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Abstract

This paper examines the price of basic staples in rural Mexico. We document that nonlinear pricing in
the form of quantity discounts is common, that quantity discounts are sizable for typical staples, and that
the well-known conditional cash transfer program Progresa has significantly increased quantity discounts,
although the program, as documented in previous studies, has not affected on average unit prices. To
account for these patterns, we propose a model of price discrimination that nests those of Maskin and
Riley (1984) and Jullien (2000), in which consumers differ in their tastes and, because of subsistence
constraints, in their ability to pay for a good. We show that under mild conditions, a model in which
consumers face heterogeneous subsistence or budget constraints is equivalent to one in which consumers
have access to heterogeneous outside options. We rely on known results (Jullien (2000)) to characterize the
equilibrium price schedule, which is nonlinear in quantity. We analyze the effect of nonlinear pricing on
market participation as well as the impact of a market-wide transfer, analogous to the Progresa one, when
consumers are differentially constrained. We show that the model is structurally identified from data on
prices and quantities from a single market under common assumptions. We estimate the model using data
from municipalities and localities in Mexico on three commonly consumed commodities. Interestingly,
we find that nonlinear pricing is beneficial to a large number of households, including those consuming
small quantities, relative to linear pricing mostly because of the higher degree of market participation that
nonlinear pricing induces. We also show that the Progresa transfer has affected the slopes of the price
schedules of the three commodities we study, which have become steeper as consistent with our model,
leading to an increase in the intensity of price discrimination. Finally, we show that a reduced form of our
model, in which the size of quantity discounts depends on the hazard rate of the distribution of quantities
purchased in a village, accounts for the shift in price schedules induced by the program.
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1 Introduction
Quantity discounts in the form of unit prices declining with quantity are pervasive in developing countries.

McIntosh (2003), for instance, documents differences in the price of drinking water paid by poor and rich

households in the Philippines. Pannarunothai and Mills (1997) and Fabricant et al. (1999) report similar

differences in the price of health care and services in Sierra Leone and Thailand. Attanasio and Frayne

(2006) show evidence that households purchasing basic staples in Colombian villages face price schedules

rather than linear prices: within a village, richer households buy larger quantities of the same goods that

poorer households purchase but pay substantially lower unit prices. This evidence is often interpreted as

suggesting that nonlinear pricing has undesirable distributional implications.

This view is consistent with the predictions of the nonlinear pricing model of Maskin and Riley (1984),

which we refer to as the standard model. This model interprets quantity discounts as arising from a seller’s

incentive to screen consumers by their marginal willingness to pay for a good through the offer of multiple

price and quantity combinations. A key insight of this model is that the ability of a seller to discriminate

across consumers implies not only that the consumption of nearly all consumers is depressed relative to the

first best but also that underconsumption tends to be more severe for consumers of smaller quantities. Hence,

consumers of smaller quantities, typically the poorest ones in developing countries, tend to suffer greater

distortions relative to consumers of larger quantities.

The standard model, however, assumes that consumers differ only in their tastes, are unconstrained in

their ability to pay for a good, and have access to similar alternatives to purchasing from a particular seller.1

This framework thus naturally accounts for the dispersion in the unit prices of goods that absorb a small

fraction of consumers’ incomes in settings in which consumers have access to similar outside consumption

opportunities. As such, the standard model abstracts from crucial features of markets in developing coun-

tries, especially those for basic staples, in which households typically spend a large fraction of their incomes,

face subsistence constraints on consumption, and have access to several alternative consumption possibil-

ities including self-production and highly subsidized government stores. Any such realistic dimension of

heterogeneity across consumers, by affecting consumption, may naturally have important consequences for

the welfare implications of any pricing scheme.

Sellers’ pricing behavior in developing countries has received little attention so far, though. Indeed, when

Progresa, one of the first conditional cash transfer programs, was introduced in rural Mexico in 1997, policy

makers were concerned about the possibility that a substantial part of the transfers to households associated

with the program would be appropriated by shopkeepers in targeted villages through price increases. For

this reason, several studies have analyzed the effect of transfers on the average unit price of commodities but

have consistently found no impact. For instance, Hoddinott et al. (2000) conclude that “there is no evidence

that Progresa communities paid higher food prices than similar control communities” (p. 33). Similarly,

Angelucci and De Giorgi (2009) dismiss the possibility that their results are mediated by changes in local

1Formally, consumers are assumed to be able to pay more than their reservation prices for a good. See Che and Gale (2000).

1



unit prices when they assess the impact of Progresa on the consumption of noneligible households. Although

Progresa has not affected unit prices on average, in the presence of nonlinear pricing, however, the program

may have resulted in differential changes in the unit prices of different quantities and so may have had

undetected distributional effects.

To analyze the determinants of quantity discounts and evaluate the impact of income transfers in their

presence in settings that are typical of developing countries, we propose a model of price discrimination

that explicitly formalizes households’ subsistence constraints and allows households to differ in both their

marginal willingness and absolute ability to pay for a good. The model also incorporates a rich set of alter-

natives to purchasing in a particular market that vary across consumers. We characterize nonlinear pricing in

this model and investigate the effect of income transfers on prices and consumption. We estimate the model

on data from the Progresa evaluation surveys, which the model fits well, and use it to empirically examine the

impact of Progresa on prices. Specifically, we document sizable quantity discounts for common staples. We

also find that Progresa has had a significant effect on unit prices by leading to an increase in the magnitude

of quantity discounts, but that this effect cannot be detected without accounting for the dependence of unit

prices on quantity.

The paper makes four contributions. First, we show that when facing subsistence constraints, consumers

can be thought of as facing an additional budget constraint on the expenditure on a seller’s good. In the lan-

guage of the literature on auctions and nonlinear pricing, consumers are budget constrained with respect to a

seller’s good, and their constraints depend on their preferences and incomes. Although this class of models

has been considered to be intractable in general, we show that a model with budget-constrained consumers

maps into the class of nonlinear pricing models with so-called countervailing incentives, in particular the one

of Jullien (2000), in which consumers have heterogeneous outside options. By relying on this formal equiva-

lence between models, we can exploit existing results to characterize nonlinear pricing when consumers are

budget constrained.

Second, we prove that the primitives of the model are identified just from information on the distribution

of prices and quantities from one market. The intuition behind this result is simple. According to the model,

a seller sets prices to discriminate among consumers with different tastes and budgets. Therefore, a seller’s

price schedule depends on the distribution of consumers’ characteristics. Since the distribution of consumers’

characteristics is reflected in the observed distribution of quantities purchased, this latter distribution, together

with the price schedule, can be used to recover the determinants of prices and consumption, in particular the

distribution of consumers’ preferences. The estimation approach we propose relies on a seller’s optimality

conditions, which imply that the difference between prices and marginal cost depends on the difference

between the cumulative multiplier associated with consumers’ participation or budget constraints and the

cumulative distribution function of consumers’ characteristics. Based on this relationship, this approach also

allows us to identify consumers whose constraints bind and so distinguish among different versions of our

model, including the standard model, which is nested within our model.

Third, we estimate the model for three commodities in a large number of villages in rural Mexico. We
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use data from the high-quality surveys collected for the evaluation of Progresa, which have been extensively

analyzed. The estimates of the model’s primitives satisfy the model’s restrictions on the inverse relationship

between marginal utility and quantity purchased as well as the monotonicity of the reverse hazard rate of the

distribution of consumers’ marginal willingness to pay, without being imposed.

Fourth, we study the impact of the Progresa transfer on prices. We document that the unit prices of basic

staples in the villages we study are highly nonlinear in quantity: the unit prices of smaller quantities are

higher than the unit prices of larger quantities. Like previous studies, we estimate that the Progresa transfer

has not affected on average unit prices. However, we find that the transfer has increased the (absolute value

of the) slope of unit prices with quantity and so has led to an increase in the intensity of price discrimination,

which has affected both household beneficiaries of the program and noneligible households. Finally, using

an approximate reduced form of the optimality conditions for seller behavior, we show that our model can

account for the change in price schedules induced by Progresa.

The intuition behind some of our theoretical results is simple and deserves a mention, in particular the

effect of nonlinear pricing on market participation and the impact of income transfers on prices. In terms of

participation, we show that nonlinear pricing can be a more efficient mechanism than linear pricing in that

it leads naturally to greater market inclusion when consumers are differentially constrained. Specifically, by

allowing a seller to tailor prices and quantities to consumers’ willingness and ability to pay, nonlinear pric-

ing enables a seller to trade at a profit with consumers with more stringent subsistence constraints, typically

poorer consumers who purchase smaller quantities, or with consumers who have access to especially attrac-

tive outside options. Such consumers would be excluded from the market under linear pricing. The argument

is as follows. To induce these consumers to participate, a seller would need to offer a low enough marginal

price. Since the marginal price is constant and equals the unit price under linear pricing, such a low linear

price would lower profits from all consumers for the benefit of including only a few more. Thus, including

these consumers typically would not be profitable under linear pricing.

As for the impact of income transfers on prices, our model implies that these policies not only encourage

consumption but also provide an incentive for sellers to take advantage of consumers’ greater ability to pay. In

particular, we show that income transfers like the Progresa one that are more generous for poorer households,

who tend to purchase smaller quantities, can induce an increase in the degree of price discrimination, thereby

exacerbating some of the distortions associated with nonlinear pricing.

Our empirical results are consistent with these intuitions. Our estimates imply that sellers have market

power in the villages in our data and exercise it by price discriminating across consumers through distor-

tionary quantity discounts. Interestingly, a substantial fraction of consumers, including those of small quan-

tities, consume above the first best rather than below it, as often argued and implied by the standard model.

Moreover, when comparing observed nonlinear pricing to a counterfactual scenario in which sellers have

market power but cannot price discriminate, we find that linear pricing leads to smaller consumer surplus

and lower consumption for most consumers with low to intermediate valuations for two of the three goods

we consider, including consumers of the smallest quantities. In particular, a large fraction of such consumers
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would be excluded from the market under linear pricing and thus benefit from nonlinear pricing. On the

contrary, consumers of large quantities tend to be better off under linear pricing.

Unlike the existing literature, which has examined the impact of transfers on unit prices ignoring their

nonlinearity, when we evaluate the impact of Progresa on the unit prices of rice, kidney beans, and sugar, we

explicitly account for their variation across quantities and allow the program to affect their entire schedule.

As discussed, our model implies that income transfers to consumers affect unit prices, as sellers adjust their

price schedules in response to consumers’ higher incomes. In line with the model’s implications, we find that

the schedules of unit prices of the three goods have become significantly steeper after transfers have been

introduced, with greater discounts for large quantities in villages receiving the Progresa transfer. Namely,

the transfer has led to an increase in the intensity of price discrimination, thereby reducing some of the

benefits from the greater consumption. We also derive a reduced form of the model from consumer and seller

optimality conditions that relates unit prices to quantities and the inverse hazard rate of the distribution of

quantities purchased in each village, which captures the dispersion of consumers’ characteristics. Based on

this reduced form, we show that our model can explain the change in unit prices associated with Progresa in

that the shift in the price schedules induced by the program, in particular in their slope, arises from a shift in

the hazard rate of the distribution of quantities purchased, as predicted by our model.

As for the rest of the paper, in Section 2, we describe our sample of rural villages from the evaluation

surveys of Progresa. In Section 3, we present our model, characterize optimal nonlinear pricing, and analyze

its implications for consumption, market participation, and the impact of income transfers. In Section 4, we

show that our model is identified and detail our estimation strategy. In Section 5, we discuss our estimates, as-

sess their distributional implications, and evaluate the impact of the Progresa cash transfer on prices. Finally,

Section 6 concludes the paper.

2 Quantity Discounts: The Case of Mexico
In this section, we provide a description of our data from the Progresa program, present evidence of quantity

discounts, and examine the effect of the program on prices.

Data: Background and Description. The dataset we use was collected to evaluate the impact of the

conditional cash transfer program called Progresa, which was started in 1997 under the Zedillo administration

in Mexico. The program consists of cash transfers to eligible families with children, conditional on behavior

such as class attendance by school-aged children, regular visits to health care centers by young children, and

attendance of education sessions on nutrition and health by mothers.

Progresa was aimed at marginalized communities identified according to an index used by the Mexican

government to target social programs. However, they were not the most marginalized communities in the

country. The exclusion of the poorest communities (targeted by a different program, studied, for instance,

by Cunha et al. (2017)) was justified by the fact that to comply with the Progresa requirements, eligible

households had to have access to certain public services and infrastructure, such as schools and health care

centers.
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In this first phase of the program focused on rural communities, the Progresa grant consisted of two

components. The first one was meant for families with children younger than 6 and was conditioned on

children being brought to health care centers with some regularity. The second component was meant for

families with children between ages 9 and 16 and was conditioned on regular school attendance. Although the

program administration was relatively strict in enforcing these conditionalities, they were not very binding

for many households, for instance, households with primary school-aged children whose school attendance

is very high. For eligible households, the grant was substantial. On average, transfers amounted to 25% of

household income and consumption.

Since the first rollout of the program involved about 20,000 marginalized localities and would take about

two years to be implemented, the program’s administration and the government decided to use it for evalu-

ation purposes by randomizing the timing of part of the rollout. In particular, in 1997 the program selected

506 localities in 7 states, each belonging to one of 191 larger administrative units, called municipalities, to

be included in the evaluation sample. Each municipality is composed of several localities, not all of which

were included in the evaluation surveys. Of these 506 localities, 320 were randomly chosen and assigned to

early treatment in that the program started there in the middle of 1998. The remaining 186 were assigned to

the end of the rollout phase, so the program started there in December 1999. Households in these localities

were followed for several periods. In our empirical exercises, we use the surveys of October 1998, March

and November 1999, November 2000, and 2003. We could not use some waves, such as those collected in

1997 and March 2000, because they do not contain information on household expenditure, which we rely on.

The communities included in the evaluation surveys are small—the average number of households in a

locality is just over 50—and remote. Households living in these villages are poor; for them, food accounts

for a substantial share of consumption. However, not all households within targeted villages were eligible.

Eligibility for the program was determined on the basis of a survey that collected information on a set of

poverty indicators considered difficult to manipulate, such as the material of the roof or floor of a household’s

home. On average, about 78% of the households of the villages in the evaluation surveys were considered

eligible.2 The level of poverty of communities in the evaluation surveys exhibits substantial variation not

only within but also across villages. This heterogeneity is reflected, for instance, in the variability of the rate

of eligible households across villages.

The evaluation data have been used extensively in recent years and are remarkable for at least three

reasons. First, the randomized rollout of the program in a subset of the villages—at least for the first waves—

introduced substantial exogenous variation in the resources available to some households, which we exploit

to examine key implications of the model we propose, in particular the impact of cash transfers on prices.

Second, the data provide a census of 506 villages in that all households in the relevant localities are surveyed,

therefore allowing us to estimate the entire distribution of quantities and prices in each village, at least for

commodities that are commonly purchased. Third, the data are very rich and exhaustive.

2A first registration wave in 1997 was complemented by some further registrations in early 1998, the so-called densificados, as
the program administration assessed eligible households to be too few, at around 52%. This assessment led to a slight modification
of eligibility rules. We consider these added families as eligible.
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The consumption and expenditure module of the surveys contains crucial information for the purpose of

our paper. Each household is interviewed and asked to report not only the quantity consumed of each of 36

food commodities during the week preceding the interview, but also the quantity purchased and its monetary

value. The data also contain information about quantities consumed and not purchased—for instance, those

acquired through self-production or received as a gift or payment in kind. The food items recorded include

fruits and vegetables, grains and pulses, meat, and other animal products, and are supposed to be exhaus-

tive of the foods consumed by households. In what follows, we focus on commodities that are relatively

homogeneous in their quality and are purchased and consumed by most households, as explained below.

Given the information available on expenditure and quantities purchased for each recorded item, it is

possible to compute their unit values, as measured by the ratios of these variables. From now on, we refer

to unit values as unit prices. Attanasio et al. (2013) discuss some of the measurement issues associated with

the construction of unit values, ranging from measurement error to the heterogeneous quality of goods and

the nonlinearity in quantity we consider here. However, they find that average and median unit values well

approximate local prices collected from local stores, which are available for some commodities in the locality

surveys. They also find that unit values closely match national data on prices.

Naturally, the variability in the rate of households eligible for Progresa across villages mentioned above

is related to differences in the distribution of quantities purchased across villages. Such heterogeneity could

also account for differences in unit prices across villages. Furthermore, differences in the proportion of

eligible households across villages are likely to affect how the Progresa transfer has modified the distribution

of consumption and, according to the model we propose, unit prices within each village. As we show in

Section 5.4, changes in the distributions of quantities purchased within villages in response to the Progresa

transfer are key to assessing the ability of our model to account for differences in price schedules across

villages and so for the impact of the program on unit prices. We now turn to describe the impact of the

Progresa transfer on unit prices.

Quantity Discounts and Price Effects of the Transfer Program. Quantity discounts are common in sev-

eral markets in developing countries. Attanasio and Frayne (2006), for instance, estimate the supply schedule

for several basic food staples, including rice, carrots, and beans, in Colombian villages and document sub-

stantial discounts for large volumes. Specifically, they find that the elasticity of the unit price of rice to the

quantity purchased is as large as -0.11 in their preferred specification. They estimate even larger quantity

discounts for different specifications and other goods such as carrots or beans.

Here we first document the existence of discount patterns in Mexico similar to those observed in Colombia

and then examine the impact of Progresa on unit prices. We focus on three goods—rice, kidney beans, and

sugar—that conform to the assumptions we maintain in the theoretical model. Specifically, we consider

goods that are of homogeneous quality so as to minimize the possibility that price differences reflect any

heterogeneity in this unmodeled dimension.3 The goods we choose are not only widely consumed but also

3Some studies have argued that the dispersion in the unit prices of a good observed in a market might reflect differences in
quality. Deaton (1989), for instance, argues that this might be the case for rice in Thailand. Here we focus on goods for which
the assumption of quality homogeneity does not seem unreasonable in our context in light of conversations with program officials.
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Table I: Price Schedules and Impact of Cash Transfers on Prices (98% Trimming)
Rice Unit Values Kidney Beans Unit Values Sugar Unit Values

1 2 3 1 2 3 1 2 3
Intercept 1.866∗∗∗ 1.994∗∗∗ 1.874∗∗∗ 2.473∗∗∗ 2.399∗∗∗ 2.465∗∗∗ 1.832∗∗∗ 1.768∗∗∗ 1.814∗∗∗

(0.005) (0.008) (0.007) (0.007) (0.010) (0.010) (0.004) (0.004) (0.006)
Treatment -0.006 -0.008 -0.007 0.010 0.003 0.025∗∗∗

(0.009) (0.008) (0.012) (0.013) (0.005) (0.007)
log(q) -0.320∗∗∗ -0.290∗∗∗ -0.188∗∗∗ -0.161∗∗∗ -0.198∗∗∗ -0.157∗∗∗

(0.007) (0.009) (0.007) (0.009) (0.009) (0.010)
log(q)× Treatment -0.038∗∗∗ -0.035∗∗∗ -0.053∗∗∗

(0.013) (0.013) (0.015)
R2 0.352 0.136 0.353 0.222 0.146 0.223 0.168 0.045 0.170
Observations 69,543 69,543 69,543 93,375 93,375 93,375 103,930 103,930 103,930

Note: ∗ for p < 0.10 , ∗∗ for p < 0.05 , and ∗∗∗ for p < 0.01. Clustered standard errors. Wave fixed effects included.

storable so that no observed purchase for a household does not necessarily reflect exclusion from the market

but could simply be due to the timing of the Progresa interview. Hence, the assumption of full market

participation we will formulate in our analysis is not implausible. Indeed, the median fraction of households

consuming rice across localities in the week preceding the interview is 59%, whereas the corresponding

fraction for kidney beans and sugar is 87%. Virtually all of these households purchase these goods rather

than producing them or receiving them as a gift or an in-kind payment: the median fraction of purchasing

households across localities is 100% for rice, 94% for kidney beans, and 100% for sugar.

We use data from the Progresa waves of October 1998, March and November 1999, November 2000,

and 2003, and focus on villages with at least 50 households purchasing the goods of interest. We exclude

observations reported in uncommon units of measurement (different from kilos) and trim the top 2% of the

observations on quantities purchased and expenditures, expressed relative to their level in October 1998, to

limit the influence of outliers. For the three goods of interest, we examine the relationship between unit

prices and quantities purchased in each village.

Columns 1 in Table I contain estimates of a regression of log (real) unit prices on log quantities. The

different numbers of observations in each row reflect the different numbers of purchases we observe in our

sample. In this exercise as well as in those in columns 2 and 3, we include wave fixed effects and cluster

standard errors at the locality level. The elasticity of unit prices to quantity we estimate is largest in absolute

value for rice, -0.320, but it is also sizable for the other two goods, -0.188 for kidney beans and -0.198 for

sugar. For each good, this elasticity is statistically different from zero.

In columns 2, we estimate the effect of Progresa on average unit prices by regressing log unit prices

on a constant and a dummy equal to one for transactions occurring in localities targeted by the program,

“Treatment.” Consistent with studies that have estimated this impact, such as Hoddinott et al. (2000), we do

not find any evidence that the Progresa transfer has affected the average unit prices of the three goods.

We complement this evidence on the effect of the program by examining the possibility that the Progresa

transfer has modified these price schedules and affected the magnitude of the quantity discounts that we

document in columns 1. In particular, we augment the regressions estimated in columns 1 with a dummy

Also, any quality heterogeneity would likely give rise to upward-sloping unit price schedules, contrary to what we observe.
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for the program, “Treatment,” and an interaction term between this dummy and log quantity to let both

the intercept and the slope of price schedules vary with the presence of the program. The results of these

augmented regressions, presented in columns 3, show that the program has indeed increased the size of

quantity discounts and so the nonlinearity of unit prices for each good. Specifically, the slope of the price

schedule of each good has increased in absolute value with the program: from -0.320 to -0.328 for rice, from

-0.188 to -0.196 for kidney beans, and from -0.198 to -0.210 for sugar. This effect is significant at the 1%

level for all goods. (For sugar, we also observe a significant positive effect of the program on the intercept

of the price schedule.) Thus, the program has been accompanied by an increase in the intensity of price

discrimination, which we further discuss in Section 5.4.

Market Structure. The model we present in the next section considers a seller facing a heterogeneous

population of consumers. Since the model focuses on the behavior of a single seller, ideally, one would like

to consider a relatively isolated market with one seller or a small number of them. Using the localities in

our data as such markets would then seem natural. However, such an approach would result in few observed

transactions in several instances, given the size of the localities and the number of recorded purchases. More-

over, despite some localities being quite isolated, they all belong to a municipality from an administrative

point of view and are often connected in several ways. For instance, it is not unusual for some households to

shop for certain items in a locality within the municipality of residence but different from the locality where

they live. For these reasons, in the main text we focus on villages defined as municipalities. However, we

estimate our model on villages defined as both municipalities and localities, and obtain fairly similar results

for these two definitions of villages, as discussed in Section 5.

Note that the assumption of one or very few sellers is consistent with our data, which show that markets

defined as either municipalities or localities are highly concentrated with very few stores. Specifically, in

the 506 localities in our dataset, the median number of stores is 1 or 2 depending on the Progresa wave. As

for municipalities, the mean and median number of stores are higher, as some government stores and other

very heterogeneous types of sellers, such as periodic open air markets and itinerant street markets, might be

present. These sellers, however, can be considered as characterized by a very different cost structure, and

their possible presence in the markets for the goods we study can be interpreted as a degree of competition

that is incorporated into households’ outside options in our model. Even at the level of the municipality, the

number of grocery stores that might sell the goods we consider is very small: the median number is 1 and the

mean is 2 across waves. Hence, the supply of the goods we focus on is highly concentrated in each market,

so the restriction to one seller per market in our empirical analysis does not appear to be too strong.

3 Models of Price Discrimination
As just shown, the unit prices of basic staples in rural Mexico decline with the quantity purchased. A simple

model consistent with this feature of the data is the standard model of price discrimination of Maskin and

Riley (1984), in which quantity discounts arise when a seller screens consumers by their marginal willing-

ness to pay according to the quantities of a good they purchase. This model, however, can be too restrictive
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for the markets we study, since it assumes that consumers have the same reservation utilities and abstracts

from consumers’ budget or subsistence constraints. To incorporate richer consumption possibilities as an al-

ternative to purchasing from a particular seller, we build on the model of Jullien (2000), which assumes that

consumers differ not just in their taste for a good but also in their reservation utility. Suitable interpretations

of consumers’ reservation utility can then accommodate a number of settings of interest. For instance, con-

sumers in our data have access to a wide range of consumption opportunities: households in a village may

purchase a good from sellers in other villages or in government-regulated Diconsa stores; they may have

the ability to produce a good as an alternative to purchasing it; or they may receive a good from relatives,

friends, or the government as a transfer. As the desirability or feasibility of these alternative consumption

possibilities may differ across consumers, so does consumers’ reservation utility.4

An important case for our application is when consumers face subsistence constraints in consumption,

which give rise to a budget constraint on the expenditure on a seller’s good. As discussed in Che and

Gale (2000), models with this type of budget constraint are considered to be intractable in general.5 In

what follows, we establish that a model with heterogeneous budget constraints is equivalent to a model with

heterogeneous reservation utilities under simple conditions. This equivalence allows us to adapt the results

in Jullien (2000) to a model with budget-constrained consumers and characterize nonlinear pricing in the

presence of budget constraints. As consumers typically have preferences for multiple goods, we allow for

consumers’ substitution across them and let subsistence constraints affect the consumption of any good.

As is common in the nonlinear pricing literature, our framework implicitly excludes the possibility of

collusion among consumers, for instance, through resale. Anecdotal evidence from Progresa officers and

surveyors indicates that resale does not occur in our context. A natural question is why consumers do not

form coalitions, buy in bulk, and resell quantities among themselves at linear prices. A possible answer is

that our context is that of small, isolated, and geographically dispersed communities in rural Mexico. Thus,

it might be difficult for consumers to engage in the type of agreements that would sustain resale.6

3.1 A Model with Heterogeneous Outside Options

Consider a market (village) in which consumers (households) and a seller exchange a quantity q≥0 of a good

for a monetary transfer t. Consumers’ preferences depend on a taste attribute, θ, continuously distributed with

support [θ, θ], θ > 0, cumulative distribution function F (θ), and probability density function f(θ), positive

for θ∈ (θ, θ). We refer to this attribute as marginal willingness to pay. We assume that the seller knows the

distribution of θ but does not observe its value for a given consumer or, alternatively, that the seller observes

4Although we focus on the problem of a single seller, by interpreting a consumer’s reservation utility as the utility obtained when
purchasing from other sellers, the model we develop can account for different degrees of seller market power. For example, the
problem of a seller we consider can be alternatively interpreted as the best-response problem of a price-discriminating oligopolist
competing to exclusively serve any given consumer in a village. See the Supplementary Appendix.

5The optimal pricing schedule is known for special cases, when, for instance, utility is linear in consumption (see Che and Gale
(2000)) or the budget is identical across consumers (see Thomas (2002)).

6Conceptually, such a situation arises in the presence of imperfections in contracting between consumers analogous to those
between sellers and consumers usually maintained in models of nonlinear pricing. Specifically, in the presence of enforcement,
coordination, or transaction costs such as commuting costs, a coalition of consumers may not be able to achieve higher utility for
any member than the utility a member obtains by trading with a price-discriminating seller.
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its value but prices contingent on consumers’ characteristics are not enforceable or legally permitted. Thus,

a seller must post a single price schedule for all consumers, which, however, can entail different unit prices

for different quantities.7

Each consumer decides whether to purchase and, if so, the quantity q to buy. When purchasing from

the seller, a consumer of type θ obtains utility v(θ, q)− t, with v(·, ·) twice continuously differentiable,

vθ(θ, q) > 0, vq(θ, q) > 0, and vqq(θ, q) ≤ 0. We assume, as is standard, that vθq(θ, q) > 0 for q > 0

so that consumers can be ordered by their marginal utility from the good. Denote by c(·) the seller’s cost

function, which is weakly increasing and twice continuously differentiable, and by c(Q) the cost of producing

the total quantity of the good provided, Q. For simplicity, here we maintain that the cost function c(·) is

additively separable across consumers; we relax this assumption in the empirical analysis. We denote by

s(θ, q) = v(θ, q)− c(q) the social surplus from quantity q and assume that sq(θ, ·)/vθq(θ, ·) decreases with q,

which ensures that the seller’s problem admits a unique solution and that first-order conditions are necessary

and sufficient to characterize it. This assumption plays the same role as the assumptions that s(θ, ·) is concave

in q and vθ(θ, ·) is convex in q in the standard model. We define the first-best quantity, qFB(θ), as the one

that maximizes social surplus for a consumer of type θ, as in Jullien (2000).

Let u(θ) be a consumer’s reservation utility when the consumer does not purchase from the seller, which

is assumed to be absolutely continuous and, unlike in the standard model, can differ across consumers. A

consumer of type θ participates when the consumer purchases a single quantity with probability one—the

restriction to deterministic contracts is without loss. We normalize the seller’s reservation profit to zero. We

focus on situations in which all consumers trade, so q = 0 is interpreted as the limit when the contracted

quantity becomes small. Note that if we allowed consumers not to participate, then the equilibrium price

schedule faced by consumer types who participate would be the same as the one we characterize below.

By the revelation principle, a contract between a seller and consumers can be summarized by a menu

{t(θ), q(θ)} such that the best choice within the menu for a consumer of type θ is the quantity q(θ) for the

price t(θ); that is, the menu is incentive compatible. Let u(θ) = v(θ, q(θ)) − t(θ) denote the utility of a

consumer of type θ when purchasing from the seller under the incentive compatible menu {t(θ), q(θ)}. The

seller’s optimal menu maximizes expected profits subject to consumers’ incentive compatibility (IC) and

participation (IR) constraints, that is,

(IR problem) max
{t(θ),q(θ)}

(∫ θ

θ

t(θ)f(θ)dθ − c(Q)

)
s.t.

(IC) v(θ, q(θ))− t(θ) ≥ v(θ, q(θ′))− t(θ′) for any θ, θ′

(IR) v(θ, q(θ))− t(θ) ≥ u(θ) for any θ,

where Q =
∫ θ
θ
q(θ)f(θ)dθ, and c(Q) is shorthand for

∫ θ
θ
c(q(θ))f(θ)dθ when c(·) is additively separable. We

7We rely on results from the mechanism design literature with private information. A standard result, the taxation principle, is
that an economy with observable types in which a seller is restricted to nonlinear prices, referred to as “tariffs,” is equivalent to an
economy with unobservable types and no restrictions on the space of contracts a seller can offer. See Segal and Tadelis (2005).

10



refer to this model in which the seller’s constraints are IC and IR as the IR model and define an allocation

{u(θ), q(θ)} to be implementable if it satisfies them. The IC constraint of a consumer of type θ is satisfied

if choosing q(θ) for the price t(θ) maximizes the left side of the constraint. Taking first-order conditions,

this requires vq(θ, q(θ))q′(θ) = t′(θ) or, equivalently, u′(θ) = vθ(θ, q(θ)). As vθq(θ, q) > 0, an allocation is

incentive compatible if, and only if, it is locally incentive compatible in that u′(θ) = vθ(θ, q(θ)) (a.e.), the

schedule q(θ) is weakly increasing, and the utility u(θ) is absolutely continuous. Since the functions t(θ) and

q(θ) of an incentive compatible menu are continuous and monotone, we can represent this menu as a tariff

or price schedule, T (q). The tariff pair (T (q), q) corresponds to the menu pair (t(θ), q(θ)) evaluated at each

θ such that q=q(θ). We use these menu and tariff interpretations interchangeably throughout.

Crucial for the characterization of the seller’s optimal menu are the seller’s first-order conditions

vq(θ, q(θ))− c′(Q) =

[
γ(θ)− F (θ)

f(θ)

]
vθq(θ, q(θ)) (1)

for each type and the complementary slackness condition on the IR constraints,

∫ θ

θ

[u(θ)− u(θ)]dγ(θ) = 0. (2)

In (1) and (2), γ(θ)=
∫ θ
θ
dγ(x) is the cumulative multiplier associated with the IR constraints, which has the

properties of a cumulative distribution function, that is, it is nonnegative, weakly increasing, and γ(θ)=1.8

Jullien (2000) formulates three important assumptions to characterize an optimal menu, potential separa-

tion (PS), homogeneity (H), and full participation (FP). As for (PS), note that for each type θ, the first-order

condition in (1) defines the optimal quantity q(θ) as a function of the primitives of the economy and the

cumulative multiplier γ(θ), namely, q(θ) = l(γ(θ), θ). The quantity l(γ̃, θ) that satisfies (1) at θ for the ar-

bitrary cumulative multiplier γ̃ ∈ [0, 1] weakly decreases with γ̃. Assumption (PS) states that l(γ̃, θ) weakly

increases with θ for all γ̃ ∈ [0, 1]. This assumption guarantees that the seller has an incentive to discriminate

across consumers and so effectively ensures that the optimal q(θ) is weakly increasing.9 Assumption (H)

states that there exists a quantity profile {q(θ)} such that u′(θ) = vθ(θ, q(θ)) and q(θ) is weakly increasing;

that is, the allocation with full participation {u(θ), q(θ)} is implementable. This assumption ensures that a

consumer’s IC constraint can be satisfied when the IR constraint binds. Assumption (FP) states that all types

participate. Sufficient conditions for (FP) are (H) and s(θ, q(θ)) ≥ u(θ). This latter condition guarantees that

the seller has an incentive to trade with all consumers.

Jullien (2000) shows that under these three assumptions, there exists a unique optimal solution to the

seller’s problem in which all consumers participate, characterized by the first-order conditions (1) and the

complementary slackness condition (2) with q(θ) continuous and weakly increasing. The solution to the

8See the Supplementary Appendix for details. The integral in the definition of γ(θ) is interpreted as accommodating not just
discrete and continuous distributions but also mixed discrete-continuous ones. That is, this formulation allows for the possibility
that the IR constraints bind at isolated points. It is understood that q(θ) is evaluated taking the left limit at jump points.

9See the proof of Proposition 1 for sufficient conditions on primitives for (PS) to be satisfied and Jullien (2000) for details.
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seller’s problem is q(θ) = l(γ(θ), θ) for each consumer type with associated price t(θ) and utility u(θ),

which equals u(θ) for consumer types whose IR constraints bind. Note since q(θ) is continuous, γ(θ) can

have mass points only at θ or θ, and thus the IR constraints can bind at isolated points only at θ or θ. When

γ(θ) = 1 for all types so that the IR constraints bind only at θ, the model reduces to the standard model, in

which the IR constraints simplify to u(θ) ≥ u with u constant.

Observe that by varying the reservation utility schedule, the model can accommodate different degrees

of market power for a seller, ranging from the case of perfect competition to that of monopoly. Specifically,

when the reservation utility equals the social surplus under the first best for each type, that is, u(θ) =

v(θ, qFB(θ)) − c(qFB(θ)), the solution to the seller’s problem implies γ(θ) = F (θ) for all consumers so

that consumers purchase first-best quantities from the seller. As the reservation utility is lowered from its

maximal value under the first best for each type, profits correspondingly increase, thus allowing the model to

capture any degree of imperfect competition. This feature of the model provides an important dimension of

flexibility over the standard model for the measurement exercises in later sections.10

3.2 A Model with Heterogeneous Budget Constraints

Suppose now that instead of having access to heterogeneous outside options, consumers face heterogeneous

subsistence constraints. These constraints limit the amount of resources that a consumer can spend on a

seller’s good and formally give rise to a budget constraint for the good. We show that under simple conditions,

this model and the one of the previous subsection are equivalent in that they imply the same choice of price

schedule by a seller and, thus, the same participation and purchase decisions by consumers. We will use this

model in the next subsection to examine the impact of income transfers on prices and consumption.

Setup. Suppose that consumers have quasi-linear preferences over the seller’s good q and the numeraire

z, which represents all other goods. A consumer is characterized by a preference attribute, θ, which, as

before, affects her valuation of q, and by a productivity attribute, w, which affects her overall budget or

income, Y (w).11 The consumer faces a subsistence constraint on the consumption of z of the form z ≥
z(θ, q), which can be interpreted as capturing the notion that a certain number of calories are necessary for

survival and can be achieved by consuming the seller’s good and the numeraire. Namely, define the calorie

constraint Cq(θ, q)+Cz(θ)z ≥ C(θ), where Cq(θ, q) and Cz(θ)z are, respectively, the calories produced by

the consumption of q units of the seller’s good and z units of the numeraire for a consumer of type θ and

C(θ) is the subsistence level of calories for such a consumer. Clearly, this calorie constraint can be rewritten

as z ≥ z(θ, q) ≡ [C(θ)− Cq(θ, q)]/Cz(θ).12

Let T (q) be the seller’s price schedule, where T (q) is the price of quantity q. Conditional on purchasing

10With vθ(θ, q)> 0 by assumption, (H) implies that u(θ) is monotone since it requires u′(θ) = vθ(θ, q(θ)). This feature of the
model is consistent with the large fraction of households in each village purchasing the goods we consider. Our analysis could be
extended to the case in which consumers dislike the seller’s good, and can be ranked by their distaste for it, with θ replaced by −θ.
(H) also requires that q(θ) be weakly increasing and thus that u(θ) be sufficiently convex, which prevents bunching. Observe that
(H) naturally holds in a model of seller competition with vertical differentiation. Under this interpretation of our model, here we
characterize the best-response problem of any such oligopolist; see the Supplementary Appendix for details.

11We implicitly assume that utility is separable across a seller’s goods, which are priced independently. See Stole (2007).
12This formulation of the calorie constraint generalizes Cqq+Czz ≥ C, used, for instance, by Jensen and Miller (2008), where

Cq and Cz are the calories provided by one unit of q and one unit of z, respectively, and C is the subsistence intake.
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from the seller, the consumer’s problem is

max
q,z
{v(θ, q) + z} s.t. T (q) + z ≤ Y (w) and z ≥ z(θ, q). (3)

Using the fact that the budget constraint holds with equality at an optimum and substituting z = Y (w)−T (q)

into the objective function and the constraint z ≥ z(θ, q), the problem in (3) can be restated as

max
q
{v(θ, q)− T (q)}+ Y (w) s.t. T (q) ≤ I(θ, q, w) ≡ Y (w)− z(θ, q), (4)

where I(θ, q, w) is the maximal amount that the consumer can spend to purchase q units of the seller’s good

and meet her subsistence constraint.13 Note that the constraint in (4) is a budget constraint for the seller’s

good arising from the consumer’s subsistence constraint. We assume that I(θ, q, w) is absolutely continuous,

twice continuously differentiable, and weakly increasing in θ and q. An intuition for why I(·, q, w) may

increase with θ, and thus z(·, q) may decrease with θ, is that if the same calorie intake can be reached through

different combinations of goods, a consumer with a greater taste for the seller’s good may require less of

other goods to achieve it, for instance, because of a greater ability to metabolize the good. The requirement

that I(θ, ·, w) increase with q, and so z(θ, ·) decrease with q, is equivalent to C(θ, ·) increasing with q and is

natural: the greater the amount of the seller’s good consumed, the greater the calorie intake. See Lancaster

(1966) on the distinction between the caloric and taste attributes of goods and Jensen and Miller (2008) on

the relationship between these attributes and subsistence constraints.

Suppose that when consumers do not purchase from the seller, they can achieve the exogenous utility

level u, which is constant with θ, as in the standard model. Then, the seller’s optimal menu solves

(BC problem) max
{t(θ),q(θ)}

(∫ θ

θ

t(θ)f(θ)dθ − c(Q)

)
s.t.

(IC) v(θ, q(θ))− t(θ) ≥ v(θ, q(θ′))− t(θ′) for any θ, θ′

(IR’) v(θ, q(θ))− t(θ) ≥ u for any θ

(BC) t(θ) ≤ I(θ, q(θ), w) for any θ.

We refer to this model in which the seller’s constraints are IC, IR’, and BC as the BC model and define an

allocation {u(θ), q(θ)} that satisfies them as implementable. Although we allow for heterogeneity among

consumers in both θ and w, in this section we consider the case of constant w for expositional simplicity and

suppress the dependence of I(θ, q, w) and all other relevant variables on w. We examine the implications

of this additional dimension of heterogeneity in Appendix A. We consider this more general case in the

empirical analysis.

We maintain the same potential separation (PS) and full participation (FP) assumptions as in the IR

13Quasi-linear preferences in q and z, and so in q and T , are standard in the literature. The more general formulation of
preferences as v(θ, q, T ) typically gives rise to a nonconvex constraint set for the seller that renders the characterization of the
optimal menu problematic and random tariffs usually desirable. The latter, however, are unrealistic in the context of our application.
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model. In analogy to assumption (H), we assume that there exists an incentive compatible menu {t(θ), q(θ)}
that induces each consumer to purchase and spend her entire budget for the seller’s good, that is,

(BCH) t(θ) = I(θ, q(θ)), t′(θ) = vq(θ, q(θ))q
′(θ), and q(θ) is weakly increasing. (5)

Importantly, under assumption (BCH), incentive compatibility can be satisfied when the budget constraint

t(θ) ≤ I(θ, q(θ)) binds. As in the IR model, condition (BCH) helps to ensure that there exists an imple-

mentable menu {t(θ), q(θ)} that induces all consumers to participate.14

Since income affects consumers’ purchase behavior, changes in the distribution of consumers’ income

arising from, for instance, income transfers typically influence a seller’s menu. In the IR model, on the

contrary, changes in income have no impact on the consumption of the seller’s good and thus on the seller’s

pricing decisions, unless a consumer’s reservation utility u(θ) is exogenously assumed to depend on income.

Our equivalence result between the BC model and the IR model implies that the BC model can be viewed as

providing a map between changes in income and changes in reservation utility. In this sense, the IR model

can be considered as a “reduced form” of the BC model. We explore the implications of the BC model for

the effect of income transfers below, when we analyze the impact of Progresa on prices and consumption.

Equivalence between Participation and Budget Constraints. The seller’s problem with constraints IC,

IR’, and BC has no known solution. Here we proceed to characterize a seller’s optimal menu indirectly by

establishing an equivalence between the BC problem and the IR problem. A natural approach, which leads

to a simple constructive argument, would be to define the budget for the seller’s good of a consumer of type

θ as I(θ, q̂(θ)) = v(θ, q̂(θ))− uIR(θ) for any implementable allocation {û(θ), q̂(θ)} in the BC model, where

uIR(θ) denotes the reservation utility for a consumer of type θ in the IR model. Since t̂(θ) = v(θ, q̂(θ))−û(θ),

it is immediate that the BC constraint is equivalent to the IR constraint of the IR problem in this case.

Although this approach is intuitive since it relates reservation utilities to budgets, it is unduly restrictive: it

requires the schedules of reservation utilities in the IR problem and budgets in the BC problem to agree for

each type at an implementable allocation. As we now show, for the two problems to admit the same solution,

it is sufficient that reservation utilities and budgets, and the derivatives of consumers’ utility function and

budget schedule with respect to quantity, agree just for types whose IR constraints bind in the IR problem at

the optimal menu—as long as consumers have enough income to afford the IR allocation.

Formally, as shown in Appendix A, the BC problem can be conveniently restated as

max
{q(θ)}

(∫ θ

θ

{
v(θ, q(θ))+

[
F (θ)−Φ(θ)

f(θ)

]
vθ(θ, q(θ))+

φ(θ) [I(θ, q(θ))−v(θ, q(θ))]

f(θ)

}
f(θ)dθ−c(Q)

)
, (6)

14Under (FP), the IR’ constraints are effectively redundant. Sufficient conditions for (FP), and so for the IR’ constraints to be
satisfied, are v(θ, q(θ))−I(θ, q(θ)) ≥ u and I(θ, q(θ)) ≥ c(q(θ)) for each θ. To see why, note that v(θ, q(θ))−I(θ, q(θ)) ≥ u
guarantees that the IR’ constraint is satisfied when the BC constraint binds. Assumption (BCH) and I(θ, q(θ))≥ c(q(θ)) ensure
that no type is excluded because of a violation of the BC constraint: the seller is better off by offering q(θ) to type θ at price
I(θ, q(θ)) for a profit of I(θ, q(θ))−c(q(θ)) than by excluding this consumer. Thus, all types participate.
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with q(θ) weakly increasing and u(θ) ≥ u. We term (6) the simple BC problem, where Φ(θ) =
∫ θ
θ
φ(x)dx is

the cumulative multiplier on the budget constraint expressed as I(θ, q(θ)) ≥ v(θ, q(θ))−u(θ) with derivative

φ(θ) and is defined analogously to γ(θ). The first-order conditions of this problem are

vq(θ, q(θ))− c′(Q) =

[
Φ(θ)− F (θ)

f(θ)

]
vθq(θ, q(θ)) +

φ(θ)[vq(θ, q(θ))− Iq(θ, q(θ))]
f(θ)

(7)

for each type, along with the complementary slackness condition

∫ θ

θ

{I(θ, q(θ))− [v(θ, q(θ))− u(θ)]}dΦ(θ) = 0. (8)

By Result 1 in the proof of Proposition 1, an implementable allocation is optimal if, and only if, there exists

a cumulative multiplier function Φ(θ) such that conditions (7) and (8) are satisfied with Φ(θ)=1. Denote by

{tIR(θ), qIR(θ)} the optimal menu, by {uIR(θ), qIR(θ)} the optimal allocation, and by {uIR(θ), qIR(θ)} the

reservation utility and quantity profiles in the IR model. We now establish the desired equivalence.

Proposition 1 (Equivalence of Problems). Suppose that the allocation that solves the IR problem is af-

fordable in the BC problem in that I(θ, qIR(θ)) ≥ v(θ, qIR(θ))−uIR(θ), with equality for types whose IR

constraints bind, and uIR(θ)≥ u. If Iq(θ, qIR(θ)) equals vq(θ, qIR(θ)) for types whose IR constraints bind,

then the solution to the BC problem coincides with that to the IR problem.

For intuition, note that in the IR model, a seller can always induce a consumer to buy by offering a large

enough quantity for a given price or by charging a low enough price for a given quantity. The IR constraint,

though, implicitly places a restriction on the maximal price that a seller can charge to a consumer, since the

requirement uIR(θ) ≥ uIR(θ) is equivalent to tIR(θ) ≤ v(θ, qIR(θ)) − uIR(θ), which effectively limits a

consumer’s expenditure on the seller’s good. Hence, in this precise sense, the IR and BC constraints are

related. Proposition 1 follows by combining this intuition with the construction of a multiplier function on

the BC constraints such that the BC constraints bind in the BC problem if, and only if, the IR constraints bind

in the IR problem. Then, by comparing (1) and (7), it is easy to see that the first-order conditions of the two

problems, and so the optimal quantity schedules, coincide if vq(θ, qIR(θ)) equals Iq(θ, qIR(θ)) for consumers

whose IR constraints bind in the IR problem and so whose BC constraints bind in the BC problem, namely,

those with φ(θ) > 0. The first two conditions in the proposition guarantee not just that the solution to the IR

problem is feasible for the BC problem but also that utilities, and hence prices, in the two problems coincide.

A natural question is how stringent the assumptions of Proposition 1 are, in particular the condition that

Iq(θ, qIR(θ)) = vq(θ, qIR(θ)) when the IR constraints bind. This condition simply implies that if the seller

uses the budget schedule I(θ, qIR(θ)) as a price schedule in the BC model when the BC constraints bind,

he can induce consumers to demand the same incentive compatible quantities that they demand in the IR

model when the IR constraints bind. Hence, consumers with binding constraints demand the same quantities

in the two models. This condition can easily be satisfied when the utility of a consumer who spends all of

her budget on the seller’s good in the BC model agrees with uIR(θ) so that the quantity q(θ) of the (BCH)
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assumption coincides with qIR(θ).15

Proposition 1 is important for several reasons. First, it provides a simple argument for how a model with

heterogeneous budget constraints can be represented as a model with heterogeneous reservation utilities and

its solution characterized. Second, this result allows us to examine how subsistence constraints affect prices

and consumption as well as to evaluate the effect of policies, such as income transfers, that directly affect

consumers’ ability to pay and budgets. We do so in the next subsection.

3.3 Properties and Implications of Nonlinear Pricing

By the equivalence just established between models with heterogeneous reservation utilities and heteroge-

neous budget constraints, from now on we refer to the IR model as the augmented model and interpret it

as applying to both cases. Here, we first examine the implications of the augmented model for prices and

consumption and for the relative desirability of nonlinear and linear pricing. We then consider the version

of the augmented model in which consumers have heterogeneous budget constraints to analyze the impact

of policies such as income transfers that affect consumers’ ability to pay. We maintain, for simplicity, that

v(θ, q) = θν(q) and c′(Q) = c > 0 and focus on the regular case in which the optimal quantity schedule and

the reservation quantity schedule are increasing with the type.16

Prices and Consumption. We start by providing sufficient conditions for quantity discounts to arise. Since

q(θ) is increasing, we can define the inverse function θ(q) and derive the observed price schedule as a function

of quantity, T (q) = t(θ(q)). Using θ′(q) = 1/q′(θ), we can then rewrite the local incentive compatibility

condition θν ′(q(θ))q′(θ) = t′(θ) as θν ′(q(θ)) = T ′(q(θ)) so that (1) becomes

T ′(q(θ))− c
T ′(q(θ))

=
γ(θ)− F (θ)

θf(θ)
. (9)

The price schedule T (q) exhibits quantity discounts if T ′′(q)≤0 or p(q) declines with q, where p(q)=T (q)/q

is the unit price of quantity q = q(θ).17 Denote by A(q) ≡ −ν ′′(q)/ν ′(q) the coefficient of absolute risk

aversion evaluated at q. We can then prove the following result.

Proposition 2 (Quantity Discounts). Assume that ν ′′(·)<0 and d
dθ

(
1−F (θ)
f(θ)

)
≤ 0. If F (θ)

θf(θ)
≤ min

{
1, d

dθ

(
F (θ)
f(θ)

)}
and u′′(θ) ≥ ν ′(q(θ))/[θA(q(θ))] for each θ, then T ′′(q) ≤ 0 for each q = q(θ).

Whereas the first two conditions in the proposition are common—the second one is a sufficient condition

for assumption (PS) in the standard model—the remaining two are novel. Consider first the condition on

F (θ)/f(θ). The restriction that F (θ)/f(θ) ≤ θ simply bounds the rate of increase of T (q) when a seller

offers quantities above the first best, as is the case whenever γ < F (θ). Intuitively, quantity discounts in the

15As u′IR(θ)=vθ(θ, qIR(θ)) by assumption (H) of the IR model, Iq(θ, qIR(θ))=vq(θ, qIR(θ)) holds when Iθ(θ, qIR(θ))=0.
16The optimal quantity schedule increases with θ if sq(θ, ·)/vθq(θ, ·) decreases with q, as assumed, and either sq(·, q)/vθq(·, q)

increases with θ, or F (·)/f(·) increases with θ and [1−F (·)]/f(·) decreases with θ. Note that vθ(θ, q) > 0 implies that ν(q) > 0.
17A sufficient condition for p′(q) ≤ 0 is T ′′(q) ≤ 0 with T (0) ≥ 0. To see why, recall that if f(x) is a concave function, then

f(x) ≤ f ′(x2)(x− x2) + f(x2) or, equivalently, x2f ′(x2) ≤ f(x2) + xf ′(x2)− f(x) at any point (x2, f(x2)). If this inequality
holds for any x, then it must also hold for x = 0, in which case it becomes x2f ′(x2) ≤ f(x2) − f(0) provided that f ′(x2) is
bounded. Thus, if f(0) ≥ 0, then x2f ′(x2) ≤ f(x2) and so f(x2)/x2 decreases with quantity.
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form of T ′′(q) ≤ 0 require the rate of increase of T (q) to decrease with quantity. The additional restriction

that d [F (θ)/f(θ)] /dθ ≥ [F (θ)/θf(θ)] strengthens the usual condition on the distribution of consumer types

for assumption (PS) to hold in models with heterogeneous reservation utilities, that is, d [F (θ)/f(θ)] /dθ ≥ 0.

It guarantees that a seller has an incentive to discriminate across consumers.18 Consider now the condition

on u′′(θ), which requires it to be large enough. This condition ensures that consumers whose IR constraints

bind are offered quantity discounts. In general, the convexity of u(·) implies that outside consumption oppor-

tunities are increasingly more valuable for consumers of higher types. Since u′(θ) = ν(q(θ)) by assumption

(H), by offering larger quantities at lower marginal prices, a seller can satisfy higher types’ IR constraints

and induce them to buy more than lower types, thereby separating higher types from lower ones. Quantity

discounts are then optimal for a seller.

By comparing the first-order condition in (9) with that for the first-best allocation, T ′(q(θ)) = c, it is

immediate that the quantity provided to a consumer of type θ is below the first best when γ(θ)>F (θ) but

above the first best when γ(θ)<F (θ). Underprovision arises when the reservation utility for higher consumer

types is close enough to that for lower types that participation constraints tend to bind for lower types rather

than for higher ones. In this case, as in the standard model, higher types have an incentive to imitate the

behavior of lower types. But since higher types enjoy a higher marginal benefit from consuming the good, a

seller can separate higher types from lower ones by decreasing the offered quantities meant for lower types

below lower types’ first-best level of consumption. This way, a seller makes the purchase of small quantities

unattractive to higher types.

Overprovision, instead, arises when the reservation utility for higher consumer types is larger enough

than that for lower types that participation constraints tend to bind for higher types. In this case, a seller

needs to induce higher types to buy in the first place. A seller can do so while separating higher types from

lower ones by offering quantities meant for higher types that are larger than the first best at marginal prices

below marginal cost. By doing so, a seller not only can induce higher types to purchase these large quantities

but also can distinguish them from lower types, who naturally prefer smaller quantities. Namely, a seller can

differentiate consumers because lower types would need to purchase much larger quantities than desirable to

them to imitate the behavior of higher types, that is, quantities above the first-best level of consumption of

higher types.19

Nonlinear versus Linear Pricing. A natural question is whether consumers are better off under nonlin-

ear or linear pricing. Under linear pricing, a seller charges the unit price pm for any quantity provided. A

consumer of type θ chooses the quantity qm(θ) and obtains utility um(θ) = θν(qm(θ))−pmqm(θ) from pur-

chasing the good. It turns out that when all consumers participate under both pricing schemes and nonlinear

pricing entails quantity discounts, consumers tend to be better off under linear pricing. Intuitively, linear

18All these conditions on the distribution of types are satisfied, for instance, by a uniform distribution with θ ≥ 0 and a four-
parameter beta distribution with shape parameters α ≥ 1 and β = 1.

19Since γ(θ) ≤ 1, the augmented model gives rise to higher levels of consumption and, correspondingly, lower marginal prices
relative to the standard model. Given that higher quantities may be offered at a higher price T (q), the overall effect on consumers’
utility is ambiguous. When u(θ) ≥ u so that the reservation utility in the augmented model, u(θ), is higher than in the standard
model, u, for each type, consumer surplus is clearly higher in the augmented model.
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pricing is preferred when the quantity provided under linear pricing is larger: nonlinear pricing just allows

a seller to better extract consumer surplus. Perhaps surprisingly, consumers prefer linear pricing even when

the quantity provided under linear pricing is smaller. In this case, a seller who can price discriminate tends to

charge high prices for the greater quantity provided. Critically, however, a consumer who is excluded from

the market under linear pricing but included under nonlinear pricing prefers nonlinear pricing. For instance,

consumers who have access to generous enough outside consumption opportunities in that q(θ)>qFB(θ) can

be excluded under linear pricing and so are better off under nonlinear pricing.

Proposition 3 (Nonlinear versus Linear Pricing). The following results hold:

1) Suppose that (FP) holds under linear pricing. If p′(q)≤0 at q=q(θ) and qm(θ)≥q(θ), or if T ′′(q) ≤ 0 at

all q = q(θ), q(θ)>qm(θ), and γ(θ)<1, then a consumer of type θ is better off under linear pricing.

2) Let ν ′′(·) < 0. Suppose that s(θ, q(θ)) ≥ u(θ) and q(θ) > qFB(θ) for consumer types in [θ′, θ′′]. If there

exists a type θ̂ in [θ′, θ′′] with um(θ̂) = u(θ̂), then an interval of consumer types in [θ̂, θ′′] is excluded under

linear pricing, but these consumer types participate, and so are better off, under nonlinear pricing.

To understand the role of the condition q(θ) > qFB(θ) in part 2) of Proposition 3, note that since

u′(θ) = ν(q(θ)) by assumption (H) or (BCH), large values of q(θ) are associated with a rapidly increas-

ing reservation utility profile.20 To induce consumers with attractive outside consumption possibilities to

participate, a seller can offer a low enough marginal price. Since the marginal price is constant and equals

the unit price under linear pricing, such a low price would lower profits from all existing consumers for the

benefit of including only a few more. Hence, it would not be profitable to include such consumers under

linear pricing. Proposition 3 then highlights a dimension along which nonlinear pricing may be more effi-

cient than linear pricing. Whenever different consumers can be charged different prices, a seller may have an

incentive to serve those consumers who would be unprofitable under linear pricing. We examine the extent to

which this implication of our model is borne out in the data in Section 5.3. See the Supplementary Appendix

for an example of Proposition 3.

Income Transfers. Here we show that when consumers face a budget constraint for the seller’s good, in-

come transfers increase consumption but also typically lead to an increase in prices, as the seller adjusts

offered quantities and prices in response to consumers’ greater ability to pay.21 Intuitively, when consumers

are constrained by a budget for the seller’s good, an increase in their income affects prices by creating an

incentive for the seller to extract more surplus. For instance, suppose that consumers receive an income

transfer that is independent of their characteristics, that is, τ(θ)=τ >0. Such a transfer naturally gives rise to

a uniform increase in the price schedule: as the quantities offered before the transfer are still incentive com-

patible after the transfer, a seller can offer the same quantities at higher prices without affecting consumers’

behavior. Indeed, the seller maximizes profits by increasing the price T (q) of each quantity q by the amount

of the transfer.
20Note that Proposition 3 requires the existence of a type at risk of exclusion whose utility equals u(θ) under linear pricing.

Also, q(θ)>qFB(θ) cannot typically arise when γ(θ)=1 for all types, and so in the standard model, since q(θ) ≤ qFB(θ) for all
types in this case. See Corollary 1 in Jullien (2000) for a proof that if for all types q(θ) ≥ qFB(θ), then q(θ) ≥ qFB(θ).

21In this comparative static exercise, it is implicit that the (IR’) constraints are satisfied before and after the transfer.
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Now consider the case in which the transfer depends (continuously) on consumers’ characteristics. In

the villages we study, the Progresa transfer depends on a household’s income and number of children. Given

that poorer households tend to have more children, transfers are larger for poorer households and thus are

effectively progressive in income; see Attanasio et al. (2013). Since, for the normal goods we consider,

poorer households consume less than richer households and our model implies a monotone relationship

between types and quantities consumed, assuming that the transfer satisfies τ ′(θ)≤ 0 then seems consistent

with the data.

To understand the impact of such a transfer, recall that a consumer of type θ pays t(θ) to purchase

q(θ) from the seller and the rest of her income to purchase z subject to the subsistence constraint z =

Y − t(θ) ≥ z(θ, q(θ)) before the transfer is introduced. Thus, the consumer’s budget constraint for the

seller’s good is t(θ) ≤ Y − z(θ, q(θ)) for the menu pair (t(θ), q(θ)). Once the consumer receives the transfer

τ(θ), her ability to pay correspondingly increases and her budget constraint for the seller’s good becomes

tτ (θ) ≤ Y + τ(θ) − z(θ, qτ (θ)) for the menu pair (tτ (θ), qτ (θ)). Therefore, as in the case of a uniform

transfer, the seller can ask for a higher price without excluding any consumer. Unlike in the case of a uniform

transfer, though, since consumers’ ability to pay increases differentially with the transfer, the seller charges

different consumer types different marginal prices after the transfer. In particular, it turns out that if τ ′(θ) ≤ 0

and the budget for the seller’s good satisfies Iθq(θ, q) ≥ 0, then any consumer who spends her entire budget on

the seller’s good before and after the transfer demands a larger quantity. To preserve incentive compatibility,

a seller must then offer larger quantities, and correspondingly lower marginal prices, to other consumers as

well. As a result, consumption increases and the marginal price paid decreases for at least some consumers.

Although the marginal price T ′(q) decreases, the price T (q) paid by any such consumer increases by an

argument analogous to that in the case of a uniform transfer.

Proposition 4 (Income Transfers). Let ν ′′(·)<0. Consider a transfer such that τ ′(θ) ≤ 0 with strict inequal-

ity for at least an interval of consumer types. Suppose that the budget constraint binds before and after the

transfer for at least type θ′ in such an interval, that the optimal menus before and after the transfer satisfy

the conditions of Proposition 1, and that Iθq(θ, q) ≥ 0. Then, the transfer leads to greater consumption and

a higher price schedule T (q) with lower marginal prices T ′(q) for all types in an interval that includes θ′.

As both T (q) and q increase for some consumer types, the effect of the transfer on the unit price of the

good, T (q)/q, and so on the intensity of price discrimination is ambiguous. We now show, however, that the

intensity of price discrimination, as measured by the size of quantity discounts (the absolute value of T ′′(q)),

increases with the transfer for at least some consumers when the distributions of quantities purchased before

and after the transfer can be ranked.

To examine the impact of the transfer τ(θ) on the nonlinearity of prices, we compare the curvature of

the price schedule before and after the transfer type by type or, equivalently, at the same percentiles in

the distributions of quantities purchased before and after the transfer is introduced. Since optimal quantity

profiles are monotone, a given percentile in the two quantity distributions corresponds to the same type.

Formally, denote by {qτ (θ)} the quantity profile after the transfer is introduced and by G(q) and Gτ (q),
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respectively, the cumulative distribution functions of quantities purchased before and after the transfer with

associated probability density functions g(q) and gτ (q). For any quantity q = q(θ) purchased before the

transfer by a consumer of type θ, the quantity qτ = qτ (θ) purchased by the consumer after the transfer

satisfies

Gτ (qτ )=Pr(qτ (θ̃) ≤ qτ )=Pr(θ̃ ≤ q−1τ (qτ )=θ)=F (θ)=Pr(θ̃ ≤ q−1(q)=θ)=Pr(q(θ̃) ≤ q)=G(q). (10)

Here we consider a transfer that increases consumption in that

gτ [G
−1
τ (t)] ≤ g[G−1(t)] up to some t ∈ (Gτ (0), 1). (11)

Condition (11) states that up to a certain percentile qmax in the distributions of quantities before and after the

transfer, the probability density function of quantities purchased after the transfer is smaller than the proba-

bility density function of quantities purchased before the transfer at each percentile. Hence, the distribution

Gτ (·) assigns more mass to larger quantities than the distribution G(·) up to t. Indeed, if (11) applies to all

t, then Gτ (·) first-order stochastically dominates G(·) (see Dharmadhikari and Joag-Dev (1983)). In general,

if the transfer leads to greater consumption by all types, then Gτ (·) first-order stochastically dominates G(·):

when qτ (θ) ≥ q(θ), a given percentile in the distribution of quantities purchased after the transfer corre-

sponds to a larger quantity than before the transfer. Thus, condition (11) simply amounts to a strengthening

of the dominance ordering between Gτ (·) and G(·) implied by the transfer up to t.

By using (11), the fact that F (θ) = G(q) at q = q(θ), and the implication of this fact that θ′(q) =

g(q)/f(θ) and by differentiating the local incentive compatibility condition T ′(q) = θ(q)ν ′(q), it is possible

to establish the next result.

Corollary 1 (Income Transfers and Price Discrimination). If ν ′′′(·) ≤ 0 and the transfer τ(θ) leads to greater

consumption for all types up to θmax so that (11) holds for the corresponding t, then there exists a percentile

qmax in the distributions of quantities purchased before and after the transfer such that T ′′τ (qτ )≤ T ′′(q) for

all percentiles in the two distributions up to qmax.

When T ′′(q) ≤ 0, the transfer then leads to greater price discrimination in the form of larger discounts.

In Section 5.4, we show that this implication of our model is supported by the data.22

4 Identification and Estimation
In this section, we discuss the identification and estimation of the model’s primitives, which builds on intu-

itions from Perrigne and Vuong (2010). Intuitively, the pricing behavior of a seller depends on the distribution

of consumer types in a village market. Since this distribution can be mapped into that of purchased quanti-

ties, the distribution of consumer types can be recovered from the joint distribution of observed prices and

quantities. Although the model’s primitives can be identified and estimated semiparametrically based on
22See the Supplementary Appendix for an example in which ν(q) is a HARA (hyperbolic absolute risk aversion) function and

the intensity of price discrimination increases for some consumers in response to the transfer.
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this intuition, here we derive estimators that use flexible parametric functions, partially to accommodate the

sparsity of the data in some villages. We estimate the model using data for three commodities—rice, kidney

beans, and sugar—that we chose for three reasons. First, as discussed in Section 2, they are commonly con-

sumed, so the full participation assumption is likely to be valid and we observe a large number of transactions

for them. Second, they are goods of homogeneous quality. Hence, the variation in prices across quantities

that we document is likely to reflect just quantity discounts. Third, they are normal goods whose consump-

tion increases with income. Thus, assuming that households’ marginal willingness to pay and absolute ability

to pay are related, as we do, is plausible. See Appendix B for omitted details.

4.1 Identification

In a village market, the model’s primitives are the consumers’ utility function v(θ, q), the cumulative dis-

tribution function of consumers’ types or marginal willingness to pay F (θ), its support [θ, θ] and the as-

sociated probability density function f(θ), the seller’s marginal cost c′(Q) at the total quantity provided

Q=
∫ θ
θ
q(θ)f(θ)dθ, and the determinants of participation in the market, namely, the reservation utility sched-

ule u(θ) in the IR model and the budget schedule I(θ, q, w) in the BC model. We consider the general version

of the BC model with heterogeneity in θ and w, both of which are assumed to be noncontractible. We allow

for dependence between θ and w so that, without loss of generality, we can interpret the budget schedule as a

function of θ only with Υ(θ) ≡ I(θ, q(θ), ω(θ)); see the discussion of the two-dimensional case in Appendix

A.23 Under standard assumptions, we show that these primitives are identified in each village from data on

consumers’ expenditures and purchases, which provide information, respectively, about T (q) and q. Note

that u(θ) and Υ(θ) are identified only for households with binding IR or BC constraints.24 We refer to the

cumulative multiplier γ(θ) associated with the IR or BC constraints simply as the multiplier.

In establishing identification, we maintain that the sufficient condition s(θ, q(θ)) ≥ u(θ) for full partici-

pation holds for each type, where s(θ, q(θ)) is the social surplus at the reservation quantity q(θ): it states that

a seller obtains nonnegative profits from each consumer’s type at the quantity q(θ). This approach is justified

by the fact that the overwhelming majority of households in each village purchase the three goods we focus

on, namely, rice, kidney beans, and sugar, as discussed. We also adopt the normalization θ = 1, since a

scaling assumption is required for identification. We denote by G(q) the cumulative distribution function of

the quantities purchased of a good in a village and by g(q) the associated probability density function. Since

G(q), g(q), the price schedule T (q), and its derivatives are identifiable for each good from information on

prices and quantities in our data, we treat them as known in our identification arguments.

Our arguments rely on the condition for local incentive compatibility of an optimal menu, T ′(q) =

vq(θ, q), and a seller’s first-order condition for the optimal choice of quantity in (9). We use this latter

condition to identify a seller’s cost structure. By relying exclusively on information on prices and quantities,

23Consumers’ marginal willingness to pay and absolute ability to pay, here θ and w, are highly correlated in the data, as implied
by the strong relationship between consumption and income and the fact that the commodities we consider are normal goods.

24Any economy with reservation utility u(θ) or budget schedule Υ(θ) binding on the set Θ′ ⊆ [θ, θ] is observationally equivalent
to an economy with the same primitives but reservation utility ũ(θ) or budget schedule Υ̃(θ) that agree, respectively, with u(θ) or
Υ(θ) on Θ′ and are appropriately adjusted for the remaining types.
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though, we can identify a seller’s marginal cost only at the total quantity of a good provided in a village,

Q. Nonetheless, based on this information alone, we can identify all primitives up to consumers’ coefficient

of absolute risk aversion under the assumption that v(θ, q) = θν(q), which we maintain from now on. This

specification of utility is ubiquitous in the literature on auctions and nonlinear pricing for its tractability (see

Guerre et al. (2000) and Perrigne and Vuong (2010)), so we consider it a natural benchmark.25

Marginal Cost and Multipliers on Constraints. The relationship between θ and q implied by incentive

compatibility is central to the identification of the model. To see why, denote by q ≡ q(θ) and q ≡ q(θ) the

smallest and largest observed quantities of a good purchased in a village. Recall from (10) that since q(θ)

is an increasing function, F (θ) = G(q) for q = q(θ) and so the cumulative distribution function of types

is identified by that of quantities. The condition F (θ) = G(q) further implies that f(θ) = g(q)q′(θ) for any

q = q(θ). Given this mapping between the distribution of types and quantities, a seller’s first-order condition

can be used to identify the marginal cost c′(Q), the multiplier γ(θ(q)) on participation (or budget) constraints,

and thus the set of consumers whose participation (or budget) constraints bind. Formally, rewrite (9) as

g(q)

ϕ(q)

[
c′(Q)

T ′(q)
− 1

]
= G(q)− γ(θ(q)), (12)

with ϕ(q) ≡ d log(θ(q))/dq = θ′(q)/θ(q). We show next that both c′(Q) and γ(θ(q)) are identified up to

the coefficient of absolute risk aversion, A(q)=−ν ′′(q)/ν ′(q). As a preliminary step, we argue that c′(Q) is

identified up to the ratio ϕ(q)/ϕ(q). To this purpose, it is easy to show that taking derivatives of both sides

of (12) and integrating the resulting expressions from q and q yields that

c′(Q) =

[
g(q)− g(q)

ϕ(q)

ϕ(q)

]
/

[
g(q)

T ′(q)
−

g(q)

T ′(q)

ϕ(q)

ϕ(q)

]
;

see the proof of Proposition 5 in Appendix A. Since g(q) and T ′(q) are identified, c′(Q) is then identified

up to ϕ(q)/ϕ(q). Now, differentiating the local incentive compatibility condition T ′(q) = θ(q)ν ′(q) gives

θ′(q)/θ(q) = T ′′(q)/T ′(q) + A(q). Therefore, condition (12) also implies that

γ(θ(q)) = G(q) + g(q)

[
1− c′(Q)

T ′(q)

] [
T ′′(q)

T ′(q)
+ A(q)

]−1
. (13)

Thus, the multiplier γ(θ(q)) is identified up to c′(Q) and A(q), given that G(q), g(q), T ′(q), and T ′′(q) are

identified. But since ϕ(q) only depends on θ′(q)/θ(q), which is known up to A(q), it follows that c′(Q) is

also identified if A(q) is known. Hence, γ(θ(q)) is identified just up to A(q).

Equation (13) clarifies that the identification of c′(Q) and the multiplier γ(θ(q)) requires some knowledge

25Restrictions on the utility function are common in the auction and nonlinear pricing literature. Note that in auction models
with risk-averse bidders, even restricting the utility function to belong to well-known families of risk aversion may not be sufficient
for identification; see Campo et al. (2011). Here we presume that the absolute risk aversion coefficient is known, but we do not
otherwise restrict consumers’ utility function or type distribution. When v(θ, q) is not multiplicatively separable in θ and q, γ(θ)
is set identified, but vq(θ, q) is still point identified. See the Supplementary Appendix for this argument and a discussion of related
results in the nonlinear pricing and hedonic pricing literature.
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of the shape of the utility function. In estimation, we circumvent this issue by specifying γ(θ(q)) as a flexible

parametric function of q so that we only need to estimate c′(Q) and the parameters of this function.

Proposition 5. In a village, the marginal cost of the total quantity provided c′(Q) and the schedule of multi-

pliers γ(θ(q)) are identified up to the coefficient of absolute risk aversion. In particular, up to this coefficient,

γ(θ(q)) is identified from the cumulative distribution function of quantities G(q), the associated probability

density function g(q), and the marginal price schedules T ′(q) and T ′′(q).

Note that when the multiplier is constant on [θ, θ), γ(θ(q))=γ equals G(q) only at one quantity in [q, q).

In this case, the constant γ is identified by the value of G(q) at the quantity at which T ′(q) equals c′(Q) by

(12), where c′(Q) is identified from A(q) as discussed.26

Distribution of Consumer Types. We now show that the type support θ(q) and the probability density

function of types f(θ) are identified. Note that condition (12) can be rewritten as θ′(q)/θ(q) = g(q)[T ′(q)−
c′(Q)]/{T ′(q)[γ(θ(q))−G(q)]}, which can be used to express θ(q) as

log(θ(q)) = log(θ(q)) +

∫ q

q

d log(θ(x))

dx
dx = log(θ(q)) +

∫ q

q

g(x)[T ′(x)− c′(Q)]

T ′(x)[γ(θ(x))−G(x)]
dx. (14)

Once c′(Q) and γ(θ(q)) are identified, θ(q) is identified as well up to θ(q) by (14), since it is a known function

of objects that are either identified or known, that is, q, q, g(q), T ′(q), and G(q).27 Then, f(θ) is identified

from g(q) and the derivative θ′(q), since f(θ)=g(q)/θ′(q) by F (θ)=G(q) at any q = q(θ), as argued.

Proposition 6. In a village, the support of consumers’ marginal willingness to pay θ(q) is identified from the

cumulative distribution function G(q) and the probability density function g(q) of quantities, the marginal

cost c′(Q), the marginal price schedule T ′(q), and the schedule of multipliers γ(θ(q)) up to a level normal-

ization. The probability density function of consumers’ marginal willingness to pay f(θ) is identified from

the probability density function of quantities and the first derivative of θ(q).

Utility Function and Schedule of Reservation Utility. Note that knowledge of the coefficient of absolute

risk aversion implies that the base marginal utility function ν ′(q) is identified up to a level normalization.

Once the marginal price schedule T ′(q) and the type support θ(q) are identified, though, ν ′(q) is identified

from them without the need for such a normalization by the incentive compatibility condition θ(q)ν ′(q) =

T ′(q). Then, we can recover ν(q) from ν ′(q) up to, say, its value at q′= q(θ′), as ν(q) = ν(q′)−
∫ q′
q
ν ′(x)dx

for q ≤ q′ and ν(q) = ν(q′)+
∫ q
q′
ν ′(x)dx for q ≥ q′. With θ(q) and ν(q) identified, u(θ) is identified for all

consumers whose participation (or budget) constraints bind, since their utility is u(θ)=θν(q(θ))−T (q(θ)).

26When the standard model is known to apply, knowledge of A(q) is unnecessary to identify c′(Q) since γ(θ(q)) equals one at
all quantities, so c′(Q) is identified by T ′(q) at the largest quantity.

27In (14), γ(θ(q)) is interpreted as a function of q. The integrand is positive since g(q)>0, T ′(q)>0, and T ′(q)≥c′(Q) if, and
only if, γ(θ(q))≥G(q) by (12). It is well defined when γ(θ(q)) =G(q) and T ′(q) = c′(Q) as long as the slope of γ(θ(q)) differs
from g(q) at such quantities. Specifically, denoting by qs any quantity such that γ(θ(q)) =G(q) and T ′(q) = c′(Q), note that the
limit of the integrand as q converges to qs is g(qs)T ′′(qs)/{T ′(qs)[γ′(θ(qs))θ′(qs) − g(qs)]}. That γ′(θ(qs))θ′(qs) in general
differs from g(qs) is apparent from the seller’s first-order condition expressed as γ(θ(q))=G(q)+f(θ(q))sq(θ(q), q)/vθq(θ(q), q).
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Proposition 7. In a village, the base marginal utility function ν ′(q) is identified from the marginal price

schedule T ′(q) and the support of consumers’ marginal willingness to pay θ(q). Hence, ν(q) is identified up

to a level normalization. The reservation utility (or budget) schedule is identified for all consumers whose

participation (or budget) constraints bind, that is, all consumers with dγ(θ(q))/dq > 0.

4.2 Estimation

We estimate the model separately in each village for each of the three goods considered in two steps. In the

first step, we parameterize the functions T (q), G(q), and γ(θ(q)) and estimate their parameters by maximum

likelihood together with the model’s primitives c′(Q), θ(q), and ν ′(q). Specifically, the assumed expressions

for T (q) andG(q) and a seller’s first-order condition provide the three estimating equations for the parameters

of T (q), G(q), γ(θ(q)), and for c′(Q). We then estimate θ(q) and ν ′(q) as known transformations of T ′(q),

G(q), γ(θ(q)), and c′(Q) based, respectively, on equation (14) and the local incentive compatibility condition

ν ′(q) = T ′(q)/θ(q). In the second step, we estimate f(θ) from the estimated θ(q) via a kernel density

estimator.28

Price Schedule and Distribution of Quantities. Our data contain information on the quantities purchased

and the prices paid in each village for each good we study, from which unit prices can easily be computed.

Denote by Nvj the number of households purchasing good j in village v and by qvji the quantity of the good

purchased by household i. We estimate the price schedule of good j in village v as

log[Tvj(qvji)] = tvj0 + tvj1 log(qvji) + εpvji, (15)

where Tvj(qvji) ≡ E[pvj(qvji)|qvji]qvji, pvj(qvji) is the unit price of quantity qvji, and εpvji is measurement

error. The assumption implicit in (15) is that expenditure, and so unit values, rather than quantities are

contaminated by error. We use the mean unit value E[pvj(qvji)|qvji] of quantity qvji to construct Tvj(qvji)

to minimize the impact of measurement error in unit values due, for instance, to recall or recording error

as well as for consistency with our model. Namely, although multiple unit values may be associated with a

same quantity in a village, our model implies that the price schedule is a function of quantity rather than a

correspondence. We treat quantity as exogenous since the quantities purchased and prices paid provide direct

information on the price schedule in a village and the price schedule is a deterministic function of quantity

in our model.

We parameterize the cumulative distribution function of the quantities of good j purchased in village v

as a logistic function with index Φvj(·),

Gvj(qvji) =
exp{Φvj(qvji) + εgvji}

1 + exp{Φvj(qvji) + εgvji}
, (16)

where Gvj(qvji) is the empirical cumulative distribution function of quantities purchased and Φvj(·) is a

28Note that if f(θ) is interpreted as the probability mass function associated with the empirical cumulative distribution function
G(q), this second step is unnecessary.
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flexible polynomial (up to the third degree, including a fractional polynomial). For each village and good,

we select the specification of Φvj(·) corresponding to the lowest value of the Akaike information criterion

(AIC) for (16). Note that εgvji in (16) captures not only recall or recording error but also error in observed

purchase frequencies resulting from the timing of the Progresa interview. For instance, in the week preceding

the interview, a household may not have purchased a good it commonly buys and so may be assigned no

recorded purchase. In general, such an error may lead to understating or overstating the fraction of households

purchasing a particular quantity.

Marginal Cost and Multiplier. By (12), we can relate the cumulative distribution function of quantities

purchased G(q) to the marginal cost c′(Q), the multiplier γ(θ(q)), and the unit price p(q) as

G(q) =

[
1

T ′(q)
− 1

c′(Q)

]
x(q) + γ(θ(q)) =

[
1

t1p(q)
− 1

c′(Q)

]
x(q) + γ(θ(q)), (17)

where x(q)≡c′(Q)g(q)θ(q)/θ′(q) > 0 and the second equality in (17) follows by (15), which implies that the

unit price p(q) = T (q)/q can be expressed as p(q)=T ′(q)/t1. Denote the marginal cost of the total quantity

of good j purchased in village v by c′vj(Qvj). We specify the auxiliary function x(·) as a positive function

with up to two parameters, xvj(qvji) = χvj0 + χvj1qvji; given the limited granularity of our data, estimating

x(q) more flexibly would be infeasible. Since the multiplier has the properties of a cumulative distribution

function, we estimate it as γvj(qvji) = exp{Γvj(qvji)}/(1 + exp{Γvj(qvji)}) for good j in village v, where

the index Γvj(·) is a polynomial up to the second degree.29 Then, expression (17) becomes

Gvj(qvji)=

[
1

pvj(qvji)
− 1

c′vj(Qvj)

]
(χ

vj0
+ χ

vj1
qvji) + γvj(qvji) + εsvji

=−
χ
vj0

c′vj(Qvj)
+ χ

vj0

1

pvj(qvji)
−

χ
vj1

c′vj(Qvj)
qvji + χ

vj1

qvji
pvj(qvji)

+
exp{Γvj(qvji)}

1 + exp{Γvj(qvji)}
+ εsvji, (18)

which is the sum of a linear-in-parameters function given by the first four terms, a nonlinear one, and mea-

surement error εsvji, where c′vj(Qvj)≡ c′vj(Qvj)/tvj1, χ
vj0
≡χvj0/tvj1, and χ

vj1
≡χvj1/tvj1. For each village

and good, we select the specifications of xvj(·) and Γvj(·) associated with the lowest AIC value for (18).30

Support of Consumer Types and Utility Function. We normalize θ to 1 and specify households’ (log)

marginal willingness to pay in village v for good j by (14) as

log(θvj(q)) =
1

Nvj

∑Nvj

i=1

(
[T ′vj(qvji)− c′vj(Qvj)]1{qvji ≤ q}
T ′vj(qvji)[γvj(qvji)−Gvj(qvji)]

)
,

29Note that we have specified the multiplier as a smooth function of θ and so q. When constructing its predicted value, though,
we allow the multiplier to increase discontinuously across quantities, and thus the relevant constraints to bind for subintervals of
[θ, θ], based on tests of the equality of the estimated value of the multiplier across consecutive quantities, as discussed below.

30To see how the parameters of (18) are identified, note that there exists at least one quantity qFBvj such that γ(θ(qFBvj )) =

Gvj(q
FB
vj ) and the mean unit price of this quantity identifies c′vj(Qvj). Since the multiplier at the largest quantity is known, as

long as the first (or any higher) derivative of the multiplier function with respect to quantity evaluated at the smallest quantity
is known as well, for instance, it is zero, then χ

vj0
and χ

vj1
are identified. Once c′vj(Qvj), χ

vj0
, and χ

vj1
are identified, the

parameters of γvj(·) are identified by (18) evaluated at up to two more quantities in addition to qFBvj .
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where Nvj is the number of households purchasing good j, Qvj is the total quantity purchased in village v,

T ′vj(qvji) is computed from (15), and γvj(qvji) and Gvj(qvji) are specified as discussed.31 Using the local

incentive compatibility condition ν ′(q)=T ′(q)/θ(q) and the form of θ(q), we estimate marginal utility as

log(ν ′vj(q)) = log(T ′vj(q))−
1

Nvj

∑Nvj

i=1

(
[T ′vj(qvji)− c′vj(Qvj)]1{qvji ≤ q}
T ′vj(qvji)[γvj(qvji)−Gvj(qvji)]

)
.

Probability Density Function of Types. Given the estimated θvji = θvj(qvji), we estimate the density of

households’ marginal willingness to pay for good j in village v as fvj(θ) = (Nvjh
θ
vj)
−1∑Nvj

i=1 K
θ
vj((θ −

θvji)/h
θ
vj), with Epanechnikov kernel function Kθ

vj(·) and bandwidth hθvj .

5 Empirical Results
In this section, we first discuss our sample selection criteria, present the estimates of the model’s primitives,

and show the fit of the model to the data. Since we consider many villages, we graphically represent the

point estimates of the objects of interest and report their associated t-statistics in Appendix B. We then

use the model to analyze the distortions implied by the price discrimination we observe and evaluate the

impact of alternative pricing schemes. Finally, we derive a reduced form of the first-order conditions for the

optimality of sellers’ and consumers’ behavior that relates unit prices to quantities and the hazard rate of the

distribution of quantities purchased in each village. We use this reduced form to estimate the effect of the

Progresa transfer on the prices of each good by exploiting the experimental variation in the data induced by

the introduction of the transfer in a randomly selected subset of villages. Based on this reduced form, we

evaluate the ability of our model to account for the impact of Progresa on prices. See Appendix B and the

Supplementary Appendix for omitted results and details, including the standard errors of the estimates of the

model’s parameters.

5.1 Estimation Sample

Here we describe our sample selection criteria and present key statistics from the resulting estimation sample.

Sample Selection. We use five waves of the Progresa evaluation surveys, namely, October 1998, March

and November 1999, November 2000, and 2003, for rice, kidney beans, and sugar. Although it might be

natural to define a village and so the relevant market for a good at the level of a Mexican locality, here

we define a village as a Mexican municipality, as discussed. However, estimates of the model based on

villages defined as localities, which we report in the Supplementary Appendix, are very similar to those based

on villages defined as municipalities. To minimize the impact of measurement error, we ignore purchases

reported in units different from kilos and exclude extreme observations—we drop the top 5% of quantities

and expenditures, the latter expressed relative to their level in October 1998, and trim the top 1% of the

resulting mean unit prices in each village. We focus on villages where at least 50% of the unit prices decline

with quantity and with at least 75 observations on each good of interest. These restrictions imply the loss

31In a slight abuse of notation, we denote the derivative of the exponential of the predicted log tariff by T ′vj(·).
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of only a few villages: the original sample of 191 municipalities is reduced to 174 for rice, 183 for kidney

beans, and 185 for sugar.32

Prices and Quantities. In the top panels of Figure 1, we report the schedule of mean unit prices per quantity

in each village by good computed as explained above (together with an interpolating solid line). Similarly,

in the bottom panels, we report the corresponding cumulative distribution function of quantities purchased

in each village. In most villages, the unit price of each good declines with quantity, which implies that unit

prices are highest for the households who purchase the smallest quantities, and decrease more rapidly over

the range of small quantities that most households purchase, as evident by comparing the top and bottom

panels of the figure. Thus, most households are affected by the nonlinearity of prices and face significant

quantity discounts. For instance, the mean unit price of the smallest quantity of rice, 0.1 kilos, is more than

8 pesos on average, whereas the unit price of the largest quantity, 2 kilos, can be as low as 1.5 pesos.

Figure 1: Unit Prices and Cumulative Distribution Function of Quantities
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5.2 Estimation Results

The core elements of our model are the multiplier on participation (or budget) constraints, the distribution of

consumer types, and consumers’ utility function. In this subsection, we present their estimates based on the

sample of municipalities and illustrate the fit of the model to the data; see Appendix B for the estimates of

marginal cost and the omitted t-statistics of all estimates. We successfully estimate the model for 173, 183,

and 185 of the 174, 183, and 185 municipalities in the estimation samples for rice, kidney beans, and sugar,

32Focusing on villages with at least 50% of unit prices declining with quantity accounts for a small loss of villages, in which
price schedules are markedly nonmonotone.
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respectively.33 The analogous figures for localities are 363, 408, and 451 of the 368, 411, and 453 localities

in the estimation samples for the three goods that satisfy the same selection rules applied to the sample of

municipalities.

Estimates of Multipliers. Figure 2 reports the estimated multiplier γ(θ(q)) on participation (or budget)

constraints for each quantity purchased in each village by good. Recall that, by construction, the multiplier

ranges between 0 and 1. We estimate that its mean across quantities and villages is 0.707 for rice with a

standard deviation of 0.323; 0.789 for kidney beans with a standard deviation of 0.237; and 0.798 for sugar

with a standard deviation of 0.218. For each good, the multiplier varies substantially across quantities and is

smaller than one for most of them: the 25th, 50th, and 75th percentiles in the distribution of the estimated

γ(θ(q)) across quantities and villages are, respectively, 0.435, 0.868, and 0.998 for rice; 0.603, 0.897, and

0.992 for kidney beans; and 0.641, 0.892, and 0.982 for sugar.

Figure 2: Estimated Multipliers on Participation (or Budget) Constraints
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As discussed, the shape of the multiplier function distinguishes different instances of our model. Note

that the multiplier is estimated to be constant only in a handful of villages. Based on tests of the individual

and joint significance of the parameters of γ(θ(q)), we reject the hypothesis that the standard model applies,

that is, γ(θ(q))=1 at all q, except for one village for kidney beans.34 For an intuition about why villages do

not conform to the standard model, recall that the seller’s first-order condition can be expressed as in (17).

For the multiplier to be constant, the term in brackets should replicate the variability of G(q), since x(q) is

positive and estimated to be roughly constant over the quantities that most households buy. Thus, p(q) and

G(q) should be approximately inversely related. Indeed, as Figure 1 shows, the unit price schedule p(q) of

each good starts on average at a high value and is approximately decreasing, whereas G(q) starts at a low

value and is increasing. But an important departure from an inverse relationship between p(q) and G(q) is

that whereas the curvature of p(q) tends to be most pronounced at small quantities, that of G(q) is most

pronounced at intermediate quantities. This difference in the shapes of p(q) and G(q) is accommodated by

γ(θ(q)) varying across quantities.

33In some villages, although log(θ(q)) is estimated, θ(q) is recorded as missing when its value is exceedingly large, so f(θ) is
not estimated at any such support point.

34We also perform significance tests of the estimated value of the multiplier function γ(θ(q)) in each village for each good so
as to determine whether the multiplier significantly differs across quantities. We then construct the predicted multiplier for each
quantity accordingly. Note that if no parameter of γvj(·) is significant, then the multiplier equals 0.5 at all quantities.
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Estimates of Type Distribution and Marginal Utility. In the top panels of Figure 3, we report the es-

timates of base marginal utility, ν ′(q), and in the bottom panels of the figure, we report the estimates of

marginal utility, θ(q)ν ′(q), for each quantity purchased in each village by good. Note that ν ′(q) decreases

with quantity in all villages, as consistent with the model, although no such monotonicity restriction has been

imposed in estimation. In nearly all villages, instead, consumers’ estimated marginal willingness to pay θ(q)

increases with quantity, as consistent with the incentive compatibility condition of our model, and rapidly so

at large quantities. Indeed, the estimated support of consumer types for each good is much wider than that

of quantities, as evident from the distribution of (log) consumer types in Table II. Overall, marginal util-

ity θ(q)ν ′(q) decreases with q, although less fast than base marginal utility given that consumers’ marginal

willingness to pay increases with quantity.35

Figure 3: Estimated Base Marginal Utility (Top Panels) and Marginal Utility (Bottom Panels)
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The large curvature of marginal utility that we estimate suggests the potential for rich distributional

implications of nonlinear pricing. The reason is not only that consumers markedly differ in their tastes and

so in their marginal willingness to pay for a good, but also that different quantities of a good are valued quite

differently by consumers of any given taste. We explore these implications of nonlinear pricing in Section

5.3, where we link the scope for price discrimination, as captured by consumers’ tastes and marginal utility,

to the type of price discrimination that we infer sellers practice in our villages.

Model Fit. By a seller’s first-order condition in (9), a key implication of our model is that the shape of

the price schedule in a village is determined by the cumulative distribution function of consumers’ marginal

willingness to pay F (θ), which satisfies F (θ) = G(q) for q = q(θ), the associated support [θ, θ] and proba-

35The estimated reverse hazard rate f(θ)/F (θ) and hazard rate f(θ)/[1 − F (θ)] of the distribution of types in each village for
each good are mostly monotone with θ, respectively, weakly decreasing and weakly increasing, which is a sufficient condition for
(PS); see the Supplementary Appendix for details. As neither of these restrictions has been imposed in estimation, we interpret
these findings as validating our estimates of the type distribution.
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Table II: Distribution of Log Consumer Types

Percentiles of Log Consumer Types
10% 20% 30% 40% 50% 60% 70% 80% 90%

Rice 0.6 2.0 3.0 4.9 7.2 11.3 23.1 42.3 104.5
Kidney Beans 0.4 0.6 1.0 1.7 2.7 4.4 7.5 15.3 52.4
Sugar 0.2 0.3 0.5 0.8 1.2 2.1 4.3 11.6 24.4

bility density function f(θ), the multiplier γ(θ(q)) on consumers’ participation (or budget) constraints, and

marginal cost c′(Q). Although the distribution of marginal willingness to pay, the multiplier, and marginal

cost are all unobserved, they are directly related to the observed distributions of quantities purchased and

their unit prices by (17). Thus, one way to assess the fit of the model to the data is to determine the extent

to which our estimates of c′(Q), the auxiliary function x(q), and γ(θ(q)) satisfy the relationship between

the observed distribution of quantities G(q) and unit prices p(q) implied by (17). To this purpose, for each

good we plot in Figure 4 the estimated value of G(q)−γ(θ(q)) on the y-axis against the estimated markup

measure 1/[t1p(q)]−1/c′(Q) weighted by the auxiliary function x(q), or weighted markup for brevity, on the

x-axis. A circle in any plot represents the fit of the model to the data for a particular purchased quantity in a

village—the size of a circle reflects the fraction of households purchasing the quantity considered. Then, by

(17), the closer the relationship between G(q)−γ(θ(q)) and the weighted markup to the 45-degree line, the

better the fit of the model to the data. Figure 4 shows that the model fits the price and quantity data well. For

instance, the R2 of a linear regression of G(q)−γ(θ(q)) on the weighted markup is 0.927, 0.951, and 0.957,

respectively, for rice, kidney beans, and sugar.

5.3 Distributional Implications of Nonlinear Pricing

Here we first evaluate the degree of inefficiency of observed nonlinear pricing and then assess its desirabil-

ity by analyzing a counterfactual scenario in which sellers are prevented from discriminating and so price

linearly.36

5.3.1 Distortions Associated with Price Discrimination

As discussed, our model is consistent with different degrees of market power among sellers. Sellers’ market

power not only can distort the allocation of a good relative to the first best, thereby reducing the gains from

trade, but also can affect the distribution of these gains between consumers and sellers through its effect

on consumption. For instance, in the extreme case in which a seller could charge personalized prices and

perfectly price discriminate, the resulting allocation would be efficient. The seller, however, would obtain

all surplus. Alternatively, a seller could practice less efficient forms of price discrimination of the second-

or third-degree type, leading to allocations that do not maximize social surplus but in which a larger surplus

share accrues to consumers with levels of consumption below or above the first best.

As apparent from Figure 2, participation (or budget) constraints bind for several households, as the mul-

36To reduce the impact of extreme observations, we exclude from this analysis of each good villages in which consumer types
are estimated to be implausible large, namely, in which the first quartile of the distribution of households’ marginal willingness to
pay exceeds one million, winsorize the top 10% of the distribution of consumer types in each village, and focus on the resulting
villages with at least two distinct quantities purchased.
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tiplier tends to increase with the quantity purchased of each good. Thus, utility from the consumption of the

three goods equals the value of the outside option for a number of households. Given households’ estimated

utility, here we examine the size of the distortions induced by sellers’ market power, as implied by our es-

timates, through two measures: i) the percentage difference between the estimated multiplier γ(θ(q)) and

the cumulative distribution function of quantities purchased G(q), since this difference would be zero under

the first best by (9) and (17), and ii) the fraction of households who purchase quantities larger than under

the first best, namely, with γ(θ(q)) > G(q).37 In the first five columns of Table III, we report the average

percentage deviation of γ(θ(q)) from G(q) in absolute value across villages (“Social Surplus Distortion”) by

good for selected percentiles in the distribution of consumer types in each village, namely, for households

with types below the 5th percentile in the distribution of types in each village (first column), between the 5th

and the 25th percentiles (second column), between the 25th and the 50th (third column), between the 50th

and the 75th (fourth column), and above the 75th (fifth column). In the remaining five columns, we report the

percentage of households across villages who consume above the first best (“Overconsumption”) by good

for the same percentiles in the distribution of types.

Table III: Nonlinear Pricing vs. Perfectly Competitive Pricing by Percentile Ranges of Consumer Types

Social Surplus Distortion Overconsumption
5% 25% 50% 75% 100% 5% 25% 50% 75% 100%

Rice 136.7 123.3 62.6 39.6 17.2 1.4 2.9 6.1 29.6 87.3
Kidney Beans 168.4 120.5 51.6 22.6 9.1 0.0 2.2 9.4 12.5 69.6
Sugar 148.7 79.9 39.9 26.8 6.4 2.9 2.2 7.8 17.6 91.2

As apparent from the first five columns of Table III, the distortions associated with nonlinear pricing are

larger for households who consume low to intermediate quantities in each village, that is, with lower types.

Households who consume larger quantities suffer much smaller distortions. As evident from the last five

columns of the table, the consumption of households with low to intermediate types is also most compressed

relative to the first best. Perhaps surprisingly, though, a small fraction of consumers with types below the

median consume quantities above the first best. A much larger fraction of consumers with intermediate to

large types consume above the first best, especially those with the greatest taste for a good who purchase the

largest quantities. Hence, overall sellers practice an inefficient form of price discrimination, which, however,

leads several households to overconsume rather than, as often suggested, underconsume.

5.3.2 Nonlinear versus Linear Pricing

It has been argued that the ability of sellers to price discriminate through quantity discounts hurts poor con-

sumers. In particular, quantity discounts may limit the access of the poorest households to basic goods and

services, as these households tend to purchase the smallest quantities and so face the highest unit prices (see

Attanasio and Frayne (2006) for references). Based on our estimates, we can examine which households

benefit more from the price discrimination we observe by comparing each household’s consumer surplus

37We interpret the first best as a scenario in which free entry in a market is possible, so sellers price at cost. We compute the
percentage difference between x and x′ as the ratio of (x′ − x) to (x′ + x)/2.
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and level of consumption under observed nonlinear pricing and under the counterfactual scenario that would

emerge if sellers had market power but were constrained to price linearly—for instance, by regulation. Im-

portantly, this exercise entails comparing not only equilibrium prices and quantities under the two pricing

schemes but also the size of the market served under each: by Proposition 3, a seller who is prevented from

discriminating may end up excluding some consumers under linear pricing. We find this to be the case for

many villages in our sample.

Since this exercise requires considering quantities purchased outside of the observed range, we param-

eterize the estimated base marginal utility function in each village as a three-parameter HARA function,

ν ′(q) = a[aq/(1− d) + b]d−1 with a > 0 and aq/(1− d) + b > 0.38 To determine which households would

participate under linear pricing, we also need an estimate of consumers’ reservation utility. As discussed,

though, reservation utility is identified only for consumer types whose participation (or budget) constraints

bind. In the absence of a point estimate, we proceed as follows. We set the reservation utility of the lowest

type equal to this type’s estimated utility under nonlinear pricing if the multiplier on this type’s participation

(or budget) constraint is estimated to be significantly different from zero, which implies that the relevant con-

straint binds. We then specify any higher type’s reservation utility as equal to such type’s estimated utility, if

the multiplier on such type’s constraint significantly differs from that of the next-lower type, and equal to the

next-lower type’s estimated utility otherwise.39

Based on these marginal utility and reservation utility schedules, in the first five columns of Table IV, we

report the percentage of households across villages whose consumer surplus is higher under linear pricing

than under nonlinear pricing by good for five groups: households with types below the 5th percentile in the

distribution of consumer types in each village (first column), between the 5th and the 25th percentiles (second

column), between the 25th and the 50th (third column), between the 50th and the 75th (fourth column), and

above the 75th (fifth column). In the last five columns, we report the percentage of households across villages

who consume more under linear pricing that under nonlinear pricing by good for the same percentiles in the

distribution of consumer types.

Table IV: Linear Pricing (LP) vs. Nonlinear Pricing (NLP) by Percentile Ranges of Consumer Types

Consumer Surplus under LP vs. NLP Consumption under LP vs. NLP
5% 25% 50% 75% 100% 5% 25% 50% 75% 100%

Rice 79.6 88.2 81.1 87.8 96.4 46.9 51.5 46.3 65.8 89.1
Kidney Beans 30.1 23.7 26.6 23.2 54.7 17.9 3.7 3.6 3.6 49.1
Sugar 55.0 45.2 47.3 41.7 76.5 25.7 14.0 5.4 3.5 50.0

As the first five columns of the table show, except for rice, linear pricing leads to lower consumer surplus

for most households in the first three quartiles of the distribution of consumer types in each village. On the
38Specifically, we estimate the parameter d from a pooled regression of estimated base marginal utility on quantity. We estimate,

instead, a and b from analogous village-level regressions and focus on villages for which the corresponding adjusted R2 is at least
0.75. For this exercise, we interpret c′(Q) as the marginal cost of a cost function with zero fixed costs and constant marginal cost.

39Because of the sparseness of the data, if the multiplier on type θi’s constraint significantly differs from that on type θi−1’s
constraint, there exists at least one type between θi−1 and θi whose constraint binds. We interpret such type to be θi. In the
Supplementary Appendix, we consider the case in which the reservation utility is the maximal possible for each type, that is,
u(θi)=u(θi), and obtain similar results.
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contrary, households with the greatest taste for kidney beans and sugar tend to benefit from linear pricing.

As the last five columns of the table show, except for rice, the overwhelming majority of consumers in the

first three quartiles would also consume less under linear pricing. Results for rice are different from those

for kidney beans and sugar since the estimated base marginal utility for rice is smaller over the range of

quantities that most households buy, as apparent by comparing the bottom panels of Figure 1 and the top

panels of Figure 3. Intuitively, the lower ν ′(q), the lower A(q) since ν ′(q) = adA(q)1−d by the HARA

form assumed—we estimate that d < 1 for each good—and so the higher A(q)−1. In turn, a higher average

A(q)−1 implies a higher price elasticity of aggregate demand in absolute value under linear pricing, since this

elasticity can be expressed as

|εQP | =
Eθ[A(qm(θ))−1]

Eθ[qm(θ)]
=

1

1− d
+

b

aEθ[qm(θ)]

and thus increases with Eθ[A(qm(θ))−1] and, given that (the median) b is estimated to be small, with d; see

the Supplementary Appendix. In fact, the median price elasticity of aggregate demand under linear pricing

is largest for rice, whereas the median marginal cost is smallest for rice. Hence, unlike for kidney beans

and sugar, in the case of rice, sellers do not have an incentive to charge high prices in the hope of attracting

consumers with large valuations who are willing to pay more. Indeed, both the mean and the median linear

price across villages are lowest for rice. As a result, households are largely better off under linear pricing.

A key reason why consumer surplus is higher under nonlinear pricing for kidney beans and sugar is

the higher degree of market participation associated with nonlinear pricing. We measure this effect by the

percentage of households across villages who would not participate in the market under linear pricing. The

percentages of excluded households in the percentile ranges of Table IV are, respectively, 20.4%, 11.8%,

18.3%, 10.7%, and 0.9% for rice; 69.9%, 74.8%, 70.8%, 71.4%, and 18.0% for kidney beans; and 45.0%,

54.8%, 51.5%, 52.3%, and 9.6% for sugar. Thus, a large fraction of households purchasing kidney beans and

sugar in the first three quartiles of the distribution of consumer types in each village would be excluded under

linear pricing, whereas nearly all households participate under observed nonlinear pricing, as discussed in

Section 2. The logic behind this result is simple. In the case of kidney beans and sugar, the relatively low (in

absolute value) price elasticity of aggregate demand under linear pricing implies that high linear prices are

optimal for sellers, even if they lead consumers with low taste parameters to opt out of the market. Given the

much higher marginal willingness to pay of high types relative to low types reported in Table II, sellers more

than make up for excluding low types by charging high prices to the remaining ones.

5.4 The Effect of Income Transfers

In this subsection, we show that our model can account for a substantial fraction of the observed dispersion

in the unit prices of rice, kidney beans, and sugar across quantities both within and across villages, as well

as for the shift in the schedule of unit prices induced by Progresa, which we have documented in Table I.

Specifically, we first show that a reduced form of our model from a Taylor expansion of the seller’s first-order
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condition in (9), in which the slope of unit price schedules depends on the hazard rate of the distribution of

quantities purchased in each village, explains a large fraction of the variation in unit prices across quantities

and villages. We then show that once the dependence of unit prices on these hazard rates is explicitly ac-

counted for, the effect of the program on unit price schedules is no longer significant. Hence, our model is

sufficient to account for the impact of the program.

Recall from Proposition 4 that income transfers not only encourage greater consumption but also induce

sellers to modify their price schedules in response to consumers’ greater ability to pay, typically by charging

higher prices T (q) to some consumers. Indeed, it has been documented that food expenditure per adult equiv-

alent has increased by 13% among eligible households as a result of Progresa; see, for instance, Angelucci

and De Giorgi (2009). A small literature has also examined the effect of Progresa on the unit prices of agri-

cultural commodities. As mentioned, however, Hoddinott et al. (2000) and Angelucci and De Giorgi (2009)

found no evidence that the Progresa transfer has induced a systematic increase in the average unit prices

of basic staples. Unlike these studies that focus only on the impact of transfers on average unit prices, in

Section 2 we have examined the impact of Progresa on their entire schedule. In Table I, we have documented

that Progresa has had a significant effect on unit prices in that it has lead to an increase in the magnitude

of quantity discounts but that this effect cannot be detected without taking into account the nonlinearity of

unit prices, as consistent with our model. Indeed, our model implies that the effect of an income transfer

on unit prices, p(q) = T (q)/q, is ambiguous, since both households’ expenditure, T (q), and consumption,

q, tend to increase. Although average unit prices may not increase after a transfer, the price schedule can

nonetheless substantially change, as we proved in Corollary 1, leading overall to a greater intensity of price

discrimination, which we observe in our data. Here we show that our model can explain such a change in the

schedule of unit prices.

Transfers and Prices. We examine the impact of the Progresa transfer on prices based on a second-order

bivariate Taylor expansion in log(q) and [1−G(q)]/g(q) of a seller’s first-order condition in (9),

log[p(q)]≈β0+β1 log(q)+β2

[
1−G(q)

g(q)

]
+β3 log(q)

[
1−G(q)

g(q)

]
+β4 log(q)2+β5

[
1−G(q)

g(q)

]2
, (19)

derived at the end of Appendix A. In this expansion, the multiplier γ(θ(q)) is interpreted as a function of

quantity. This reduced form relates log (real) unit prices, log[p(q)], to log quantities, log(q), and the inverse

hazard rate of the distribution of quantities purchased, [1−G(q)]/g(q), in each village. This latter term

captures the importance of the shape of the distribution of consumers’ marginal willingness to pay for unit

prices. Intuitively, according to our model, unit prices are related to the distribution of consumer preferences,

in particular to its inverse hazard rate, which is apparent by rewriting the right side of (9) as the product of

1/θ and [γ(θ(q))−1+1−F (θ)]/f(θ). By the one-to-one relationship between consumer tastes and demand,

unit prices are then related to the hazard rate of the distribution of quantities purchased in a village, as (19)

shows.

In Table I, we have documented a significant shift in the price schedules of the three goods of interest
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Table V: Impact of Cash Transfers on Prices (98% Trimming)
Rice Unit Values Kidney Beans Unit Values Sugar Unit Values
1 2 1 2 1 2

Intercept 1.877∗∗∗ 1.876∗∗∗ 2.454∗∗∗ 2.456∗∗∗ 1.792∗∗∗ 1.787∗∗∗

(0.006) (0.008) (0.008) (0.011) (0.004) (0.006)
Treatment 0.001 -0.003 0.006

(0.009) (0.012) (0.006)
log(q) -0.140∗∗∗ -0.135∗∗∗ -0.222∗∗∗ -0.216∗∗∗ -0.197∗∗∗ -0.193∗∗∗

(0.009) (0.013) (0.015) (0.018) (0.010) (0.013)
1−G(q)
g(q)

-0.002 -0.002 -0.004∗∗∗ -0.004∗∗∗ 0.000 0.000
(0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

log(q)× 1−G(q)
g(q)

-0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.004∗∗∗ -0.004∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
log(q)× Treatment -0.006 -0.007 -0.005

(0.012) (0.012) (0.011)
log(q)2 0.118∗∗∗ 0.118∗∗∗ 0.082∗∗∗ 0.082∗∗∗ 0.107∗∗∗ 0.107∗∗∗

(0.009) (0.009) (0.012) (0.012) (0.009) (0.009)[
1−G(q)
g(q)

]2
-0.000 -0.000 0.000 0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R2 0.419 0.420 0.278 0.278 0.330 0.330
Observations 69,543 69,543 93,375 93,375 103,930 103,930

Note: ∗ for p < 0.10, ∗∗ for p < 0.05 and ∗∗∗ for p < 0.01. Clustered standard errors. Wave fixed effects included.

after the Progresa transfer. In Table V, we assess the extent to which our model can account for the observed

nonlinearity of prices as well as for the change in the unit price schedules resulting from Progresa. To this

purpose, we first estimate (19) and then a version of it augmented to incorporate the impact of the Progresa

transfer in each locality through a “Treatment” dummy and the interaction between this dummy and log

quantity. We stress that the inverse hazard rate of quantities [1−G(q)]/g(q) in both regressions is computed

for each locality. This approach thus allows for heterogeneous impacts of the program across localities and

could be interpreted as a mediation analysis of the effect of Progresa on price schedules, since the program

has affected the hazard rate of the distribution of quantities in treated localities. For instance, relative to

control localities, the inverse hazard rate [1 − G(q)]/g(q) in treated localities on average is 18.6% higher

for rice, 10.8% higher for kidney beans, and 17.6% higher for sugar for quantities in the top 25% of the

distribution of unit prices, namely, for quantities whose unit prices tend to be most nonlinear in quantity.

Intuitively, these changes in the inverse hazard rate of quantities are consistent with the significant effect

of the inverse hazard rate on the slope of price schedules in columns 1 and 2 of Table V, which we now

discuss.40

Columns 1 of Table V report the estimates of (19). Note that the effect of the interaction of log(q) with

the inverse hazard rate [1 − G(q)]/g(q) is significant for each of the three goods at the 1% level; for kidney

beans, the effect of the inverse hazard rate is also significant. The effect of the quadratic inverse hazard rate

is not significant for any good, whereas that of the quadratic term in log(q) is significant for all. Overall, this

40Standard errors are computed by bootstrap at the locality level using 10,000 replication samples to account for the fact that
hazard rates are estimated for each locality and wave. We could allow for locality fixed effects to capture the unobserved variability
in marginal costs across localities—since we have several waves of data, both wave fixed effects and locality fixed effects are
identified. The results we obtain by allowing for locality fixed effects are very similar to those in Table V. See the Supplementary
Appendix, where we also report analogous results for alternative stratification and clustering schemes.
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specification accounts for a large fraction of the dispersion in unit prices within and across villages.

In columns 2, we report the estimates of an augmented version of equation (19) that accounts for the Pro-

gresa transfer through the “Treatment” dummy and the interaction between this dummy and log(q). Impor-

tantly, we see that the “Treatment” dummy is not significant and does not significantly affect the dependence

of unit prices on log(q) either. In fact, the point estimates of the coefficient on log(q) interacted with the

“Treatment” dummy are greatly reduced in absolute value relative to the estimates reported in columns 3 of

Table I and are no longer significant for any good.

On the contrary, the interaction between log(q) and [1 − G(q)]/g(q) in columns 2 is estimated to be

significant for each good. Hence, this statistic is sufficient to account for the impact of the program on unit

prices in a precise sense: conditional on the interaction between log(q) and [1 − G(q)]/g(q), the interaction

between log(q) and “Treatment” no longer significantly affects price schedules. Specifically, the change in

unit prices induced by the program is accounted for by the change in the distribution of quantities purchased

in each village, in particular by a change in their curvature as captured by the inverse hazard [1−G(q)]/g(q).

These results indicate that our model is capable of explaining the shift in price schedules documented in

Table I.

The findings in Tables I and V support the key implication of our model that unit prices vary with quantity

and that the relationship between unit prices and quantity is affected not only by the distribution of consumer

tastes, and so quantities purchased, but also by the distribution of consumer income. Based on the results

in columns 2 of Table I, the Progresa transfer has not lead to a significant change in average unit prices

between control and treated localities. Unit prices, though, have changed substantially and differentially for

consumers of small and large quantities. For instance, the unit prices of quantities in the bottom 25% of

the distribution of quantities purchased across treated localities, paid by the households who purchase small

quantities, on average are 13.2% higher for rice, 24.3% higher for kidney beans, and 29.8% higher for sugar

than across control localities. On the contrary, the unit prices of quantities in the top 25% of the distribution

of quantities purchased across treated localities, paid by the households who purchase large quantities, on

average are 12.3% lower for rice, 12.1% lower for kidney beans, and 5.6% lower for sugar than across control

localities.41

Since all households in the villages receiving the Progresa transfer have been affected by these price

changes and in varying degrees depending on the quantities they purchase, the transfer has had an indirect

nonuniform price effect on noneligible households.42 In light of the increase in the intensity of price dis-

crimination that we document, then, the transfer overall may have had a more limited beneficial impact than

commonly inferred.

41We have also estimated quantile treatment effects of the program on log unit prices and found significant changes between
treated and control localities in line with the patterns discussed here. Results are similar when real expenditures and quantities are
trimmed at the top 1% or 5% rather than at the top 2% as in Table V. See the Supplementary Appendix for details.

42This argument, though, neglects the positive spillovers on noneligible households found by Angelucci and De Giorgi (2009).
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6 Conclusion
We propose a model of nonlinear pricing in which consumers differ in their tastes for goods, face heteroge-

neous subsistence constraints leading to heterogeneous budget constraints for a seller’s good, and have access

to different outside options to participating in a market. Incorporating budget constraints is an important ad-

vancement in the literature, since it makes the model relevant for several contexts of practical relevance in

developing countries. In the settings we consider, the distributional effects of nonlinear pricing across con-

sumers are fundamentally different from those arising from standard models of nonlinear pricing, in which

consumers are assumed to be unconstrained in their purchase decisions and outside options are presumed to

be identical across consumers. In particular, in the model we propose, quantity discounts for large volumes

can be associated with consumption above the first best at low volumes.

We prove that the model is identified under common assumptions from information on prices and quan-

tities purchased in a market. We derive estimators of the model’s primitives that can readily be implemented

using a variety of publicly available datasets. We use the public data from the evaluation of a large and

celebrated conditional cash transfer program, Progresa, to estimate our model, which fits the data well. Our

empirical results have important implications for the relative desirability of nonlinear and linear pricing. We

estimate that many consumers of small to intermediate quantities, typically the poorest ones, benefit from

nonlinear pricing, even though sellers price discriminate through distortionary quantity discounts. Specifi-

cally, we find that nonlinear pricing tends to lead to a greater degree of market participation, especially for

consumers of small to intermediate quantities, which is all the more critical for the marginalized villages in

our data in which the consumption of several households is at subsistence levels.

Crucially, we show that by increasing consumers’ ability to pay, cash transfers provide sellers with the

incentive to extract more surplus from consumers through nonlinear pricing. As a result, cash transfers can

lead to an increase in the intensity of price discrimination, as we document in the case of Progresa. A few

studies have analyzed the effect of transfers on the price of commodities, and the consensus so far seems

to be that Progresa did not have appreciable effects on local unit prices. We estimate, instead, that the cash

transfers implemented by Progresa have had a significant impact on unit prices in our villages by inducing a

shift in price schedules. We also show that our model can explain not only a large fraction of the dispersion

in unit prices within and across villages but also the observed shift in price schedules. Namely, although

the program has not affected unit prices on average, we document that the price effect of the program is

substantial, once the dependence of unit prices on quantity is taken into account. In particular, the program

is associated with an increase in the degree of price discrimination, which our model accounts for.

Our paper is one of the first to uncover changes in price schedules in villages included in the Progresa

evaluation sample. This result is all the more relevant since cash transfers have become an increasingly

popular poverty alleviation measure in Latin America and many other developing countries. Our estimation

results thus suggest the importance of accounting not only for heterogeneity in consumers’ preferences,

constraints, and consumption opportunities but also for the nonlinearity of prices when assessing the impact

of cash transfers.
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A Model: Omitted Proofs and Details
Proof of Proposition 1: Before proving Proposition 1, we first derive the simple BC problem in (6) and then establish
that the first-order and complementary slackness conditions of the simple BC problem are necessary and sufficient to
characterize an optimal menu. The proof of these results requires that assumptions analogous to (PS), (H), and (FP)
in the IR model hold in the BC model. We have discussed assumptions (BCH) and (FP) in the main text, so here we
discuss only assumption (PS). As in the IR model, the potential separation assumption in the BC model requires l(Φ, θ)
to be a weakly increasing function of θ for all Φ ∈ [0, 1]. In the IR model, sufficient conditions for (PS) are

∂

∂θ

(
sq(θ, q)

vθq(θ, q)

)
≥ 0 and

d

dθ

(
F (θ)

f(θ)

)
≥ 0 ≥ d

dθ

(
1− F (θ)

f(θ)

)
. (20)

As explained in Jullien (2000), the first inequality in (20) implies that the conflict between rent extraction and efficiency
is not too severe so that the marginal benefit of increasing the slope of the utility profile is weakly increasing with the
type. When this occurs, the monotonicity condition for q(θ) for incentive compatibility is easier to satisfy. The second
and third inequalities in (20) simply amount to a strengthening of the usual monotone hazard rate condition of nonlinear
pricing models.

To derive the simple BC problem in (6), we proceed in analogy with the derivation of the simple IR problem in the
Supplementary Appendix. First, we rewrite the BC constraint as

I(θ, q(θ)) ≥ t(θ) = v(θ, q(θ))− u(θ), (21)

since u(θ) = v(θ, q(θ))−t(θ) by definition. For the moment, we presume that u is low enough that the (IR’) constraints
can be dropped. We then show that the (IR’) constraints are always satisfied under the conditions of Proposition 1. The
BC problem can be expressed in Lagrangian-type form as

max
{u(θ)},{q(θ)}∈Q̂

(∫ θ

θ
[v(θ, q(θ))−c(q(θ))−u(θ)]f(θ)dθ +

∫ θ

θ
{I(θ, q(θ))−[v(θ, q(θ))−u(θ)]}dΦ(θ)

)
(22)

s.t. u′(θ) = vθ(θ, q(θ)), (23)

where Q̂ is the set of weakly increasing functions q(θ) and Φ(θ) is the cumulative multiplier on the budget constraint

expressed as in (21). Next, note that by adding and subtracting
∫ θ
θ u(θ)f(θ)dθ, we obtain

∫ θ

θ
u(θ)f(θ)dθ = u(θ)

∫ θ

θ
f(θ)dθ +

∫ θ

θ
[u(θ)− u(θ)]f(θ)dθ = u(θ) +

∫ θ

θ

(∫ θ

θ
u′(x)dx

)
f(θ)dθ.

Using the local incentive compatibility condition u′(θ) = vθ(θ, q(θ)) and integrating by parts thus gives

∫ θ

θ
u(θ)f(θ)dθ = u(θ) +

∫ θ

θ

(∫ θ

θ
vθ(x, q(x))dx

)
f(θ)dθ = u(θ) +

(∫ θ

θ
vθ(x, q(x))dx

)
F (θ)

∣∣∣∣θ
θ

−
∫ θ

θ
vθ(θ, q(θ))F (θ)dθ = u(θ) +

∫ θ

θ
vθ(θ, q(θ))dθ −

∫ θ

θ
vθ(θ, q(θ))F (θ)dθ. (24)

Similarly,

∫ θ

θ
u(θ)dΦ(θ) = u(θ)[Φ(θ)− Φ(θ)] +

(∫ θ

θ
vθ(x, q(x))dx

)
Φ(θ)

∣∣∣∣θ
θ

−
∫ θ

θ
vθ(θ, q(θ))Φ(θ)dθ = u(θ)[Φ(θ)− Φ(θ)] + Φ(θ)

∫ θ

θ
vθ(θ, q(θ))dθ −

∫ θ

θ
vθ(θ, q(θ))Φ(θ)dθ. (25)
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Substituting (24) and (25) into the objective function in (22) yields∫ θ

θ
[v(θ, q(θ))− c(q(θ))]f(θ)dθ +

∫ θ

θ
[I(θ, q(θ))− v(θ, q(θ))]dΦ(θ)− u(θ)−

∫ θ

θ
vθ(θ, q (θ))dθ

+

∫ θ

θ
F (θ)vθ(θ, q(θ))dθ + u(θ)[Φ(θ)− Φ(θ)] + Φ(θ)

∫ θ

θ
vθ(θ, q(θ))dθ −

∫ θ

θ
Φ(θ)vθ(θ, q(θ))dθ,

which, by collecting terms, can be simplified to further obtain∫ θ

θ
[v(θ, q(θ))− c(q(θ))]f(θ)dθ +

∫ θ

θ

[
F (θ)− Φ(θ) + Φ(θ)− 1

f(θ)

]
vθ(θ, q(θ))f(θ)dθ

+

∫ θ

θ

φ(θ)[I(θ, q(θ))− v(θ, q(θ))]

f(θ)
f(θ)dθ + u(θ)[Φ(θ)− Φ(θ)− 1]. (26)

By an argument similar to the one in the proof of Result 1 in the Supplementary Appendix, it is possible to show
that Φ(θ) = 1. Then, by collecting terms one more time and dropping irrelevant constants, it is immediate that the
expression in (26) reduces to the objective function in (6). The following result is the analogue of Result 4 in the
Supplementary Appendix.

Result 1. Under (PS), (BCH), and (FP), the implementable allocation {u(θ), q(θ)} solves the simple BC problem if,
and only if, there exists a cumulative multiplier function Φ(θ) on [θ, θ] such that the first-order conditions (7) and the
complementary slackness condition (8) are satisfied. Moreover, q(θ) is continuous.

We now turn to proving Proposition 1. Consider a solution to the IR problem. We claim that it is also a solution to
the BC problem. For notational simplicity, in the following we suppress the subscript IR from uIR(θ), qIR(θ), tIR(θ),
uIR(θ), and qIR(θ). To start, by Result 4 in the Supplementary Appendix, an implementable allocation {u(θ), q(θ)}
solves the IR problem if, and only if, there exists a cumulative multiplier function γ(θ) with the properties of a cumu-
lative distribution function such that the first-order conditions

vq(θ, q(θ))− c′(q(θ)) =

[
γ(θ)− F (θ)

f(θ)

]
vθq(θ, q(θ)) (27)

for each type and the complementary slackness condition∫ θ

θ
[u(θ)− u(θ)] dγ(θ) = 0 (28)

hold, together with u(θ) ≥ u(θ). By Result 4 in the Supplementary Appendix, the optimal allocation in the IR problem
is unique. By Result 1 above, the allocation that solves the IR problem solves the BC problem if, and only if, there
exists a cumulative multiplier function Φ(θ) such that the first-order conditions

vq(θ, q(θ))− c′(q(θ)) =

[
Φ(θ)− F (θ)

f(θ)

]
vθq(θ, q(θ)) +

φ(θ) [vq(θ, q(θ))− Iq(θ, q(θ))]
f(θ)

(29)

for each type and the complementary slackness condition∫ θ

θ
[I(θ, q(θ))− v(θ, q(θ)) + u(θ)] dΦ(θ) = 0 (30)

hold, together with t(θ) ≤ I(θ, q(θ)) and u(θ) ≥ u. Note that for Φ(θ) to be a legitimate cumulative multiplier, it must
be nonnegative and weakly increasing with θ. Let Φ(θ)=γ(θ) be the cumulative multiplier in the BC problem. Clearly,
Φ(θ)=γ(θ) is a legitimate cumulative multiplier and is such that the multiplier dγ(θ) on the IR constraint of type θ is
zero or strictly positive if, and only if, the multiplier dΦ(θ) on the BC constraint of type θ is zero or strictly positive.
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The rest of the proof proceeds in three steps. In the first step, we show that at the IR allocation, the complementary
slackness condition of the BC problem, (30), holds and the IR allocation satisfies t(θ) ≤ I(θ, q(θ)) and u(θ)≥u. In the
second step, we argue that the first-order conditions of the BC problem in (29) are identical to those of the IR problem
in (27). In the third step, we show that consumers reach the same utility in the two problems.

Step 1: Verify Complementary Slackness Condition of BC Problem, t(θ) ≤ I(θ, q(θ)), and u(θ)≥u. We first claim
that at the IR allocation, the complementary slackness condition of the BC problem, (30), holds and the IR allocation
satisfies t(θ) ≤ I(θ, q(θ)). To this purpose, recall that I(θ, q(θ)) ≥ v(θ, q(θ))−u(θ), I(θ, q(θ)) = v(θ, q(θ))−u(θ)
for types whose IR constraints bind, and u(θ) ≥ u by assumption. Note that when the IR constraints bind so that
dγ(θ) = dΦ(θ) > 0, then q(θ) = q(θ), u(θ) = v(θ, q(θ))− t(θ) = u(θ), and thus t(θ) = v(θ, q(θ))− u(θ). Since, by
assumption, v(θ, q(θ)) − u(θ) = I(θ, q(θ)) for types whose IR constraints bind, it follows that t(θ) = I(θ, q(θ)) for
such types. When, instead, the IR constraints do not bind so that dγ(θ) = dΦ(θ) = 0, then u(θ) = v(θ, q(θ))− t(θ) >
u(θ) and thus t(θ) < v(θ, q(θ)) − u(θ). Since, by assumption, v(θ, q(θ)) − u(θ) ≤ I(θ, q(θ)) for consumers whose
IR constraints do not bind, it follows that t(θ) < I(θ, q(θ)). Hence, if condition (28) holds for the IR problem, then
condition (30) holds for the BC problem. Also, t(θ) ≤ I(θ, q(θ)) is satisfied, and u(θ)≥u holds by (IR) and the fact
that u(θ)≥u by assumption.

Step 2: Verify First-Order Conditions of IR Problem Are Identical to Those of BC Problem. We now show that
given the cumulative multiplier Φ(θ), the quantity profile that solves the IR problem satisfies the first-order conditions
of the BC problem. Recall that Iq(θ, q(θ)) equals vq(θ, q(θ)) when the IR constraints bind by assumption. Thus, either
φ(θ)=0 or, if not, Iq(θ, q(θ))=vq(θ, q(θ)) for each θ. Hence, the second term on the right side of (29) equals zero for
each θ, and so the first-order conditions of the BC problem in (29) are identical to those of the IR problem in (27).

Step 3: Verify IR and BC Problems Imply Same Utility. The requirement that I(θ, q(θ)) = v(θ, q(θ)) − u(θ) for
types whose IR constraints bind in the IR problem ensures that the utility achieved by each consumer is identical in the
IR and BC problems. Specifically, consider a type θ′ whose IR constraint binds. Then, in the IR problem for any type
θ higher than θ′, we have

u(θ) = u(θ′) +

∫ θ

θ′
vθ(x, q(x))dx = v(θ′, q(θ′))− I(θ′, q(θ′)) +

∫ θ

θ′
vθ(x, q(x))dx, (31)

since u′(θ) = vθ(θ, q(θ)) by local incentive compatibility, and u(θ′) = u(θ′) = v(θ′, q(θ′))− I(θ′, q(θ′)) by assump-
tion. The utility in (31) equals the utility that the consumer achieves in the solution to the BC problem, given that
the BC constraints bind in the BC problem if, and only if, the IR constraints bind in the IR problem and the optimal
quantity profiles in the two problems coincide, as argued. An analogous argument holds for any type lower than θ′.
Hence, consumers’ utility schedules coincide in the two problems.

Thus, the solutions to the IR and BC problems are the same. This establishes the desired result.
The Two-Dimensional Case: Suppose that the parameter w differs across consumers so that the budget schedule is
I(θ, q, w) = Y (w)−z(θ, q). The analysis of this case differs from that of the case of constant w depending on whether
the seller can discriminate across consumers based on w (Case 1) or, rather, based only on a menu of prices at most
contingent on q (Case 2).
Case 1: Contractible Income Characteristic. Suppose that the seller can segment consumers across submarkets indexed
by w and offer nonlinear prices in each submarket w so as to screen consumers based on θ. For ease of exposition,
suppose that there are only two levels of w, say, wL and wH , with Y (wH) > Y (wL). In any such submarket w, the
seller’s problem is as stated in the BC problem with income Y (w) and budget schedule I(θ, q, w). For the corresponding
simple BC problem, the necessary and sufficient conditions for an optimal allocation are given by the analogue of
Result 1 under the same maintained assumptions: the implementable allocation {u(θ, w), q(θ, w)} solves the simple
BC problem in submarketw if, and only if, there exists a cumulative multiplier function Φ(θ, w) such that the first-order
conditions (29) and the complementary slackness condition (30) are satisfied with I(θ, q, w) = Y (w) − z(θ, q). Our
next result shows how this menu varies across submarkets. For this, let

t(θ, wH) = t(θ, wL) + Y (wH)− Y (wL), q(θ, wH) = q(θ, wL), and Φ(θ, wH) = Φ(θ, wL). (32)

Result 2. If {u(θ, wL), q(θ, wL)} with associated cumulative multipliers {Φ(θ, wL)} solves the simple BC problem in
submarket wL, then {u(θ, wH), q(θ, wH)} with associated cumulative multipliers {Φ(θ, wH)} satisfying (32) solves
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the simple BC problem in submarket wH .

This result states that type (θ, wH) in the submarket with the higher income level is offered the same quantity
as type (θ, wL) in the submarket with the lower income level, that is, q(θ, wH) = q(θ, wL). Moreover, the binding
patterns of the multipliers in the two submarkets are identical in that the cumulative multiplier is positive for type
(θ, wH) in submarket wH if, and only if, it is positive for type (θ, wL) in submarket wL. The only difference is
that type (θ, wH) in submarket wH pays Y (wH) − Y (wL) more for the same quantity purchased by type (θ, wL) in
submarket wL. The idea is straightforward. In the submarket with income Y (wL), a consumer with taste θ chooses
the menu pair (t(θ, wL), q(θ, wL)) leading to the consumption of z(θ, wL) = Y (wL)− t(θ, wL) units of the numeraire
good. The consumption bundle (q(θ, wL), z(θ, wL)) must jointly provide enough calories so that the consumer meets
the constraint z(θ, wL) ≥ z(θ, q(θ, wL)). Suppose that this constraint binds for a consumer with taste θ, that is,

z(θ, wL) = z(θ, q(θ, wL)) = Y (wL)− t(θ, wL). (33)

In submarket wH , at (t(θ, wL), q(θ, wL)) the budget constraint is slack for a consumer with taste θ since Y (wH) >
Y (wL). Clearly, in submarket wH , it is feasible for the seller to offer the same quantity as in submarket wL, that
is, q(θ, wH) = q(θ, wL), since q(θ, wL) is implementable in submarket wH too, and simply increase the price by
Y (wH)− Y (wL). In the proof of Result 2, we show that doing so is in general optimal for the seller.
Proof of Result 2: Let {u(θ, wL), q(θ, wL)} and the cumulative multipliers {Φ(θ, wL)} solve the simple BC problem in
submarket wL. By Result 1, we know that these schedules satisfy the first-order conditions (29) and the complementary
slackness condition (30) with t(θ), q(θ), Φ(θ), φ(θ), and I(θ, q(θ)) replaced by t(θ, wL), q(θ, wL), Φ(θ, wL), φ(θ, wL),
and I(θ, q(θ, wL), wL). It is immediate that the allocations and multipliers given in (32) satisfy the corresponding first-
order and complementary slackness conditions for submarket wH . To see why, note that since Iq(θ, q, w) = −zq(θ, q)
is independent of w, the first-order conditions in the two submarkets are identical under (32). Consider next the
complementary slackness condition. Since this condition holds in submarket wL, for any θ whose budget constraint for
the seller’s good binds and so φ(θ, wL) is positive, we have

t(θ, wL) = I(θ, q(θ, wL), wL) ≡ Y (wL)− z(θ, q(θ, wL)). (34)

But then the multiplier φ(θ, wH) in submarket wH for this same type θ is also positive under (32), since

t(θ, wH) = t(θ, wL) + Y (wH)− Y (wL) = Y (wH)− z(θ, q(θ, wL)) = Y (wH)− z(θ, q(θ, wH)),

where the first and third equalities follow from (32) and the second equality from (34). Hence, the conjectured solution
satisfies the first-order conditions and complementary slackness condition for submarket wH . So, by Result 1, the
conjectured allocation solves the simple BC problem for submarket wH .
Case 2: Noncontractible Income Characteristic. Suppose now that the seller cannot segment consumers across sub-
markets. That is, the seller must offer the same price schedule to all consumers regardless of their w (and θ). This
environment is equivalent to one in which the seller observes neither w nor θ. Assume that w and θ are sufficiently
positively dependent that w can be expressed as a monotone function of θ, namely, w = ω(θ) with ω′(θ) ≥ 0.43 Then,
substituting w = ω(θ) into I(θ, q, w) = Y (w)− z(θ, q) gives

I(θ, q, ω(θ)) = Y (ω(θ))− z(θ, q) (35)

for any q. Under (35), the analogues of Result 1 and Proposition 1 apply.
Proof of Proposition 2: Recall that T ′(q(θ)) = θν ′(q(θ))> 0 by local incentive compatibility, and note that A(q) =
−ν ′′(q)/ν ′(q) > 0 since ν ′(·) > 0 and ν ′′(·) < 0 by assumption. Differentiating T ′(q) = θ(q)ν ′(q) yields

T ′′(q) = θ′(q)ν ′(q) + θ(q)ν ′′(q) = θ(q)ν ′(q)

[
θ′(q)

θ(q)
+
ν ′′(q)

ν ′(q)

]
= T ′(q)

[
1

θ(q)q′(θ)
−A(q)

]
. (36)

43For our analytical results, it is sufficient that the budget schedule weakly increases with θ and q and that its cross partial
derivative with respect to θ and q is nonnegative.
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By using T ′(q)=θ(q)ν ′(q), the first-order condition in (9) can be expressed as {θ−[γ(θ)−F (θ)]/f(θ)}ν ′(q(θ))−c=0.
Applying the implicit function theorem to this latter condition, we obtain

q′(θ) = −
d
dθ

[
θ − γ(θ)−F (θ)

f(θ)

]
ν ′(q(θ))[

θ − γ(θ)−F (θ)
f(θ)

]
ν ′′(q(θ))

=

d
dθ

[
θ − γ(θ)−F (θ)

f(θ)

]
[
θ − γ(θ)−F (θ)

f(θ)

]
A(q(θ))

.

Note that θ> [γ(θ)− F (θ)]/f(θ) by the seller’s first-order condition since ν ′(·) > 0. Hence, the denominator of q′(θ)
is positive. Using (36) and the fact that T ′(q), A(q) > 0, we can equivalently express T ′′(q) ≤ 0 as

T ′(q(θ))A(q(θ))

 θ − γ(θ)−F (θ)
f(θ)

θ d
dθ

[
θ − γ(θ)−F (θ)

f(θ)

] − 1

 ≤ 0⇔
θ − γ(θ)−F (θ)

f(θ)

θ d
dθ

[
θ − γ(θ)−F (θ)

f(θ)

] ≤ 1. (37)

Consider first any interval of consumer types whose IR constraints bind. By construction, any such type θ purchases
q = q(θ) and achieves utility u(θ). Assumption (H) implies that u′(θ) = ν(q(θ)), which in turn yields that q′(θ) =
u′′(θ)/ν ′(q(θ)). Then, by (36)

T ′′(q(θ)) =
ν ′(q(θ))

q′(θ)
+ θν ′′(q(θ)) =

[ν ′(q(θ))]2

u′′(θ)
+ θν ′′(q(θ)) = ν ′(q(θ))

{
ν ′(q(θ))

u′′(θ)
− θA(q(θ))

}
.

Since ν ′(·)>0, it follows that T ′′(q(θ))≤0 if, and only if, ν ′(q(θ))≤θA(q(θ))u′′(θ), which holds by assumption.
Consider now any interval of consumer types whose IR constraints do not bind, in which case γ(θ) = γ for all such

types. When γ = 1, it follows that

q′(θ) =

d
dθ

[
θ − 1−F (θ)

f(θ)

]
[
θ − 1−F (θ)

f(θ)

]
A(q(θ))

≥ 1

θA(q(θ))
=

ν ′(q(θ))

−θν ′′(q(θ))
, (38)

where the inequality follows from the assumption that [1 − F (θ)]/f(θ) decreases with θ and the fact that θ > [1 −
F (θ)]/f(θ) ≥ 0. Condition (38) implies that 1/q′(θ) ≤ −θν ′′(q(θ))/ν ′(q(θ)), which combined with (36) yields that

T ′′(q(θ)) =
ν ′(q(θ))

q′(θ)
+ θν ′′(q(θ)) ≤ ν ′(q(θ))

[
−θν ′′(q(θ))
ν ′(q(θ))

]
+ θν ′′(q(θ)) = 0.

When, instead, γ ∈ [0, 1), the last inequality in (37) becomes

θf(θ)− γ + F (θ)

θf(θ)
≤ d

dθ

[
θ − γ

f(θ)
+
F (θ)

f(θ)

]
⇔ θf2(θ) ≥ −[γ − F (θ)]f(θ)− [γ − F (θ)]θf ′(θ). (39)

We prove that (39) holds by considering two further cases.
Case 1: γ ≥ F (θ). In this case, [γ − F (θ)]f(θ) ≥ 0 so that a sufficient condition for (39) is

f2(θ) ≥ −[γ − F (θ)]f ′(θ). (40)

If f ′(θ) ≥ 0, then it is immediate that (40) is satisfied. Suppose now that f ′(θ) < 0. Since

d

dθ

(
1− F (θ)

f(θ)

)
=
−f2(θ)− [1− F (θ)] f ′(θ)

f2(θ)
≤ 0⇔ f2(θ) ≥ − [1− F (θ)] f ′(θ)

by assumption and −[1 − F (θ)]f ′(θ) > −[γ − F (θ)]f ′(θ) with f ′(θ) < 0 and γ < 1, it follows that (40) and so (39)
are satisfied.
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Case 2: γ < F (θ). Note that we can rewrite (39) as

θf(θ) ≥ F (θ)− γ + [F (θ)− γ]θ
f ′(θ)

f(θ)
. (41)

When f ′(θ) ≤ 0, a sufficient condition for (41) is F (θ) ≤ θf(θ), which is assumed. Thus, (39) holds. When, instead,
f ′(θ) > 0, a sufficient condition for (41) is θf(θ) ≥ F (θ) + F (θ)θf ′(θ)/f(θ) or, equivalently,

f2(θ)− F (θ)f ′(θ) ≥ f(θ)

f(θ)

F (θ)f(θ)

θ
=
f2(θ)F (θ)

θf(θ)
⇔ d

dθ

(
F (θ)

f(θ)

)
=
f2(θ)− F (θ)f ′(θ)

f2(θ)
≥ F (θ)

θf(θ)
,

which holds by assumption. Hence, (39) is satisfied.
Proof of Proposition 3: We first establish the claim under 1) and then the claim under 2).

1) We divide the proof of this claim into two parts, Case a) and Case b). In both parts, we rely on the assumption
of full participation under nonlinear and linear pricing.

Case a). We start by showing that if the price schedule exhibits quantity discounts in that p′(q) ≤ 0 at q = q(θ)
and qm(θ) ≥ q(θ), then the utility of a consumer of type θ is higher under linear pricing than under nonlinear pricing,
that is, um(θ) ≥ u(θ). By contradiction, assume that p′(q) ≤ 0 at q = q(θ) and qm(θ) ≥ q(θ) but

u(θ) = θν(q(θ))− T (q(θ)) > um(θ) = θν(qm(θ))− θν ′(qm(θ))qm(θ), (42)

where in (42) we have used the fact that pm = θν ′(qm(θ)) under linear pricing by consumer optimality. Given that
qm(θ) maximizes the consumer’s utility under linear pricing, it follows that

θν(qm(θ))− θν ′(qm(θ))qm(θ) ≥ θν(q(θ))− θν ′(qm(θ))q(θ), (43)

since any quantity demanded that is different from qm(θ), including q(θ), implies a lower utility for the consumer at
the linear price pm. Note that (42) and (43) imply that θν(q(θ))− T (q(θ)) > θν(q(θ))− θν ′(qm(θ))q(θ), that is,

θν ′(qm(θ)) > T (q(θ))/q(θ) = p(q(θ)). (44)

Now, by the assumption of the case, p′(q) = [T ′(q)− T (q)/q]/q ≤ 0 at q = q(θ) or, equivalently,

T ′(q(θ)) ≤ T (q(θ))/q(θ). (45)

This inequality, together with (44) and the incentive compatibility condition T ′(q(θ)) = θν ′(q(θ)), implies

θν ′(q(θ)) = T ′(q(θ)) ≤ T (q(θ))/q(θ) < θν ′(qm(θ)), (46)

and so θν ′(qm(θ)) > θν ′(q(θ)), which is a contradiction since qm(θ) ≥ q(θ) by assumption and ν ′(·) is weakly
decreasing. Hence, um(θ) ≥ u(θ).

Case b). We now show that if the price schedule exhibits quantity discounts in that T ′′(q) ≤ 0 at all q = q(θ),
q(θ) > qm(θ), and γ(θ) < 1, then the utility of a consumer of type θ is higher under linear pricing than under nonlinear
pricing. Consider one such type, say, θ̂. By way of contradiction, suppose that u(θ̂) > um(θ̂). We will show that if this
is the case, then we contradict the assumption that all types participate under linear pricing by showing that there exists
a type θ2 > θ̂ whose participation constraint binds under nonlinear pricing, that is, u(θ2) = u(θ2), but is violated under
linear pricing, that is, um(θ2) < u(θ2), if the consumer purchases under linear pricing. Hence, type θ2 is excluded
under linear pricing.

Consider then a consumer of type θ2 > θ̂ with u(θ2) = u(θ2). Note that such a consumer exists if γ(θ̂) < 1. To
reach the desired contradiction, rewrite u(θ̂) > um(θ̂) as

u(θ2)− [u(θ2)− u(θ̂)] > um(θ2)− [um(θ2)− um(θ̂)], (47)
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which can equivalently be expressed as

u(θ2)−
∫ θ2

θ̂
u′(x)dx > um(θ2)−

∫ θ2

θ̂
u′m(x)dx. (48)

Condition (48), in turn, is equivalent to

u(θ2)− um(θ2) >

∫ θ2

θ̂
[ν(q(x))− ν(qm(x))] dx (49)

by using u(θ2) = u(θ2) since the IR constraint of type θ2 binds under nonlinear pricing by construction, by exploiting
incentive compatibility under nonlinear pricing and consumer optimality under linear pricing, namely, u′(θ) = ν(q(θ))
and u′m(θ) = ν(qm(θ)) for all types, and by rearranging terms. We now argue that the right side of (49) is nonnegative,
which establishes the desired contradiction. To see that the right side of (49) is nonnegative, note first that for all θ ≥ θ̂,

pm = θν ′(qm(θ)) = θ̂ν ′(qm(θ̂)) ≥ θ̂ν ′(q(θ̂)) = T ′(q(θ̂)) ≥ T ′(q(θ)) = θν ′(q(θ)), (50)

where the first two equalities follow from a consumer’s first-order condition under linear pricing, which, of course,
holds for each θ, the first inequality follows from q(θ̂) > qm(θ̂) by the assumption of the case and the fact that ν ′(·) is
weakly decreasing, the third and fourth equalities follow by local incentive compatibility under nonlinear pricing, and
the second inequality holds for any θ ≥ θ̂ since T ′′(q) ≤ 0 at all q = q(θ) by assumption and q(θ) ≥ q(θ̂) for θ ≥ θ̂.
Hence, (50) implies that θν ′(qm(θ)) ≥ θν ′(q(θ)) for all θ ≥ θ̂, and so q(θ) ≥ qm(θ) for all θ ≥ θ̂, given that ν ′(·) is
weakly decreasing. But q(θ) ≥ qm(θ) for all θ ≥ θ̂ and ν(·) increasing imply that the right side of (49) is nonnegative,
which, in turn, yields that u(θ2) > um(θ2). Then, θ2 does not participate under linear pricing, which is a contradiction.

2) Consider now the proof of the claim under 2). To start, note that s(θ, q(θ)) ≥ u(θ) for consumers with types
θ ∈ [θ′, θ′′] implies that the seller makes nonnegative profits from each such type under nonlinear pricing and these
types participate; see Lemma 2 in Jullien (2000), which states that under (H), (FP) holds if s(θ, q(θ)) ≥ u(θ) for all
types. Let θ̂ be one such type. To establish the desired claim, we need to show that there exists a subinterval of types in
[θ̂, θ′′] who do not participate under linear pricing although, as just argued, they participate under nonlinear pricing. To
this purpose, suppose, by way of contradiction, that all consumer types in [θ̂, θ′′] participate under linear pricing. We
prove that if this is the case, then the seller makes negative profits under linear pricing. First, observe that for any type
θ in [θ̂, θ′′] who participates under linear pricing, it must be um(θ) ≥ u(θ), which can be expanded as

um(θ) = um(θ̂) +

∫ θ

θ̂
u′m(x)dx = um(θ̂) +

∫ θ

θ̂
ν(qm(x))dx

≥ u(θ) = u(θ̂) +

∫ θ

θ̂
u′(x)dx = u(θ̂) +

∫ θ

θ̂
ν(q(x))dx, (51)

where the second equality in (51) uses the fact that u′m(θ) = ν(qm(θ)) by the consumer’s first-order condition
θν ′(qm(θ)) = pm under linear pricing, and the last equality uses assumption (H) in that u′(θ) = ν(q(θ)). Since
um(θ̂) = u(θ̂) by assumption, (51) implies∫ θ

θ̂
ν(qm(x))dx ≥

∫ θ

θ̂
ν(q(x))dx. (52)

With ν(·) positive and increasing, (52) implies that there exists a subinterval of [θ̂, θ] where θ ≤ θ′′ with positive
measure, say, [θ3, θ4], such that qm(θ) ≥ q(θ) for all θ ∈ [θ3, θ4]. Since q(θ) > qFB(θ) by assumption for consumers
with types in [θ′, θ′′] and qm(θ) ≥ q(θ) for all θ ∈ [θ3, θ4], it follows that qm(θ) > qFB(θ) for consumers with types in
[θ3, θ4]. Combining qm(θ) > qFB(θ) with the fact that ν ′(·) is decreasing gives

pm = θν ′(qm(θ)) < θν ′(qFB(θ)) = c (53)

for θ ∈ [θ3, θ4], where the first equality follows from the consumer’s first-order condition for qm(θ) and the second
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equality follows from the definition of the first-best quantity for type θ, qFB(θ). But the condition pm < c implied by
(53) contradicts seller optimality under linear pricing.
Proof of Proposition 4: Recall that {t(θ), q(θ)} denotes the optimal menu before the transfer is introduced with
associated reservation utilities {u(θ)} when consumers spend all of their budgets on the seller’s good to purchase the
incentive compatible quantities {q(θ)}. Denote by {tτ (θ), qτ (θ)} the optimal menu after the transfer is introduced with
associated reservation utilities {uτ (θ)} when consumers spend all of their budgets on the seller’s good to purchase the
incentive compatible quantities {qτ (θ)}. Before the transfer, for any consumer type whose BC constraint binds, the
budget for the seller’s good is I(θ, q(θ)) = Y − z(θ, q(θ)) and the price is t(θ) = I(θ, q(θ)) with

t
′
(θ) = Iθ(θ, q(θ)) + Iq(θ, q(θ))q

′(θ) = −zθ(θ, q(θ))− zq(θ, q(θ))q′(θ). (54)

After the transfer, for any consumer type whose BC constraint binds, the budget for the seller’s good is I(θ, qτ (θ), τ) =
Y + τ(θ)− z(θ, qτ (θ)), which can be expressed as

I(θ, qτ (θ), τ) = I(θ, qτ (θ)) + τ(θ), (55)

and the price is tτ (θ) = I(θ, qτ (θ), τ). This latter condition and (55) yield that

t
′
τ (θ) = Iθ(θ, qτ (θ)) + Iq(θ, qτ (θ))q′τ (θ) + τ ′(θ) = −zθ(θ, qτ (θ))− zq(θ, qτ (θ))q′τ (θ) + τ ′(θ). (56)

Recall that {qIR(θ)} denotes the reservation quantity profile in the IR model. By Proposition 1, qIR(θ) = q(θ) for
types with binding BC constraints in the BC model. Then, before the transfer, the condition θν ′(q(θ))q′(θ) = t

′
(θ) by

(BCH), (54), the requirement of Proposition 1 that θν ′(qIR(θ)) = Iq(θ, qIR(θ)), and the result that qIR(θ) = q(θ) for
types with binding BC constraints in the BC model imply that Iθ(θ, q(θ)) = 0. After the transfer, similarly, it must be
that Iθ(θ, qτ (θ)) + τ ′(θ) = 0. Hence, Iθ(θ, qτ (θ)) = −τ ′(θ) > 0 and so Iθ(θ, qτ (θ)) > Iθ(θ, q(θ)) for any consumer
type with transfer such that τ ′(θ) < 0. It follows that qτ (θ) > q(θ) for any such consumer type.

We now argue that there exists an interval of types with qτ (θ) ≥ q(θ) and T ′τ (qτ (θ)) ≤ T ′(q(θ)). By assumption,
there exists a consumer of type θ′ whose budget constraint binds before and after the transfer with qτ (θ′) = qτ (θ′) >
q(θ′) = q(θ′) by the argument in the previous paragraph. By local incentive compatibility, T ′τ (qτ (θ′)) = θ′ν ′(qτ (θ′)) <
θ′ν ′(q(θ′)) = T ′(q(θ′)) for such a consumer since ν ′′(·) < 0. By continuity, qτ (θ) > q(θ) for an interval of consumer
types containing θ′. Hence, again by incentive compatibility and the fact that ν ′′(·) < 0, T ′τ (qτ (θ)) = θν ′(qτ (θ)) <
θν ′(q(θ)) = T ′(q(θ)) for types in such an interval. Thus, there exists an interval of types that contains θ′ such that
qτ (θ) ≥ q(θ) and T ′τ (qτ (θ)) ≤ T ′(q(θ)) for all types in this interval with strict inequalities for at least some types.

Since, as shown, the transfer amounts to an expansion in consumers’ budgets for the seller’s good, the menu
{t(θ), q(θ)} is still implementable, so profits must weakly increase. Moreover, the quantities offered to at least an
interval of consumer types are larger, as just proved, and thus the cost of producing them is higher after the transfer.
Hence, the price schedule must weakly increase for each such type.
Proof of Corollary 1: By local incentive compatibility before and after the transfer, T ′(q) = θ(q)ν ′(q) and T ′τ (qτ ) =
θτ (qτ )ν ′(qτ ), where T (q) and Tτ (q) are, respectively, the price schedules before and after the transfer, q = q(θ), and
qτ =qτ (θ) with inverse functions θ(·) and θτ (·). Differentiating T ′τ (qτ )=θτ (qτ )ν ′(qτ ) and T ′(q)=θ(q)ν ′(q) gives

T ′′τ (qτ (θ)) =
ν ′(qτ (θ))

q′τ (θ)
+ θν ′′(qτ (θ)) and T ′′(q(θ)) =

ν ′(q(θ))

q′(θ)
+ θν ′′(q(θ)). (57)

Recall from (10) that F (θ) = G(q) for q = q(θ) and, similarly, F (θ) = Gτ (qτ ) for qτ = qτ (θ). Therefore, f(θ) =
gτ (qτ (θ))q′τ (θ) = g(q(θ))q′(θ), which yields that

1

q′τ (θ)
=
gτ (qτ )

f(θ)
≤ g(q)

f(θ)
=

1

q′(θ)
⇔ gτ (qτ ) ≤ g(q). (58)

Observe that (11) implies that gτ (qτ ) ≤ g(q) up to a certain percentile qmax in the distributions of quantities purchased
before and after the transfer, where qτ = G−1τ (t) and q = G−1(t) for t ∈ (Gτ (0), 1) by definition of qτ and q. Hence,
q′(θ) ≤ q′τ (θ) up to qmax by (58) or, equivalently, up to some type θmax such that tmax = G(q(θmax)) = Gτ (qτ (θmax)).
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The assumption that qτ (θ) ≥ q(θ) for θ ≤ θmax further implies that ν ′(qτ (θ)) ≤ ν ′(q(θ)) for θ ≤ θmax, since
ν ′′(·) ≤ 0. Furthermore, given that ν ′′′(·) ≤ 0 by assumption, ν ′′(qτ (θ)) ≤ ν ′′(q(θ)) for θ ≤ θmax. Thus, it is
immediate by (57) that T ′′τ (qτ (θ)) ≤ T ′′(q(θ)) for all percentiles in the distributions of quantities purchased before and
after the transfer up to qmax, which corresponds to the quantity q(θmax) before the transfer and the quantity qτ (θmax)
after the transfer.
Proof of Proposition 5: Rewrite the seller’s first-order condition in (9) as

1

T ′(q)
=

1

c′(Q)
+

[F (θ)− γ(θ)]

c′(Q)θf(θ)
=

1

c′(Q)
+

[G(q)− γ(θ(q))]θ′(q)

c′(Q)g(q)θ(q)
=

1

c′(Q)
+

[G(q)− γ(θ(q))]ϕ(q)

c′(Q)g(q)
(59)

with q = q(θ) and ϕ(q) ≡ d log(θ(q))/dq = θ′(q)/θ(q) or, equivalently,

g(q)

ϕ(q)

[
c′(Q)

T ′(q)
− 1

]
= G(q)− ψ(q), (60)

where ψ(q) ≡ γ(θ(q)). By taking derivatives of each side of (60), we obtain

d{g(q)c′(Q)/[ϕ(q)T ′(q)]}
dq

− d[g(q)/ϕ(q)]

dq
= g(q)− ψ′(q).

Integrating these expressions from q to q gives∫ q

q

d{g(x)c′(Q)/[ϕ(x)T ′(x)]}
dx

dx−
∫ q

q

d[g(x)/ϕ(x)]

dx
dx =

∫ q

q
g(x)dx−

∫ q

q
ψ′(x)dx = 0,

where the last equality follows from the fact that
∫ q
q g(x)dx =

∫ q
q ψ
′(x)dx = 1, so that

g(q)c′(Q)

ϕ(q)T ′(q)
−
g(q)c′(Q)

ϕ(q)T ′(q)
− g(q)

ϕ(q)
+
g(q)

ϕ(q)
= 0,

which implies

c′(Q) =

[
g(q)− g(q)

ϕ(q)

ϕ(q)

]
/

[
g(q)

T ′(q)
−

g(q)

T ′(q)

ϕ(q)

ϕ(q)

]
.

Since g(q) and T ′(q) are identified, it follows that c′(Q) is identified up to ϕ(q)/ϕ(q). The rest of the proposition is
proved in the main text.
Derivation of Reduced Form in (19): The seller’s first-order condition in (9) can be rewritten as

T ′(q)− c′(Q)

T ′(q)
=
γ(θ)− F (θ)

θf(θ)
=
θ′(q)

θ(q)

[
γ(θ(q))−G(q)

g(q)

]
⇔ c′(Q)

T ′(q)
= 1 +

θ′(q)

θ(q)

[
G(q)

g(q)
− γ(θ(q))

g(q)

]
,

by using F (θ) = G(q), f(θ) = g(q)q′(θ), and q′(θ) = 1/θ′(q). Further manipulating this expression and using the
fact that T ′(q)= t1p(q) by our specification for T (q) yield that

log

(
c′(Q)

T ′(q)

)
≈ θ′(q)

θ(q)

[
G(q)

g(q)
− γ(θ(q))

g(q)

]
⇔ log

(
p(q)
c′(Q)
t1

)
≈ θ′(q)

θ(q)

[
γ(θ(q))− 1

g(q)
+

1−G(q)

g(q)

]
,

which implies

log[p(q)] ≈ log

[
c′(Q)

t1

]
− θ′(q)

θ(q)

[
1− γ(θ(q))

g(q)

]
+
θ′(q)

θ(q)

[
1−G(q)

g(q)

]
. (61)
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Letting ψ(q) ≡ γ(θ(q)), (61) can be expressed as

log[p(q)] ≈ log

[
c′(Q)

t1

]
− θ′(elog(q))

θ(elog(q))

[
1− ψ(elog(q))

g(elog(q))

]
+
θ′(elog(q))

θ(elog(q))

[
1−G(q)

g(q)

]
. (62)

Hence, we can interpret the right side of (62) as a function of log(q) and [1 − G(q)]/g(q). A second-order Taylor
expansion of this function in a neighborhood of (log(q), [1−G(q)]/g(q)) = (a, b) gives

log[p(q)] ≈ f(a, b) + f1(a, b)[log(q)− a] + f2(a, b)

[
1−G(q)

g(q)
− b
]

+
1

2

{
f11(a, b)[log(q)− a]2 + 2f12(a, b)[log(q)− a]

[
1−G(q)

g(q)
− b
]

+ f22(a, b)

[
1−G(q)

g(q)
− b
]2}

,

and so

log[p(q)] ≈ f(a, b)− af1(a, b)− bf2(a, b) +
a2

2
f11(a, b) +

b2

2
f22(a, b) + abf12(a, b)︸ ︷︷ ︸

β0

+ [f1(a, b)− af11(a, b)− bf12(a, b)]︸ ︷︷ ︸
β1

log(q) + [f2(a, b)− af12(a, b)− bf22(a, b)]︸ ︷︷ ︸
β2

[
1−G(q)

g(q)

]

+ f12(a, b)︸ ︷︷ ︸
β3

log(q)

[
1−G(q)

g(q)

]
+

1

2
f11(a, b)︸ ︷︷ ︸
β4

log(q)2 +
1

2
f22(a, b)︸ ︷︷ ︸
β5

[
1−G(q)

g(q)

]2
,

which can equivalently be expressed as

log[p(q)] ≈ β0 + β1 log(q) + β2

[
1−G(q)

g(q)

]
+ β3 log(q)

[
1−G(q)

g(q)

]
+ β4 log(q)2 + β5

[
1−G(q)

g(q)

]2
.

B Appendix: Omitted Estimation Results
We present here estimation results omitted from the main text.

Marginal Cost Estimates. Figure 5 reports the estimated marginal cost at the total quantity provided of each good
in each estimated village (municipality). The mean of the estimated marginal cost across villages is 1.724 pesos for rice
with a standard deviation of 1.320; 2.396 pesos for kidney beans with a standard deviation of 2.348; and 2.552 pesos
for sugar with a standard deviation of 1.709. Hence, although estimated marginal cost varies across villages for each
good, its range and mean are similar across goods. Since the villages we study are fairly dispersed and isolated, some
variability in estimated marginal cost across villages is to be expected.

Figure 5: Estimated Marginal Cost
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Statistics on Estimates. The first three columns of Tables VI to VIII report the quartiles of the distributions of the
t-statistics of the estimates of c′(Q), γ(θ(q)), log(θ(q)), log(ν ′(q)), and f(θ) across quantities and villages for rice,
kidney beans, and sugar. These statistics are meant to illustrate the overall precision of these estimates. Since these
estimates vary across quantities in each village, the last three columns report the quartiles of the distribution across
villages of the median t-statistic of each of these estimates from each village. These statistics are meant to illustrate the
variability of the precision of these estimates across villages. As apparent from these tables, the model’s primitives as
well as the multiplier γ(θ(q)) are mostly significantly different from zero. Finally, omitting village and good subscripts,
Table IX reports the quartiles of the distributions across villages of the t-statistics of the estimates of the parameters of
equations (15), (16), and (17) from each village except for c′(Q), whose estimates are reported in Tables VI to VIII.
Recall that equations (15), (16), and (17) correspond, respectively, to the estimated specification for T (q),G(q), and the
seller’s first-order condition for each village and good. The parameters reported in Table IX are: i) (t0, t1) for equation
(15); ii) (φ0, φ1, φ2, φ3, φ4, φ5) for equation (16) depending on the chosen specification for Φ(q), namely, (φ0, φ1)
when Φ(q) is a polynomial of degree one, (φ0, φ1, φ2) when Φ(q) is a polynomial of degree two, (φ0, φ1, φ2, φ3) when
Φ(q) is a polynomial of degree three, or (φ0, φ4, φ5) when Φ(q) is the fractional polynomial Φ(q) = φ0 + φ4q

φ5 ; iii)
(χ

1
) or (χ

0
, χ

1
) for the auxiliary function x(q) in equation (17) depending on the chosen specification for x(q); and

iv) (γ0, γ1, γ2) for the index Γ(q) of the multiplier function in equation (17) depending on the chosen specification
for Γ(q), namely, (γ0, γ1, γ2), (γ1, γ2), (γ0, γ2), (γ0, γ1), only γ2, only γ1, or none, in which case Γ(q) = 1 and the
multiplier equals 0.5.44 As apparent from the table, these parameters are also for the most part significantly different
from zero. See the Supplementary Appendix for the confidence intervals of these estimated parameters.

Table VI: Distribution of t-statistics of Estimates for Rice

Overall Between-Village Quartiles of Village Median
p25 p50 p75 p25 p50 p75

c′(Q) 4.649 18.902 40.711 4.649 18.902 40.711
γ(θ(q)) 49.845 280.000 2321.956 83.446 314.776 1066.796
log(θ(q)) 1.687 4.241 12.226 2.385 4.706 12.350
log(ν′(q)) 1.085 3.026 9.073 1.707 3.637 7.817
f(θ) 4.114 10.579 16.008 7.500 10.368 14.405

Table VII: Distribution of t-statistics of Estimates for Kidney Beans

Overall Between-Village Quartiles of Village Median
p25 p50 p75 p25 p50 p75

c′(Q) 3.512 8.188 26.696 3.512 8.188 26.696
γ(θ(q)) 71.301 255.191 945.454 112.660 255.065 612.843
log(θ(q)) 1.158 3.835 8.643 1.867 4.550 8.781
log(ν′(q)) 0.664 2.597 10.226 1.084 3.420 8.464
f(θ) 4.330 10.548 17.428 8.790 11.299 17.035

Table VIII: Distribution of t-statistics of Estimates for Sugar

Overall Between-Village Quartiles of Village Median
p25 p50 p75 p25 p50 p75

c′(Q) 9.315 37.044 102.045 9.315 37.044 102.045
γ(θ(q)) 90.271 267.558 754.383 114.995 249.198 532.734
log(θ(q)) 2.416 5.824 12.896 3.286 7.118 13.931
log(ν′(q)) 1.427 5.323 22.199 2.353 8.163 20.584
f(θ) 5.667 11.619 18.337 8.840 12.361 17.607

44The parameter t1 is constrained so as to ensure that the estimated T (q) is an increasing and concave function of q whereas the
parameters of Φ(q) and Γ(q) are constrained so as to guarantee that both functions weakly increase with quantity. We also impose
an upper bound on c′(Q) consistent with a seller making nonnegative profits.
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Table IX: Distribution of t-statistics of Parameters by Good

Rice Kidney Beans Sugar
p25 p50 p75 p25 p50 p75 p25 p50 p75

t0 230.776 387.465 633.870 419.496 668.494 1203.940 488.846 812.356 1459.720
t1 1.798 4.017 7.829 10.711 25.837 46.734 24.227 40.628 68.174
φ0 14.884 30.924 52.712 2.199 3.755 6.112 3.662 7.533 12.846
φ1 13.273 30.277 52.464 0.397 1.503 3.502 1.221 3.031 20.417
φ2 4.759 15.067 34.319 1.221 1.709 2.677 1.706 2.839 3.802
φ3 0.943 4.525 19.341 13.920 13.920 13.920 35.639 35.639 35.639
φ4 12.631 26.762 45.275 1.991 3.116 4.545 7.015 9.717 15.506
φ5 8.477 17.251 35.139 6.000 13.116 20.780 29.268 40.037 62.714
χ
0

5.245 11.914 37.571 2.290 4.422 14.124 3.270 8.169 30.075
χ
1

2.784 8.973 37.825 4.606 8.923 29.260 6.206 14.297 38.293
γ0 13.815 32.662 106.822 6.216 15.209 41.150 6.615 19.618 70.537
γ1 7.431 19.279 1187.317 2.099 8.861 52.094 8.461 15.658 43.505
γ2 17.552 49.238 101.920 4.453 11.238 30.227 5.446 12.633 26.724
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