parameters p as

σ (p) ≡ arg max
ζ

{
W̃ (p, ζ)

∣∣ ζ ∈ Γ (p)
}
∀p ∈ P

and define the optimal welfare level given model parameters p as

ϕ∗ (p) ≡ max
ζ

{
W̃ (p, ζ)

∣∣ ζ ∈ Γ (p)
}
∀p ∈ P
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Under these conditions, the maximum theorem implies that:

• σ : P→ S̃ is compact-valued, upper hemicontinuous and closed at p.

• ϕ∗ : P→ R is continuous at p.

Because σ (·) is nonempty and single-valued for all p ∈ P, by part 2 of the lemma, then σ : P → S̃

must also be lower hemicontinuous. Hence σ is continuous.

4. Note that the reformulated planner’s problem (8) features only one nonaffine constraint, namely fea-

sibility. A refined variant of Slater’s condition or constraint qualification for nonaffine functions (see,

e.g., pp.226–227 of Boyd and Vandenberghe (2004)), requiring the existence of a feasible point in the

interior of the nonaffine constraint set, is satisfied for our problem:

∃Ã = (u1 (θ, β) , u2 (θ, β) , ṽ (θ, β))(θ,β)

s.t. ∀ (θ, β) : (θ, β) = arg max
(θ′,β′)

u1 (θ, β)− D (θ) ṽ (θ, β) + βδu2 (θ, β)

−∞ < ∑
θ,β

π (θ, β)

[
C (u1 (θ, β)) +

C (u2 (θ, β))

R
−Y (D (θ) ṽ (θ, β))

]
+ G < 0

∀t, (θ, β) : ut (θ, β) > 0

∀ (θ, β) : ṽ (θ, β) > 0

where the existence of a strict inequality for nonaffine feasibility constraint remains to be demon-

strated. Note that we can easily construct such a point by allocating to all agents positive consump-

tion utility ut (θ, β) = ũ > u in each period t = 1, 2 and labor disutility ṽ (θ, β) = ṽ ((1 + 1/R)C (ũ) + G + ε)

for some ε > 0 so that

∑
θ,β

π (θ, β)

[
C (u1 (θ, β)) +

C (u2 (θ, β))

R
−Y (D (θ) ṽ (θ, β))

]
+ G < 0

Slater’s Theorem (see, e.g., p.226 and pp.234–236 of Boyd and Vandenberghe (2004)) states that

Slater’s condition and convexity of the primal problem imply strong duality, meaning that the duality

gap is zero. Therefore, the KKT conditions are necessary and sufficient for primal and dual optimality

of the planner’s problem.
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The results in Lemma 2 will guide our further analysis. Convexity provides a strong motive

for pooling agents in the economy. Existence and uniqueness of the optimum are important for the

theoretical characterization and also for designing a numerical solution algorithm for the problem.

The maximum theorem will allow us to characterize a subset of all interior points of the type

space by using perturbation arguments. Strong duality is used primarily in the numerical solution

algorithm, but some theoretical proofs will also make use of it, as it implies existence of a bounded

shadow price of resources. Going forward, with a slight abuse of language, we will say that a

constraint of the planner’s problem is binding if there exists a Lagrange multiplier on the constraint

that is strictly positive, and conversely we say that a constraint is slack if all possible Lagrange

multipliers on the constraint equal zero.

A.2 Benchmark allocations

We define an agent’s implicit savings rate as their share of old-age consumption out of lifetime con-

sumption, in discounted present value terms, s (θ, β) ≡ (c2 (θ, β) /R) / (c1 (θ, β) + c2 (θ, β) /R).

We define an agent’s implicit transfer receipt as the difference between the discounted present

value of their consumption and their labor income, T (θ, β) ≡ c1 (θ, β) + c2 (θ, β) /R− y (θ, β).

Agents’ laissez-faire (LF) allocation maximizes their decision utility (1) subject to individual

feasibility:

∀ (θ, β) :
(

cLF
1 (θ, β) , cLF

2 (θ, β) , yLF (θ, β)
)
= arg max

(c1,c2,y)∈{ (c1,c2,y)|y−c1−c2/R≥0}
U (c1, c2, y; θ, β)

Under laissez-faire, agents’ savings rates only depend on β, labor supply equates the marginal

rates of substitution and transformation between consumption and labor, and there are no trans-

fers:

sLF (β) = arg max
s

U
(
(1− s) yLF (θ, β) , RsyLF (θ, β) , yLF (θ, β) ; θ, β

)
v′
(

yLF (θ, β)

θ

)
= u′

((
1− sLF (β)

)
yLF (θ, β)

)
θ

TLF (θ, β) = 0
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The first-best (FB) allocation maximizes welfare (4) subject to feasibility (3):

{
cFB

1 (θ, β) , cFB
2 (θ, β) , yFB (θ, β)

}
(θ,β)

= arg max
{c1(θ,β)c2(θ,β),y(θ,β)}(θ,β)∈F

∑
(θ,β)

π (θ, β) λ (θ)V (θ, β) ,

where F is the set of feasible allocations satisfying (3). Since β does not directly enter welfare, the

first-best savings rate is constant, labor supply equates the marginal rates of substitution and

transformation between consumption and labor, and transfers equate marginal welfare across

types:

sFB = arg max
s

V
(
(1− s)

(
yFB (θ) + TFB (θ)

)
, Rs

(
yFB (θ) + TFB (θ)

)
, yFB (θ) ; θ

)
v′
(

yFB (θ)

θ

)
= u′

((
1− sFB

) (
yFB (θ) + TFB (θ)

))
θ

∀θ, θ′ : λ (θ)
∂Ṽ
(
TFB (θ) ; θ

)
∂T

= λ
(
θ′
) ∂Ṽ

(
TFB (θ′) ; θ′

)
∂T

,

where Ṽ (T; θ) ≡ V
((

1− sFB) (yFB (θ) + T
)

, RsFB (yFB (θ) + T
)

, yFB (θ) ; θ
)

is the indirect utility

from transfers under the first-best consumption and labor supply policies.

The laissez-faire allocation satisfies IC and feasibility, providing a lower bound on welfare.

The first-best allocation generally features higher welfare but it may violate IC. Therefore, we are

interested in characterizing the constrained optimum, or second-best.

A.3 Proofs for the general economy

A.3.1 Additional result: Relevant IC constraints with 2× 2 types

In this section, we analyze which IC constraints bind in the simple production economy with 2× 2

types presented in Section 3.1.

First, IC constraints of θL-types are trivially satisfied. The IC constraints between (θL, βL)-types

and (θL, βH)-types hold with equality since they are bunched, and they are slack with respect to

both (θH, βL)-types and (θH, βL)-types because θL-types cannot work.

Second, the IC constraint of type (θH, βL) with respect to θL-types binds. Suppose, by way of

contradiction, that it does not. Then there is no reason to distort savings among low-ability types,
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and thus c1 (θL) = c2 (θL) at the solution. We have already shown that c2 (θH, βH) ≥ c1 (θH, βH),

therefore c2 (θH, βH) > c2 (θL) to preserve IC between working (θH, βH)-types and idle θL-types.

We want to show that λ (θL) ≥ λ (θH) implies that the IC constraint of (θH, βH)-types with respect

to θL-types binds in this case.

By way of contradiction, suppose that IC from (θH, βH) to θL also does not bind. There are

two cases to consider. Case 1: IC from (θH, βH) to (θH, βL) binds, i.e. they have the same welfare,

which together with the fact that θH-types are separated implies

c2 (θH, βL) < c2 (θH, βH)

and u (c1 (θH, βL))− v (y (θH, βL) /θH) > u (c1 (θH, βH))− v (y (θH, βH) /θH)

From this and the fact that τ (θH, β) = 0 for β ∈ {βL, βH}, it follows that s (θH, βL) < s (θH, βH)

and the IC from (θH, βL) to (θH, βH) is slack. Since s (θH, βL) < s (θH, βH) < sFB and sFB <

s (θH, βL) < s (θH, βH) cannot be optimal, then two subcases. Subcase 1A: s (θH, βL) = sFB <

s (θH, βH), then since IC from (θH, βL) to (θH, βH) does not bind, we can decrease s (θH, βH) by

moving down along βH-types’ indifference curve to keep welfare constant, preserve IC, but save

resources—a contradiction. Subcase 1B: s (θH, βL) < sFB ≤ s (θH, βH), then since all ICs of (θH, βL)

are slack, we can increase (θH, βL)-types’ savings rate along βH-types’ indifference curve while

keeping welfare constant, preserving IC, but saving resources—a contradiction. This rules out

Case 1. Case 2: IC from (θH, βH) to (θH, βL) does not bind, i.e. welfare is strictly higher for

(θH, βH) than for (θH, βL). Since λ (θL) ≥ λ (θH), the fact that no IC constraints bind from θH-

types to θL-types implies that we could transfer some period 2 consumption from (θH, βH)-types

to θL-types to improve welfare but preserve IC—a contradiction. This rules out Case 2. Therefore,

we have shown that the IC constraint from (θH, βH)-types to θL-types must bind.

Together with c2 (θH, βH) > c2 (θL), this implies that (θH, βL)-types strictly prefer θL-types’

allocation over that of (θH, βH)-types. Combining this with the IC constraint from (θH, βL)-types
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to θL-types, we infer that the IC constraint between (θH, βL)-types and (θH, βH)-types is slack:

u (c1 (θH, βL))− v
(

y (θH, βL)

θH

)
+ βLδu (c2 (θH, βL))

≥u (c1 (θL)) + βLδu (c2 (θL))

>u (c1 (θH, βH))− v
(

y (θH, βH)

θH

)
+ βLδu (c2 (θH, βH))

Consequently, all of (θH, βL)-types’ IC constraints are slack, so it must be the case that all agents

save at the first-best rate. But we already showed that (θH, βL)-types and (θH, βH)-types cannot

have the same consumption bundle, so for IC to hold one of the types must consume more in both

periods and work more relative to the other type—contradicting the fact that τL (θH, β) = 0 for

β ∈ {βL, βH}. Hence, (θH, βL)-types’ IC constraint must bind with respect to θL-types.

Third, the pattern of other θH-types’ IC constraints depends on parameter values. We consider

three cases. Case 1 features a binding IC constraints from (θH, βH)-types to (θH, βL)-types but not

the other way around. This case obtains when βL ≈ 1, 0 ≈ λ (θH) < λ (θL), and π (θL) ≈ 1.

Since c2 (θH, βH) > c2 (θL), if βL = 1− ε for small enough ε > 0, by the maximum theorem (part

3 of Lemma 2) we still have c2 (θH, βL) > c2 (θL). Combined with the fact that the IC constraint of

(θH, βL)-types binds with respect to θL-types, this implies that the IC constraint of (θH, βH)-types

with respect to θL-types is slack. Then it must be that the IC constraint of (θH, βH)-types with

respect to (θH, βL)-types binds, or else none of (θH, βH)-types’ IC constraints would bind and

we could improve welfare by transfering period 2 consumption from (θH, βH)-types to (θH, βL)-

types. Hence, V (θH, βH) = V (θH, βL) > V (θL). In this case, as π (θL) → 1, then τE (θL) → 0

and τD (θH, βL) → +∞, so for high enough values of π (θL) it must be that the IC constraint

from (θH, βL)-types to (θH, βH)-types becomes slack, while the IC constraint from (θH, βH)-types

to (θH, βL)-types binds. As a result, Case 1 features s (θH, βH) = sFB > sLF (βL) > s (θH, βL).

Case 2 features a binding IC constraints from (θH, βL)-types to (θH, βH)-types but not the other

way around. This case obtains for intermediate values of βL, 0 ≈ λ (θH) < λ (θL), and π (θL) ≈ 0.

In this case, as π (θL) → 0, then τE (θL) → −∞ and τD (θH, βL) → 0, so for low enough values of

π (θL) it must be that the IC constraint from (θH, βH)-types to (θH, βL)-types becomes slack, while

the IC constraint from (θH, βL)-types to (θH, βH)-types binds. Consequently, we also must have

V (θH, βH) = V (θL) > V (θH, βL). As a result, Case 2 features s (θH, βH) > sFB > s (θH, βL) ≥
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sLF (βL).

Case 3 features no binding IC constraints between (θH, βL)-types and (θH, βH)-types. This case

obtains when βL ≈ 0, λ (θH) ≈ 0 < λ (θL), and intedmediate values of π (θL). As (θH, βL)-types

with λ (θH) = 0 and βL = 0 optimally save at their laissez-faire rate, s (θH, βL) = sLF (βL) =

0 < s (θL), then c2 (θH, βL) = 0 < min {c2 (θL) , c2 (θH, βH)} implies that the IC constraint from

(θH, βH)-types to (θH, βL)-types does not bind if period utility is unbounded from below. If βL = ε

and λ (θH) = η for small enough ε > 0 and η > 0, by the maximum theorem (part 3 of Lemma

2) we also have 0 < c2 (θH, βL) < min {c2 (θL) , c2 (θH, βH)} and the IC constraint from (θH, βH)-

types to (θH, βL)-types still does not bind. Then it must be the case that the IC constraint from

(θH, βH)-types to θL-types binds, or else none of (θH, βH)-types’ IC constraints would bind and

we could improve welfare by transfering period 2 consumption from (θH, βH)-types to (θH, βL)

types. Hence, V (θH, βH) = V (θL) > V (θH, βL). Note that as π (θL) → 1, then τE (θL) → 0

and τD (θH, βL) → +∞, while as π (θL) → 0, then τE (θL) → −∞ and τD (θH, βL) → 0, so for

intermediate values of π (θL), since not both constraints can bind between θH-types since they are

separated, it must be that the IC constraint from (θH, βL)-types to (θH, βH)-types becomes slack.

As a result, Case 3 features s (θH, βH) = sFB > s (θH, βL) ≥ sLF (βL).

In summary, the bindingness of (θH, βH)-types’ IC constraints is a function of model param-

eters. This indeterminacy of which IC constraints bind is precisely what renders solutions to

multidimensional screening problems elusive (Armstrong, 1996; Rochet and Choné, 1998). Luck-

ily, our characterization of bunching versus separation at the bottom versus the top of the ability

distribution does not depend on this particular feature of the solution.

A.3.2 Additional result: Threshold relative Pareto weight for fixed abilities

The results in Proposition 1 characterize the constrained optimum of the simple environment in

Section 3.1 under the two assumptions that λ (θL) ≥ λ (θH) and θL = 0 < θH. It will be instructive

to revisit these results while stepwise relaxing each of the two assumptions.

Let us now discuss our first generalization. By restricting welfare weights to be weakly more

redistributive than utilitarian, λ (θL) ≥ λ (θH), our analysis exploited the planner’s motive to

redistribute from high-ability toward low-ability types. More generally, the previous results con-

tinue to hold under redistributive enough social preferences.

Proposition 4. Define λ̃ ≡ λ (θH) /λ (θL). There exists a unique cutoff 1 < λ̃ < +∞ such that:
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1. If λ̃ < λ̃, then a second-best allocation is obtained, with θL-types bunched across β-levels, with

θH-types separated, and with savings and labor distortions as in Proposition 1.

2. If λ̃ ≥ λ̃, then the first-best allocation is obtained.

Proof. We proceed in steps:

1. Indeed, the proof for bunching of θL-types does not rely on any assumptions on Pareto

weights, hence goes through for any λ̃ ∈ R+. In Section 3.1 we have shown that separation

among θH-types obtains for λ̃ ≤ 1. Hence, by continuity of the optimal allocation in model

parameters, due to the maximum theorem (part 3 of Lemma 2), we know that there exists a

λ̃ ∈ (1,+∞) with the desired properties. The implied savings levels and labor distortions

follow immediately from the previous analysis.

2. For λ (θL) = 0 < λ (θH), that is λ̃ = +∞, clearly it is optimal to set c1 (θL) = c2 (θL) =

0 < min(t,β)∈{1,2}×{βL,βH} {ct (θH, β)}, so the IC constraint from θH-types to θL-types cannot

bind, hence θH-types are optimally bunched with s (θH) = sFB. By continuity of the optimal

allocation in (λ (θL) , λ (θH)), due to the maximum theorem (part 3 of Lemma 2), there exists

a finite λ̃ ∈ (1,+∞) such that separation of high-ability types is optimal for all λ̃ < λ̃ but

high ability types are bunched for λ̃ = λ̃. Consider the case when λ̃ = λ̃, so θH-types

are bunched. Then the only reason that the planner would allow (θH, βL)-types to decrease

their savings rate along βL-types indifference curve, thereby decreasing welfare from θH-

types but saving resources, is to increase transfers to θL-types. As the net effect on welfare

of such a perturbation is strictly decreasing in λ (θL), it follows that the optimal rule has

a threshold property. Thus, θH-types are bunched for some λ̃ = λ̃, then bunching must

also occur for λ̃ > λ̃. That all agents must save at the first-best rate follows from the fact

that bunching of θH-types together with no binding IC constraint from θL-types to θH-types

implies s (θH) = sFB, while no IC constraint binding from (θH, βL)-types to θL-types implies

s (θL) = sFB. That the labor margin remains undistorted follows from the previous analysis.

Part 1 of Proposition 4 nests as a special case our characterization of the simple environment

in Section 3.1. Part 2 of the proposition states that the first-best is obtained for a regressive enough

social planner. The threshold on relative Pareto weights, λ̃, is defined as the point at which all IC
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constraints from θH-types stop binding with respect to θL-types. Absent binding IC constraints

across θ-levels, there is no reason to distort savings or labor supply of any agents, so the first-best

is obtained.

A.3.3 Additional result: Threshold relative ability level for fixed Pareto weights

Let us now discuss our second generalization. We have so far studied the case when θL = 0 < θH.

The assumption that θL-types cannot work implied that no IC constraint could bind from θL-

types to θH-types, thereby reducing the complexity of the incentive problem. An analogous result

is obtained when we allow both ability levels to be strictly positive as long as the productivity

differential between them remains large enough.

Proposition 5. Define θ̃ ≡ θH/θL. If λ (θL) ≥ λ (θH), then there exists a cutoff 1 < θ̃ < +∞ such

that if θ̃ ≥ θ̃, then a second-best is obtained, where θL-types are bunched across β-levels and θH-types are

separated. In this case, savings and labor distortions are as in Proposition 1 and, in addition, θL-types face

a strictly positive implicit labor income tax: τL (θL) > 0.

Proof. First, a special case of part 3 of Lemma 3 for the environment with 2× 2 types implies that

there exists a finite 1 < θ̃ < +∞ such that if θH/θL ≥ θ̃, then all IC constraints from θL-types

to θH-types are slack. If in addition λ (θL) ≥ λ (θH), then an IC constraint from some θH-type to

some θL-type must bind, or else the planner could redistribute resources from θH-types towards

θL-types to improve welfare. Then all of our previous arguments apply and the results about

decision wedges and efficiency wedges follow. That the labor wedge on θH-types stays at zero

follows since IC constraints from θL-types to θH-types remain slack. That the labor wedge on

θL-types is positive for finite values of θ̃ follows from the fact that the IC constraint from (θH, βL)-

types and potentially also from (θH, βH)-types binds with respect to θL-types, so a small increase

in τL (θL) from zero results in a second-order welfare loss but a first-order relaxation of θH-types’

incentive compatibility constraints with respect to θL-types. Relaxing this IC constraint facilitates

redistribution toward θL-types, which is desirable under the assumption that λ (θL) ≥ λ (θH).

Proposition 5 shows that if the ability differential is large enough, then we obtain results analo-

gous to those from Proposition 1. Intuitively, under these conditions, high-ability types are treated

as cash cows, while low-ability types are subjected to a strong form of paternalism.
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A.3.4 Additional result: Separation at low ability, bunching at high ability

So far, we have relied on the intuition that the interaction between paternalism and redistribution

leads the optimal allocation to feature bunching of low-abiltiy types across present bias levels, but

separation of high-ability types. Proposition 6 shows that the reverse can be the optimal for very

regressive preferences, that is when the planner attaches much higher weight on high-ability types

than on low-ability types.

Proposition 6. Fix all parameters in the production economy with 2 θ-types, θ ∈ {θL, θH} with 0 < θL <

θH and λ (θL) = 0 < λ (θH), and 2 β-types, 0 ≤ βL < βH = 1. Define θ̃ ≡ θH/θL. Then there exists

a cutoff 1 < θ̃ < +∞ such that if θ̃ ≤ θ̃ < +∞, then a second-best obtains, where θL-types are separated

and θH-types are bunched, with the following savings and labor distortions:

τD (θL, βL) = 0 > τD (θL, βH)

τD (θH, βL) < τD (θH, βH) = 0

τE (θL, βL) > τE (θH) = 0 ≥ τE (θL, βH)

τL (θL, βL) = τL (θL, βH) = 0 > τL (θH)

Proof. Let λ (θL) = 0 < λ (θH). Clearly, for large enough θ̃, all IC constraints are slack from

θH-types to θL-types. Therefore, θH-types must be bunched, or else we could partially convexify

their allocation in utility space to maintain constant welfare, preserve IC, but save resources—a

contradiction. Because for large enough θ̃ and λ (θL) = 0 < λ (θH) we must also have c2 (θH) >

max {c2 (θL, βL) , c2 (θL, βH)}, then only the IC from (θL, βH)-types to θH-types binds, but not that

of (θL, βL)-types to θH-types. Hence, θH-types must be bunched at the first-best savings rate. Fur-

thermore, θL-types must be separated across β-levels since s (θL, βL) ≤ sLF (βL) < sLF (βH) ≤

s (θL, βH) or else we could save resources by pushing the respective type along their indifference

curve toward their laissez-faire savings rate. Note that exactly one of the IC constraints between

θL-types must bind. If non were binding, then (θL, βL)-types would have no binding IC con-

straints, so the planner could take some resources from them without affecting welfare. If both

were binding, then θL-types would have to be bunched at the first-best rate, which cannot be op-

timal. Now, if the IC constraint were to bind from (θL, βH)-types to (θL, βL)-types, then all of

(θL, βL)-types’ IC constraints would be slack—a contradiction. Thus, the IC constraint must binds
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from (θL, βL)-types to (θL, βH)-types, so s (θL, βL) = sLF (βL) and s (θL, βH) > sLF (βH). Finally,

that θL-types’ labor margin is undistorted follows directly from the fact that no IC constraint binds

from θH-types to θL-types, and that θH-types experience an implicit labor subsidy follows from the

fact that some IC constraint from θL-types must bind with respect to θH-types.

A.3.5 Additional result: Threshold relative Pareto weight for uniform ability

In Proposition 4, we fixed productivities such that only high-ability types could work and consid-

ered all possible relative Pareto weights. Complementary to that analysis, the following propo-

sition traces out the range of all possible relative Pareto weights when all agents have the same,

strictly positive ability level.

Proposition 7. Consider the production economy with 2 θ-types, θL = θH > 0, and 2 β-types, 0 ≤ βL <

βH = 1. Define λ̃ ≡ λ (θH) /λ (θL). There are three cases:

1. If λ̃ = 1, then the first-best obtains.

2. If λ̃ < 1, then a second-best obtains, with types (θ, β) ∈ {(θL, βL) , (θL, βH) , (θH, βH)} bunched,

while (θH, βL)-types are separated from the rest, with the following savings and labor distortions:

τD (θL, βL) < τD (θL, βH) = τD (θH, βH) < 0


= τD (θH, βL) if λ̃ = 0

> τD (θH, βL) if λ̃ > 0

τE (θL) = τE (θH, βH) < 0 < τE (θH, βL)

τL (θL) = τL (θH, βL) = τL (θH, βH) = 0

3. If λ̃ > 1, a second-best obtains, with types (θ, β) ∈ {(θL, βH) , (θH, βL) , (θH, βH)} bunched, while

(θL, βL)-types are separated from the rest, with the following savings and labor distortions:

τE (θH, βL) < τD (θL, βH) = τE (θH, βH) < 0


= τD (θL, βL) if λ̃ = +∞

> τD (θL, βL) if λ̃ < +∞

τE (θL, βH) = τE (θH) < 0 < τE (θL, βL)

τL (θL, βL) = τL (θL, βH) = τL (θH) = 0
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Proof. Let θL = θH > 0. All agents’ labor margins must be undistorted, or else one could equate

u′ (·) to v′ (·) /θ in order to maintain period 1 utility constant for all agents but save resources. IC

constraints then imply that for any θ, θ′ ∈ {θL, θH} with θL = θH:

u (c1 (θ, βL))− v
(

y (θ, βL)

θ

)
+ βLδu (c2 (θ, βL)) ≥ u

(
c1
(
θ′, βH

))
− v

(
y (θ′, βH)

θ

)
+ βLδu

(
c2
(
θ′, βH

))
∧ u (c1 (θ, βL))− v

(
y (θ, βL)

θ′

)
+ δu (c2 (θ, βL)) ≤ u

(
c1
(
θ′, βH

))
− v

(
y (θ′, βH)

θ′

)
+ δu

(
c2
(
θ′, βH

))
=⇒ c2 (θ, βL) ≤ c2

(
θ′, βH

)
so either (θ, βL)-types are bunched with (θ′, βH)-types, or else s (θ, βL) < s (θ′, βH). From here, we

proceed in steps:

1. Let θL = θH. If λ (θL) = λ (θH), then the first-best assigns the same allocation to all agents,

making it trivially incentive compatible.

2. Consider the case when λ̃ < 1, so the planner would like to make a net resource transfer

to θL-types. Note that (θL, βH)-types and (θH, βH)-types must be bunched since IC between

them implies V (θL, βH) = V (θH, βH) = V (βH), so the cost of their allocation is the same,

which by strict concavity of consumption utility and strict convexity of labor disutility de-

fines a unique consumption-labor bundle. Similarly, U (θL, βL) = U (θH, βL), since those

types have identical preferences and ability, hence V (θL, βL) ≥ V (θH, βL), or else the plan-

ner could switch their allocations to preserve IC but increase welfare. Combined with IC

from βH-types to βL-types, it follows that V (βH) ≥ V (θL, βL) ≥ V (θH, βL).

Then it must be that V (θL, βL) > V (θH, βL) and/or V (θH, βH) > V (θL, βL), as otherwise we

would have V (βH) = V (θL, βL) = V (θH, βL), which to be optimal requires that all agents

are bunched at the first-best savings rate, but this scenario could be improved upon by first

allowing (θH, βL)-types to dissave along their indifference curve and then transferring those

resources to other agents.

Suppose that V (βH) > V (θL, βL) ≥ V (θH, βL). Then we could convexify the allocation of

βH-types with that of (θL, βL)-types in utility space to preserve IC and save a strictly posi-

tive amount of resources. But this convex combination would also improve welfare because

the Pareto weight on (θL, βL)-types, λ (θL), is strictly greater than the average Pareto weight

on βH-types, but V (βH) > V (θL, βL) to begin with—a contradiction. Hence V (θL, βL) =
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V (βH) at the optimum. Then (θL, βL)-types must be bunched with βH-types, or else s (βH) =

sFB and we could save resources by increase βL-types’ savings rate to move them into the

interior of the budget set along βH-types’ indifferences curves through their respective allo-

cations. Therefore, we have bunching of types (θ, β) ∈ {(θL, βL) , (θL, βH) , (θH, βH)}.

Next, V (βH) = V (θL, βL) > V (θH, βL), or else if V (βH) = V (θL, βL) = V (θH, βL), then

s (θH, βL) < s (βH) = s (θL, βL) = sFB and we could move (θH, βL)-types up along βH-

types’ indifference curve to keep welfare constant and preserve IC but save resources—a

contradiction.

Furthermore, the IC constraint from (θH, βL)-types to the bunched types must bind, or else

we would have s (θH, βL) < s (θ, β) = sFB for (θ, β) ∈ {(θL, βL) , (θL, βH) , (θH, βH)} and we

could increase (θH, βL)-types’ savings rate along the budget constraint to increase welfare

and preserve IC at no cost—a contradiction. The savings rate of the bunched types must be

strictly above the first-best, while that of (θH, βL)-types must be strictly below the first-best,

by the usual argument.

Finally, for λ (θH) > 0 it is optimal to set s (θH, βL) > sLF (βL), or else we could increase their

savings rate along βL-types’ indifference curve to improve welfare to a first order, preserve

IC, but incur only a second-order resource cost.

In summary, the optimal allocation features (c1 (θ, β) , c2 (θ, β) , y (θ, β)) = (c1, c2, y) such

that s (θ, β) = s > sFB and V (θ, β) = V for bunched types (θ, β) ∈ {(θL, βL) , (θL, βH) , (θH, βH)},

but (θH, βL)-types are separated with sLF (βL) ≤ s (θH, βL) < sFB and V (θH, βL) < V.

3. An analogous argument to the proof of part 2 of the proposition shows that if λ̃ > 1, then

there will be bunching across types (θ, β) ∈ {(θL, βH) , (θH, βL) , (θH, βH)}, while (θL, βL)-

types are separated from the rest, with savings and labor distortions satisfying the desired

properties.

Proposition 7 shows that if agents share the same productivity level, then it becomes hard to

separate agents by Pareto weights. A utilitarian planner is, of course, perfectly happy to have

agents bunched across θ-levels as well as across β-levels, which gives rise to the first-best. If the

planner wants to redistribute from some type of agents to another, however, it becomes subopti-
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mal to separate βH-types across θ-levels. As a result, only βL-types of the θ-level that the planner

cares least about are separated and allowed to save below the efficient rate in exchange for re-

sources used for redistribution.

A.3.6 Proof of Lemma 1

Proof. We proceed in steps:

1. Let β > β′. Combining IC constraints of types (θ, β) and (θ, β′) for any θ:

u (c1 (θ, β))− v (y (θ, β) /θ) + βδu (c2 (θ, β)) ≥ u
(
c1
(
θ, β′

))
− v

(
y
(
θ, β′

)
/θ
)
+ βδu

(
c2
(
θ, β′

))
∧ u

(
c1
(
θ, β′

))
− v

(
y
(
θ, β′

)
/θ
)
+ β′δu

(
c2
(
θ, β′

))
≥ u (c1 (θ, β))− v (y (θ, β) /θ) + β′δu (c2 (θ, β))

=⇒
(

β′ − β
)

δu
(
c2
(
θ, β′

))
≥
(

β′ − β
)

δu (c2 (θ, β))

=⇒ u
(
c2
(
θ, β′

))
≤ u (c2 (θ, β))

=⇒ u
(
c1
(
θ, β′

))
− v

(
y
(
θ, β′

)
/θ
)
≥ u (c1 (θ, β))− v (y (θ, β) /θ)

There are two cases. Case 1 is when

u (c2 (θ, β)) = u
(
c2
(
θ, β′

))
and u (c1 (θ, β))− v (y (θ, β) /θ) = u

(
c1
(
θ, β′

))
− v

(
y
(
θ, β′

)
/θ
)

.

Since types (θ, β) and (θ, β′) are indistinguishable in terms of welfare and IC, then their

allocation must cost the same, which by convexity of the problem implies that that their con-

sumption in both periods is the same and that they work the same amount. This proves the

first statement of this part of the lemma. Case 2 is the complement of Case 1 and congruent

to the second statement of this part of the lemma.

For the second part, fix β and θ > θ′, then combining IC constraints between (θ′, β)-types
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and (θ, β)-types:

u
(
c1
(
θ′, β

))
− v

(
y
(
θ′, β

)
/θ′
)
+ βδu

(
c1
(
θ′, β

))
≥ u (c1 (θ, β))− v

(
y (θ, β) /θ′

)
+ βδu (c1 (θ, β))

∧ u
(
c1
(
θ′, β

))
− v

(
y
(
θ′, β

)
/θ
)
+ βδu

(
c1
(
θ′, β

))
≤ u (c1 (θ, β))− v (y (θ, β) /θ) + βδu (c1 (θ, β))

=⇒ v
(
y
(
θ′, β

)
/θ′
)
− v

(
y
(
θ′, β

)
/θ
)
≤ v

(
y (θ, β) /θ′

)
− v (y (θ, β) /θ)

=⇒
[
D
(
θ′
)
− D (θ)

]
ṽ
(
y
(
θ′, β

))
≤
[
D
(
θ′
)
− D (θ)

]
ṽ (y (θ, β))

=⇒ y
(
θ′, β

)
≤ y (θ, β)

where the last line follows from the fact that D (θ′) > D (θ) and the fact that ṽ (·) is a strictly

increasing function.

2. Let

G (b) = [u (c1 (θ, β))− v (y (θ, β) /θ) + bδu (c2 (θ, β))]

−
[
u
(
c1
(
θ′, β′

))
− v

(
y
(
θ′, β′

)
/θ
)
+ bδu

(
c2
(
θ′, β′

))]
for any pair of types (θ, β) and (θ′, β′) with β > β′, where

G′ (b) = δ
[
u (c2 (θ, β))− u

(
c2
(
θ′, β′

))]
≥ 0,

with the inequality following from the above monotonicity result. IC from (θ′, β′) to (θ, β)

implies G (β′) ≤ 0. Then for any β′′ < β′ we have G (β′′) ≤ 0, i.e. (θ′′, β′′) weakly prefers

the allocation of (θ′, β′) over that of (θ, β). Hence, if type (θ′′, β′′) prefers their own alloca-

tion weakly (strictly) over that of type (θ′, β′) and type (θ′, β′) prefers their own allocation

weakly (strictly) over that of type (θ, β), then type (θ′′, β′′) also prefers their own allocation

weakly (strictly) over that of (θ, β), which proves the first statement of this part of the lemma.

Conversely, to show sufficiency of local IC constraints downwards in β-space, let

H (b) =
[
u
(
c1
(
θ′, β′

))
− v

(
y
(
θ′, β′

)
/θ′
)
+ bδu

(
c2
(
θ′, β′

))]
−
[
u
(
c1
(
θ′′, β′′

))
− v

(
y
(
θ′′, β′′

)
/θ′
)
+ bδu

(
c2
(
θ′′, β′′

))]
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for any pair of types (θ′, β′) and (θ′′, β′′) with β′′ < β′, where

H′ (b) = δ
[
u
(
c2
(
θ′, β′

))
− u

(
c2
(
θ′′, β′′

))]
≥ 0

IC from (θ′, β′) to (θ′′, β′′) implies H (β′) ≥ 0. Then for any β > β′ we have H (β) ≥ 0, i.e.

(θ, β) prefers the allocation of (θ′, β′) over that of (θ′′, β′′). Hence, if type (θ, β) prefers their

own allocation weakly (strictly) over that of type (θ′, β′) and type (θ′, β′) prefers their own

allocation weakly (strictly) over that of type (θ′′, β′′), then type (θ, β) also prefers their own

allocation weakly (strictly) over that of (θ′′, β′′), which proves the second statement of this

part of the lemma.

A.3.7 Statement and proof of Lemma 3, leading up to Theorems 1–3

Lemma 3. The following results hold in the general economy with N θ-types and M β-types:

1. If λ (θ) ≥ λ (θ′) for some θ < θ′, then the first-best allocation is not incentive compatible.

2. Agents with β = 1 save weakly above the efficient rate, and strictly above iff. the IC constraint of

some (θ′, β)-type with β′ < 1 binds with respect to their allocation.

3. Define θ̃+n ≡ θn+1/θn. For each n = 1, . . . , N − 1, there exists a cutoff 1 < θ̃+n < +∞ such

that if θ̃+n ≥ θ̃+n , then for any θ′ ≤ θn < θ′′ with λ (θ′) > 0 we have y (θ′, β′) < y (θ′′, β′′) and

T (θ′, β′) > T (θ′′, β′′) for any β′, β′′, and all IC constraints from θ′-types to θ′′-types are slack.

4. Define θ̃−n ≡ θn/θn−1. For each n = 2, . . . , N, there exist cutoffs 1 < θ̃−n < +∞ and 1 < λn < +∞

such that if θ̃−n ≥ θ̃−n and λ (θn) ≥ λn, then for any θ′ < θn ≤ θ′′ we have that all IC constraints

from θ′′-types to θ′-types are slack.

5. For a given θ, if IC constraints from θ-types to θ′-types are slack for all θ′ 6= θ, then θ-types are

bunched across β-levels.

6. For a given θ, if IC constraints from θ′-types to θ-types are slack for all θ′ 6= θ, then θ-types’ labor

margin is undistorted.

Proof. We proceed in steps:
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1. Let θ < θ′ and λ (θ) ≥ λ (θ′), and consider the first-best allocation, then the IC constraint from

(θ′, βM = 1) to θ-types is:

(1 + δ) u
(
c
(
θ′
))
− v

(
y
(
θ′
)

/θ′
)
≥ (1 + δ) u (c (θ))− v

(
y (θ) /θ′

)
> (1 + δ) u (c (θ))− v (y (θ) /θ) ,

which states that V (θ′) > V (θ), contradicting the first-best condition for λ (θ) ≥ λ (θ′).

2. Suppose β = 1 but s (θ, β) < sFB for some θ, then we could increase (θ, β)-types’ savings rate

along the planner’s indifference curve to leave welfare constant, leave slack the IC constraints of all

agents with β′ < 1, but save resources—a contradiction. “=⇒” Suppose s (θ, β) > sFB. If the

IC constraints of all β′-types, for β′ < 1, of were slack with respect to (θ, β)-types’ allocation, then

we could decrease s (θ, β) along βH-types’ indifference curve to maintain constant welfare, preserve

IC, but save resources—a contradiction. “⇐=” Suppose the IC constraint of some (θ′, β′)-types,

for β′ < 1, binds with respect to the allocation of (θ, β)-types. If s (θ, β) = sFB, then we could

increase s (θ, β) along the budget constraint to incur a second-order welfare loss, preserve IC, but get

a first-order welfare gain from relaxing the binding IC—a contradiction.

3. Consider θ′ ≤ θn < θ′′ for some n = 1, . . . , N − 1. From our assumption that limθ′′→+∞ D (θ′′) =

0 it follows that limθ′′→+∞ y (θ′′, β′′) = +∞ is optimal for any β′′. Thus, for fixed θ1, . . . , θn,

a sufficiently high θ′′ guarantees that θ′-types’ perceived disutility level and marginal disutility

of mimicking one of θ′′-types’ labor effort grow arbitrarily large: limθ′′→+∞ v (y (θ′′, β′′) /θ′) =

+∞ and limθ′′→+∞ v′ (y (θ′′, β′′) /θ′) = +∞. At the same time, a fixed level of λ (θ′) > 0

guarantees that optimally, under the same limit, low-ability types’ consumption tends to infinity:

limθ′′→+∞ ct (θ′, β′) = +∞ for any β′ and t = 1, 2. This requires that θ′-types’ labor effort tends to

zero: limθ′′→+∞ y (θ′, β′) = 0 for any β′, or else the planner could reduce θ′-types’ consumption and

lower y (θ′, β′) in tandem to keep welfare constant but save resources. IC constraints for θ′′-types

also ensure that limθ′′→+∞ ct (θ′′, β′′) = +∞ for any β′′ and t = 1, 2. Now define the following

object:

G (θ) ≡
[
u
(
c1
(
θ′, β′

))
− v

(
y
(
θ′, β′

)
/θ′
)
+ β′δu

(
c2
(
θ′, β′

))]
−
[
u
(
c1
(
θ, β′′

))
− v

(
y
(
θ, β′′

)
/θ′
)
+ β′δu

(
c2
(
θ, β′′

))]
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where c1 (·) , c2 (·) , y (·) are all implicit functions of θ. Note that the IC constraint from (θ′, β′)-

types to (θ′′, β′′)-types for any β′, β′′ holds iff. G (θ′′) ≥ 0. We want to show that G (θ′′) > 0

for large enough θ′′. Suppose, by way of contradiction, that G (θ′′) = 0. Now consider an increase

in θ associated with an increase in y (θ, β′′) of size ∆y > 0. For small ∆y, this leads to an in-

crease in G (·) of G′ ≥ − [max {u′ (c1 (θ, β′′)) , β′δu′ (c2 (θ, β′′))} − v′ (y (θ, β′′) /θ′)]. Because

limθ→+∞ u′ (ct (θ, β′′)) = 0 for t = 1, 2 but limθ→+∞ v′ (y (θ, β′′) /θ′) = +∞, for high enough θ

it must be that G′ > 0, so the IC constraint from (θ′, β′)-types to (θ′′, β′′)-types becomes slack. Thus,

by continuity of the optimal allocation in θ′′, due to the maximum theorem (part 3 of Lemma 2), there

exists a finite θ′′ < +∞ such that 0 < y (θ′, β) < y (θ′′, β′) and all IC constraints from θ′-types

to θ′′-types are slack.46 Similarly, since limθ′′→+∞ y (θ′, β′) = 0, then y (θ′, β′) < y (θ′′, β′′) and

T (θ′, β′) > T (θ′′, β′′) for any β′, β′′ for relatively high enough θ′′.

4. Consider θ′ < θn ≤ θ′′ for some n = 2, . . . , N. Let λ (θ1) = . . . = λ (θn−1) = 0 < λ (θn), so the

planner wants to transfer additional resources to θn-types from all θ′-types, for θ′ < θn. Following an

argument similar to that in part 4 of the lemma, for fixed θ1, . . . , θn−1, a sufficiently high θ′′ guaran-

tees that θ′-types’ perceived disutility level and marginal disutility of mimicking one of θ′′-types’ labor

effort grow arbitrarily large: limθ′′→+∞ v (y (θ′′, β′′) /θ′) = +∞ and limθ′′→+∞ v′ (y (θ′′, β′′) /θ′) =

+∞. Thus, for arbitrarily small ε > 0 and δ > 0 there exists θ̃−n such that for θ̃−n ≥ θ̃−n we have

y (θ′, β′) ≥ y (θn, β) − ε for all β, and max {c1 (θ
′, β′) , c2 (θ′, β′)} ≤ δ, since the disutility gap

v (y (θ′, β′) /θ′)− v (y (θn, β) /θ′) grows arbitrarily big for large enough θ̃−n . We conclude that for

λ (θ1) = . . . = λ (θn−1) = 0 < λ (θn) and θ̃−n ≥ θ̃−n , the IC constraint from θn-types must be

slack with respect to all θ′-types, for θ′ < θn. By continuity of the optimal allocation in λ (θ), due

to the maximum theorem (part 3 of Lemma 2), then there exists a cutoff 1 < λn < +∞ such that if

θ̃−n ≥ θ̃−n and λ (θn) ≥ λn, then the desired result obtains.

5. Suppose, by way of contradiction, that the IC constraints from θ-types to θ′-types are slack for all θ′ 6=

θ, but not all θ-types are bunched. Take the original allocation of all θ-types, {(c1 (θ, β) , c2 (θ, β) , y (θ, β))}β∈B,

with associated utilities {(u1 (θ, β) , u2 (θ, β) , v (θ, β))}β∈B. Now consider shifting (θ, β)-types to-

ward a convex combination in utility space between their own allocation and all other θ-types’ allo-

46Note that the maximum theorem applies here because there is no discontinuity in either the objective or the IC
constraints as θ′′ → +∞.
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cations:

(ũ1 (θ, β) , ũ2 (θ, β) , ṽ (θ, β)) =ξ (u1 (θ, β) , u2 (θ, β) , v (θ, β))︸ ︷︷ ︸
(θ, β)-types’ original allocation, depends on β

+ (1− ξ)∑
β′

π
(

β′|θ
) (

u1
(
θ, β′

)
, u2

(
θ, β′

)
, v
(
θ, β′

))
︸ ︷︷ ︸

convex combination, does not depend on β

for some ξ ∈ [0, 1]. Since IC was satisfied before convexifying, then shifting (θ, β)-types from

(u1 (θ, β) , u2 (θ, β) , v (θ, β)) to (ũ1 (θ, β) , ũ2 (θ, β) , ṽ (θ, β)) preserves IC for all types other than

(θ, β). But if only (θ, β)-types were shifted then this could violate their own IC in case some of

their IC constraints with respect to other θ-types were originally slack while some of their other IC

constraints with respect to anyone were originally binding. So we also need to shift agents other

than (θ, β)-types toward the convex combination. Consider some (θ, β′)-type with respect to whom

(θ, β)-types’ IC constraint was initially satisfied:

u1 (θ, β)− v (θ, β) + βu2 (θ, β)︸ ︷︷ ︸
(θ, β)-types’ original allocation, depends on β

≥ u1
(
θ, β′

)
− v

(
θ, β′

)
+ βu2

(
θ, β′

)︸ ︷︷ ︸
(θ, β′)-types’ original allocation, depends on β′

=⇒ ξ [u1 (θ, β)− v (θ, β) + βu2 (θ, β)]︸ ︷︷ ︸
(θ, β)-types’ original allocation, depends on β

+ (1− ξ)∑
β′′

π
(

β′|θ
) [

u1
(
θ, β′′

)
− v

(
θ, β′′

)
+ βu2

(
θ, β′′

)]
︸ ︷︷ ︸

convex combination, does not depend on β or β′

≥ ξ
[
u1
(
θ, β′

)
− v

(
θ, β′

)
+ βu2

(
θ, β′

)]︸ ︷︷ ︸
(θ, β′)-types’ original allocation, depends on β′

+ (1− ξ)∑
β′′

π
(

β′′|θ
) [

u1
(
θ, β′′

)
− v

(
θ, β′′

)
+ βu2

(
θ, β′′

)]
︸ ︷︷ ︸

convex combination, does not depend on β or β′

Therefore, the new, partially convexified allocation also satisfies IC of (θ, β)-types with respect to other

θ-types. With respect to other θ′-types, since θ-types’ IC constraints with respect to all other θ′-types

were slack to begin with, for small enough ξ > 0 they remain slack. Thus IC is preserved. Welfare

is kept constant by construction. But due to strict concavity of u (·) such a (partial) convexification

will save a strictly positive amount of resources—a contradiction.

6. The statement follows directly from the fact that imposing τL (θ) 6= 0 has negative consequences for

efficiency but no incentive effects absent any binding constraints from other θ′-types to θ-types, so

τ (θ) = 0 is optimal.
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A.3.8 Proof of Theorem 1

Proof. We proceed in steps:

1. (i) For high enough θ̃+1 , by part 3 of Lemma 3, all IC constraints of θ1-types are slack with

respect to θ′′-types, for θ′′ > θ1. By part 5 of Lemma 3, then θ1-types are bunched across

β-levels.

(ii) For high enough θ̃+n , by part 3 of Lemma 3, all IC constraints of θn-types are slack with

respect to θ′′-types, for θ′′ > θn. Furthermore, for high enough θ̃−n , and λ (θn), by part 4 of

Lemma 3, also all IC constraints of θn-types are slack with respect to θ′-types, for θ′ < θn. By

part 5 of Lemma 3, then θn-types are bunched across β-levels.

(iii) For high enough θ̃−N and λ (θN), by part 4 of Lemma 3, all IC constraints of θN-types are

slack with respect to θ′-types, for θ′ < θN . By part 5 of Lemma 3, then θN-types are bunched

across β-levels.

2. Suppose λ (θn) = 0. If θn-types were bunched across β-levels, which by part 2 of Lemma3

must occur weakly above the first-best savings rate, then we could allow (θn, β1)-types to

reduce their savings along their indifference curve, thereby maintaining constant welfare,

preserving IC, but saving a strictly positive amount of resources—a contradiction. By an

application of the maximum theorem (part 3 of Lemma 2), we know that for small enough

λ (θn) > 0 the desired result obtains.

A.3.9 Proof of Theorem 2

Proof. We proceed in steps:

1. The first statement follows from an application of part 2 of Lemma 3. For the second state-

ment, by part 2 of Lemma 3, it suffices to show that some β-type, for β < 1, must have an IC

constraint binding with respect to θ1-types. If not, then θ1-types would have s (θ1) = sFB and

since βM-types have s (θ, βM) ≥ sFB (recalling that βM = 1), this implies that c2 (θ, βM) >

c2 (θ1) for all θ. Since λ (θ1) = maxθ {λ (θ)}, then the IC constraint of some (θ, βM)-type, for

some θ, must bind with respect to θ1-types, or else no IC constraints would be binding with

respect to θ1-types and we could transfers resources from all agents towards θ1-types. Then
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IC from (θ, βM)-types to θ1-types together with the fact that c2 (θ, βM) ≥ c1 (θ, βM) implies

that IC from all (θ, β)-types, for β < 1, is slack with respect to (θ, βM)-types. If θ = θ′ for all

θ, θ′ > θ1, then we could transfer resources from all types towards θ1-types to improve wel-

fare—a contradiction. This proves that if θ1-types are bunched and θ ≈ θ′ for all θ, θ′ > θ1,

then s (θ1) > sFB.

2. The first statement follows from part 2 of Lemma 3. The second statement follows from the

fact that for λ (θn) = 0 it is optimal to have (θn, β1)-types save at or below their laissez-faire

savings rate, which lies strictly below the first-best savings rate. If this were not the case,

then the planner could allow (θn, β1)-types to decrease their savings rate along β1-types’

indifference curve to maintain constant welfare, preserve IC, but save a strictly positive

amount of resources—a contradiction. Therefore, λn = 0 always delivers the desired re-

sult. If τD (θn, β1) > 0 initially, then since the optimal allocation is continuous in λ (θ), by an

application of the maximum theorem (part 3 of Lemma 2), we know that for small enough

λ (θn) > 0 the same result obtains.

3. Parts 1 and 1 of the theorem together already imply that τD (θn, βM) = τE (θn, βM) ≤ 0.

Suppose now that τD (θn, βM) = τE (θn, βM) < 0 but that no IC constraint binds from any

(θ, β)-type with respect to type (θn, βM) for β < βM = 1. Then the planner could reduce

(θn, βM)-types’ savings rate along their indifference curve while preserving welfare and IC

but saving a strictly positive amount of resource—a contradiction.

A.3.10 Proof of Theorem 3

Proof. We proceed in steps:

1. (i) Suppose τL (θ1, β) = 1− v′ (y (θ1, β) /θ1) / [u′ (c1 (θ1, β)) θ1] < 0 for some β, so (θ1, β)-

types’ labor is implicitly subsidized. Some IC constraint must bind from θ-types, for θ > θ1,

to θ1-types, or else distorting θ1-types’ labor would not be optimal. Therefore:

u
(
c1
(
θ, β′

))
− v

(
y
(
θ, β′

)
/θ
)
+ β′δu

(
c2
(
θ, β′

))
= u (c1 (θ1, β))− v (y (θ1, β) /θ)+ β′δu (c2 (θ1, β))

for some β, β′. Then the planner could increase τL (θ1, β) toward zero by decreasing y (θ1, β)
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and c1 (θ1, β) in a way to hold fixed (θ1, β)-types’ period 1 utility, save resources, but leave

slack the IC constraints from θ-types to θ1-types. To see this, note that the change in utility

due to a perturbation (dc1, dy) that keeps period 1 utility constant for θ1-types is

dc1 (θ1, β) u′ (c1 (θ1, β))− dy (θ1, β) v′ (y (θ1, β) /θ1) /θ1 = 0

Rearranging, this yields

dc1 (θ1, β)︸ ︷︷ ︸
<0

= dy (θ1, β)︸ ︷︷ ︸
<0

v′ (y (θ1, β) /θ1)

u′ (c1 (θ1, β)) θ1︸ ︷︷ ︸
>1

,

which means that for dc1 (θ1, β) , dy (θ1, β) < 0 we save resources: dc1 (θ1, β) < dy (θ1, β) < 0.

What is the associated change in utility for other agents? Because all θ1-types have the same

preference over period 1 consumption and labor, their IC remains unaffected. For other

θ-types, the perturbation results in the following change in utility:

dc1 (θ1, β) u′ (c1 (θ1, β))− dy (θ1, β) v′ (y (θ1, β) /θ) /θ

< dc1 (θ1, β) u′ (c1 (θ1, β))− dy (θ1, β) v′ (y (θ1, β) /θ1) /θ1 = 0

=⇒ dy (θ1, β) < 0,

where the inequality follows from the fact that dy (θ1, β) < 0 and θ > θ1. Hence, the utility

change for θ-types is negative, so their IC constraint with respect to (θ1, β)-types becomes

slack. In summary, the perturbation has kept welfare constant, preserved IC, but saved

resources—a contradiction. We conclude that τL (θ1, β) ≥ 0 for all β.

(ii) An exactly analogous argument shows that τL (θN , β) ≤ 0 for all β.

2. We prove parts (i) and (ii) jointly. It is readily seen that a zero labor distortion is optimal

when the only relevant IC constraints are within a set of agents that share the same θ. Sup-

pose this were not the case, then the planner could undo the distortion and keep all θ-types’

period 1 utility constant but save resources while preserving IC—a contradiction. The re-

maining argument is symmetric between θ1-types and θN-types, so we will state it only for

the former. Suppose that an IC constraint binds from some θ-type to some (θ1, β)-type but

τ (θ1, β) = 0. Then the planner could decrease y (θ1, β) and c (θ1, β) by a small amount, keep
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resources constant, reduce welfare of (θ1, β)-types to a second order, but relax θ-types’ IC

constraint to a first order, thereby facilitating redistribution and improving welfare to a first

order—a contradiction. Hence if an IC constraint binds from some θ-type to some (θ1, β)-

type, then τ (θ1, β) > 0 is optimal. An analogous argument shows that if an IC constraint

binds from some θ1-type to some (θ, β)-type, then τ (θ, β) < 0 is optimal. Finally, that the

conditions stated in the theorem are sufficient for the above argument to apply follows from

part 2 of Lemma 3.

A.3.11 Proof of Corollary 1

Proof. We proceed in two steps:

1. Suppose that for some θ ∈ Θ the IC constraints are slack with respect to all agents θ′ 6= θ, but

that there exist β, β′ ∈ B such that (c1 (θ, β) , c2 (θ, β) , y (θ, β)) 6= (c1 (θ, β′) , c2 (θ, β′) , y (θ, β′)).

Then a direct application of part 5 of Lemma 3 in Appendix A.3.7, with summation signs re-

placed by integrals, proves the desired result.

2. The proof is exactly identical to that of part 2 of Theorem 1 in Appendix A.3.8.

A.4 Comparison of theoretical findings to most related results in the literature

It is instructive to relate our model to three influential results in the literature. First, the interme-

diate goods taxation result of Atkinson and Stiglitz (1972) implies that under nonlinear income

taxation intertemporal consumption decisions are optimally undistorted even in the presence of

a redistributive motive. Their result can be illustrated in our simple environment with βL =

βH = 1 and θL = 0 < θH. The only relevant IC constraint is then u (c1 (θH))− v (y (θH)) /θH +

δu (c2 (θH)) ≥ u (c1 (θL)) + δu (c2 (θL)). Since agents agree with the planner on the intertem-

poral rate of substitution, we can rewrite the planner’s problem in its dual form as a resource

cost minimization problem for each ability type: minc1,c2 {c1 + c2/R} s.t. u (c1) + δu (c2) = U (θ),

where U (θ) depends on the optimal transfers across ability types subject to IC. Taking first-order

conditions, we get u′ (c1 (θ)) = Rδu′ (c1 (θ)) and therefore τD (θ) = τE (θ) = 0 ∀θ. Hence,

redistribution without paternalism leads to undistorted savings.
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Second, Farhi and Werning (2010) show that with redistribution and a constant level of present

bias the optimal efficiency wedge monotonically increases in ability. Their setup maps into our

simple environment with βL = βH = β < 1 and θ ∈ {θL, θH}. The relevant IC constraint is then

u (c1 (θH)) − v (y (θH)) /θH + βδu (c2 (θH)) ≥ u (c1 (θL)) + βδu (c2 (θL)). Given λ (θL) ≥ λ (θH)

and 0 = y (θL) < y (θH), the IC constraint must bind at the optimum, so more redistribution to-

ward θL-types is desirable. The planner can improve upon the efficient savings rate by increasing

θL-types’ savings rate and decreasing θH-types’ savings rate. Both perturbations incur a second-

order welfare loss but facilitate redistribution by relaxing the relevant IC constraint, which leads

to a first-order net welfare gain. Hence, at the optimum θL-types strictly oversave while θH-type

agents strictly undersave: τE (θL) < 0 < τE (θH). In summary, the interaction between redistribu-

tion and a constant level of present bias yields a savings wedge that is increasing in ability.

Third, Amador et al. (2006)’s model without redistribution but with heterogeneity in present

bias is also relevant to our analysis. They demonstrate that the optimal policy in this framework

takes the form of a minimum savings threshold, which leaves patient agents’ savings undistorted.

Although for a different reason—namely to facilitate redistribution—the optimal policy in our

environment also entails greater dispersion in savings at higher ability levels. A distinguishing

feature of our environment relative to theirs is that at low ability, bunching occurs above the first-

best savings rate, while implied savings rates are differentially distorted at high ability.

Our model combines the two ingredients of redistribution and present bias heterogeneity. The

forces in Atkinson and Stiglitz (1972), Farhi and Werning (2010), and Amador et al. (2006) are also

present in our model and partially characterized by Theorems 1–2. As in Atkinson and Stiglitz

(1972), the savings of agents with β = 1 are undistorted if their allocation is not envied by other

agents with β′ < 1. As in Farhi and Werning (2010), under the conditions stated in Theorem

2, savings of low-ability types are distorted strictly above the first-best, while at least some high-

ability types save strictly below the first-best. And as in Amador et al. (2006), under the conditions

stated in Theorem 1, low-ability types are optimally bunched regardless of their present bias level.

The planner balances the redistributive motive with productive efficiency by picking optimal labor

distortions as characterized in Theorem 3.
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A.5 Proofs for the decentralization

A.5.1 Statement and proof of Proposition 8, leading up to Proposition 2

Our argument follows closely that in Werning (2011), extended to a setting with heterogeneous

present bias levels. We first show that a working life tax function alone can be used to decentralize

an incentive compatible allocation. Let {c1 (θn, βm) , c2 (θn, βm) , y (θn, βm)}n=1,...,N;m=1,...,M be the

solution to the planner’s problem.

Proposition 8. Consider an optimal allocation {c1 (θn, βm) , c2 (θn, βm) , y (θn, βm)}n=1,...,N;m=1,...,M from

the planner’s problem. Then:

1. There exists a working life tax function T1 that implements the optimal allocation as a competitive

equilibrium with one retirement savings account, without the need for retirement benefits, and with-

out retirement savings withdrawal taxes (J = 1, T2 (y, Ra) = 0);

2. There exists a policy (J = 1, T1 (y, a) , b (y)) that implements the optimal allocation as a competitive

equilibrium with one retirement savings account, and without retirement savings withdrawal taxes.

Proof. We proceed in steps:

1. We proceed in a sequence of three Lemmas to prove part 1 of Proposition 8.

Lemma 4. We assume β > 0. For any allocation x? = (c?1 , c?2 , y?) with strictly positive consumption

and for any type (θ, β), there exists an affine tax function

T(x?;θ,β)
1 (y, a) = t0 + tyy + taa

such that

(c?1 , c?2 , y?) ∈ arg max
c1,c2,y,a

u (c1)− v
(y

θ

)
+ βδu (c2)

s.t. c1 +
c2

R
= y− T(x?;θ,β)

1

(
y,

c2

R

)
Proof. Fix a type (θ, β). Then consider the set

Ū (θ, β) = {(c1, c2, y) : U (c1, c2, y; θ, β) ≥ U (c?1 , c?2 , y?; θ, β)}
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Since the utility function is strictly concave and differentiable, by the supporting hyperplane

theorem there exists a unique vector
(
α0, α1, α2, αy

)
such that

α0 + α1c?1 + α2c?2 + αyy? = 0

and

α0 + α1c1 + α2c2 + αyy > 0

for all (c1, c2, y) ∈ Ū (θ, β) / (c?1 , c?2 , y?). Moreover, since β > 0, u′ (·) > 0 and v′ (·) > 0, we

have α1 > 0, α2 > 0 and αy > 0. We can let t0 = − α0
α1

, ta =
Rα2
α1
− 1 and ty =

αy
α1
− 1, then we

can write the hyperplane found above equivalently as

c1 +
c2

R
= y− t0 − tyy− ta

c2

R

and since the hyperplane is separating, any allocation with higher utility is outside this

budget set.

Lemma 5. Assume β1 > 0. Consider an incentive compatible allocation A, and a fixed type (θ, β).

Then there exists a piecewise linear tax function T(A;θ,β)
1 (y, a) such that if we denote the allocation

for each type by

x
(
θ′, β′

)
=
(
c1
(
θ′, β′

)
, c2
(
θ′, β′

)
, y
(
θ′, β′

))
for all (θ′, β′). Then there exists a piecewise linear function T(θ,β)

1 (y, a) such that

x (θ, β) ∈ arg max
c1,c2,y,a

u (c1)− v
(y

θ

)
+ βδu (c2)

s.t. c1 +
c2

R
= y− T(θ,β)

1

(
y,

c2

R

)
and

U
(
x (θ, β) ; θ′, β′

)
≥ max

c1,c2,y,a
u (c1)− v

( y
θ′

)
+ β′δu (c2)

s.t. c1 +
c2

R
= y− T(θ,β)

1

(
y,

c2

R

)
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for all (θ′, β′) 6= (θ, β). Moreover we can write this function as

T1 (y, a) = max
i=1,...,N×M

{
t0
i + ty

i y + ta
i a
}

Proof. Fix the type (θ, β). Then from Lemma 4 we have that there exists a tax function de-

fined by

t (θ, β) =
(
t0 (θ, β) , ty (θ, β) , ta (θ, β)

)
such that the best choice for type (θ, β) on the associated budget set is

x (θ, β) = (c1 (θ, β) , c2 (θ, β) , y (θ, β))

Now we want to find analogous tax functions for types (θ′, β′) 6= (θ, β) that also contain

x (θ, β) but do not contain any allocation with higher utility than x (θ′, β′) from the point of

view of type (θ′, β′). This is to say that type (θ′, β′) weakly prefers their own allocation to

any allocation in this alternative budget set that contains x (θ, β).

Fix a type (θ′, β′). There are two cases depending on whether the incentive constraint of

(θ′, β′) to (θ, β) is binding or not. Let us first consider the case in which this incentive con-

straint is binding, that is we have

U
(
x (θ, β) ; θ′, β′

)
= U

(
x
(
θ′, β′

)
; θ′, β′

)
In this case, from Lemma 4 there exists t (θ′, β′) with associated tax function that makes

x (θ, β) the optimal choice within the respective budget set. Therefore, by transitivity agent

(θ′, β′) weakly prefers x (θ′, β′) to any available choice in this budget set. Lastly let us con-

sider the case of a strictly slack incentive constraint, that is

U
(
x (θ, β) ; θ′, β′

)
< U

(
x
(
θ′, β′

)
; θ′, β′

)
There are two sub-cases in this scenario. On one hand, if under the tax function associ-

ated with t (θ, β) there is no point preferable to x (θ′, β′) to type (θ′, β′) then we can just set

t (θ′, β′) = t (θ, β). On the other hand, if there is such a point in the budget set associated

with t (θ, β), then we have to choose a different tax function for type (θ′, β′). From Lemma
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4 there exists t̃ (θ′, β′) such that in the budget set associated the optimal choice for a type

(θ′, β′) agent is x (θ, β). We could use this tax function for type (θ′, β′), but then the local

behavior of taxes around x (θ, β) might be affected even though the incentive constraint is

strictly slack. But given that the incentive constraint is strictly slack, we can reduce t̃0 (θ′, β′)

up to a point in which the associated budget set has a point that makes agent (θ′, β′) indiffer-

ent between their own allocation and the best option in this budget set. Denote by t (θ′, β′)

this respective tax function.

Notice that the budget sets induced by t (θ′, β′) and t (θ, β) are generally different, but all of

them contain x (θ, β). Therefore their intersection contains x (θ, β) and there is no choice in

their intersection that is better than the allocations designed for types (θ, β) or (θ′, β′). But

the tax function defining this intersection is given by

T1 (y, a) = max
(θ′′,β′′)

{
t0
(
θ′′, β′′

)
+ ty

(
θ′′, β′′

)
y + ta

(
θ′′, β′′

)
a
}

which concludes the proof.

Lemma 6. Assume β1 > 0. Then for any incentive compatible allocation A, there exists a piecewise

linear tax function of the form

T1 (y, a) = min
i

max
j

{
ti,j + ty

i,jy + ta
i,ja
}

that implements this allocation as a competitive equilibrium with b (y) = 0 and T2 (Ra) = 0.

Proof. From Lemma 5 it follows that for each type (θ, β) there exists a function

T̂(θ,β)
1 (y, a) = max

j

{
tj + ty

j y + ta
j a
}

such that x (θ, β) belongs to the budget set associated with this tax function and no other

type would strictly prefer to deviate to an allocation in this budget set. Therefore, if we take

the union of these budget sets, then there is no other point in this union that agents would

strictly prefer to the points determined by A. But this union is defined by the tax function

T1 (y, a) = min
(θ,β)

T̂(θ,β)
1 (y, a)

85



which concludes the proof.

Together, Lemmata 4–6 prove the statement that forms part 1 of the proposition.

2. Recall from part 1 of Lemma 1 that y (θn, β1) is weakly increasing in n. Define a strictly

increasing sequence yk for k = 1, . . . , K of the K unique values that y (θn, β1) takes for n =

1, . . . , N. Then for each k define

c2,k = min
n

{
c2 (θn, β1)

∣∣y (θn, β1) = yk
}

and

bk (y) = c2,k−1 +

(
c2,k − c2,k−1

yk − yk−1

)
(y− yk−1)

so that bk (yk) = c2,k and bk (yk−1) = c2,k−1.47 With that definition, we can finally define b (y)

as

b (y) =


bk (y) y ∈ (yk−1, yk] , k = 2, . . . , K

b1 (y) y ∈ [0, y1]

bK (yK) y > yK

Recall that in our equilibrium definition we have aj ≥ 0, therefore we need to check that

c2 (θ, β) ≥ b (y (θ, β)) for all (θ, β). We can always add nodes to b (y) to make sure this is

true. In fact notice that if c2 (θ′, β′) < b (y (θ′, β′)), then we can set y (θ′, β′) as another node

j′ with

c2,j′ = min
θ,β

{
c2 (θ, β)

∣∣y (θ, β) = yj′
}

Once we add this node we obtain c2 (θ′, β′) ≥ b (y (θ′, β′)). Since the number of types is

finite, we can add nodes to b (y) until c2 (θ, β) ≥ b (y (θ, β)) holds for all (θ, β). From part

(1), there exists T̃1 (y, a) that implements the desired allocation as a competitive equilibrium

with b (y) = 0. Define

T1 (y, a) = T̃1

(
y, a +

b (y)
R

)
+

b (y)
R

(9)

We need to show that the budget set under (T1, b) is equivalent to the budget set under T̃1.

47We set c2,0 = 0 and y0 = 0 for the definition of b1 (y).
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A vector (c1, c2, y) is in the new budget set if only if there exists a ≥ 0 such that

c1 + a = y− T1 (y, a)

c2 = b (y) + Ra

But since we can let ã = a + b(y)
R , the above holds if and only if

c1 + ã = y− T̃1 (y, ã)

c2 = Rã

Notice that since a ≥ 0 and b (y) ≥ 0, we have ã ≥ 0. This concludes the proof of part (2).

A.5.2 Proof of Proposition 2

Proof. We build upon the implementation in part 2 of Proposition 8 to obtain a policy that imple-

ments the original allocation with the desired properties. Indeed, from part 2, there exists (T1, b)

that implements this allocation. Let us define

ã (θn, βm) =
c2 (θn, βm)− b (y (θn, βm))

R

This is how much an agent of type (θn, βm) saves in this decentralization. Let us consider the

decision wedge

tn,m = 1− u′ (c1 (θn, βm))

Rβmδu′ (c2 (θn, βm))

then let us define the intermediary object

τn,m (y) = tn−1,m +

(
tn,m − tn−1,m

yn,m − yn−1,m

)
(y− yn−1,m)

where yn,m = y (θn, βm) and τ1,m (y) = t1,my/y1,m. Therefore, in a system with as many savings

accounts as there are β-types, labeled m = 1, . . . , M, we can write the marginal tax on withdrawals
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from account m as

τm (y) =


τ1,m (y) y ≤ y1,m

τn,m (y) y ∈ (yn−1,m, yn,m] , n = 2, . . . , N

τN,m (yN,m) y > yN,m

Given this marginal tax on account m we can then construct the contribution limits recursively.

For m = 1, we have second period consumption of type (θn, β1) given by

c2 (θn, β1) = b (y (θn, β1)) + (1− tn,1) Rā1 (yn,1)

We can then define recursively, starting with m = 1:

αn,1 =
1

R (1− tn,1)
[c2 (θn, β1)− b (yn,1)]

Since by construction we have c2 (θn, β1) ≥ b (yn,1), then αn,1 ≥ 0. So that for y ∈ (yn−1,1, yn,1] we

have the linear piece

ān,1 (y) = αn−1,1 +

(
αn,1 − αn−1,1

yn,1 − yn−1,1

)
(y− yn−1,1)

where a1,1 (y) = α1,1y/y1,1. We can then combine these into a piecewise linear function giving

account contribution limits:This completes the description of savings limits for account m = 1.

Now assume that the account limits are defined for all accounts lower than index m. For this m,

we have second period consumption of type (θn, βm) given by

c2 (θn, βm) = b (y (θn, βm)) + (1− tn,m) Rα̃n,m +
m−1

∑
k=1

(1− τk (yn,m)) Rāk (yn,m)

Then for account m, we can define

α̃n,m =
c2 (θn, βm)− b (y (θn, βm))−∑m−1

k=1 (1− τk (yn,m)) Rāk (yn,m)

(1− tn,m) R

If type (θn, βm) does not save additional funds in account m at the solution to problem, then α̃n,m ≤

0 and the account limit will be set to zero, and to a positive level otherwise: αn,m = max {α̃n,m, 0} ≥
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0. Then we can define the segments of the account limits as

ān,m (y) = αn−1,m +

(
αn,m − αn−1,m

yn,m − yn−1,m

)
(y− yn−1,m)

We end up with an account contribution limit function that is piecewise linear in income:

ām (y) =


ā1,m (y) y ≤ y1,m

ān,m (y) y ∈ (yn−1,m, yn,m] , n = 1, . . . , N

āN,m (yN,m) y > yN,m

This completes the construction of savings account caps and taxes. We now need to construct the

tax function during working life that makes the budget set with savings accounts and marginal

distribution taxes equivalent to the budget set available in part 2. Note that in part 2 we have

c2 = b (y) + Rã

Therefore for the same c2 and b (y) we must have

ã =
M(y,ã)

∑
m=1

(1− τm (y)) am

where

M (y, ã) = min

{
K :

M(y,ã)

∑
m=1

(1− τm (y)) ām (y) ≥ ã

}
,

imposing that agents use accounts m′ = 1, . . . , m − 1 up to their respective caps whenever they

save positive amounts in account m. Given contributions have to satisfy the account order, we can

solve for am as a function of ã and y

am (y, ã) =


ām (y) if m < M (y, ã)

1
1−τm(y)

[
ã−∑

M(y,ã)−1
k=1 (1− τk (y)) āk (y)

]
if m = M (y, ã)

0 if m > M (y, ã)

The essential thing to show is that this am (y, ã) yields a bijective relation between consumption

in periods 1 and 2 in the decentralized economy compared to that in the planner’s solution. We
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show that a period 1 tax schedule T1

(
y, (am)

M
m=1

)
exists that achieves this. By construction we

have am (y, ã) ≥ 0. From part 2 we also have

c1 + ã = y− T̃1 (y, ã)

where T̃1 (y, ã) is the period 1 tax as a function of income and savings from equation 9 in part 2 of

Proposition 8. Since ã = ∑M
m=1 (1− τm (y)) am from above, we have

c1 +
M

∑
m=1

(1− τm (y)) am = y− T̃1

(
y,

M

∑
m=1

(1− τm (y)) am

)

So that

c1 +
M

∑
m=1

am = y− T1

(
y, (am)

M
m=1

)
where

T1

(
y, (am)

M
m=1

)
= T̃1

(
y,

M

∑
m=1

(1− τm (y)) am

)
−

M

∑
m=1

τm (y) am (10)

Finally, we define T2 by

T2

(
y, {am}M

m=1

)
=

M

∑
m=1

τm (y) Ram (11)

Then with period 1 tax function given by equation (10) and period 2 savings taxes aggregated

across accounts given by equation (11), we obtain the identical budget set as in part 2 of Proposi-

tion 8. Therefore, this set of policies implements the optimal allocation A∗.

A.5.3 Proof of Corollary 2

Proof. That a system of retirement savings policies decentralizes the optimal allocation follows

directly from Proposition 2. Under the stated conditions, it follows that θ1-types are bunched,

while θn-types are separated across β-levels (Theorem 1). Since bunched θ1-types all have the same

income y, they receive the same old-age benefits b (y). Therefore, their allocation is independent

of β and there is no need or desire for them to use any of the voluntary savings accounts. Similarly,

since separated θn-types have differentially distorted savings margins (Theorem 2), then the old-

age benefits schedule b (y) by itself is insufficient to implement the optimum. Therefore, agents

that share the same ability level θn must use different voluntary retirement savings accounts.
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A.6 Multi-period life-cycle model

A.6.1 Model setup

In this section, we present a multi-period life-cycle model with stochastic earnings ability and self-

control shocks. We characterize the efficient dynamic provision of insurance and commitment

in this environment. Extending our results from the 2-period model, we show that a trade-off

between providing insurance and providing commitment arises for agents who experience high

income shocks, but not for agents with low income shocks. As a result, commitment is optimally

provided only at low income levels.

In the following setup, we assume hyperbolic preferences shocks over the life cycle. While re-

lated work uses off-equilibrium path allocations to separate different degrees of time-inconsistency

(Esteban and Miyagawa, 2004; Galperti, 2015; Yu, 2016), we effectively sidestep these intricacies

by introducing stochastic time inconsistency levels. While studying a model with constant present

bias is of great theoretical interest, our setup simplifies the analysis significantly and has two fur-

ther advantages. First, our setup allows for changes in individuals’ present bias over the life cycle,

such as myopia that decreases with age. Second, our setup is robust to small stochastic perturba-

tions in the hyperbolic discount factor, which the other setup abstracts from in order to generate

perfectly persistent private information.

The economy is composed of a measure one of agents whose life cycle consists of T ≥ 3

periods, divided into Tw periods of working life and T − Tw periods of retirement.48 At each

t = 1, . . . , Tw, agents face an earnings ability shock θt ∈ Θ = {θ1, . . . , θN}, where θ1 < . . . < θN ,

with transition probabilities ρt+1 (θt+1|θt). We allow transition probabilities to vary over the life-

cycle and and assume full support over Θ at all t and for all θt ∈ Θ. We also assume that ρt+1 is

stochastically ordered so that higher levels of θt imply a distribution that first order stochastically

dominates a distribution for lower levels of θt. With a slight abuse of notation, we denote by

ρ1 (θ1) the probability distribution over the initial earnings ability θ1 and assume that it also has

full support.

Furthermore, At each period t = 1, . . . , T − 1 each agent faces a hyperbolic self-control shock

βt ∈ B = {β1, . . . , βM}, where β1 < . . . < βM, which we assume to be independently distributed

both over time and from earnings ability shocks. We allow the probability distribution of self-

48We implicitly assume that retirement lasts for at least one period.
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control shocks at period t, denoted γt (βt), to vary over the life-cycle as long as there is full support.

We denote an agent’s joint type by ht = (βt, θt) ∈ Ht and its distribution at time t by πt. We

mark by superscript t the history of types realized until period t, so that ht = (h1, . . . , ht) ∈ Ht.

We let πt denote the probability distribution over Ht.

The period payoff during working life periods t = 1, . . . , Tw over consumption and obtained

earnings is given by uW (ct, yt; ht) = u (ct)− v (yt) /θt, where we assume u′ > 0, u′′ < 0, v′ > 0,

v′ (0) = 0, v′′ > 0, and v (0) = 0. During retirement periods t = Tw + 1, . . . , T, the agent is

retired and consumes without working (yt = 0), with period payoff given by uR (ct) = u (ct). The

generalized period payoff function is then

ut (ct, yt; ht) =


uW (ct, yt; ht) for t ≤ Tw

uR (ct) for t > Tw

A planner cannot directly observe agents’ types but designs an incentive compatible and feasi-

ble mechanism that maximizes social welfare. As previously, we apply the Revelation Principle to

characterize implementable allocations in this environment.49 In this environment, an allocation

can be written as a sequence of functions (ct, yt) : Ht → R2
+ for each t. We define an allocation

as A = (c, y), where c and y denote the entire set of history-dependent consumption and labor

allocations. The planner evaluates welfare according to the period 0 preferences, or experienced

utility, of agents in the economy:

Wt (c, y) =
T

∑
s=1

δs−1 ∑
hs

πs (hs) us (cs (hs) , ys (hs) ; hs) (12)

Following a large strand in the behavioral public finance literature, we interpret this as the prob-

lem of an agent at period 0 seeking the optimal level of insurance for earnings ability shocks and

a commitment device for self-control shocks over the life-cycle. Therefore, the efficient allocation

could be implemented either by the government or by competitive private insurance companies,

as long as both are able to enforce the contract.

Agents, once they reach the decision stage, have a present-biased evaluation of life-time utility,

49We show below that it suffices to consider mechanisms in which at each period agent report their current type
instead of their whole history of types. This result follows from our assumption that hyperbolic preference shocks are
independent over time, and differs from the approach taken in Galperti (2015) and Yu (2016).
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Ut (c, y; hτ), according to:

ut
(
ct
(
ht) , yt

(
ht) ; θt

)
+ βτ

T

∑
s=t+1

δs−t ∑
hs

πs (hs) us (cs (hs) , ys (hs) ; θs)

where we assume agents to be sophisticated in that they expect their future selves to be subject

to some degree of present bias. Hence, there is dynamic disagreement between different period

selves of the same (β, θ)-type as in Laibson (1997). A contract satisfies IC at time t if

ht = arg max
h′t

Ut
(
c, y; h′t

)
(13)

A contract is feasible at time t if

T

∑
s=t

1
Rs−1 ∑

hs

π (hs) [ys (hs)− cs (hs)] ≥ 0 (14)

An allocation is implementable if ∀t it satisfies IC (13) and feasibility (14).

A.6.2 General results

We now characterize the planner’s problem solution, which provides efficient insurance against

earnings ability shocks and self-control shocks.

Bunching and separation. Our first result shows that in the dynamic economy full commitment

is provided only to parts of the population.

Theorem 4. Fix {θ2, . . . , θN−1} and {β2, . . . , βM}. Then there exist θ > 0, θ < +∞, and β > 0 such

that at the solution to the planner’s problem:

1. If θ1 < θ, then for any t = 1, . . . , T− 1 and history ht−1 agents with types
{(

ht−1, (θ1, β)
)

: β ∈ B
}

are all assigned the same level of consumption and earnings in period t and are assigned the same
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continuation allocation for all future periods:

ct

(
ht−1, (θ1, β)

)
= ct

(
ht−1,

(
θ1, β′

))
yt

(
ht−1, (θ1, β)

)
= yt

(
ht−1,

(
θ1, β′

))
ct+s

(
ht−1, (θ1, β) , (ht+1, . . . , ht+s)

)
= ct+s

(
ht−1,

(
θ1, β′

)
, (ht+1, . . . , ht+s)

)
yt+s

(
ht−1, (θ1, β) , (ht+1, . . . , ht+s)

)
= yt+s

(
ht−1,

(
θ1, β′

)
, (ht+1, . . . , ht+s)

)
for all β, β′ ∈ B and for all s ≥ 1;

2. If θN > θ and β1 ≤ β, then for any t = 1, . . . , T − 1 and history ht−1 not all agents with types{(
ht−1, (θN , β)

)
: β ∈ B

}
are assigned the same current allocation and continuation allocations.

Proof. See Appendix A.6.5.

The planner values insurance against both earnings ability shocks and self-control shocks. The-

orem 4 shows that it is efficient to provide perfect commitment at low earnings but not at high

earnings. This result is due to the interaction between the planner’s two motives. Agents value

flexibility after the realization of a self-control shock, demanding more immediate gratification

than their prior selves’ plans. Without an insurance motive, the planner would provide no such

flexibility and instead provide commitment to all agents.50 However, the planner also pursues

the motive of consumption insurance, which in the presence of asymmetric information will be

imperfectly provided. Therefore, the planner can charge high-ability agents for flexibility and use

the proceeds to improve insurance against labor earnings shocks accrued to lower-ability agents.

At low earnings, such a trade is feasible but not optimal since low-ability agents are unable to

compensate the planner for the welfare loss associated with flexibility.

Optimal savings distortions. Our second result characterizes the distortions of time-inconsistent

agents in this dynamic environment. A natural measure of distortions is the wedge relative to a

path of time-consistent intertemporal consumption decisions. Without self-control shocks (β = 1),

50For example, this is the case when θt = θ0 for all agents in the economy at all histories.
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efficient insurance implies that intertemporal choices satisfy an inverse Euler equation:51

∑
θt+1∈Θt+1

ρt+1 (θt+1|θt)
u′
(
ct
(
θt))

δRu′ (ct+1 (θt, θt+1))
= 1

Whenever this intertemporal condition holds, the detrimental effects of time-inconsistency have

been completely dealt with. We can define the time inconsistency wedge in our economy for agents

with history ht as

τ
(
ht) = ∑

ht+1∈Ht+1

πt+1
(
ht+1|ht) u′

(
ct
(
ht))

δRu′ (ct+1 (ht, ht+1))
− 1

If agents face self-control problems when left on their own absent commitment devices, this would

be represented as a negative time consistency wedge. Our second main result extends our charac-

terization of savings wedges to our dynamic economy.

Theorem 5. Fix {θ2, . . . , θN−1} and {β2, . . . , βM}. Then there exist scalars θ > 0, θ < +∞, and β > 0

such that at the solution to the planner’s problem:

1. If θ1 ≤ θ, then for any t = 1, . . . , T − 1 and history ht−1 : τ
(
ht−1, (θ1, β)

)
≥ 0 for all β ∈ B;

2. If θN > θ and β1 ≤ β, then for any t = 1, . . . , T − 1 and history ht−1:

• τ
(
ht−1, (θN , βM)

)
≥ 0;

• τ
(
ht−1, (θN , β1)

)
< 0.

Proof. See Appendix A.6.6.

Savings distortions optimally vary throughout the income distribution. For low enough pro-

ductivity types, the planner fully undoes low-ability types’ self-control problem, and at times

may induce savings above the first-best rate (τ
(
ht) = 0) as a screening device. On the other hand,

high-ability types are differentially distorted, with the most patient agents (βM = 1) weakly over-

saving, but the lowest ability types strictly under-saving relative to the efficient level. Thus, not

only does the planner provide imperfect commitment at higher ability levels, but it is also optimal

to offer greater choice in savings for this part of the population.

51For applications in the context of optimal taxation see Rogerson (1985), Golosov et al. (2003), Golosov and Tsyvinski
(2006), Farhi and Werning (2012), Farhi and Werning (2013b), Stantcheva (2015), and Golosov et al. (2016).
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A.6.3 Proofs of general results in multi-period life-cycle model

Problem reformulation. Types are unobservable and we rely on the Revelation Principle to char-

acterize implementable allocations. To this end, we define an allocation as a pair of functions

(ct, yt) : H1 × · · · × Ht−1 × Ht → R2
+ for each period t that assigns a consumption level and

an earnings level for any reported history ht ∈ Ht at period t and any past reported history

r̂t−1 =
(
h1, . . . , ht−1) ∈ H1 × · · · × Ht−1. A strategy for an agent is a sequence of reporting

strategies σt : H1 × · · · × Ht−1 × Ht → Ht. The overall payoff after history ht, previous re-

ports r̂t−1 =
(
r1, . . . , rt−1) ∈ H1 × · · · × Ht−1 and following a strategy (σs)

T
s=t from period t on

is Ut

(
r̂t−1, ht, (σs)

T
s=t

)
, given by:

u
(

ct

(
r̂t−1, σt

(
r̂t−1, ht

)))
−

v
(
yt
(
r̂t−1, σt

(
r̂t−1, ht)))

θt

+ βt

T

∑
s=t+1

δs−t ∑
hs�ht

πs (hs|θt)

[
u
(

cs

(
σs

(
r̂s−1, hs

)))
−

v
(
ys
(
σs
(
r̂s−1, hs)))

θs

]

Note that preferences are hyperbolic with quasi-geometric discount factor βt in period t.52

We assume that agents are sophisticated in that they take into account their present bias prob-

lems in the future. Define the truth-telling strategy as σTruth
t

(
r̂t−1, ht) = ht. An allocation satisfies

IC if truth-telling is a sub-game perfect equilibrium of the game played between the selves in dif-

ferent periods, so that after any history of reports r̂t−1 ∈ H1 × · · · × Ht−1 and any realized type

ht−1 truth-telling is the optimal one-shot deviation:

σTruth
t ∈ arg max

σ′t
Ut

(
r̂t−1, ht,

(
σ′t ,
(

σTruth
s

)T

s=t+1

))

Taking into account that future selves will consider it optimal to report the truth, reporting the

truth in period t after history ht is optimal given any reports history r̂t−1. Since this is a Bayesian

game with positive probabilities at all nodes of the game, the Revelation Principle guarantees that

the outcome of any mechanism can be obtained using the allocations defined above.

Our assumptions of full support over types, the Markovian nature of the stochastic process

over types and the planner’s objective allow us to further simplify IC constraints in this environ-

ment. The Markovian structure implies that, conditional on r̂t−1, the preferences after any history

52We denote by hs � ht the continuation histories at times s > t that are consistent with ht.
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h̃t ∈ Ht with ht = h̃t have the same ordering as the preferences after history ht. As we will

show below, the planner’s objective function is strictly concave, which implies that the optimal

allocation in period t treats agents of type h̃t and ht identically. Hence we can write

ct+s

(
r̂t−1, ht, . . . , hs

)
= ct+s

(
r̂t−1, ht, . . . , hs

)
yt+s

(
r̂t−1, ht, . . . , hs

)
= yt+s

(
r̂t−1, ht, . . . , hs

)
Using this argument recursively for all periods s > t we obtain

ct+s

(
r̂t−1, ht, . . . , hs

)
= ct+s (r̂1, . . . , r̂t−1, ht, . . . , hs)

yt+s

(
r̂t−1, ht, . . . , hs

)
= yt+s (r̂1, . . . , r̂t−1, ht, . . . , hs)

where we used that r̂1, . . . , r̂t are optimal reports for an agent with that history of types. Therefore

it is without loss of generality that the mechanism requires only reporting of the current period

type and not of the full history of types.53

From here onward, we denote by
(
ut
(
ht) , vt

(
ht)) the intra-period allocation in utility space.

A.6.4 Precursory results

The following result provides a useful bound on deviation utilities in the dynamic economy.

Lemma 7. Given {θ2, . . . , θN}, there is θ > 0 such that if θ1 < θ then at the solution to the planner’s

problem we have

Ut

(
ht−1, (β, θ1)

)
︸ ︷︷ ︸

truthful report

≥ Ut

((
β′, θ1

)
|ht−1, (β, θ1)

)
︸ ︷︷ ︸

deviation in β

> Ut

((
β′, θ′

)
|ht−1, (β, θ1)

)
︸ ︷︷ ︸

deviation in θ

and

vt

(
ht−1,

(
β′, θ′

))
> vt

(
ht−1, (β, θ1)

)
for all θ′ > θ1, for all β′ 6= β, for all ht−1, and for all t = 1, . . . , T.

53This characterization implies that only equilibrium path allocations are important for IC (Fernandes and Phelan,
2000; Kapička, 2013). This argument can break down in problems with perfectly correlated types, demonstrated by
an example in Battaglini and Lamba (2018). The assumption of full support of βt for all t and histories is crucial for
this characterization to be valid. If there is no full support in βt, then it is possible to design a mechanism in which
off-equilibrium path allocations relax incentive constraints on the equilibrium path, as in Galperti (2015) and Yu (2016).
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Proof. The first, weak inequality always holds by IC. The following argument justifies the second,

strict inequality. If θ1 = 0, then yt
(
ht−1, (β, θ1)

)
= 0 for all β ∈ B and all ht−1. For any θ′ > 0, by

zero marginal disutility around zero labor supply we have yt
(
ht−1, (β′, θ′)

)
> 0, therefore

Ut

((
β′, θ′

)
|ht−1, (β, θ1)

)
= −∞

which proves the second, strict inequality. By an application of the maximum theorem (part 3

of Lemma 2), following an argument essentially identical to that in part 3 of Lemma 3, for fixed

{θ2, θ3, . . . , θN} there exists θ > 0 such that for all θ1 ≤ θ the desired inequality holds.

Lemma 8. Given {θ1, . . . , θN−1}, there exists θ < +∞ such that if θN > θ then at the solution to the

planner’s problem we have

Ut

(
ht−1,

(
β′, θ′

))
> Ut

(
(β, θN) |ht−1,

(
β′, θ′

))
and

vt

(
ht−1, (β, θN)

)
> vt

(
ht−1,

(
β′, θ′

))
for all ht−1 , for all θ′ ∈ {θ1, . . . , θN−1}, and for all β, β′ ∈ B.

Proof. The proof is analogous to that of Lemma 7 but for the highest-productivity level relative to

any lower productivity type. Again, the proof relies on an application of the maximum theorem

(part 3 of Lemma 2), by which the planner’s solution is continuous in θ > 0.

Lemma 9. Given {θ1, . . . , θN−1} and {β2, . . . , βM}, there exists θ < +∞ and β > 0 such that if θN > θ

and β1 < β then at the solution to the planner’s problem we have ut
(
ht−1, (β1, θN)

)
> ut

(
ht−1, (β, θ)

)
for all ht−1, for all θ ∈ {θ1, . . . , θN−1}, for all β ∈ B and for all t = 1, . . . , T − 1.

Proof. From Lemma 8, we know that vt
(
ht−1, (β1, θN)

)
> vt

(
ht−1, (β, θ)

)
. Note that if β1 = 0, IC

requires ut
(
ht−1, (β1, θN)

)
> ut

(
ht−1, (β, θ)

)
. By an application of the maximum theorem (part 3

of Lemma 2), the solution to this problem is continuous in β ∈ [0, 1], so there exists β
t
> 0 such

that this inequality remains strict for all β1 < β
t
. Since T < ∞ we can pick a uniform level of

β = mint

{
β

t

}
> 0 that satisfies the desired property.
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A.6.5 Proof of Theorem 4

Part 1.

Proof. Consider the problem in terms of utility levels from consumption and disutility levels from

working. Assume by way of contradiction that for a fixed t < T and fixed history ht−1 ∈ Ht−1 and

for β, β′ ∈ Bt the solution to the planner’s problem features

ut

(
ht−1, (β, θ1)

)
> ut

(
ht−1,

(
β′, θ1

))
Consider a new allocation that is a convex combination between between

(
ht−1, (β∗, θ1)

)
-types’

allocations for all β∗ ∈ B and that is offered after history ht−1:

ũt

(
ht−1, (β∗, θ1) , ht+1, . . . , hT

)
= ∑

b∈B

πt
(
(b, θ1) |ht−1)

∑b′∈B πt ((b′, θ1) |ht−1)
ut (·)

ṽt

(
ht−1, (β∗, θ1) , ht+1, . . . , hT

)
= ∑

b∈B

πt
(
(b, θ1) |ht−1)

∑b′∈B πt ((b′, θ1) |ht−1)
vt (·)

By Lemma (7), there exists θ > 0 such that for θ1 < θ we have

Ut

(
ht−1, (β, θ1)

)
≥ Ut

(
(b, θ1) |ht−1, (β, θ1)

)
> Ut

((
β′′, θ′

)
|ht−1, (β, θ1)

)
for all θ′ > θ1 and for all β′′ ∈ B. Therefore, IC constraints at nodes

(
ht−1, (b, θ1)

)
are satisfied

for all b ∈ B. From linearity of the objective function, IC constraints of
(
ht−1, (b, θ)

)
-types are also

satisfied for all θ > θ1 and all b ∈ B. Therefore this perturbation preserves IC at period t. Further-

more, from the planner’s point of view the continuation utility at ht−1 remains unchanged under

this perturbation. Therefore, welfare is unchanged, while for agents with hyperbolic preferences

all IC constraints for period s ≤ t− 1 are satisfied. For histories hs � ht−1 for s > t, taking a con-

vex combination leaves incentives unchanged because the objective is linear. But C (u) = u−1 (u)

is strictly convex, so for ut
(
ht−1, (β, θ1)

)
> ut

(
ht−1, (β′, θ1)

)
and πt (·) having full support this

perturbation saves a strictly positive amount of resources—a contradiction. Hence, agents with

types
{(

ht−1, (θ1, β)
)

: β ∈ B
}

are bunched.

Part 2.

Proof. Assume by way of contradiction that for some ht−1 we have that
(
ht−1, (βt, θN)

)
-types for
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all βt ∈ Bt share the same allocation. Then

Et

[
C′
(
ut+1

(
ht−1, (βt, θN) , (βt+1, θt+1)

))
δRtC′ (ut (ht−1, (βt, θN)))

|θN

]
= κ

for some constant κ > 0. Recalling that βM = 1, consider the following perturbation for the

allocation of type (βM, θN):

ũt

(
ht−1, (βM, θN)

)
= ut

(
ht−1, (βM, θN)

)
− ε

ũt+1

(
ht−1, (βm, θn) , (βt+1, θt+1)

)
= ut+1

(
ht−1, (βM, θN) , (βt+1, θt+1)

)
+

1
δ

ε

for ε > 0. Welfare of type
(
ht−1, (βM, θN)

)
is kept constant by such a change. Types

(
ht−1,

(
β j, θN

))
for β j < 1 dislike this perturbation, so it preserves IC. The marginal resource cost dE is

− C′
(

ut

(
ht−1, (βM, θN)

))
ε +

Et
[
C′
(
ut+1

(
ht−1, (βM, θN) , (βt+1, θt+1)

))
|θN
]

Rtδ
ε

= (κ − 1)C′
(

ut

(
ht−1, (βM, θN)

))
ε

For the original allocation to be optimal, we require dE ≥ 0 and thus κ ≥ 1.

Suppose further that κ > 1. Recall that βt ≤ 1 for all βt ∈ Bt and consider the following

perturbation to all types
(
ht−1, (βt, θN)

)
:

ũt

(
ht−1, (βt, θN)

)
= ut

(
ht−1, (βt, θN)

)
+ ε

ũt+1

(
ht−1, (βt, θN) , (βt+1, θt+1)

)
= ut+1

(
ht−1, (βt, θN) , (βt+1, θt+1)

)
− ε

δ

Type
(
ht−1, (βM, θN)

)
is indifferent between the original allocation and the new one, while types(

ht−1, (βt, θN)
)

with βt < 1 strictly prefer the new allocation for ε > 0. Since no IC constraint for

types {θ1, θ2, . . . , θN−1} are binding with respect to θN-types, then the perturbation preserves IC

for ε > 0 small enough. The associated resource cost is

dE = (1− κ)C′
(

ut

(
ht−1, (βt, θN)

))
ε

But κ > 1, leading to a resource gain—a contradiction. This leaves us with the case when κ = 1.

Suppose that κ = 1 so that for agents bunched at θN the inverse Euler equation holds. By
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Lemma 9 and θN-type agents are bunched, we have ut
(
ht−1, (βt, θN)

)
> ut

(
ht−1,

(
βt, θj

))
for all

j < N. Then consider the following perturbation:

ũt

(
ht−1, (β1, θN)

)
= ut

(
ht−1, (β1, θN)

)
+ ε− ν

ũt+1

(
ht−1, (β1, θN) , (βt+1, θt+1)

)
= ut+1

(
ht−1, (β1, θN) , (βt+1, θt+1)

)
− ε

δβ2

From the point of view of β1-types the payoff change is

dU (β1) =

(
1− β1

β2

)
ε− ν

Since β1 < β2, we can choose ε > 0 and ν > 0 such that (1− β1/β2) ε = ν. All
(
ht−1, (β1, θN)

)
-

types are left indifferent by this perturbation. Furthermore, agents with type β > β1 dislike this

perturbation. Therefore, since other IC constraints with respect to type
(
ht−1, (β1, θN)

)
are slack,

the perturbation preserves IC. However, the associated resource cost, dE, is

C′
(

ut

(
ht−1, (β1, θN)

))
(ε− ν)−

Et
[
C′
(
ut+1

(
ht−1, (βM, θN) , (βt+1, θt+1)

))
|θN
]

ε

Rtβ2δ

=C′
(

ut

(
ht−1, (β1, θN)

))(β1

β2
− κ

β2

)
ε

Since β2 ≤ 1, then for ε > 0 and ν > 0 we get dE < 0, so that the planner saves resources. Since

ut
(
ht−1, (βt, θN)

)
> ut

(
ht−1,

(
βt, θj

))
for all j < N, there exists ε > 0 small enough such that

redistributing these extra resources improves welfare—a contradiction..

A.6.6 Proof of Theorem 5

Part 1.

Proof. Fix a period t and a history ht−1. From Theorem 4, we know that there exists θ > 0 such

that all agents with a history in
{(

ht−1, (β, θ1)
)

: β ∈ B
}

for θ1 < θ are bunched at the same con-

tinuation allocation. In particular, those agents face the same inverse Euler equation distortion

∑
(βt+1,θt+1)∈B×Θ

γt+1 (βt+1) ρt+1 (θt+1|θ1)

[
C′
(
ut+1

(
ht−1, (β, θ1) , (βt+1, θt+1)

))
δRtC′ (ut (ht−1, (β, θ1)))

|θN

]
= κ

for all β ∈ B and for some constant κ > 0. The desired result holds if and only if κ ≥ 1. Assume
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by way of contradiction that κ < 1. Then consider the following perturbation:

ũt

(
ht−1, (β, θ1)

)
= ut

(
ht−1, (β, θ1)

)
− δε

ũt+1

(
ht−1, (β, θ1) , (βt+1, θt+1)

)
= ut+1

(
ht−1, (β, θ1) , (βt+1, θt+1)

)
+ ε

for all (βt+1, θt+1) ∈ B × Θ. This perturbation keeps welfare constant, hence does not affect IC

at period s < t, when due to quasi-geometric discounting agents and the planner agree about

the intertemporal trade-off between periods t and t + 1. From Lemma 7, there exists θ > 0 such

that for θ1 < θ agents with histories in
{(

ht−1, (β, θ1)
)

: β ∈ B
}

have strictly slack IC constraints

with respect to any other agent not in this group. For ε > 0, agents with β ≤ 1 find themselves

weakly worse off under this perturbation, so the perturbation preserves incentive compatible. The

marginal resource cost is

dE = (κ − 1) δC′
(

ut

(
ht−1, (β, θ1)

))
ε

For ε > 0 and κ < 1 we get dE < 0, so the perturbation saves resources—a contradiction.

Part 2.

Proof. For the first part, let

∑
βt+1,θt+1

γt+1 (βt+1) ρt+1 (θt+1|θN)

[
C′
(
ut+1

(
ht−1, (βM, θN) , (βt+1, θt+1)

))
δRtC′ (ut (ht−1, (βM, θN)))

|θN

]
= κH

for some κH > 0. Assume by way of contradiction that κH < 1 and let

ũt

(
ht−1, (βM, θN)

)
= ut

(
ht−1, (βM, θN)

)
− δε

ũt+1

(
ht−1, (βM, θN) , (βt+1, θt+1)

)
= ut+1

(
ht−1, (βM, θN) , (βt+1, θt+1)

)
+ ε

for all (βt+1, θt+1) ∈ B×Θ. Since βM = 1, this perturbation preserves IC for ε > 0. The marginal

resource cost is

dE = (κH − 1) δC′
(

ut

(
ht−1, (βM, θN)

))
ε

so for κH < 1 we have that dE < 0 whenever ε > 0, which saves a strictly positive amount of

resources—a contradiction.

For the second part, note that from Lemma 9 and from Theorem 4 we have that there exists
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θ < +∞ and β > 0 such that for θN > θ and β1 < β we have that agents with histories in{(
ht−1, (β, θ)

)
: β ∈ B, θ < θN

}
strictly prefer their own allocation to the allocation of any agent

with history
{(

ht−1, (β, θN)
)

: β ∈ B
}

. Furthermore, we have ut
(
ht−1, (β1, θN)

)
> ut

(
ht−1, (β, θ)

)
for all θ < θN and all β ∈ B by Lemma 9. Suppose now that

∑
βt+1,θt+1

γt+1 (βt+1) ρt+1 (θt+1|θN)

[
C′
(
ut+1

(
ht−1, (β1, θN) , (βt+1, θt+1)

))
δRtC′ (ut (ht−1, (β1, θN)))

|θN

]
= κ̃H

for some κ̃H > 0. Assume by way of contradiction that κ̃H ≥ 1. Let

ũt

(
ht−1, (β1, θN)

)
= ut

(
ht−1, (β1, θN)

)
+ β1δε + ν

ũt+1

(
ht−1, (β1, θN) , (βt+1, θt+1)

)
= ut+1

(
ht−1, (β1, θN) , (βt+1, θt+1)

)
− ε

ũt

(
ht−1, (β, θ)

)
= ũt

(
ht−1, (β, θ)

)
+ ν

for all (βt+1, θt+1) ∈ B × Θ and all (β, θ) 6= (β1, θN). For ε > 0 and ν > 0, this perturbation is

incentive compatible since agents with β ≥ β1 find it (weakly) less attractive. To keep welfare

unchanged, we require

dW = π
(

β1, θN |ht−1
)
(β1 − 1) δε + ν = 0

so that ν = π
(

β1, θN |ht−1) (1− β1) δε. The marginal resource cost dE is

π
(

β1, θN |ht−1
)

C′ (·) δ (β1 − κ̃H) ε + ν ∑
β,θ

π
(

β, θ|ht−1
)

C′
(

ut

(
ht−1, (β, θ)

))

=π
(

β1, θN |ht−1
)

δC′ (·) (1− β1)

( β1 − κ̃H
1− β1

)
+ ∑

β,θ
π
(

β, θ|ht−1
) C′ (·)

C′
(
ut
(
ht−1, (β1, θN)

))
 ε

Since ut
(
ht−1, (β1, θN)

)
> ut

(
ht−1, (β, θ)

)
for θ < θN by Lemma 9, and clearly ut

(
ht−1, (β1, θN)

)
≥

ut
(
ht−1, (β, θN)

)
for all β ∈ B, then

∑
β,θ

π
(

β, θ|ht−1
) C′

(
ut
(
ht−1, (β, θ)

))
C′ (ut (ht−1, (β1, θN)))

< 1

Since β1 < 1 ≤ κ̃H we conclude that dE < 0 for ε > 0, meaning that this perturbation saves a

strictly positive amount of resources—a contradiction.
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B Numerical Solution Algorithm

B.1 Proof of Proposition 3

Proof. The proof relies on convexity of the planner’s problem (part 1 of Lemma 2). First, note that

the algorithm converges in iteration k ≥ 0 if and only if it has found a point x∗Wk
that satisfies

x∗Wk
= min

x∈FWk

f (x) s.t. ci (x) ≥ 0 for i ∈ Wk,

so that
∣∣∣VWk

(
x∗Wk

)∣∣∣ = 0. For this to be the case, x∗Wk
must satisfy IC and feasibility of the planner’s

problem, so f
(

x∗Wk

)
= f ∗ ≥ f (x∗C) for some constant f ∗. We already know that at least one such

f ∗ exists for our planner’s problem (part 2 of Lemma 2). Since the cardinality of the constraint set,

|C| = I, is finite and since the algorithm avoids loops with probability one, it follows that such an

exit criterion is found in finite time. Formally, there exists f ∗ ≥ f (x∗C) such that for any ε > 0, we

have:

lim
k→∞

P
(∣∣∣ f (x∗Wk

)
− f ∗

∣∣∣ ≥ ε
)
= 0

Therefore, plimk→∞ f
(

x∗Wk

)
= f ∗. For general nonlinear optimization problems, f ∗ need not

coincide with the global solution, f (x∗C). But since the solution to the planner’s problem is unique

(part 2 of Lemma 2), it follows that plimk→∞ f
(

x∗Wk

)
= f (x∗C) and hence plimk→∞ x∗Wk

= x∗C .

B.2 Semi-matrix representation of the transformed planner’s problem

Let x denote the vector of stacked elements of the transformed allocation, Ã. Our goal is to write

the planner’s problem as a minimization problem of the following semi-matrix form:54

min
x∈F

Ax s.t.


Bx ≥ 0, representing the set of linear IC constraints

g (x) ≥ 0, representing the nonlinear feasibility constraint,

where x is the choice vector, F ⊆ Rn for some n ∈ N is the domain, A is the objective comatrix, B

is the IC constraint set comatrix, and g (·) is the feasibility constraint function.

54We choose the label “semi-matrix” for this representation because the program—although nonlinear—would be
linear if it were not for the one nonlinear feasibility constraint.

104



Notation. We index agents’ types by i = 1, . . . , N, where N = Nθ × Nβ is total number of types.

We order type labels by first fixing a θ-type and looping through β-types, then moving to the next

θ-type and repeating the procedure until we have exhausted all (θ, β)-combinations:

(θ1, β1) 7→ i = 1

(θ1, β2) 7→ i = 2
...

(θ1, βM) 7→ i = M

(θ2, β1) 7→ i = M + 1

(θ2, β2) 7→ i = M + 2
...

(θN , βM−1) 7→ i = N ·M− 1

(θN , βM) 7→ i = N ·M = N

Henceforth, we index all objects corresponding to type i = 1, . . . , N by superscript i. For

example, the allocation for type i is denoted
(
ui

1, ui
2, ṽi). We write the type vector of dimension

N× 1, with types sorted in ascending order from the first (top) entry to the last (bottom) entry, as:



type 1

type 2
...

type Nβ

type Nβ + 1

type Nβ + 2
...

type Nθ × Nβ − 1

type Nθ × Nβ


N×1

=



(
θ1, β1)(
θ2, β2)

...(
θM, βM)(

θM+1, βM+1)(
θM+2, βM+2)

...(
θN·M−1, βN·M−1)(

θN·M, βN·M)


N×1

=



(θ1, β1)

(θ1, β2)
...

(θ1, βM)

(θ2, β1)

(θ2, β2)
...

(θN , βM−1)

(θN , βM)


N×1
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Choice variable vector. The choice variable vector is:

x =



u1
1

u1
2

ṽ1

...

uN
1

uN
2

ṽN


3N×1

with lower bound

L =



u

u

ṽ
...

u

u

ṽ


3N×1

and upper bound

U =



u

u

ṽ
...

u

u

ṽ


3N×1

Let F =
{

x ∈ R3N
∣∣ L ≤ x ≤ U

}
denote the choice vector’s domain.

Objective covector. The objective covector is:

A = −
[
−π1λ1 −π1λ1δ π1λ1D

(
θ1) . . . −πNλN −πNλNδ πNλN D

(
θN) ]

1×3N
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IC constraint set comatrix. We order the IC constraints as follows:



IC from type 1→ type 2

IC from type 1→ type 3
...

IC from type 1→ type N

IC from type 2→ type 1

IC from type 2→ type 3
...

IC from type N → type N − 2

IC from type N → type N − 1


N(N−1)×1

Hence, we can write the IC constraint set comatrix as:

B =



1 β1δ −D
(
θ1) −1 −β1δ D

(
θ1) 0 . . . 0

1 β1δ −D
(
θ1) 0 0 0 −1 −β1δ D

(
θ1) 0 . . . 0

...
...

1 β1δ −D
(
θ1) 0 . . . 0 −1 −β1δ D

(
θ1)

−1 −β2δ D
(
θ2) 1 β2δ −D

(
θ2) 0 . . . 0

0 0 0 1 β2δ −D
(
θ2) −1 −β2δ D

(
θ2) 0 . . . 0

...
...

0 . . . 0 −1 −βNδ D
(
θN) 0 0 0 1 βNδ −D

(
θN)

0 . . . 0 −1 −βNδ D
(
θN) 1 βNδ −D

(
θN)


N(N−1)×3N

with lower bound

−∞N(N−1)×1

and upper bound

0N(N−1)×1

Nonlinear feasibility constraint. The feasibility constraint function is:

g
(
Ã
)
=

N

∑
i=1

πi

[
Y
(

ṽi
)
− C

(
ui

1

)
−

C
(
ui

2
)

R

]
,
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with scalar bounds −∞ from below and 0 from above. The Jacobian (first derivative) matrix with

respect to the choice variable vector is:

[
−π1C′

(
u1

1
)
−π1

R C′
(
u1

2
)

π1Y′
(
ṽ1) . . . −πNC′

(
uN

1
)
−πN

R C′
(
uN

2
)

πNY′
(
ṽN) ] 1×3N

The Hessian (second derivative) matrix with respect to the choice variable vector is:



−π1C′′
(
u1

1
)

0 . . . . . . . . . . . . . . . . . . 0

0 −π1

R C′′
(
u1

1
)

0 . . . . . . . . . . . . . . .
...

... 0 π1Y′′
(
ṽ1) 0 . . . . . . . . . . . .

...
...

... 0 −π2C′′ (u12) 0 . . . . . . . . .
...

...
...

... 0
...

. . . . . . . . .
...

...
...

...
...

...
... −πNC′′

(
uN

1
)

0
...

...
...

...
...

...
... 0 −πN

R C′′
(
uN

1
)

0

0 . . . . . . . . . . . . . . . . . . 0 πNY′′
(
ṽN)


3N×3N

In summary, we can write the transformed planner’s problem in the semi-matrix representation:

min
x∈F

Ax s.t.


Bx ≥ 0, representing the set of linear IC constraints

g (x) ≥ 0, representing the nonlinear feasibility constraint

B.3 Algorithm initialization

Our point of departure is the transformed planner’s problem in consumption utility-labor disutil-

ity space introduced in the proof of Lemma 2. Recall that the transformed allocation is

Ã = {u1 (θ, β) , u2 (θ, β) , ṽ (θ, β)}(θ,β) .

For the remainder of this section, we assume the power utility formulation that we later use in our

quantitative application:

u (c) =


c1−1/σ−1

1−1/σ for σ 6= 1

ln (c) for σ = 1
, v (`) = κ

`1+1/γ

1 + 1/γ
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Uniform allocation across types. One possible initialization is to the economy with everyone

consuming and producing the same amount. To this end, consider y > 0 and c > 0 such that:

u1 (θ, β) = u (c) (15)

u2 (θ, β) = u (c) (16)

ṽ (θ, β) = v (y) (17)

c +
c
R

= y

Consumption is equalized across periods and, like labor supply, across agents. Consequently,

individual output equals individual net present value of lifetime consumption. Normalizing the

intratemporal Euler equation to be undistorted for types with θ = 1, we get:

v′ (y) = u′
(

Ry
1 + R

)
=⇒ y =

(
1 + R
κη R

) γ
η−γ

(18)

Plugging equation (18) back into equations (15)–(17) yields the desired initialization:

u1 = u (c)

u2 = u (c)

ṽ = v (y)

Laissez-faire allocation. Another initialization has every agent consume and produce at their

respective laissez-faire levels. To this end, c (θ, β) and y (θ, β) must satisfy agents’ individual Euler

equations and budget constraint:

u′
(

cLF
1 (θ, β)

)
= βδRu′

(
cLF

2 (θ, β)
)

=⇒ cLF
2 (θ, β) = (βδR)η cLF

1 (θ, β) (19)
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and

u′
(

cLF
1 (θ, β)

)
= ṽ′

(
yLF (θ, β) /θ

)
=⇒ yLF (θ, β) =

θ

κ

[
cLF

1 (θ, β)
]− γ

η
(20)

and

cLF
1 (θ, β) +

cLF
2 (θ, β)

R
= yLF (θ, β) (21)

Solving the system of three equations (19)–(21) in three unknowns yields:

cLF
1 (θ, β) +

(βδR)η cLF
1 (θ, β)

R
=

θ

κ

[
cLF

1 (θ, β)
]− γ

η

=⇒ cLF
1 (θ, β) =

{
κ

θ

[
1 +

(βδR)η

R

]} η
−γ−η

(22)

Plugging equation (22) back into equations (19)–(20) yields the desired initialization:

uLF
1 (θ, β) = u

(
cLF

1 (θ, β)
)

uLF
2 (θ, β) = u

(
cLF

2 (θ, β)
)

ṽLF (θ, β) = v
(

yLF (θ, β)
)

B.4 Algorithm benchmarking

Performance. To benchmark the performance of our active-set algorithm vis-à-vis a more direct

approach that solves the global problem directly, we solve a sequence of problems of increasing

size using both methods. To make things simple, we use a type space with a constant number

of present bias levels, Nβ = 6, a growing number of ability levels, Nθ—both distributed between

0.1 and 1.0—a uniform distribution, π (θ, β) = 1/
(

Nθ Nβ

)
, and constant Pareto weights across

all types, λ (θ) = 1. All computations are performed on a 2017 iMac Pro with 3.0GHz 10-core

Intel Xeon W processor and 128GB 2666MHz DDR4 memory. Table 7 shows the results of this

performance benchmark.
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Table 7. Comparison of active-set algorithm vs. global solution method

Number of types, N = Nθ × Nβ Time (seconds), active-set Time (seconds), global
60 = 10 × 6 0.3 0.6

180 = 30 × 6 1.4 5.5
600 = 100 × 6 6.6 185.8

1,800 = 300 × 6 101.0 6,653.9
6,000 = 1,000 × 6 1,315.7 114,707.0

The advantage of our algorithm is apparent throughout all problem sizes. For the smallest

instance of the problem with 10×6 types, our algorithm is approximately twice as fast as the

global solution method. With 30×6 types, it is almost four times as fast as the global solution

method. This factor increases to 28 for a problem with 100×6 types, and to 66 for a problem with

300×6 types. For the largest version of our problem with 1,000×6 types, which we use in our

quantitative analysis in Section 7, our algorithm finds a solution in 22 minutes, while the global

method takes almost 32 hours to complete. We conclude that our active-set algorithm offers large

efficiency gains, particularly when solving large-scale programs.

Next, we compare the structure of IC constraints under the global (or, equivalently, active-

set) solution method vis-à-vis a a local solution that ignores any nonlocal IC constraints. Table 8

compares the pattern of binding IC constraints across different problem sizes.

Table 8. Structure of IC constraints

Number of Number of Number of Number of Number of binding Number of binding
types, choice global IC local IC IC constraints at nonlocal IC constraints

N = Nθ × Nβ variables constraints constraints optimum at optimum
60 = 10 × 6 180 3,540 388 257 93

180 = 30 × 6 540 32,220 1,228 678 201
600 = 100 × 6 1,800 359,400 4,168 1,759 330

1,800 = 300 × 6 5,400 3,238,200 12,568 6,228 2,269
6,000 = 1,000 × 6 18,000 35,994,000 41,968 59,158 42,808

While the number of global IC constraints grows approximately with the square of the num-

ber of types, the number of local constraints grows roughly linearly. The number of binding con-

straints at the optimum grows faster than linearly, but the share of binding constraints as a fraction

of all global constraints vanishes. Nonlocal IC constraints always bind and make up a signficant

share of all binding constraints across all problem instances. This suggests that the first-order

approach—a local solution method—does not work well for our problem.
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Comparison of results for different problem sizes. We illustrate our theoretical results from

Section 3—bunching at the bottom versus separation at the top of the income (or ability) distribu-

tion—for different problem sizes in computations. To this end, we use the same model parameters

as above. Figure 12 shows the results of this exercise.

Figure 12. Optimal savings rates across income and present bias levels for different problem sizes
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(b) Nθ = 30, Nβ = 6
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(c) Nθ = 100, Nβ = 6
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(d) Nθ = 300, Nβ = 6
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(e) Nθ = 1000, Nβ = 6
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The distribution of savings rates across types for different problem sizes always shows bunch-

ing at the bottom and separation at the top. At the same time, the optimal allocation features

bunching over a greater range of income (or ability) levels when the type space is more dense. This

observation is symptomatic of the underlying fact that the optimal allocation differs markedly

across type spaces. Going from Nθ = 10 to Nθ = 300 leads to visibly different savings rates

throughout the income distribution, holding fixed Nβ = 6. Meanwhile, going from Nθ = 300 to

Nθ = 1000, is associated with a much smaller—although quantitatively noticable—change in the

optimal allocation. We conclude that a precise type grid is desirable when trying to accurately

represent a dense population of agents for numerical solutions of optimal policies.

B.5 Example of a loop in a deterministic active-set algorithm

In designing our active-set algorithm, we introduced a stochastic element when adding and drop-

ping constraints across iterations. To demonstrate that this design element matters, we demon-

strate below that infinite loops indeed exist when running a deterministic version of the active-set

algorithm, i.e. one in which the adding probabilities pn and the dropping probabilities qn are either

0 or 1. To this end, we tried to solve a large-scale version of the problem with Nθ ×Nβ = 1, 000× 6

types and came across the following loop (from step 6 onwards, aborted at step 10):

*** start active-set algorithm

* step 1

--> total number of IC constraints = 65964

--> problem successfully solved in 115.218s

--> number of violated IC constraints = 35337

* step 2

--> number of IC constraints dropped = 55941

--> number of IC constraints added = 35337

--> total number of IC constraints = 45360

--> problem successfully solved in 109.517s

--> number of violated IC constraints = 27

* step 3

--> number of IC constraints dropped = 35035

--> number of IC constraints added = 27

--> total number of IC constraints = 10352

--> problem successfully solved in 213.991s

--> number of violated IC constraints = 9
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* step 4

--> number of IC constraints dropped = 7

--> number of IC constraints added = 9

--> total number of IC constraints = 10354

--> problem successfully solved in 130.748s

--> number of violated IC constraints = 1

* step 5

--> number of IC constraints dropped = 7

--> number of IC constraints added = 1

--> total number of IC constraints = 10348

--> problem successfully solved in 205.145s

--> number of violated IC constraints = 4

* step 6

--> number of IC constraints dropped = 1

--> number of IC constraints added = 4

--> total number of IC constraints = 10351

--> problem successfully solved in 217.941s

--> number of violated IC constraints = 1

* step 7

--> number of IC constraints dropped = 4

--> number of IC constraints added = 1

--> total number of IC constraints = 10348

--> problem successfully solved in 191.119s

--> number of violated IC constraints = 4

* step 8

--> number of IC constraints dropped = 1

--> number of IC constraints added = 4

--> total number of IC constraints = 10351

--> problem successfully solved in 204.047s

--> number of violated IC constraints = 1

* step 9

--> number of IC constraints dropped = 4

--> number of IC constraints added = 1

--> total number of IC constraints = 10348

--> problem successfully solved in 190.416s

--> number of violated IC constraints = 4

# etc.

Note that at times loops may appear when the working set is very “close” to the set of relevant

global constraints—in the sense of containing almost all the relevant global constraints—but that

at other times the algorithm may get stuck in a loop very “far” from the relevant constraint set.

Furthermore, the example above is a loop of the second order, i.e. once we are in the loop, then
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every second term is a repetition of itself. At times, we have also encountered higher-order loops.

C Calibration

C.1 Description of datasets

Health and Retirement Study (HRS). Our analysis is largely based on the HRS microdata,

which follow households before and after retirement and provide rich information on demograph-

ics, family structure, health status and expenditures, income, financial wealth, Social Security, and

retirement savings plans use.55 These data consist of a panel of 37,495 households that are fol-

lowed across twelve waves between 1992 and 2014, with five entry cohorts between 1992 and

2010.

We also use tax information from the HRS,56 which contain separate information about federal,

state, and FICA taxes for respondents in the 2000–2014 HRS surveys. We use this additional file

to compute individuals’ gross and net income based on the NBER-Internet TAXSIM calculator,

Version 9.3 (Feenberg and Coutts, 1993).

Panel Study of Income Dynamics (PSID). To supplement our analysis with life-cycle income

dynamics for a broader age range, we use the family and individual-merged files of the PSID.57

These data have been used by several researchers in the past and we refer to Meghir and Pistaferri

(2004) for a detailed description of the data. The dataset follows approximately 4,500 households

over time and reports a wide range of socioeconomic characteristics, including age, industry, oc-

cupation, labor income, and income from self-employment.

U.S. Life Tables. The U.S. Life Tables provide mortality statistics for the population as a whole

and for various subpopulations by gender, race, and ethnicity (Arias, 2010). We deliberately use

55Health and Retirement Study, RAND HRS Longitudinal File 2014 (V2) public use dataset. Produced and distributed
by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740)
and the Social Security Administration. Ann Arbor, MI, 2018. The RAND HRS Longitudinal File 2014 (V2) is available
online from https://www.rand.org/labor/aging/dataprod/hrs-data.html.

56Health and Retirement Study, RAND HRS Tax Calculations 2014 (V2) public use dataset. Produced and distributed
by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740)
and the Social Security Administration. Ann Arbor, MI, 2018. The RAND HRS Tax Calculations 2014 (V2) is available
online from https://www.rand.org/labor/aging/dataprod/tax-calculations.html.

57Panel Study of Income Dynamics, public use dataset. Produced and distributed by the Survey Research Center,
Institute for Social Research, University of Michigan, Ann Arbor, MI, 2017. The PSID microdata are available online
from https://psidonline.isr.umich.edu/.
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2006 as an older vintage of the U.S. Life Tables to address the fact that mortality rates are changing

over time.58

Health Inequality Project. The Health Inequality Project (Chetty et al., 2016) publishes statistics

on mortality rates by income groups based on administrative data, including 1.4 billion tax returns

and death records from the Social Security Administration.59 Statistics are reported separately by

gender, age, year, and income quantile.

Other data. To deflate prices over time in our data, we use the “Consumer Price Index for All

Urban Consumers: All Items [CPIAUCSL]” (in short, CPI) retrieved from FRED (U.S. Bureau of

Labor Statistics, 2018).

C.2 Data cleaning and sample selection

We use all twelve waves of the HRS data, where possible, although certain variables are available

only for some waves.60 We focus all our analysis on the household-level by identifying the Finan-

cial Respondent in couple households. While we collapse the data on individual household mem-

bers into one observation per household, our analysis uses information on both the respondent

and their spouse, where available. For parts of our analysis, we focus on the reference person’s

characteristics, for example when classifying a single household as working, retired, or deceased.

Finally, we omit from our analysis households that appear in only one survey wave.

Next, we fill in missing observations retirement status, private and public wealth, expected

bequests, and medical expenditures between survey waves when this information is missing. For

a small number of variables—including education and year of birth of the reference person and

their spouse, and year of death of the reference person—we adopt their modal value across waves.

We drop any households who report mising values in their education or income throughout all

years. We also drop households whose reference person is retired or deceased for all waves, and

those who never retire during the coverage period of the HRS survey. Finally, we restrict our

analysis to households whose reference person is between 25 and 99 years old. Finally, for the

58The U.S. Life Tables, including the 2006 vintage and other years of data, are available online from https://www.
cdc.gov/nchs/products/life_tables.htm.

59All statistics from the Health Inequality Project, together with replication codes and data, are available online from
https://healthinequality.org/.

60For example, the value of a secondary home owned by the household members is not reported in wave 3, and
predicted Social Security Wealth of pre-retirees is available only in waves 1, 4, 7, and 10.
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selected sample, we create an annual balanced panel dataset by imputing key variables through

interpolation between years.

We combine the US Life Tables data on mortality rates by age and the Health Inequality Project

data on mortality differentials across income groups. To this end, we augment the average mor-

tality rate profile from the US Life Tables with the income decile-specific mortality rate intercept

from the Health Inequality Project.

C.3 Variable construction

Annual income. Using the HRS data, we construct annual gross income as the sum of individual

earnings and other household income, which consist of wage and salary income in the primary

and secondary job, bonuses and overtime pay, commissions, and tips, military reserve earnings,

professional practice and trade income, alimony, insurance payment receipts, pensions, and inher-

itance.61 We construct an aggregate income measure at the household-level, summing earnings of

the spouse and the reference person within each survey year. We deflate all nominal variables by

the CPI

To impute a complete panel of income over the life-cycle, we record for each household the

reference person’s education level, which we use together with age to connect the part of the

lifetime earnings profile covered by the HRS data with that in the PSID data. To this end, we first

estimate the following regression on a pooled sample of each household member i across each

survey year t:

yit = Xitβ + ∑
τ

1 [t = τ] γτ + ε it (23)

where yit is log income, Xit is a matrix of household covariates, including educational attainment

dummies interacted with a cubic polynomial in age, β is a coefficient vector for these character-

istics, γτ is a year effect, and ε it is a residual term. We estimate equation (23) using ordinary

least squares on the HRS data and the PSID data separately. From the PSID data, which covers a

wider age range, we store the estimated coefficients on the polyomial terms in age, β̂PSID. We then

61We find that annuities are held by 2.14% (between 0.46% and 2.65% across waves) of all HRS survey respondents.
On average, they make up 1.97% (between 0.30% and 3.17% across waves) of total household income among respon-
dents across all waves of the HRS data. The phenomenon that few households convert their savings into steady income
streams is sometimes referred to as the “Annuity Puzzle” (Mitchell et al., 1999). We have included annuity income, as
reported in the HRS microdata, in our retirement wealth calculations as the discounted net present value at the time
of retirement given the individual’s observed (when covered by the HRS wave) or else the expected (applying the es-
timated mortality profiles by income group from the U.S. Life Tables and Health Inequality Project data) retirement
length without any noticable changes to our estimates.
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predict in the HRS data for each household member their entire lifecycle of earnings:

ŷHRS−PSID
it = XHRS

it β̂PSID + ∑
τ

1 [t = τ] γ̂HRS
τ + ε̂HRS

it

where ŷHRS−PSID
it is the imputer income variable of interest and variables with hats denote the es-

timate from the respective sample. In doing this, we fill in income information for each household

years that were not covered in the HRS either if they fall between survey waves or else if they

fall outside of the age window that a given household is covered between the first and the last

interview.

Lifetime income. We use deflated annual income from above and discount values over time

to calculate the net present value of their lifetime income using an annual interest rate of 3.44%

(Gourinchas and Parker, 2002). Figure 13 shows the estimated annual income profiles by lifetime

earnings percentiles applying the estimated PSID income growth rates to the HRS income data.

Figure 13. Mean log income profiles by lifetime income percentile, conditional on working
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Gross versus net income. Using the RAND HRS Tax Calculations 2014 (V2) supplement, we

construct gross income at the household-level as the sum of wage and salary income of the re-

spondent and their spouse, dividends, property income, taxable pensions and IRA distributions,

gross social security benefits, and other nontaxable transfer income. We separately sum tax all

reported tax deductions related to student loan interest, tuition fees, and qualifying investment

losses. We form net income by subtracting all deductable income and tax payments from the

household’s gross income.

Post-retirement income. Some individuals in the HRS data report post-retirement income other

than Social Security benefits and withdrawals from private savings plans, such as IRA or Keogh

accounts. For these individuals, we and compute the net present discounted value of all income

streams over their retirement life and add this to our measure of lifetime income.

Medical expenditures. We follow a similar imputation strategy as we used for income to impute

medical expenditures over the lifecycle. To this end, we use information on medical out-of-pocket

expenditures reported in the HRS data. Such out-of-pocket expenditures include hospital costs,

nursing home costs, doctor visits costs, dentist costs, outpatient surgery costs, average monthly

prescription drug costs, home health care costs, and special facilities costs, to the extent that they

are not covered by medical insurance. We do not include in our medical expenditures measure

any expenses covered by private insurance plans or through public health care provision such

as Medicare or Medicaid. We calculate out-of-pocket medical expenditures separately before and

after retirement. For pre-retirement expenditures, we simply compute the net present value of all

expenses. For post-retirement expenditures, we group households by lifetime income decile and

compute the empirical distribution of medical expenditures, approximated by a lognormal whose

mean and standard deviation we estimate separately for each group.

Bequests. From survey wave 6 onwards, we observe individuals’ subjective bequest probabil-

ities over three bequest brackets: the probability of leaving a bequest of more than USD 10,000,

more than USD 100,000, and more than USD 500,000. We use these probabilities to calculate ex-

pected bequests by choosing “midpoints” for each bracket as USD 50,000, USD 250,000, and the

maximum of USD 1,000,000 and the average bequest in multiples of income by parental produc-

tivity quartile from De Nardi (2004), capped at USD 10,000,000.
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Working life, retirement life, and death. We define retirement as the first time that a house-

hold self-reports as retired. For most households, this is a binary choice, meaning that individuals

report either being (full-time or part-time) employed, or else retired. A small number of respon-

dents being retired and also working, disabled, or unemployed at the same time. We classify those

individuals as retired and treat them identically to those who only report being retired.

We assume that household members have been working since age 25. Since we restricted

attention to households entering retirement during one of the HRS survey waves, we see a dis-

tribution of retirement ages for every household in our sample. For households whose reference

person dies during one of the survey waves, we also know the length of their retirement life. For

households who retire but do not die during one of the survey years, we compute their expected

retirement life span based on the conditional survival probabilities from merging the US Life Ta-

bles with the Health Inequality Project data. Figure 14 shows the empirical distribution of the

length of working lifes (before retirement) and the length of retirement lifes (before death) in the

HRS data.

Figure 14. Length of working life and length of retirement

(a) Number of years in working life
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(b) Number of years in retirement
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Notes: Histograms use a bin width of 2 years. Source: Authors’ computations based on HRS.

We combine the U.S. Life Tables with the Health Inequality Project data to estimate survival

probabilities over the lifecycle. Figure 15 shows the estimated probability of dying and cumula-

tive probability of surviving for different lifetime income percentiles. Using these estimates, we

compute for each individual their probability of surviving until their observed retirement age.
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Figure 15. Probability of dying and cumulative probability of surviving
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Note: Life−cycle profiles by lifetime income percentile from US Life Tables 2006 adjusted using Health Inequality Project data for 2014.

Notes: Figure assumes that the probability of dying conditional on age 100 is 1. Source: Authors’ computations based on U.S. Life
Tables and the Health Inequality Project.

To summarize, Figure 16 shows the empirical population shares working, retired, and de-

ceased by age from the HRS data.
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Figure 16. Population share working, retired, and deceased by age
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Notes: Shares computed separately by age. Source: Authors’ computations based on HRS.

Retirement wealth. Using the HRS data, we construct a measure of household wealth at retire-

ment that consists of public wealth (predicted Social Security wealth), and private wealth (net

value of real estate, vehicles, businesses, IRA and Keogh accounts, stocks, mutual funds, invest-

ment trusts, checking, savings, and other money market accounts, bonds, and other savings, net of

any outstanding debt obligations). Predicted Social Security wealth is reported directly in the HRS

and is based on the retirement insurance benefit calculated based on individual earnings records

and assuming normal retirement claiming age. We sometimes add up public and private savings

and refer to the sum as total retirement wealth, or lifetime savings.

Lifetime savings rates. Finally, we construct lifetime savings rates as the share of retirement

wealth out of lifetime income, both in net present value terms.
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C.4 Calibration details

C.4.1 Positive calibration

Model setup. As it will be convenient to write the problem in annual terms, we think of each

period consisting of a number of years, where agents of type β have aggregate discount factor

ψ = βδ. Conditional on surviving and the old-age medical shock realization, an old agent solves

the following problem:

U2 (y2; φ1, TR) = max
c2,blate

{
TR

∑
t=1

ψt−1u (c2) + Φ
(

blate; φ1

)}

s.t.
TR

∑
t=1

R−(t−1)c2 + R−TR b̃ = max

{
y2,

TR

∑
t=1

R−(t−1)c2

}

blate = b̃− Tb
(
b̃
)

,

Taking as given the problem of the old agent across possible future states, a young agent solves

the following problem:

U1 (θ, ψ; h, φ1, TW , TR, P [death]) = max
c1,s401k ,sIRA ,staxable ,y1


∑TW

t=1 ψt−1 [u (c1)− v
( y1

θ

)]
+ψ

 (1− P [death])×Em2 U2 (y2 (m2) ; φ1, TR)

+P [death]×Φ
(

bearly; φ1

)



s.t.
TW

∑
t=1

R−(t−1)
[
c1 + s401k + sIRA + staxable

]
=

TW

∑
t=1

R−(t−1) max
{

y1 − Ty

(
max

{
y1 − s401k − sIRA −m1, 0

})
−m1, c1

}
ỹpre−tax

2 = 0.85× SS (y1) + R×match
(

s401k
)
+ RsIRA + (R− 1) staxable

ỹpost−tax
2 = 0.15× SS (y1) + staxable

y2 (m2) =
TW

∑
t=1

R(Tw−t+1)
[
ỹpre−tax

2 − Ty

(
max

{
ỹpre−tax

2 −m2, 0
})
−m2 + ỹpost−tax

2

]
˜̃b = R×match

(
s401k

)
+ RsIRA

b̃ = ˜̃b− Ty

(
˜̃b
)
+ Rstaxable

bearly = b̃− Tb
(
b̃
)

m2 ∼ H (·; h)

c1, s401k, sIRA, staxable, y1 ≥ 0

s401k ≤ s401k (y1)

sIRA ≤ sIRA (y1)

We denote annualized variables by a tilde, which is particularly convenient since it allows us
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to write tax schedules, Social Security benefits, and subsidy rates and caps at an annual level,

corresponding to the real-world system.

Calibration targets and parameters. In the model and in the data, we compute the target vector

(
ln (y1) , sprivate, ln

(
Eblate

))
, (24)

where sprivate = s401k + sIRA + staxable is the private savings rate, and the expectation of old-age

bequests, Eblate, is taken with respect to the agent’s information at the end of the first period in

the model, and it is reported directly in the HRS data. Individual-by-individual, we pick a model

parameter vector (θ, ψ, φ1) ∈ P = R+ × [0, 1] ×R to minimize the L2-norm between the model

target vector (24) and its empirical analogue associated with the individual:62

(θ, ψ, φ1) = arg min
(θ′,ψ′,φ′1)∈P


[ln ((y1)model) (θ

′, ψ′, φ′1)− ln ((y1)data)]
2

+ws
[(

sprivate)
model (θ

′, ψ′, φ′1)−
(
sprivate)

data

]2

+wb
[(

ln
(
Eblate))

model (θ
′, ψ′, φ′1)−

(
ln
(
Eblate))

data

]2

 ,

where ws and wb are the relative weights on the savings rate and expected bequest, respectively.

We find that putting relatively more weight on the savings rate, ws = 30 and wb = 1, compensates

for the difference in units between moments and helps to identify compound discount factors that

closely match empirical savings decisions.

After our point-by-point calibration of (θ, ψ, φ1), we drop observations with a loss function

above 10% for which our model cannot provide a good fit. We summarize the joint distribution of

θ and β by first approximating θ as a log-normal distribution with mean µθ and standard deviation

σθ over 1000 grid points. Then, for each percentile of the approximated θ-distribution we fit a

flexible beta distribution over 6 grid points to approximate the distribution of calibrated values of

62In our baseline calibration, we restrict the compound discount factor to ψ ∈ [0, 1/R] because we later impose
δ = 1/R. As a result, β ∈ [0, 1]. In a previous version of the paper, we allowed for the possibility that β > 1, so
agents could be more patient than the planner, which is a common tenet in the political economy literature (Aguiar and
Amador, 2011; Halac and Yared, 2014, 2018). In our current calibration with many more “rational” motives to save, we
find that the restriction to β ≤ 1 is less binding compared to a model where other savings motives are ignored.
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the annualized discount factor ψannual :63

ψannual | θ ∼ beta
(
aψ (θ) , bψ (θ)

)
,

where we let the shape parameters a (θ) and b (θ) vary linearly across θ-ranks. That is, if we let

ρ (θ) ∈ [0, 1] denote the rank of θ in the population, with ρ = 0 representing the lowest and ρ = 1

representing the highest value of θ, then we estimate the shape parameters as

aψ (θ) = aψ,0 + aψ,1 × ρ (θ)

bψ (θ) = bψ,0 + bψ,1 × ρ (θ)

This flexible specification allows for a wide range of shapes of the ψ-distribution conditional on a

given ability level, and for a different shape—including the mean and variance—of this distribu-

tion distribution across θ-levels, while retaining tractability.

Income tax and transfer function. The implied marginal tax and average tax schedules are

shown in Figure 17(a). The estimated tax function provides a good fit to the relation between

pre- and post-tax income in the HRS tax data, particularly for the lower 90 percent of the income

distribution. Panel (b) of the figure shows the empirical fit to disposable income and taxable in-

come.
63We convert the discount factor ψ in to an annualized discount factor ψannual for an individual with TW years of

working life and TR years of retirement by solving for the root of the equation ψ = ψTW
annual(1− ψTR+1

annual)/(1− ψTW+1
annual).
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Figure 17. Estimated progressivity and empirical fit of the income tax schedule
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(b) Empirical fit: disposable vs. taxable income
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C.4.2 Normative calibration

Flexible Pareto weights specification. Figure 18 shows the flexible Pareto weights specification

we employ for our normative calibration in Section 6.2.

Figure 18. Illustration: Possible Pareto weight distributions

0
.0

0
.4

0
.8

1
.2

1
.6

2
.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Rank of earnings ability, θ

λ1=1.0, λ2=1.0, λw=1.0 λ1=1.3, λ2=1.1, λw=0.9 λ1=5.0, λ2=1.0, λw=0.5

λ1=1.1, λ2=1.3, λw=0.9 λ1=1.0, λ2=5.0, λw=0.5 λ1=3.0, λ2=3.0, λw=0.9

Notes: Figure shows examples of possible distributions of Pareto weights λ (θ) = λw × beta (ρ (θ) , λ1, λ2) + (1− λw), where λw is
the relative weight on a beta distribution versus a uniform weight of 1 on all agents, beta (·, λ1, λ2) is a beta distribution with shape
parameters λ1 and λ2, and ρ (θ) ∈ [0, 1] is the rank of earnings ability, with ρ = 1 representing the highest ability and ρ = 0
representing the lowest ability. Source: Authors’ calculations.
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Calibration targets and parameters. To pin down a distribution of Pareto weights, one must pick

the three parameters (λ1, λ2, λw) ∈ L = R++ ×R++ × [0, 1]. We first obtain an updated positive

model allocation by taking as given the pair (θ, β) from the positive model calibration but shutting

down all other margins from the extended positive model, which are not part of our normative

framework. Specifically, we shut down survival risk, longevity heterogeneity, bequest motives,

and medical expenditure shocks, and minimum consumption floors. We also set the number of

years of working life and the number of years of retirement to their respective median population

values.

For each calibrated (θ, β)-pair, we then record the resulting allocation (c1 (θ, β) , c2 (θ, β) , y (θ, β))

from the stripped down positive model. Finally, we compare the resulting allocation from the

stripped down positive model, {(c1 (θ, β) , c2 (θ, β) , y (θ, β))}θ,β, with the optimal allocation from

the normative model under the same parameterization and social welfare weights given by (λ′1, λ′2, λ′w),

{(c∗1 (θ, β) , c∗2 (θ, β) , y∗ (θ, β))}θ,β (λ
′
1, λ′2, λ′w).

We are now ready to calibrate social preferences. In our baseline calibration of the normative

model, to reduce the number of parameters and for ease of presentation, we fix δ = 1/R = 0.214,

where R is the compounded gross interest rate between periods that corresponds to an annual net

interest rate of 3.44% (Gourinchas and Parker, 2002). We use a grid with 1000 θ-types and 6 β-types

to approximate the positive calibration results. We then calibrate (λ1, λ2, λw) to minimize the L2-

norm between the allocations in the normative and positive versions of our model according to

the following criterion:

(λ1, λ2, λw) = arg min
(λ′1,λ′2,λ′w)∈L


[ln (c1 (θ, β))− ln (c∗1 (θ, β) (λ′1, λ′2, λ′w))]

2

+ [ln (c2 (θ, β))− ln (c∗2 (θ, β) (λ′1, λ′2, λ′w))]
2

+ [ln (y (θ, β))− ln (y∗ (θ, β) (λ′1, λ′2, λ′w))]
2



C.5 Comparison of empirical findings to most related results in the literature

Naturally, we are not the first to study the sources of heterogeneity in wealth and savings behav-

ior. Venti and Wise (1998) link large differences in retirement wealth back to different savings

choices. Browning and Lusardi (1996) discuss several potential explanations, including life-cycle
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consumption smoothing, bequest motives, and preferences over consumption streams.64 They

also consider the role of “nonstandard” (i.e., behavioral) models in explaining observed savings

outcomes, suggesting that a model with multiple dimensions of heterogeneity is needed to assess

the relative importance of rational or behavioral factors behind savings decisions.

Many previous works have highlighted the importance of time preference heterogeneity in

explaining observed savings and wealth patterns, see for example Falk et al. (2018), Hendricks

(2007), Krusell and Smith, Jr. (1998), and Carroll et al. (2017). Recent studies suggest that present

bias due to hyperbolic discounting can rationalize empirical regularities in savings behavior.65

Laibson (1997) shows that such present bias can explain realistic income-consumption patterns

and portfolio allocations. Bernheim et al. (2001) evaluate competing explanations for savings

heterogeneity, distinguishing between rational and behavioral savings motives. They find that

consumption growth rates near retirement do not vary systematically with wealth at retirement,

leading them to reject a model with differences in exponential discount factors in favor of models

with present bias heterogeneity. Aguiar and Hurst (2005) show that substitution of work-related

expenses for home production explains part of the observed consumption drop upon retirement.

However, Bernheim and Taubinsky (2018) argue that the observed relationship between the de-

cline in consumption and income replacement rates, and more recent evidence on personal fi-

nancial choices around retirement by Olafsson and Pagel (2018) are not easily explained by the

rational benchmark model.66 Angeletos et al. (2001) calibrate a dynamic savings model with a

partially liquid asset, concluding that the hyperbolic discounting model fits the data better. Laib-

son et al. (2017) estimate discount functions in a richer life-cycle model and reject the restriction to

exponential discounting across almost all specifications.

Our estimates also fit well with a range of empirical lab and field estimates. See Augenblick

et al. (2015) and Beshears et al. (2015) for laboratory experiments; Ashraf et al. (2006), Tanaka et

al. (2010), Jones and Mahajan (2015), and Kaur et al. (2015) for field experiments; and Laibson et

al. (1998, 2017) for natural field data estimates of present bias. The positive gradient of estimated

64In their words, “the improvement motive,” “the avarice motive,” and “intertemporal substitution motive” refer to
preferences over present and future consumption (see p.1797 of Browning and Lusardi, 1996). In earlier work, Friedman
(1953) concluded that “one cannot rule out the possibility that a large part of the existing inequality of wealth can be
regarded as produced by men to satisfy their tastes and preference.”

65Strotz (1955) formalizes time-inconsistent decision making and the demand for commitment devices. Phelps and
Pollak (1968) develops the hyperbolic discount function that has since become popular.

66Note that a level shift in desired retirement wealth is not per se a problem for our analysis as our focus lies on
heterogeneity. Potentially more problematic would be dispersion in the reliance on unmeasured home production,
which could lead us to overestimate the variation in present bias conditional on earnings ability.
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discount factors in income we find is in line with empirical correlations between lifetime income

and savings rates (Dynan et al., 2004) as well as with present bias estimates in Paserman (2008),

Meier and Sprenger (2015), and Lockwood (2016). Analyzing data on identical and fraternal twins,

Cronqvist and Siegel (2015) find that the genetic component of savings behavior is correlated with

smoking and obesity, suggesting that it may be related to behavioral issues of self-control. See

also De Nardi and Fella (2017) for a comprehensive overview of dynamic models linking wealth

heterogeneity to preference heterogeneity.

D Optimal Policies

D.1 Further results on the optimal allocation and optimal policies

D.1.1 More on the Role of Redistributive Preferences

We now compare optimal savings rates under different sets of Pareto weights. Figure 19(a) shows

that under more progressive welfare weights (λ1 = 1.000, λ2 = 3.000, λw = 0.499), optimal sav-

ings rates are even a little more spread out, particularly in the income region of USD 100,000 to

USD 200,000. As before, offering more savings choice facilitates redistribution. Figure 19(b) shows

that under more regressive welfare weights (λ1 = 3.000, λ2 = 1.000, λw = 0.499), savings rate dis-

persion significantly shrinks, as now there is less of a redistributive motive. Figure 19(c) shows

that the utilitarian benchmark lies somewhere in between these extremes.
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Figure 19. Optimal savings rates under various redistributive preferences

(a) More progressive welfare weights
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(b) More regressive welfare weights
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(c) Utilitarian welfare weights
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Notes: Savings rate is defined as s = (c2/R) / (c1 + c2/R). Source: Authors’ calculations based on model.

D.1.2 The Role of the Revenue Generation Motive

We now explore optimal savings rates computed under different exogenous levels of government

spending. Recall that in our benchmark calibration we set exogenous government spending to

match net tax payments under the current system. Figure 20(a) shows optimal savings rates when

there are no government expenditures to finance. Relative to our benchmark results, savings rates

are significantly lower for incomes below USD 100,000. In contrast, in an economy with twice

the benchmark amount of exogenous government spending, savings rates among low-income

individuals are significantly higher than in the benchmark, as shown in Figure 20(b).
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Figure 20. Optimal savings rates under various levels of exogenous government spending

(a) Lower government spending
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(b) Higher government spending
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Notes: Savings rate is defined as s = (c2/R) / (c1 + c2/R). Benchmark exogenous government spending is set to USD 40,058 per capita.
Panel (b) sets exogenous government spending equal to zero, while panel (b) doubles exogenous government spending relative to the
benchmark. Source: Authors’ calculations based on model.
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