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Abstract

Cities with cleaner power plants and lower energy demand have stricter

land use restrictions; these restrictions increase housing prices and disin-

centivize living in these lower polluting cities. We use a spatial equilibrium

model to quantify the effect of land use restrictions on household carbon

emissions. Our model features heterogeneous households, cities that vary by

power plant technology and the benefits of energy usage, as well as endoge-

nous wages and rents. Relaxing restrictions in California to the national

median leads to a 2.3% drop in national carbon emissions. The burden of

a carbon tax differs substantially across locations.
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1 Introduction

The negative effects of carbon dioxide (CO2) are well understood; higher lev-

els of CO2 in the atmosphere are affiliated with a multitude of environmental

issues. The amount of energy an individual uses, and therefore the amount of

carbon emissions one is responsible for, depends partially on where the individual

lives.1 For example, Oklahoma City has both high summer temperatures and re-

lies heavily on coal power plants while San Francisco has a moderate climate and

uses electricity largely produced in clean hydroelectric plants. As a result, house-

holds in Oklahoma City consume high levels of air conditioning using electricity

produced from high-polluting power plants while households in San Francisco

will use less electricity from lower-polluting plants. Therefore, government policy

which shapes the distribution of workers across cities has important implications

for national carbon emissions.

Local land use restrictions are often employed to improve the “greenness” of a

city. However, these restrictions increase costs to new construction and therefore

limit population growth in many of the most desirable cities (Glaeser, Gyourko,

and Saks, 2005).2 Further, Glaeser and Kahn (2010) document that cities with

lower carbon usage per household have stricter land use restrictions; suggesting

that these restrictions discourage people from living in lower polluting cities. The

goal of this paper is to quantity the effect of land use restrictions on national

residential carbon emissions.

To this end, we specify a spatial equilibrium model with power plant tech-

nology and demand for energy that varies across cities. Heterogeneous and im-

perfectly mobile households choose which city to live in and how much housing,

electricity, natural gas, and fuel oil to consume. Rents and wages are determined

in equilibrium by the location and consumption choices of these households. Fur-

thermore, cities vary in the restrictiveness of local land use regulations. All else

equal, stricter land use restrictions imply higher costs of living which disincentivize

1For example, Glaeser and Kahn (2010) show that the median household in Memphis is
responsible for nearly twice as much carbon emissions as an median household in San Francisco.

2These restrictions are often popular among local homeowners as they keep house prices high
(Glaeser, 2014). Albouy and Ehrlich (2018) find that land use restrictions increase the cost of
construction without improving local amenities.
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households from living in these cities.3

Our model allows carbon output to vary across cities for two reasons. First,

we allow the marginal benefit of usage of electricity, natural gas, and fuel oil to

vary by city. Second, due to spatial variation in the technology of power plants

across the US, electricity production has heterogeneous emissions. If land use

regulations are stricter in cities with more carbon efficient power plants and lower

energy demand, households will be incentivized to live in “dirtier” cities, thus

increasing national carbon emissions.

For our analysis, we combine data from three main sources. We utilize data

on household location, income, rents and expenditures on electricity, natural gas,

and fuel oil from over 5 million households from the five-year aggregated American

Community Survey (ACS) from 2012 - 2016. We combine household expenditure

data with state-level prices from the Energy Information Association (EIA) to

impute household usage of each of these three energy types. Next, we use data

from the Emissions & Generation Resource Integrated Database (eGrid) on the

energy output, CO2 emissions rates and locations of all power plants in the United

States to estimate carbon emissions associated with electricity production across

the US. We update the descriptive results in Glaeser and Kahn (2010) with this

more recent data and document substantial variation in carbon emissions across

cities. For example, we show that a household in Memphis is responsible for over

three times as much annual carbon emissions as a household with the same de-

mographics in Honolulu. Additionally, we show that household carbon emissions

are negatively correlated with a standard measure of land use restrictions, the

Wharton Land-Use Regulation Index—greener cities tend to have stricter land

use restrictions.

Next, we use these data sources and a combination of calibration and estima-

tion to take our quantitative model to the data. The household sorting and energy

demand component is estimated via maximum likelihood, using data on locations

and energy expenditures from the ACS. We use data from eGrid to estimate the

carbon emissions associated with electricity production across regions and esti-

mates from Saiz (2010) to calibrate the parameters of housing supply curves as a

3We use the terms “land use restrictions” and “land use regulations” interchangeably
throughout the paper.
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function of land use restrictions.

California legislators are currently debating SB-50, a bill that would relax local

land use restrictions in California cities.4 We use the estimated model to simulate

the effects of such a policy, specifically, by setting land use regulations in California

cities to the median level in the United States. Due to the moderate climate and

carbon efficient power plants, California cities are remarkably green. However,

land use regulations are strict—the San Francisco MSA is in the 86th percentile

of the Wharton Index while Los Angeles CBSA is the 78th. As a result of relaxing

these restrictions, we find that the long run population in California cities increases

by nearly 68% and national usage of natural gas and electricity drop by 1.1% and

1.7%, respectively, as demand for both types of energy are lower in California.

Overall, this leads to a 2.3% decrease in national carbon emissions. This is driven

by a decrease in energy usage and a greater portion of total electricity consumption

coming from clean power plants in California. Furthermore, as California cities

have high productivity levels, this leads to increase in average wages for both

unskilled and skilled workers. In total, this shift towards more productive and

lower polluting cities increases the output to emissions ratio by 4.7%.

Next, we entirely remove the negative correlation between land use restrictions

and carbon emissions by setting the Wharton Index in all cities to the national

median. Households respond by leaving the Midwest and South and move to

the West Coast and Northeast. Demand for natural gas is high and demand for

electricity is low in the cold Northeast, resulting in an increase in national gas

usage and a decrease in total electricity usage. Overall, these changes in household

sorting and energy usage lead to an 8% drop in national carbon emissions and

nearly a 20% increase in the national carbon efficiency of output.

Finally, we simulate the effects of a carbon tax equal to the social cost of carbon

emissions.5 We find this carbon tax leads to over a 10% decrease in residential

carbon emissions, both via its effect on household sorting and decreased usage

4SB-50 is appropriately referred to as the “More HOMES Act” (Housing, Opportunity, Mo-
bility, Equity, and Stability). The bill focuses on relaxing density restrictions and reducing the
number of areas zoned for single-family homes, particularly in areas near public transit and in
commercial areas.

5We use $31 per ton of carbon based on the estimates of the social cost of carbon in Nordhaus
(2017).
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conditional on location. The direct effect of the tax reduces average household

welfare by $305, raises a tax revenue of $269 per household, and leads to a reduc-

tion in the social cost of carbon valued at $38 per household. However, the carbon

tax has significant distributional consequences: the tax burden of households in

the Midwest is nearly 50% larger than that of households in the West.

Our paper relates to two recent papers, Hsieh and Moretti (2019) (HM) and

Herkenhoff, Ohanian, and Prescott (2018), who find that relaxing land use regu-

lations in high productivity cities would lead to large increases in GDP.6 Method-

ologically, our approach is closer to HM. Our model focuses on an entirely different

set of outcomes and incorporates energy demand, energy production, and emis-

sions. Furthermore, workers in our model vary in terms of education, family

composition, age, race and the state in which they were born. Therefore, our

model allows for richer substitution patterns across cities and allows us to analyze

how changes in land use restrictions affect both the population and demographic

composition across cities. In Section 6, we demonstrate that our predicted changes

in aggregate population are similar to those in HM, however, we also show that

relaxing land use regulations leads to important changes in the composition of

households within a city.

Our work builds on the descriptive findings in Glaeser and Kahn (2010) (GK).

GK measure predicted carbon emissions associated with living in different cities

across the country and documents a negative correlation between emissions and

land use regulations. Relative to GK, the primary contribution of this paper is to

utilize a structural model to quantify the effects of land use restrictions on national

carbon emissions. National carbon emissions are an equilibrium object; household

sorting, energy demand, and housing supply/demand all determine the extent

to which land use restrictions affect national carbon emissions. Estimating the

effects of a counterfactual change in land use restrictions necessitates a structural

equilibrium model.

This paper is also related to a large literature on how exposure to environmen-

tal externalities varies by location (See Chay and Greenstone (2005); Currie et al.

6Albouy and Stuart (2014) also find that relaxing land use regulations would lead to large
redistribution of households across cities but are less concerned with the effect on national
productivity.
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(2015); Muehlenbachs, Spiller, and Timmins (2015); or Fowlie, Rubin, and Walker

(Forthcoming), for example). In our setting, exposure to the carbon emissions

does not depend on the household’s location—the effects of carbon emissions and

global warming are predominantly felt globally, not locally. However, the amount

of carbon emitted generated depends on where the household lives. Finally, in

complementary work, Mangum (2016) analyzes the effects of housing and land

stock allocations on carbon emissions.7

The remainder of the paper proceeds as follows. In Section 2, we describe the

data and in Section 3 we document several stylized facts regarding emissions and

land use restrictions across cities. We present our quantitative spatial equilibrium

model in Section 4. We describe how we take the model to the data in Section 5

and discuss model validation in Section 6. Section 7 presents the main counter-

factual results. Section 8 presents robustness and model extensions and Section 9

concludes.

2 Data

This paper utilizes individual data on household sorting and energy expenditures

from the ACS, detailed data on power plants from eGrid, and state level energy

pricing data from the EIA. In what follows, we briefly describe each of the main

data sources and how they are used in our analysis. Further details on the data

can be found in Appendix A.

CBSA Level Data We utilize Core Based Statistical Areas (CBSAs) as our

definition of a geographic area. CBSAs correspond to distinct labor markets and

are the Office of Management and Budget’s official definition of a metropolitan

area. To measure land use regulations in each CBSAs we utilize a standard

metric developed by Gyourko, Saiz, and Summers (2008), the Wharton Land-

Use Regulation Index (WLURI). This index was created from a survey sent to

6896 municipalities across the US, with questions that range from how many

7Compared to Mangum (2016), our paper focuses more on the workers sorting across cities
and energy usage. Mangum’s focus on the housing construction process allows for a more
nuanced understanding of how different land use restrictions affect the housing stock.
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regulatory boards one must clear before construction to city-specific density and

open space requirements. A higher value of the Wharton-Index implies more

stringent regulations and higher costs of developing land and has been shown to

lead to more inelastic housing supply curves (e.g. Saiz (2010), Albouy and Ehrlich

(2018), or Diamond (2016)).

Individual Data Individual-level data comes from US Integrated Public Use

Microdata Series (IPUMS); we utilize the 5% five-year American Community Sur-

vey (ACS) from 2012 - 2016 (Ruggles et al., 2010). Since we are allowing for a

rich-level of agent heterogeneity, a large data-set is imperative for our analysis.

Our sample consists of over 5 million households and provides demographic, loca-

tion, and housing information. Crucially, the ACS contains yearly expenditures

data on natural gas, electricity, and fuel oil.

Our model is concerned with emissions generated at home, we therefore fo-

cus on three primary energy types: natural gas, electricity, and fuel oil.8 We

combine data on expenditures on these three energy types with state level price

data from the US Energy Information Administration (EIA)9 to impute household

consumption of natural gas, electricity, and fuel oil.

Power Plants and Emissions For each of the three energy types we consider,

we use conversion factors to convert usage of each energy type to carbon emis-

sions. We assume 117 lbs of CO2 are emitted per thousand cubic feet of natural

gas consumed and 17 lbs of CO2 are emitted per gallon of fuel oil consumed.10

Carbon emissions associated with electricity usage depend on where the electricity

is consumed—electricity used in areas which generate electricity via coal plants

will lead to more carbon emissions than in areas which rely more heavily on hy-

droelectric power.

We therefore turn to power plant-level data from the Emissions & Generation

Resource Integrated Database (eGRID). This dataset contains information on

8GK also examine the role of differences across cities in emissions produced by cars. They
find that differential usage of cars does little to explain total differences in emissions across
cities. Furthermore, data on driving across cities is limited.

9https://www.eia.gov/state/seds/
10https://www.eia.gov/tools/faqs/faq.php?id=73&t=11
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every power plant in the US’s location, primary fuel input, emissions rate, and

total megawatt hours of electricity generated each year. To assign households

to power plants, we use the eight North American Electric Reliability Council

(NERC) regions. These eight regions can be thought of as closed markets as

transmissions of electricity within a region is common but electricity is rarely

transferred across regions (Holland and Mansur, 2008; Glaeser and Kahn, 2010).

We calculate the emissions factor associated with each NERC region as the

weighted average CO2 emissions of all plants in the NERC region. The emissions

factors range from roughly 800 to 1550 lbs of CO2 emitted per megawatt hour

of electricity consumed.11 All CBSAs within a NERC region are assigned this

conversion factor.

3 Descriptive Statistics

In this section we calculate predicted household usage of electricity, natural gas

and fuel oil usage across cities and the associated carbon emissions. We follow

GK closely in construction of CBSA level measures.

Our goal is to construct a measure of predicted energy usage in each CBSA,

controlling for differences in household composition and demographics. First, we

calculate each household’s imputed energy usage in natural gas, electricity and

fuel oil as their reported expenditure on each of these energy types divided by the

state-level price of each energy type. We then regress household energy usage on

demographic variables and CBSA fixed effects and compute the predicted usage

of a household with median demographic characteristics in each city.12 Details on

the regression can be found in Section A.5.

Once we obtain predicted per-capita energy use for each CBSA and energy

type, we turn to emissions. We multiply the predicted usage for each fuel type

with the respective emissions factor. As discussed in Section 2, we assume a

constant emissions factor for fuel oil and natural gas. The emissions factor for

electricity use varies across NERC regions.

11For the full distribution of emissions factors, see Table 9 in Section A.4.
12Results where we do not control for demographics are qualitatively similar. In our main

specification, we control for log income, household size, and age of the household head.
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CBSA Rank Emissions Gas Fuel Electricity Electricity Electricity

Emissions Emissions Use Conversion Emissions

(1000 lbs) (1000 lbs) (1000 lbs) (MwH) (1000 lbs per MwH) (1000 lbs)

Lowest

Honolulu, HI 1 9.65 0.30 0.07 6.10 1.52 9.29

Oxnard, CA 2 11.14 5.29 0.11 7.18 0.80 5.75

San Diego, CA 3 11.28 4.65 0.15 8.10 0.80 6.48

Los Angeles, CA 4 11.31 4.95 0.08 7.85 0.80 6.28

San Jose, CA 5 12.27 5.70 0.11 8.08 0.80 6.46

San Francisco, CA 6 12.50 5.94 0.13 8.04 0.80 6.43

Middle

Austin, TX 33 20.96 3.87 0.13 16.71 1.01 16.96

Charlotte, NC-SC 34 21.05 4.91 0.24 15.36 1.04 15.90

Houston, TX 35 21.81 3.92 0.10 17.52 1.01 17.78

Virginia Beach, VA 36 21.98 4.51 0.43 16.46 1.04 17.04

Richmond, VA 37 22.08 4.39 0.69 16.41 1.04 16.99

Dallas-Fort, TX 38 22.33 3.89 0.13 18.04 1.01 18.31

Highest

Tulsa, OK 65 27.61 7.54 0.16 15.67 1.27 19.92

Detroit, MI 66 27.99 14.97 0.28 11.53 1.11 12.75

Kansas City, MO-KS 67 28.90 8.77 0.18 15.69 1.27 19.95

Omaha, NE 68 29.96 13.02 0.26 13.66 1.22 16.68

Oklahoma City, OK 69 30.46 7.21 0.19 18.14 1.27 23.06

Memphis, TN-MS-AR 70 30.66 6.70 0.15 23.00 1.04 23.81

Table 1: Predicted CBSA level CO2 emissions by fuel type for the six lowest emissions cities, the
six median cities, and the six highest emissions cities. The third column (“Emissions”) shows
the sum of predicted CO2 emissions from natural gas, fuel oil and electricity for the CBSA. The
next two columns show emissions from gas and fuel oil respectively, which are equal to predicted
usage multiplied by the appropriate emissions factor. The last three columns show predicted
electricity usage, the electricity emissions factor, and predicted electricity emissions, equal to
predicted electricity usage multiplied by the emissions factor. Use is measured in 1000 pounds
per megawatt hour.

3.1 Predicted Emissions

The predicted usage and emissions for selected cities are shown in Table 1. We

show results for the six lowest emissions cities, the six highest emissions cities, and

the six median cities. The third column (“Emissions”) shows the sum of predicted

emissions from natural gas, fuel oil and electricity for the CBSA. There is a

huge range in predicted household emissions across cities. In Honolulu, predicted

emissions are only 9.65 tons, whereas in Memphis they are over 30 tons.

The next two columns show emissions from gas and fuel oil respectively, which

are equal to predicted usage multiplied by the appropriate emissions factor. Nat-

9



ural gas emissions are generally largest in colder regions.13 Emissions from fuel

oil are generally quite small in magnitude compared to emissions from the other

two energy types. The last three columns show predicted electricity usage, the

electricity emissions factor, and predicted electricity emissions, equal to predicted

electricity usage multiplied by the emissions factor.

Spatial variation in carbon emissions comes from multiple sources. For exam-

ple, power plants utilized in Memphis emit less CO2 than Kansas City (1.04 lbs

per MwH in Memphis compared to 1.27 in Kansas City). However, electricity

usage in Memphis is so much higher than in Kansas City that overall average

household carbon emissions are higher in Memphis, despite greater consumption

of fuel and natural gas in Kansas City. Conversely, consider emissions result-

ing from electricity in Houston compared to Tulsa. Households in Houston use

more electricity than those in Tulsa. However, power plants utilized in Tulsa are

less carbon efficient than those utilized in Houston. Therefore, carbon emissions

from electricity use are higher in Tulsa. This underscores an important feature

of the data: spatial variation in individual electricity emissions is driven both by

differences in energy usage and heterogeneity in power plants across regions.

3.2 Policy and Emissions

Spatial variation in carbon emissions implies that any policy that has an effect

on where people live will also impact national carbon emissions. The primary

policy we are interested in is land use regulations. Figure 1 shows a scatterplot

between CBSA-level predicted emissions and the Wharton Land-Use Regulation

Index. The Wharton Index is displayed on the horizontal axis; higher values of

this index correspond to stricter land use restrictions. The vertical axis displays

predicted per household carbon emissions, measured in pounds.14

13In Section A.7, as in GK, we show that colder winter temperatures are highly predictive of
natural gas usage.

14This statistic is the same as that displayed in the “Emissions” column of Table 1.
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Figure 1: Emissions are measured in pounds. Each circle is a CBSA; highlighted are California
cities. The size of each circle reflects CBSA population.

Generally, higher land use regulations are associated with lower per-capita

carbon emissions. California cities are remarkably “green” due to a combination

of temperate climate and clean power plants. These cities also have very high-

land use regulations, which inflates housing prices and incentivizes individuals to

live away from California. As we have documented, the spatial distribution of

individuals has a large impact on aggregate carbon emissions. We proceed by

building a spatial equilibrium model to glean insight on the effect on land use

restrictions on national carbon emissions.

4 Model

We employ a static spatial equilibrium featuring heterogeneous households, with

endogenous wages and rents, similar to those used in Diamond (2016), Piyapromdee

(2017), and Colas and Hutchinson (2018). We extend this class of model by allow-

ing locations to vary by carbon output of regional power plants and the marginal
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benefits of energy usage. Therefore, our model is able to map changes in the

distribution of households across locations to carbon emissions.

Household sorting is a static, discrete choice—households choose the city which

provides the highest utility in terms of wages, rents, amenities, and energy prices.

Households purchase three energy types—electricity, natural gas and fuel oil—

which they use to produce energy services (e.g. air conditioning, home heating).

The benefit of energy services varies by city. For example, the benefit of air

conditioning and therefore electricity are high in Oklahoma City while the benefit

of home heating (and therefore natural gas) are high in Minneapolis. Each location

has an upward sloping housing supply curve whose elasticity depends on local land

use restrictions. Cities with stricter land use restrictions will have more inelastic

housing supply curves and higher rents, all else equal. Competitive firms combine

high and low skilled workers using a CES production function. Thus, local wages

and rents are endogenous to the distribution of workers across cities. Changes in

land use restrictions across cities will change housing supply curves across cities

and impact the equilibrium distribution of households.

As we show in Section A.8, emissions vary across household types. Further-

more, a number of studies have shown that workers of various education levels

vary in their mobility and sorting patterns across cities.15 We allow households

in the model to vary in their education level, race, age group, martial status and

number of children. These households types vary in their preferences over loca-

tions, energy services, and housing. Within this demographic group, households

also receive a premium for living in cities close to their birth state. This allows

for rich substitution patterns in response to policy changes—a decrease in rents in

San Francisco, for example, will lead to larger inflows of households who are born

in California. Finally, households receive an idiosyncratic preference draw over

each location, where the variance of the draw varies by household demographics.

Therefore, households are imperfectly mobile across cities.

The amount of carbon emissions generated by a household varies for two rea-

sons in the model. First, the marginal benefit of energy usage varies by city. Cities

with higher marginal benefit of energy usage will have higher levels of energy us-

age, all else equal. Second, the production technology and carbon efficiency of

15See, for example, Bound and Holzer (2000) or Diamond (2016).
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power plants varies across NERC regions. Electricity used at a given city must

be purchased from a power plant in the associated NERC region. Therefore, elec-

tricity usage in cities with more carbon efficient power plants will lead to lower

emissions.

4.1 Households

Let j index cities and i index households. Households are endowed with a de-

mographic type d, which includes the household head’s education, marital status,

race, number of children and age group. Demographic groups vary in both prefer-

ences and wages. Locations vary by amenities, which we denote λij. To solve their

decision problem, the household chooses a location j that yields maximal bene-

fits from amenities and consumption of the numeraire c, housing H, and energy

services Em, such as heating or air-conditioning.

We parameterize the household’s utility function as:

uij = αcd log c+ αHd logH +
∑
m

α̂mjd logEm + λij (1)

where αcd, α
H
d , and α̂mjd are parameters which scale the marginal benefit of con-

sumption, housing and energy services. We allow α̂mjd to vary across cities to reflect

differences in the marginal benefit of energy services across cities, perhaps due to

differences in weather.16

We assume energy services are produced by the household using a fixed pro-

portions energy production function which maps energy types into energy services.

Let xm denote usage of energy type m, where m ∈ {Elec,Gas, Fuel}. The energy

service production function takes the form:

Em = f (xm) = δmxm (2)

where δm is a parameter that maps units of energy units into energy services.

16In Section A.7, we show that local temperature is highly predictive of energy usage. We
assume that these parameters are not function of local population or population density. In
Appendix A.6, we provide evidence that population is not a significant predictor of energy
demand.
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Substitution of 2 into 1 yields:

uij = αcd log c+ αHd logH +
∑
m

αmjd log xm + λij (3)

where αmjd = α̂mjdδ
m.

The agents’ budget constraint is given by:

Ijd = c+RjH +
∑
m

Pm
j x

m

where Ijd is the income level of agents of demographic d living in city j and xm is

usage of energy type m. Rj and Pm
j represent the prices of housing and the price

of energy of type m in city j. We normalize the price of consumption c to one.

We decompose the amenity term, λij, into five distinct components. In par-

ticular, we let:

λij = γhpd I (j ∈ Bstatei)+γdistd φ (j, Bstatei)+γdist2d φ2 (j, Bstatei)+ξjd+σdεij (4)

where I (j ∈ Bstatei) is an indicator for location j being in worker i’s birth state,

φ (j, Bstatei) and φ2 (j, Bstatei) are the distance and squared distance, respec-

tively, between agent i’s birth state and location j. ξjd is a shared unobservable

component of amenities and εij is an idiosyncratic preference shock with dispersion

parameter σ. Differences in εij across individuals and cities reflect unobservable

variation in attachment to a location that an individual might have. We assume

that εij follows a Type 1 Extreme Value distribution.

We make an important assumption that unobserved amenities, ξjd, are taken as

exogenous and are not function of land use restrictions, as is relatively standard.17

This assumption is supported by the findings in Albouy and Ehrlich (2018), who

find that land use restrictions increase the cost of housing production without

improving local quality of life.

Solving the agent’s maximization problem yields constant income shares on

17See Hsieh and Moretti (2019), Piyapromdee (2017), or Colas and Hutchinson (2018), for
example. Diamond (2016) and Herkenhoff, Ohanian, and Prescott (2018) allow amenities to be
endogenous to household composition, but not land use restrictions directly.
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housing and energy of all types. We write a household of demographic group d’s

optimal choice of housing, conditional on living in a city j as,

H?
jd =

αHd Ijd
αjdRj

where we define

αjd = αcd + αHd +
∑
m

αmjd.

Optimal usage of energy type m is also a constant fraction of income:

xm?jd =
αmjdIjd

αjdPm
j

.

We then solve for the indirect utility function associated with location j:

Vij = (αjd) log Ijd − αHd logRj −
∑
m

αmjd logPm
j + λ̂ij (5)

where

λ̂ij = λij +
∑
m

αmjd log
(
αmjd
)
.

The household’s problem can therefore be thought of as a discrete choice over all

the locations, conditional on optimal quantities of housing and energy consump-

tion. We write the total number of workers of demographic d who choose to live

in location j as

Njd =
∑
i∈Id

argmaxj′Vij′ .

Given that the idiosyncratic preference draws are distributed as Extreme-Value

Type I, we can write the probability that an individual i chooses a location j as

Pij =
exp (ūij/σd)∑
j′∈J exp (ūij′/σd)

(6)

where ūij = uij − σdεij is the agent’s indirect utility of choosing location j minus

the idiosyncratic preference draw.
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4.2 Housing Supply

Each city has an upward sloping housing supply curve. The elasticity of the

housing supply curve is allowed to vary by city as a function of the amount of

available land and the strictness of land use restrictions. Specifically, we follow

Kline and Moretti (2014) and parameterize the inverse housing supply curve in

city j as:

Rj = zjH
kj
j , (7)

whereHj is quantity of housing supplied, zj is a scale parameter, and kj is a param-

eter equal to the inverse elasticity of the housing supply curve
(

i.e.,
∂ logRj
∂ logHjt

= kj

)
.

Taking logs of equation 7, we obtain

log(Rj) = kj log(Hj) + log(zj). (8)

The term kj plays a crucial role in our analysis. Higher values of kj imply more

inelastic housing supply curves and higher rent levels. Therefore, cities with higher

values of kj will have lower equilibrium population levels, all else equal.

As shown by Saiz (2010), local land use restrictions, as measured by the Whar-

ton Land Use Index, and the fraction of land that is unavailable for development

due to geographic constraints are strong determinants of more inelastic housing

supply curves. We follow Saiz (2010) and parameterize kj as a function of land

use restrictions and geographic constraints:

kj = ν1 + ν2ψ
WRI
j + ν3ψ

GEO
j

where ψWRI
j is the Wharton Land Use Index and ψGEOj measures the amount of

land that is unavailable for development due to geographic restrictions. A higher

value of ν2 implies that cities with stricter land use restrictions will have more in-

elastic housing supply. As shown in Section 3.2, cities with higher values of ψWRI
j

generally have lower carbon emissions per household. In the model, this disincen-

tivizes households from living in “greener” cities and encourages households to

live in “dirtier” cities.
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Specifically, given that the idiosyncratic preferences draws are distributed as

Extreme-Value Type I, the partial equilibrium elasticity of location choice with

respect to rents is approximately equal to:18

∂ logPij
∂ logRj

≈ −α
H
d

σd
.

We can solve for the partial equilibrium effect of a household’s choice probability

with respect to land use restrictions as

∂ logPij
∂ψWRI

j

≈ −ν2
αHd
σd

log(Hjt)

The partial equilibrium effect of land use restrictions is proportional to the expen-

diture share on housing and the importance of land use restrictions in dictating

the housing supply elasticity ν2, and inversely proportion to σd, the dispersion

in the idiosyncratic preference draw. Higher values of σd imply household loca-

tion choices are less responsive to changes in rents; thus, variation in land use

restrictions will have smaller effects on household sorting.

4.3 Energy Production and Emissions

We allow for three types of energy in our analysis, natural gas, fuel oil and elec-

tricity. We assume fuel oil and natural gas are purchased on an international

market and treat supply for these types of energy as perfectly elastic. We assume

that the carbon byproduct of fuel oil and natural gas are constant regardless of

where the energy is used. Total household emissions of carbon from natural gas

and fuel oil usage in city j is the sum of usage of the energy type multiplied by

the appropriate conversion factor:

CO2
m
j = δ̂m

∑
d

Njdx
m
jd, m ∈ {Gas, Fuel}

18Differentiating Pij with respect to rents yields
∂ logPij
∂ logRj

= −α
H
d

σd
(1− Pij) ≈ −α

H
d

σd
for small

values of Pij .
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where
∑

dNjdx
m
jd is the total amount of fuel of type m consumed by people living

in city j, δ̂m is the amount of carbon emissions per unit of fuel of type m and Njd

is the number of households of demographic d living in j.

We assume electricity is generated across NERC regions in the United States

and then is transmitted to local labor markets within those regions. Within each

NERC region, perfectly competitive electricity companies produce energy.19 In

our baseline specification, we assume that the marginal cost of energy produc-

tion is constant.20 In Section 8.3, we consider a model extension with increasing

marginal cost. We find that the qualitative results are similar in both cases.

We allow the conversion factor for electricity to vary by NERC regions to

reflect differences in the technology of power plants across regions in the United

States. For example, a larger percentage of power in the Western NERC region

(WECC) comes from hydroelectric dams, whereas the Southern NERC region

(SERC) relies more heavily on coal power.

Let δ̂mR represent the conversion factor of electricity to carbon emissions in

NERC region R and let R (j) map cities to their corresponding NERC regions.

We write carbon emission resulting from electricity usage in CBSA j as

CO2
m
j = δ̂mR(j)

∑
d

Njdx
m
jd, m ∈ {Elec}

For simplicity, we use the following notation for carbon emissions factors:

δmj =

δ̂m m ∈ {Gas, Fuel}

δ̂mR(j) m ∈ {Elec}

Local carbon emission of each energy type m can then be written as

CO2
m
j = δmj

∑
d

Njdx
m
jd

19Electricity is a homogeneous good with a large number of with many producers. However,
when transmission constraints bind, generation companies may have local market power. See
Joskow and Tirole (2000) for a discussion.

20The short run supply of electricity is often modeled as a dispatch curve with constant
marginal or linear marginal cost curves. However, as we are considering a long-run equilibrium,
the supply curve is given by the long run marginal cost curve, allowing for the construction of
new reactors or the entry of new plants.
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The main outcome of interest is national carbon emissions. Total national

emissions from all energy type m is the given by COm
2 =

∑
j CO2

m
j , and national

emissions across all energy types is simply the sum of the energy specific pollution

levels, CO2 =
∑

mCO
m
2 .

From here it is relatively straightforward to see how the distribution of house-

holds across cities can affect the level of national carbon emissions. We rewrite

national emissions in terms of the covariance between the distribution of house-

holds and the efficiency of local electricity usage multiplied by the local energy

usage:

CO2 =
∑
m

∑
d

(
JCov

(
Nd
j , x

m
jdδ

m
j

)
+NdE

[
xmjdδ

m
j

])
,

where Nd, the total number of households of group d, and J , the total number of

cities, are both model primitives. The expectation E
[
xmjdδ

m
j

]
is taken over cities

j.

National emissions are increasing in the covariance of population and the prod-

uct of energy usage and energy conversion factors. Therefore, policies which lead

households to live in areas with higher energy usage and less carbon efficient power

plants will lead to increases in national carbon emissions.

As demonstrated in Section 3.2, land use regulations are negatively correlated

with local average CO2 emissions levels. Furthermore, stricter land use regula-

tions increase local rents and lead to lower equilibrium population levels, this

strengthens the relationship between local population levels and local emissions.

In Section 7, we examine the quantitative implications of this relation between

land use regulations, energy demand, and power plant technology on national

carbon output.

4.4 Wages

Perfectly competitive firms in each city combine skilled and unskilled labor in

a CES production function to produce the numéraire consumption good, where

we define household heads with a college degree as skilled and household heads

with less than a college degree as unskilled. Therefore, wages for skilled and

unskilled workers in each city are determined endogenously by the ratio of skilled
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to unskilled workers. Specifically, firms use a combination of skilled (S) and

unskilled labor (U), as inputs in the following production function:

Yj = Aj[(1− θj)U
σ−1
σ

j + θjS
σ−1
σ

j ]
σ
σ−1 (9)

where Uj and Sj are defined as the total efficiency units of labor supplied by

unskilled and skilled workers in city j, respectively. Aj is the total factor pro-

ductivity in city j and θj is the relative factor intensity of skilled workers. The

elasticity of substitution between skilled and unskilled workers is given by σ.21

Firms take wages as given and choose skilled and unskilled labor quantities to

maximize profits. We derive labor demand curves as a result of the firms skilled

and unskilled labor first order conditions for profit maximization:

Wjs =Aj

(
Yj
Aj

) 1
σ

θjS
− 1
σ

j

Wju =Aj

(
Yj
Aj

) 1
σ

(1− θj)U
− 1
σ

j ,

(10)

where Wjs and Wju are the wage rates for skilled and unskilled labor, respectively.

Within education groups, demographic groups are perfectly substitutable in

production but vary in their productivity and therefore supply different amounts

of efficiency units of labor. Income levels for an individual household are given by

the amount of efficiency units of labor supplied by the household multiplied by

the appropriate wage rate. Income for a household of demographic group d living

in city j is given by Idj = Wju`
d for unskilled workers and Idj = Wjs`

d for skilled

workers, where `d represents the amount of efficiency units supplied by agents of

demographic group d.

21One straightforward way to introduce capital into the model is the assume that
production is Cobb-Douglas in capital and a CES labor supply such that Yjt =

AjtK
η
jt

(
[(1− θj)U

σ−1
σ

j + θjS
σ−1
σ

j ]
σ
σ−1

)1−η
where η is a parameter. If capital supply is perfectly

elastic, this production function implies wage equations that are equivalent to those here. See
Colas (2019) for details.
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4.5 Equilibrium

In this environment, an equilibrium is characterized by household and firm opti-

mization, and market clearing in the housing and labor markets.22

More specifically, as we have shown in Section 4.1, given prices, household

i’s optimal choice maximizes utility. Household optimization defines housing de-

mand, energy demand, and labor supply. Housing demand in a city j is given by

the sum of housing demand of all agents living in that city. We can write this as

HD
j =

∑
d

Njd
αHd Ijd
Rjαjd

, (11)

where, as before, Njd is the total number of workers of demographic d who choose

to live in city j, and where we allow D and S superscripts to denote demand and

supply quantities, respectively. Similarly, energy demand is the sum of energy

demand of all individuals living in a city:

XmD
j =

∑
d

Njd

αmjdIjd

Pm
j αjd

. (12)

Labor supply is the sum of efficiency units of labor supplied by all agents of a

given skill level in city j:

SSj =
∑
d′∈dS

Njd`
d′

for skilled workers and

USj =
∑
d′∈dU

Njd`
d′

for unskilled workers where dS and dU are the sets of demographic groups that

with a college degree and without a college degree, respectively.

Labor demand for skilled and unskilled workers are implicitly defined by equa-

tions 10, the first-order conditions of the production firms. Housing supply is given

by equation 8.

Finally, an equilibrium is defined by the two market clearing conditions:

22In Section 8.3 we consider the case when energy prices are determined in equilibrium. In
this case, an equilibrium is also defined by market clearing in the energy markets.
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1. Housing Market Clearing: HSj = HD
j , for all cities, j.

2. Labor Market Clearing: SSj = SDj for skilled workers and USj = UD
j for

unskilled workers in all cities.

5 Data Inference

To take the model to the data, we calibrate some parameters from the literature

and estimate the remainder of the parameters. We focus most of our exposition

on the estimation of household location choice and energy use. Estimation of the

housing supply and production are relatively standard and details are therefore

included in appendices B.1 and B.2. The carbon emissions factors are calculated

as in Section 2.23

5.1 Households

Recall that the workers’ utility function can be written as:

uij = αcd log c+ αHd logH +
∑
m

αmjd log xm + γhpd I (j ∈ Bstatei) +

γdistd φ (j, Bstatei) + γdist2d φ2 (j, Bstatei) + ξjd + σdεij

Therefore, the set of parameters to be estimated are αcd, α
H
d , and αmjd, the pa-

rameters governing the budget shares of consumption, housing and energy spend-

ing, respectively; γhpd , γdistd and γdist2d , the parameters governing the strength of

home premium and the disutility of living further away from one’s birth state;

ξjd, the unobserved city-level amenities; and σd, the parameters that govern the

variance of idiosyncratic preference draws.

We calibrate αHd and αcd to match the national expenditure shares on hous-

ing and non-energy, non-housing expenditure, respectively. We set αHd = .4 and

23That is, we assume 117 lbs of CO2 emitted per thousand cubic feet of natural gas consumed
and 17 lbs of CO2 emitted per gallon of fuel oil consumed. We calculate the weighted average
CO2 emissions of all plants in a NERC region. We then assign each of the CBSAs to a NERC
region, thus assigning all individuals in our sample an emissions factor for electricity.
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αcd = .55 for all demographic groups.24 Next, we choose the parameters govern-

ing the expenditure share on each energy type, αmjd, to match the expenditure

share on each fuel type by each demographic group in each city. Specifically,

given the Cobb-Douglas utility function, the expenditure share on fuel type m of

demographic group d in city j will be given by

Em
jdP

m
j

Ijd
=

αmjd
αdc + αHd +

∑
m α

m
jd

The expenditure share on each type of fuel by city and demographic group can be

calculated directly using income data and energy expenditure data on households

from the ACS. The parameters αdc and αHd have already been calibrated, and all

of the αmjd’s are unknowns. This defines a system of equations for each city with

M equations and M unknowns. We choose the set of αmjd parameters to match

the city-specific expenditure shares on each fuel type for each demographic group

in the ACS.

The next parameter we calibrate is σd, the variance of the idiosyncratic location

draw. This parameter dictates the elasticity of household location choices with

respect to local prices and therefore plays an important role in our analysis. For

example, our main counterfactuals depend crucially on the elasticity of worker

choices with respect to local rents. For large values of σd, worker location choices

depend more on idiosyncratic preference draws, and therefore workers choices

will be less sensitive to changes in local prices. Smaller values of σd imply that

idiosyncratic draws only play a small role in location choices and thus the elasticity

of location choices with respect to prices will be high. We use the values estimated

in Diamond (2016), who uses labor demand shocks across cities to identify the

elasticity of worker choices to local prices.25 Specifically we set σd = 1
4.15

for

unskilled workers and σd = 1
5.52

for skilled workers. In Section 8.1, we examine

the sensitivity of our results to alternative values of αHc and σd.

We estimate the parameters that govern the strength of the home premiums,

γhpd , γdistd and γdist2d and unobserved amenities, ξjd, via maximum likelihood. As

24In Section 8.1, we examine the robustness of our results to alternative values of these pa-
rameters.

25This parameter has been estimated extensively in the literature. For example, see
Piyapromdee (2017), Suarez Serrato and Zidar (2016), or Colas and Hutchinson (2018).
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shown in section 4.1, we write the probability that an individual i chooses a

location j as

Pij =
exp (ūij/σd)∑
j′∈J exp (ūij′/σd)

(13)

where ūij = uij − σdεij is the agent’s indirect utility asscoiated with location j

minus the idiosyncratic preference draw. The log-likelihood function is therefore

given by

Ld(γhpd , γ
dist
d , γdist2d , ξd) =

Nd∑
i=1

J∑
j=1

Iij log(P d
ij), (14)

where Iij is an indicator equal to one if individual i lives in location j and zero

otherwise.26 Our estimates of these parameters are displayed in Section B.3.

6 Model Validation

Model Fit We begin by assessing our model fit. The results are summarized in

Figure 2. Panel (a) shows the log number of households in each city in the data

and in the baseline simulation. Each circle represents a CBSA. Given that we

estimate a separate unobserved amenity value for each demographic group and

each city (ξjd), we are able to match these moments exactly, except for simulation

noise. Next, we plot the simulated and observed log average distance between an

agent’s birth state and chosen city for each CBSA. The results are displayed in

panel (b) of Figure 2. Each circle represents a CBSA, and the size of the circle

is proportional to population. The model fits this aspect of the data fairly well.

Honolulu is the outlier in the upper-right corner of the graph.

Panels (c) and (d) of Figure 2 show the predicted and actual average usage of

natural gas and electricity in each city. As we allow the benefit of energy usage

(αmjd) to vary by city and demographic group, we are able to match these moments

exactly.

26Computationally, we invert the choice probabilities using the contraction mapping in Berry
(1994) to obtain the unique mean utility associated with every guess of the parameter vector

[γhpd γdistd γdist2d ].
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(a) Population by City (b) Average Distance

(c) Natural Gas (d) Electricity

Figure 2: Model fit results. Each circle represents a CBSA. Panel (a) shows the log number
of households in each city in the data and in the baseline simulation. Panel (b) plots the
simulated and observed log average distance between an agent’s birth state and chosen city for
each city. The size of the circle is proportional to city population. Honolulu is the outlier in the
upper-right. Panels (c) and (d) show the predicted and actual average usage of natural gas and
electricity in each city.

External Validation: Comparison to Hsieh and Moretti (2019) Hsieh

and Moretti (2019) (HM) simulate the effects of relaxing land use restrictions

in San Francisco, New York, and San Jose in a model with imperfectly mobile

homogeneous workers. To further understand worker sorting in our model, we

simulate this same experiment by setting the housing supply elasticity parameter

(ψWRI
j ) in these three cities to the level of the median city in the country.

The household sorting component of our model has important differences com-

pared to HM. Workers in HM are homogeneous except for an idiosyncratic prefer-

ence draw, whereas our model incorporates several dimensions of household het-
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erogeneity. First, households are differentiated by a demographic group, which

consists of their education level, age group, marital status, race, and number of

children. Therefore, we can analyze the effects of changes in land use restrictions

in the composition of households within a city, in addition to the total population

of a city. Furthermore, conditional on demographics, individual agents also differ

in their birth state. The birth-state premium breaks the independence from irrel-

evant alternatives restriction within demographic groups and plays an important

role in dictating household substitution patterns. For example, a strong birth-

place premium implies that if a city becomes more attractive, households born

within the state and near the state would be more likely to substitute towards

this city than workers living far away. Concretely, this implies that if San Fran-

cisco experiences an increase in wages or a decrease in rents, households born in

California would be more likely to move to San Francisco than households born in

New York. Therefore, households currently living in San Jose or Sacramento are

much more likely to substitute to San Francisco compared to households currently

living in New York City.

The results are displayed in Table 2. The first row shows the change in pop-

ulation in the three treated cities from HM.27 In their simulation, relaxing land

use restrictions in these three cities leads to a 169%, 140% and 82% increase in

population in New York, San Francisco, and San Jose, respectively, and a 151%

increase in these three cities collectively.

Panel II shows the results from our simulations. The first row of panel II shows

the percent change in population. In our model we predict that these three cities

collectively will experience an increase in population of 161%, which is close to

the amount predicted in HM. The next three reveal columns key differences. Most

notably, our model predicts a decrease in the population of San Jose, while HM

predict a substantial increase. As emphasized above, the inclusion of birth state

premia in our model has important implications for substitution patterns across

cities. In our model, when San Francisco becomes more attractive because of the

relaxation of land use regulations, households currently living in California are

27Note that these results are not reported directly in HM, who instead report changes in
the growth rates of population from 1964 to 2009. We converted their results to changes from
current population relates to make them easier to compare to our results.
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All 3 Cities New York San Francisco San Jose

I. From Hsieh and Moretti:

% Change Population 151 169 140 82

II. From Our Simulations

% Change Population 161 193 93 -2

Change in College Share 4.11 4.78 2.20 -2.75

Change in Married Share 0.58 0.67 -0.05 -0.31

Table 2: Comparison to mobility responses in Hsieh and Moretti (2019). The first row shows the
change in population in the three treated cities from HM. The second panel shows the results
from our simulations.

much more likely to change locations to San Francisco compared to agents living

outside of California. Therefore, relaxing land use regulations in San Francisco

leads to many agents moving from San Jose to San Francisco. This implies a

decrease in San Jose’s population, despite the moderate relaxation of San Jose’s

land use regulations.28

Panel II of 2 show the percentage point change in college share and married

share within the three cities. The relaxation of land use restrictions leads to

increases in the college share in New York and San Francisco and the share of

households that are married. Therefore, while in aggregate our predictions are

similar to those in HM, our model predicts additional composition and substitu-

tion patterns that may have important implications for national carbon output.

7 Counterfactuals

In this section, we use the estimated model to simulate changes in land use re-

strictions and imposing a carbon tax. The results of the counterfactuals are

summarized in Table 3. The first column shows fuel usage, emissions, income and

population distribution in the baseline specification, with all parameters set at

their baseline levels.

28In the data, land use restrictions are much stricter in San Francisco compared to San Jose.
We find that average wages in our simulation increase by 3%, similar in magnitude to the 3.7%
increase in total production predicted in HM.
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Baseline Relax CA Relax All Carbon Tax

I. Percent Total Population

California Cities 9.82 16.50 11.93 9.90

Other West 13.14 11.46 14.87 13.23

Midwest 21.83 20.38 12.50 21.67

South 36.73 34.18 24.82 36.64

Northeast 18.48 17.48 35.87 18.57

II. Mean Usage

Gas (1000 cubic feet) 53.18 52.58 53.96 45.50

Electricity (MW h) 13.27 13.04 12.08 11.85

Fuel Oil (gallons) 28.47 26.84 45.66 25.37

III. Mean Emissions (lbs of CO2)

Gas 6228 6157 6318 5328

Electricity 12804 12465 10651 11351

Fuel Oil 765 721 1226 681

Total 19796 19343 18196 17360

(%) (100) (97.7) (91.9) (87.7)

IV. Mean Log Income

Skilled 10.89 10.91 10.99 10.89

Unskilled 10.04 10.05 10.11 10.04

All 10.33 10.34 10.41 10.33

Table 3: Counterfactual results. Each panel shows the simulated percent of total population
living in various geographic areas, mean energy usage, mean emissions and mean log income in
each specification. See text for details on each individual simulation.
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California Cities Other West Midwest South Northeast

% Change Population 67.97 -12.78 -6.63 -6.93 -5.43

Change in College Share 3.85 -1.21 -1.14 -1.15 -0.83

Change in Married Share 1.58 -0.22 -0.56 -0.50 -0.38

Table 4: Composition changes of relaxing land use regulations in California cities.

7.1 Relaxing Land Use Restrictions in California

California Senate Bill 50, a bill that would override strict land use restrictions

in California cities, is currently being debated. In this section, we examine the

effects of California adopting such a policy and relaxing local land use restrictions.

As shown in Section 2, California cities are among the greenest in the country.

However, they also have very strict land use restrictions—San Francisco and Los

Angeles are in the 86th and 78th percentiles in the strictness of land use restric-

tions, respectively. Intuitively, relaxing land use restrictions in California will lead

to increases in California’s population and decreases in overall carbon emissions.

However, the magnitude of the decrease is an empirical and quantitative question.

Specifically, we simulate setting the land use restrictions, ψWRI , in California

cities to the national median. We display the results in the second column of

Tables 3 and in Table 4. Table 4 shows the change in population across regions

as a result of the policy change. Setting land use restrictions in California to

the national median leads to a 68% increase in the total population in California

cities, a 13% drop in the population of other locations in the West, and roughly

5% to 7% drops in the Midwest, South, and Northeast. The following rows of

Table 4 show the change in demographic composition of the regions. The change

in land use regulations leads to increases in the college share and married share in

California. As these groups are relatively higher usage groups, this composition

effect leads to slightly larger decreases in carbon emissions than the population

change alone.

Panels II and III of Table 3 show how these changes in the distribution of

workers translate to average usage and emissions. Panel II shows changes in

average usage of natural gas, electricity and fuel oil. The relaxation of land use

restrictions leads to decreases in usage of all three types of fuel, as households

move to the temperate California climate. Specifically, natural gas usage drop by

1.1%, electricity by 1.7% and fuel oil usage drops by 5.6%. Panel III of Table 3
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displays average emissions resulting from each type of fuel. Electricity emissions

drop by nearly 2.6% despite only a 1.7% decrease in usage. As power plants

utilized in California are relatively carbon efficient, the drop in emissions from

electricity is larger than the drop in emissions.

In addition to low emissions, cities in California are very productive. Panel IV

of Table 3 shows the effects on average log income. Average income of skilled work-

ers increases by roughly 2% while income of unskilled workers increases slightly.

This leads to an increase in income of 1% across all workers. Therefore, relaxing

land use restrictions in California leads to increases in average income of both

skilled and unskilled workers in addition to a substantial decrease in total carbon

emissions.

7.2 Removing the Correlation Between Land Use Restric-

tions and Emissions

The negative correlation between land use restrictions and city level emissions

has important implications for national carbon emissions. To further explore the

implications of land use restrictions on carbon output, we simulate setting land

use regulations to the national median in all cities.

The results are displayed in the third column of Table 3. From panel I, we can

see that changing land use restriction in all cities leads to a dramatic relocation

from the South and Midwest to the West and Northeast. Specifically, the popula-

tion in Northeast region increases from 18% of total population to 36% while the

population in the Midwest and the South decrease by roughly one third.

Panel II and III show usage and emissions from each energy type. Demand

for natural gas and fuel oil are high while demand for electricity is low in the

cold Northeast. As a result, natural gas usage increases by 1.5%, fuel oil by 60%,

while electricity usage decreases by 9%. As a result of this decrease in electricity

usage and relocation towards areas with more efficient power plants, emissions

from electricity decrease by nearly 17%. Overall, this leads to an 8.1% decrease

in national carbon output.
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7.3 Carbon Taxes

We simulate the effects of imposing a carbon tax in our model. With a carbon tax,

the price of energy type m faced by households living in city j is given by Pm
j +τδmj ,

where τ is the tax per unit of carbon emissions. In our model, this change in

the price of energy can reduce carbon emissions through two channels. First,

conditional on location, households will consume less energy. Second, the carbon

tax will lower the utility associated with higher polluting cities, thus shifting

households away from these areas. In this section, we use our model to understand

the importance of these two channels in carbon abatement, and to measure the

burden of a carbon tax.29

We implement a carbon tax of $31 per ton, based on the estimates of the

social cost of carbon in Nordhaus (2017). The effects on energy usage, emissions,

income, and the distribution of households across space are shown in column 5 of

Table 3. Overall, the tax leads to a 12.3% decrease in national residential carbon

emissions.

Panel I of Table 3 shows the estimates of the effects of carbon tax on the distri-

bution of workers across cities. Compared to the baseline case, the populations in

the Western and Northeast increase while populations in the South and Midwest

decrease. However, these changes in the distribution of workers are relatively mi-

nor, implying the reduction in emissions resulting from geographic redistribution

is small in relation to the total reduction from the carbon tax.

Next we explore the welfare implications of the carbon tax in Table 5. To

calculate the incidence of carbon tax, we calculate each household’s equivalent

variation: starting in an equilibrium with no taxes, the lump-sum tax that would

give the household the same utility as the equilibrium with a carbon tax. Panel

I shows the average equivalent variation of households based on their location

choice in the baseline counterfactual and the average equivalent variation of all

households. We assume that agents do not value carbon abatement; thus, the

equivalent variation captures the tax burden of moving from the baseline equi-

librium with no carbon taxes to an equilibrium with carbon taxes. Overall, the

average household across all regions experiences an average tax burden of $305.

29One shortcoming of the approach is that the elasticity of energy demand with respect to
energy prices relies strongly on the Cobb-Douglas utility assumption.
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The carbon tax implies an average tax burden equal to $362 and $318 in the car-

bon intensive Midwest and South, respectively, compared to $251 and $280 in the

greener West and Northeast, respectively. Table 14 in the Appendix displays the

average equivalent variation for all demographic groups in our analysis. The tax

burden is larger for households with children, married households, more educated

households, and minority households. Overall, these results suggest that a carbon

tax may have significant distribution effects.

The second panel of Table 5 shows that carbon tax raises a revenue of $266

per household. We remain agnostic on how the tax revenue is redistributed and

simply display the change in tax revenue and equivalent variation.

Panel III shows the decrease in the social cost of carbon per household. The

carbon decrease is equivalent to a decrease in the social cost of carbon of $38 per

household. Therefore, the total social benefit of the carbon tax, given by the sum

of the of tax revenue and decrease in the social cost of carbon, outweigh the cost

of the tax burden on households.30

Carbon Tax

I. Average Equivalent Variation

West -251

Midwest -362

South -318

Northeast -280

All -305

II. Tax Revenue per Household 269

III. Reduction Social Cost of 38

Carbon per Household

Table 5: Welfare Effects of Carbon Tax. All measures in dollars per person.
30The tax also leads to a minor decrease in land owner profits.
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8 Robustness and Extensions

8.1 Sensitivity to Alternative Parameters

In this section, we examine the robustness of our main results to alternative values

of key parameters. In particular, we recalculate the reduction in national carbon

output resulting from relaxing land use regulations in California cities for a range

of parameter values. First, we examine model sensitivity to the scale parameter

of the idiosyncratic preference draw, σd. Lower values of σd imply that household

location choice is more elastic with respect to wages and rents.31 Therefore,

households will be more likely to change their location decisions in response to

changes in land use regulations.

The reduction in carbon output for a range of values of 1
σd

for skilled and

unskilled workers is shown in Panel A of Figure 3. Recall in our baseline specifi-

cation that we calibrate σd = 1
4.15

for unskilled workers and σd = 1
5.52

for skilled

workers and we found a decrease in carbon emissions of 2.3%. In the figure, σd

for skilled workers is displayed on the vertical axis and σd for unskilled workers is

displayed on the horizontal axis. Darker colors imply smaller changes in carbon

emissions while lighter colors imply larger changes. Figure 3 illustrates that the

change in carbon emissions is generally decreasing in σd for both types of workers.

In the extreme case when σd = .1 for both types of workers, workers are very

responsive to changes in rents. As a result, carbon emissions drop by 4% when

we relax carbon emissions in California. When σd = .6 for both types of workers,

carbon emissions drop by roughly 1%. Overall, it seems like the variance of skilled

workers plays a more important role than the variance for unskilled workers in

dictating the change in carbon emissions in our counterfactuals.

Next, we examine our model’s sensitivity to the budget share of housing pa-

rameter, αHd . Recall that we calibrate αHd = .4 for all workers in the baseline

counterfactual. Higher values of αHd imply households spend a larger fraction of

their income on housing and therefore will be more sensitive to housing prices in

31For each counterfactual in which we change σd, we recalculate the amenity values ξdj such
as to keep the mean utility of each demographic group in each city equal to its baseline level.
Therefore, the distribution of workers of each demographic group given the observed tax function
will be equal to the baseline distribution with the original values of σd.
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(a) Variance of Preference Draw (b) Housing Expenditure Share

Figure 3: Change in national emissions from relaxing land use restriction in California for various
parameter values. In panel (a), we display σd for skilled workers on the Y (vertical) axis, and σd
for unskilled workers on the X (horizontal) axis. Panel (b) shows percent reduction in carbon
emissions as a function of αHd for both types of workers.

their choice of where to live. The results are displayed in Panel B of Figure 3. The

vertical axis shows values of αHd for skilled workers and the horizonal axis shows

αHd for unskilled workers. Again, darker colors imply smaller changes in carbon

emissions while lighter colors imply larger changes. Larger values of αHd of both

types of workers imply larger decreases in carbon emissions. When αHd = .1 for

both type of workers carbon emissions drop by .65% when we relax carbon emis-

sions in California. If we set αHd = .6 for both types of workers, carbon emissions

drop by roughly 3%.

8.2 Power Plant Substitution

One potential issue with our current counterfactual is that new power plants

built in order to accommodate increases in demand for electricity may be cleaner

or dirtier than the current stock of power plants in that region. Therefore, the

carbon emissions factors we use in our analysis will change in response to increases

in electricity demand. For example, our main counterfactual of relaxing land use

regulations in California led to a substantial increase in population and energy

usage in California. As a result, new power plants may be constructed in the

corresponding WECC NERC region which may be cleaner or dirtier than the
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current power plants in the region. If these new power plants are cleaner (dirtier)

than the current stock of power plants, we will underestimate (overestimate) the

reduction in carbon emissions.

To investigate how endogenous changes in the composition of power plants

might affect our results, we compare power plants built before and after 2000. We

find power plants built after 2000 emit considerably less CO2 per MwH than plants

built prior. Specifically, for the WECC NERC region we find that power plants

built prior to 2000 emit 858 lbs of CO2 per MwH of electricity, whereas plants

built after 2000 emit only 597 lbs of CO2 per MwH.32 These results suggest that

if new power plants were built in response to increases in California’s population,

these new plants would be more carbon efficient than the current stock of plants.

8.3 Endogenous Electricity Pricing

In our baseline specification, we assume that electricity is produced at constant

marginal cost; therefore, the supply curve of electricity is perfectly elastic. In this

section we consider an extension in which the price of electricity is determined

endogenously.

Specifically, we assume that electricity producers in each NERC region form an

upward sloping long-run electricity supply curve, reflecting differences in costs of

productivity of potential electricity production opportunities within a region. For

low quantities, electricity can be produced at low cost. As electricity production

increases, increasingly less productive resources must be utilized, which therefore

implies higher costs of production.

A number of papers examine the short run supply curves of electricity. The

short run electricity supply curve is often modeled as a “dispatch curve” with

constant or linear marginal costs, to reflect the unique way in which electricity is

allocated in the very short term.33 Essentially, power plants are ranked in terms

of their marginal cost of producing electricity. As demand increases, plants are

dispatched to produce power in increasing order of marginal cost. However, this

type of modeling approach is likely not a good representation of the long run

32Section A.9 in the data appendix has further information on the full distribution of emissions
from power plants built before and after 2000.

33For an example, see Ma, Sun, and Cheung (1999).
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energy supply curve which we consider here. In the long run, energy producers

may respond to changes in energy demand by opening new reactors and new

plants. We therefore posit a more parsimonious long run electricity supply curve

as:

CR = vRX
κ
R

where XR is the total quantity of energy produced in region R, κ is a parameter

equal to the inverse elasticity of the energy supply curve, and vR is a region specific

cost shifter.

Electricity is then transmitted to specific local labor markets at an additive

transmission cost, φj.
34 Given the assumption of perfectly competitive generation

companies, we can write the inverse energy supply curve to city j as

P elec
j = bj + κ log

(
XR(j)

)
where bj = φj + log

(
vR(j)

)
.

To calibrate this model extension, we first calibrate the inverse elasticity of the

electricity supply curve as κ = 1
1.27

, based on the estimates in Dahl and Duggan

(1996). We then choose the parameters bj to match state level electricity prices.

The main counterfactual results with endogenous electricity pricing are sum-

marized in Table 6. Overall, the population distribution across all counterfactuals

are quite similar to the counterfactuals with perfectly elastic electricity supply.

Households spend a relatively small fraction of their income on electricity and

therefore changes in electricity prices have little impact on their location choices.

Natural gas and fuel oil emissions are also nearly identical to the case with per-

fectly elastic electricity supply. However, the reductions in electricity usage and

therefore overall carbon emissions are smaller in the case with endogenous electric-

ity prices. Overall this leads to a 1.6% reduction in carbon emissions from relaxing

land use restrictions in California, a 4.9% reduction from setting all cities to the

median land use restrictions, and a 9.4% reduction from implementing a carbon

tax.35

34This cost may directly reflect costs of transmissions or network congestion costs.
35With perfectly elastic electricity supply, relaxing land use restrictions in California leads

to a 2.3% reduction in carbon emissions, setting all cities to the median land use restrictions
results in a 8.1% decrease in emissions, and a carbon tax leads to a 12.3% reduction.
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Baseline Relax CA Relax All Carbon Tax

I. Percent Total Population

California Cities 9.82 16.39 11.53 9.87

Other West 13.12 11.30 14.74 13.18

Midwest 21.84 20.46 13.46 21.69

South 36.80 34.40 26.82 36.80

Northeast 18.42 17.45 33.45 18.46

II. Usage

Gas (1000 cubic feet) 53.16 52.57 53.73 45.47

Electricity (MW h) 13.29 13.15 12.23 12.43

Fuel Oil (gallons) 28.41 26.82 43.75 25.27

III. Emissions (lbs of CO2)

Gas 6225 6156 6291 5324

Electricity 12859 12655 11410 11972

Fuel Oil 763 720 1175 679

Total 19847 19531 18877 17975

(%) (100) (98.4) (95.1) (90.6)

IV. Average Log Income

Skilled 10.89 10.91 10.98 10.89

Unskilled 10.04 10.05 10.09 10.04

All 10.33 10.34 10.40 10.33

Table 6: Counterfactual results with endogenous electricity pricing. Each panel shows the
simulated total energy usage, total emissions, average log income and fraction of total population
living in various geographic areas in each specification. See text for details on each individual
simulation.

9 Conclusion

Household carbon emissions vary considerably across cities. Land use restrictions,

which are set by local governments, tend to be stricter in green cities and therefore

encourage workers to live in cities with less moderate climates and higher polluting
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power plants.

We began by updating the findings in Glaeser and Kahn (2010) and docu-

mented tremendous spatial variation in both the greenness of power plants and

energy consumption. Cities with more temperate climates (such as San Francisco)

tend to emit substantially less carbon than other cities. Furthermore, these cities

also have very high land use regulations.

To examine the effects of land use restrictions on national carbon emissions,

we then estimated a model of worker sorting, energy demand, and locations that

vary by power plant technology. The model incorporates heterogeneous workers,

endogenous income and rents, and energy demand and power plant technology

which vary geographically across the United States. To take the model to the

data, we employed a combination of calibration and estimation techniques using

datasets on household sorting and energy demand, power plants, and energy prices

across the US.

We found that relaxing land use restrictions in California leads to a decrease

in national carbon output of over 2% while leading to significant increases for

average income of both skilled and unskilled workers. A carbon tax lead to a

large reduction in carbon emissions but also implied significant distribution con-

sequences. Our main conclusion is that the positive correlation between strict

land use restrictions and greenness of cities has large implications for national

carbon output.
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A Data Appendix: For Online Publication Only

A.1 Demographic Groups

We restrict the individual choice data to individuals that identify themselves as the

decision maker. A demographic group in our model consists of level of education,

marital status, minority status, and whether or not the individual has children.

We split education by those that have a college degree. Marital status is defined

as either being married or single. Minority status is characterized by whether

the individual is white or not. Lastly, very few single individuals in our sample

have children. Thus, we make the assumption that only married individuals have

children. In total this gives us 24 distinct demographic groups.

Table 7 shows average carbon emissions for each demographic group using

data on homeowners in single family homes.

Unskilled Skilled Unskilled Skilled

White Nonwhite

Young Young

Single 22,122 18,421 Single 20,909 18,216

Married w/o Children 20,223 17,736 Married w/o Children 19,818 19,060

Married w/ Children 22,633 21,850 Married w/ Children 23,299 23,344

Old Old

Single 23,364 21,702 Single 20,891 20,475

Married w/o Children 24,284 23,270 Married w/o Children 23,348 24,298

Married w/ Children 25,052 25,204 Married w/ Children 26,434 27,836

Table 7: Average Emissions by Demographic Group.

A.2 Average Emissions by Family Structure

Table 8 gives average emissions for single households, married households with no

children, and married households with children. The first column shows the raw

means while the second column controls for cbsa fixed effects. The New England

Division is the omitted category.
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(1) (2)

Married w/ Children 26,099 30,171

(18.76) (199.3)

Married w/o Children 23,326 27,167

(20.54) (199.4)

Single 20,990 24,824

(19.44) (199.2)

Observations 2,742,021 2,742,021

CBSA FE NO YES

Table 8: Average emissions by family structure. The first column does not include CBSA fixed
effects, the second column does. Results from regression of individual level emissions for for
non-renters in single family homes. Robust standard errors in parentheses.

A.3 Hedonic Rents

A major concern about producing a measure of housing costs across CBSA’s is that

it reflects user cost of housing. To accommodate this, we only use data on renters

as home prices reflect both the current cost and expected future costs. Secondly,

it is difficult to compare housing units across CBSA’s. Thus, we estimate hedonic

regressions of log gross rent on a set of housing characteristics and CBSA fixed

effects. Specifically, we control for number of units in the structure containing the

household, number of bedrooms, number of total rooms, and household members

per room. To generate the rent index, we utilize the predicted values from the

hedonic regressions, holding constant the set of housing characteristics and CBSA

fixed effects.

A.4 NERC Regions

We calculate the emissions factor for each region as a weighted average of the

average CO2 emissions rate in each NERC region. We weight the average by each

plants total yearly MwH generation as a fraction of the total MwH generation

in the region. Figure 4 gives the emissions factors for each region as well as the

percent of total energy generated by renewable sources in each region.
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Figure 4: Figure on left: Weighted Average CO2 emissions rates by NERC region. Figure on
right: Percent of total energy generated by renewable sources

The following table summarizes the information in Figure 4.

NERC Mean Percent

Region Emissions Renewables

ASCC 939.40 28.47

FRCC 1011.67 2.64

HICC 1522.10 15.79

MRO 1220.49 27.08

NPCC 506.56 21.66

RFC 1105.27 4.86

SERC 1035.40 5.73

SPP 1271.17 22.34

TRE 1014.71 14.34

WECC 799.92 38.26

Table 9: Mean CO2 emissions rate and percent renewable emissions from power plants in the
US. Emissions rate and percent renewables are weighted by output of each plant in the region.

A.5 Energy Usage and Correction

Let xmi give household i’s usage of energy type m. We then estimate the fol-

lowing household level regression to calculate predicted energy usage by CBSA,
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controlling for income, household size and age of the household head:

xmi = γCBSA(i) + β1 log(Incomei) + β2HHsizei + β3Ageheadi + εi (15)

where γCBSA(i) is a fixed effect for the CBSA in which household i is located, and

β1, β2 and β3 control for a household’s log income, household size, and age of the

household head. We use the estimated coefficients from this model to predict the

median household usage of each energy source.

One concern is that rented homes and multi-family homes are less likely to

pay for energy themselves and the proportion of renters and multi-family homes

varies across cities. The ACS data has flags for whether the individual owns or

rents the house, as well as whether they live in a single family or multi family

home. Similar to Glaeser and Kahn (2010), we correct for this by reweighting

predicted emissions by the fraction of each of the four groups in each city.

A.6 Emissions and Population

We assume that the marginal benefit of electricity consumption is exogenous to

the local population of a given city. As a simple test of the relationship between

population and energy consumption, we estimate:

log(x̃mj ) = αm + αm1 log(Populationj) + εj (16)

where m ∈ {Elec,Gas, Fuel} and x̃mj is the predicted per capita energy consump-

tion of type m in city j from the regression estimated in Equation 15. Table 10

provides estimates for Equation 16.
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Dependent variable:

Electricity Gas Fuel

Consumption Consumption Consumption

(MwH) (1000 ft3) (gal)

Population 0.036 −0.014 −0.187

(0.035) (0.080) (0.173)

Constant 2.025∗∗∗ 3.985∗∗∗ 4.992∗∗

(0.473) (1.089) (2.341)

Observations 79 79 79

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 10: Robust standard errors in parenthesis. All variables are measured in logs. Each
observation is a CBSA.

The coefficients on all of the regressions for the energy consumption variables

are close to zero with relatively small standard errors. This suggests population

increases do not lead to significant changes in the benefits of energy usage.

A.7 Emissions and Climate

Figure 5 shows a scatterplot between average August temperature in each CBSA

and predicted electricity usage and average January temperature and predicted

natural gas usage. Similar to Glaeser and Kahn (2010), we find strong relation-

ships between temperature and consumption of different fuel sources:
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Figure 5: Temperature data was obtained from weather.com. Each point is a CBSA. Temper-
ature corresponds to the midpoint of the average minimum and maximum daily temperature
recorded in the month of interest. Size of each point reflects the population of the CBSA.
Electricity usage is measured in MwH and natural gas usage is measured in 1000 ft3.

From Figure 5 we can see that electricity usage has a strong positive rela-

tionship with August temperature. Similarly, as January temperature increases,

natural gas use decreases.

A.8 Demographics and Emissions

We document variation in mean income, WRLURI, and proportions of demo-

graphic groups across cities based on how much CO2 households emit in Table 11

below.

Sample WRLURI Mean Income Mean Population College Married White Under 35 Has Children

(in 10,000 $’s) (in 10,000’s) share share share share share

USA 0.22 5.50 77.23 0.37 0.51 0.74 0.27 0.31

CA 0.52 6.29 104.19 0.38 0.55 0.65 0.26 0.37

Emissions Percentile

< 25% 0.75 5.84 67.93 0.38 0.52 0.72 0.26 0.33

25%− 75% 0.08 5.49 83.94 0.37 0.51 0.75 0.27 0.31

> 75% -0.07 5.17 73.85 0.36 0.50 0.73 0.28 0.30

Table 11: Demographic information for various subsets of our sample. Emissions percentiles are
calculated using the conversion factors for each energy type multiplied by the predicted usage
yielded from regression 15.
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A.9 New Power Plant Development

Table 12 gives the full distribution of emissions and percent of plants that are

renewables, split on whether they were constructed before or after 2000.

NERC Pre-2000’s Post-2000’s Pre-2000’s Post 2000’s

Mean Emissions Percent Renewables

ASCC 935.55 842.37 37.38 15.50

FRCC 935.66 857.27 3.65 2.90

HICC 1649.43 461.88 9.22 70.62

MRO 1566.42 188.09 9.49 80.18

NPCC 410.31 747.15 24.42 14.71

RFC 1176.69 850.51 2.18 14.75

SERC 1055.78 941.07 6.16 5.25

SPP 1741.86 521.45 5.93 46.90

TRE 1135.47 620.07 1.18 29.53

WECC 858.24 597.01 40.48 36.47

Table 12: NERC region mean carbon emissions from plants built before 2000 and after 2000.
Emissions rates are measured in lbs/mwh

B Estimation and Simulation Appendix: For On-

line Publication Only

B.1 Estimation: Production Parameters

Let x ∈ {s, u} index worker skill levels. Income for workers of demographic d

living in location j is Idj = Wjx`
d, where `d is the amount of efficiency units

supplied by workers from demographic group d.

We specify units as the demographic specific probability of being employed

multiplied by the productivity conditional on being employed. We therefore write

`d = Ed ˆ̀d
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where Ed is the national employment-to-population ratio of workers in demo-

graphic group d.

We parameterize ˆ̀d as

log(ˆ̀d) = β1
xWhite (d) + β2

xOver35 (d)

where White (d) is an indicator variable indicating workers of demographic group

d are white and Over35 (d) indicates workers of demographic d are over age 35.

Therefore ˆ̀d of nonwhite workers below age 35 is normalized to one.

Conditional on working, log income of workers of demographic group d and

skill level x living in city j is given by

log
(
Idj
)

= log (Wjx) + β1
xWhite (d) + β2

xOver35 (d) .

We therefore estimate the city level wage rates and parameters of the effi-

ciency unit parameters using the following individual level income regression of

individuals conditional on working:

log Idij = γxj + β̂1
xWhite (d) + β̂2

xOver35 (d) + εij

where Idij is the income level of individual i, γxj is a city fixed effect which is an

estimate of log (Wjx), and εij is an individual level error term.

The remaining unknown parameters of the production function are the elas-

ticity of substitution, σ, the vector of city level total factor productivities, Aj,

and the vector of factor intensities, θj. We calibrate the elasticity of substitution,

σ = 2.

Note that the log wage ratio in a given city j is given by

log

(
Wjs

Wus

)
= − 1

σ
log

(
Sj
Uj

)
+ log

(
θj

1− θj

)
.

As wage levels, labor quantities and the elasiticity of substitution, σ, are already

known, the factor intensities θj can be solved for using the above equation.

The final set of parameters are the total factor productivity, Aj. These are

chosen so that wage levels are equal to those in the data.
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B.2 Estimation: Housing Supply

We know that total demand for housing in city j is given by:

Hj =
∑
d

Njd
αHd Ijd
Rjαjd

, (17)

where Njd is the total number of workers of demographic d living in city j. Plug-

ging this equation for housing demand into the housing supply curve and rear-

ranging yields the following reduced-form relationship:

log(Rj) = kj log(
∑
d

NjdIjd)) + ζ̂j, (18)

where

ζ̂j = ζj + kj log

(∑
d

αHd
αjd

)
Saiz (2010) estimates the role of physical and regulatory constraints in the

determining the role of local housing supply elasticities by using labor demand

shocks and instruments for housing demand. As in this paper, we set ψWRI
j to

the log of the Wharton Regulation Index plus 3, and use Saiz’s measure of the

unavailable land share (due to geography) for ψGEOj . We calibrate ν1, ν2 and ν3

based on the estimates in Saiz (2010).36

B.3 Parameter Estimates

Household Sorting Table 13 gives the estimates of birth state premium, dis-

tance and distance squared of the household’s indirect utility function. For all

demographic groups, agents receive a large utility premium for choosing a loca-

tion in their home state. The amenity value of location is decreasing and convex

in distance from birth state for all demographic groups.

The parameters governing the unobserved amenity utility of each city, ξjd, and

the marginal benefit of energy usage in each location, αmjd, all vary by city and

36Specifically, we use the estimates from Column (4) of Table III in Saiz (2010), as it is the
closest to our specification. As the estimate of the interaction between housing supply constraints
is quite similar across specifications in Saiz (2010), we do not suspect that our results will be
sensitive to the specific estimates we choose.
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demographic group. These are available on request.

B.4 Tax Burden of Carbon Tax by Demographic Groups

This table shows the average equivalent variation of a carbon tax for each of the

demographic groups.

Unskilled Skilled Unskilled Skilled

White Nonwhite

Young Young

Single -234 -197 Single -229 -200

Marr. w/o Child -225 -200 Marr. w/o Child -243 -249

Marr. w/ Child -284 -282 Marr. w/ Child -312 -330

Old Old

Single -277 -288 Single -267 -288

Marr. w/o Child -316 -325 Marr. w/o Child -322 -366

Marr. w/ Child -353 -378 Marr. w/ Child -376 -424

Table 14: Average equivalent variation of various types of households.

B.5 Simulation: Methane Emissions

As an alternative to carbon-dioxide emissions, we also explore the relationship

between of land use regulation on methane emissions. Methane is a global issue;

while it is odorless and thus not considered a local pollutant, it is considered

a greenhouse gas. According to the Bernstein et al. (2008), pound for pound,

methane has 25 times the global warming potential over a 100 year period over

carbon dioxide.

The relationship between the WRI and methane emissions is quite similar to

that of carbon dioxide emissions. Cities with higher land use regulations tend to

have lower methane emissions..
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Unskilled

White

Young Old

Single Married Married Single Married Married

w/o Children w/ Children w/o Children w/ Children

Birthstate Premium 3.10 3.22 3.09 3.24 2.52 3.18

(0.09) (0.03) (0.01) (0.01) (0.49) (0.01)

Distance -1.05 -1.58 -1.58 -1.06 -1.03 -1.05

(0.08) (0.05) (0.02) (0.01) (0.26) (0.01)

Distance Squared 0.15 0.39 0.42 0.23 0.20 0.21

(0.01) (0.01) (0.00) (0.00) (0.02) (0.00)

Nonwhite

Young Old

Single Married Married Single Married Married

w/o Children w/ Children w/o Children w/ Children

Birthstate Premium 3.29 2.95 3.39 3.30 3.14 3.01

(0.02) (0.20) (0.06) (0.02) (0.07) (0.07)

Distance -1.10 -1.15 -1.21 -1.06 -1.03 -0.93

(0.03) (0.14) (0.05) (0.02) (0.04) (0.09)

Distance Squared 0.16 0.21 0.22 0.24 0.16 0.20

(0.00) (0.01) (0.01) (0.01) (0.00) (0.02)

Skilled

White

Young Old

Single Married Married Single Married Married

w/o Children w/ Children w/o Children w/ Children

Birthstate Premium 2.88 3.01 2.61 2.79 2.70 2.74

(0.16) (0.08) (0.28) (0.12) (0.03) (0.04)

Distance -1.10 -1.48 -1.04 -1.40 -1.47 -1.34

(0.11) (0.13) (0.15) (0.14) (0.04) (0.04)

Distance Squared 0.16 0.34 0.14 0.36 0.38 0.37

(0.01) (0.03) (0.01) (0.03) (0.01) (0.01)

Nonwhite

Young Old

Single Married Married Single Married Married

w/o Children w/ Children w/o Children w/ Children

Birthstate Premium 2.83 2.68 2.55 2.68 2.41 2.81

(0.03) (0.22) (0.43) (0.86) (1.31) (0.02)

Distance -1.41 -0.76 -1.10 -1.12 -0.83 -1.33

(0.03) (0.12) (0.28) (0.57) (0.63) (0.03)

Distance Squared 0.39 0.13 0.14 0.17 0.13 0.31

(0.01) (0.01) (0.03) (0.06) (0.06) (0.01)

Table 13: Parameter Estimates. Standard errors in parentheses.
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Figure 6: Methane emissions regressed on Wharton Index. Each observation is a CBSA. Size of
each observation reflects population of CBSA.

Methane emissions come from two sources: natural gas and electricity genera-

tion. Unlike carbon-dioxide, burning natural gas does not emit methane; however,

natural gas is composed of 70% methane. Furthermore, natural gas leakages are

estimated to be 1.4% according the EPA. To impute the amount of methane emit-

ted from natural gas emissions, we use a conversion factor of 0.7*0.014 = 0.0098.

As with carbon dioxide, methane emissions from electricity vary by NERC re-

gion. We compute the weighted emissions rate for methane in the same manner

as we did with carbon dioxide. Table 15 provides an array of city-level energy

consumption, ranked on methane emissions.
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CBSA Rank Emissions Gas Electricity Electricity Electricity

Emissions Use Conversion Emissions

(1000 lbs) (1000 lbs) (MwH) (1000 lbs per MwH) (1000 lbs)

Lowest

San Diego, CA 1 0.87 0.37 7.35 0.07 0.49

Los Angeles, CA 2 0.91 0.42 7.32 0.07 0.49

Honolulu, HI 3 0.92 0.02 5.76 0.16 0.91

Oxnard, CA 4 0.93 0.46 6.95 0.07 0.47

Worcester, MA 5 0.94 0.44 8.77 0.06 0.50

Hartford, CT 6 0.97 0.47 8.75 0.06 0.50

Middle

Denver, CO 33 1.54 0.79 11.06 0.07 0.74

Virginia Beach, VA-NC 34 1.55 0.38 15.77 0.07 1.17

Houston TX 35 1.59 0.32 16.40 0.08 1.27

Allentown, PA-NJ 36 1.60 0.46 12.94 0.09 1.13

Birmingham, AL 37 1.60 0.39 16.36 0.07 1.22

Richmond, VA 38 1.61 0.39 16.38 0.07 1.22

Highest

Memphis, TN-MS-AR 65 2.19 0.57 21.81 0.07 1.62

Detroit, MI 66 2.19 1.26 10.59 0.09 0.93

Tulsa, OK 67 2.26 0.64 15.11 0.11 1.63

Kansas City, MO-KS 68 2.32 0.74 14.76 0.11 1.59

Oklahoma City, OK 69 2.40 0.59 16.80 0.11 1.81

Omaha, NE 70 2.61 1.11 13.44 0.11 1.50

Table 15: Predicted CBSA level methane emissions by fuel type for the six lowest emissions
cities, the six median cities, and the six highest emissions cities. The third column (“Emissions”)
shows the sum of predicted methane emissions from natural gas, fuel oil and electricity for the
CBSA. The next two columns show emissions from gas and fuel oil respectively, which are equal
to predicted usage multiplied by the appropriate emissions factor. The last three columns show
predicted electricity usage, the electricity emissions factor, and predicted electricity emissions,
equal to predicted electricity usage multiplied by the emissions factor. Use is measured in 1000
pounds per megawatt hour.

Our main counterfactual was to relax land use regulations in California cities

to the national median. To do this, we simulated how demand for energy services

changed as a result of the changes in rental prices from relaxing the land use reg-

ulations. To estimate average CBSA level emissions, we multiplied the respective

usages by the local emissions factors for each type for carbon-dioxide. We can

use the same simulation to examine the changes in methane emissions by using

conversion factors for methane emissions. Table 16 demonstrates how methane

53



emissions change as a result of our simulation.

Baseline Relax Cali Relax All Carbon Tax

II. Emissions (lbs of Methane)

Gas 0.56 0.55 0.57 0.48

Electricity 1.04 1.01 0.90 0.92

Fuel Oil 0.00 0.00 0.00 0.00

Total 1.60 1.56 1.47 1.40

Table 16: Counterfactual results for methane emissions. Each column shows the amount of
methane emitted from each energy source under various counterfactual scenarios.
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