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Abstract

What is the optimal shape of the income tax schedule? This paper compares the optimal

(Mirrlees) tax and transfer policy to various simple parametric (Ramsey) alternatives. The

environment features distinct roles for public and private insurance. We explore a flexible

class of social welfare functions, one special case of which captures the taste for redistribution

reflected in the current tax system. Optimal marginal tax rates increase in income in our baseline

calibration to the United States, and the optimal tax schedule can be well approximated by a

simple two parameter function. We show that the shape of the optimal schedule is sensitive to

the amount of fiscal pressure the government faces to raise revenue. As fiscal pressure increases,

the optimal schedule becomes first flatter, and then U-shaped, reconciling various findings in

the literature.
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1 Introduction

In this paper we revisit a classic and important question in public finance: what structure of income

taxation maximizes the social benefits of redistribution while minimizing the social harm associated

with distorting the allocation of labor input?

A natural starting point for characterizing the optimal structure of taxation is the Mirrleesian

approach (Mirrlees 1971) which seeks to characterize the optimal tax system subject only to the con-

straint that taxes must be a function of individual earnings. Taxes cannot be explicitly conditioned

on individual productivity or individual labor input because these are assumed to be unobserved

by the tax authority. The Mirrleesian approach is attractive because it places no constraints on

the shape of the tax schedule, and because the implied allocations are constrained efficient.

The alternative Ramsey approach to tax design is to restrict the planner to choose a tax schedule

within a parametric class. Although there are no theoretical foundations for imposing ad hoc

restrictions on the design of the tax schedule, the practical advantage of doing so is that one can

then consider tax design in richer models. In this paper we systematically compare the fully optimal

non-parametric Mirrlees policy with two common parametric functional forms for the income tax

schedule, T, that maps income, y, into taxes net of transfers, T (y). The first is an affine tax:

T (y) = τ0 + τ1y, where τ0 is a lump-sum tax or transfer, and τ1 is a constant marginal tax rate.

Under this specification, a higher marginal tax rate τ1 translates into larger lump-sum transfers and

thus more redistribution. The second tax function is T (y) = y−λy1−τ . This specification rules out

lump-sum transfers, but for τ > 0 implies marginal tax rates that increase with income. Heathcote,

Storesletten, and Violante (2016) (henceforth HSV) show that this function closely approximates

the current U.S. tax and transfer system.

By comparing welfare in the two cases, we will learn whether in designing a tax system it is

more important to allow for lump-sum transfers (as in the affine case) or to allow for marginal tax

rates to increase with income (as in the HSV case). We will also be interested in whether either

affine or HSV tax systems come close to decentralizing constrained efficient allocations, or whether

a more flexible functional form is required.

Our paper adds to an extensive literature investigating the optimal shape of the tax and transfer

system. Many authors have argued for an affine “flat tax” system, with constant marginal tax rates
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and redistribution being achieved via universal transfers. For example, Friedman (1962) advocated

a “negative income tax,” which effectively combines a lump-sum transfer with a constant marginal

tax rate. Mirrlees (1971) found the optimal schedule to be close to linear, a finding that extends

to many other papers in the subsequent literature (see, e.g., Mankiw et al. 2009). In contrast,

others, and most notably Saez (2001), have argued that marginal tax rates should be U-shaped,

with higher rates at low and high incomes than in the middle of the income distribution.

In our baseline calibration we find that the optimal system features marginal tax rates that

are increasing across the entire income distribution, a pattern qualitatively similar to the system

currently in place in the United States. We develop intuition for this result, emphasizing the

idea that the shape of the optimal tax schedule is sensitive to the amount of fiscal pressure the

government faces to raise revenue. This fiscal pressure logic is not apparent in the functional

equation (Diamond 1998 and Saez 2001) that is the usual starting point for interpreting the optimal

tax schedule.

The basic idea is simple. Consider a planner deciding how marginal tax rates should vary with

income. Assuming a redistributive motive, it will be optimal to extract close to as much tax revenue

as possible from people at the top of the income distribution, so marginal rates there will always

tend to be high. If the government can largely raise as much money as it needs from taxing the

rich alone, marginal tax rates will tend to be low at the bottom of the income distribution, and

will therefore increase with income. If the government faces more fiscal pressure – either because

it must finance high government purchases or because it wants to make large lump-sum transfers

– then marginal rates will necessarily be higher at the bottom of the distribution. This implies a

marginal tax schedule that is either flat, U-shaped, or declining in income.

Our model environment is standard: agents differ with respect to productivity, and the govern-

ment chooses an income tax system to redistribute and to finance exogenous government purchases.

We extend the existing literature in two dimensions that are important for offering quantitative

guidance on the welfare-maximizing shape of the tax function. First, we assume that agents are

able to privately insure a share of idiosyncratic labor productivity risk and emphasize the role of

the tax system in addressing risks that are not privately insurable. Second, rather than focussing

exclusively on a utilitarian welfare criterion, we evaluate alternative tax systems using a wide range

of alternatives, including a social welfare function that is designed to be consistent with the amount
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of redistribution embedded in the U.S. tax code. We now discuss these two innovations in more

detail.

The existing literature mostly abstracts from private insurance, but for the purposes of pro-

viding concrete practical advice on tax system design it is important to appropriately specify the

relative roles of public and private insurance. Private insurance in the model operates as follows.

Idiosyncratic labor productivity has two orthogonal components: log(w) = α + ε. The first com-

ponent α cannot be privately insured and is unobservable by the planner – the standard Mirrlees

assumptions. The second component ε is also unobserved by the planner, but can be perfectly

privately insured by agents. What we have in mind is that agents face shocks that the tax author-

ity does not directly observe, but which agents can smooth in a variety of ways. One important

source of private insurance, which will be the focus of our exposition, is insurance within the family,

where it is reasonable to assume that family members have much better information about each

other’s productivity than does the tax authority. When agents can insure more risks privately, the

government has a smaller role in providing social insurance, and the optimal tax schedule is less

redistributive.

The shape of the optimal tax schedule in any social insurance problem is necessarily sensitive

to the social welfare function that the planner is assumed to be maximizing. We will consider a

class of social welfare functions in which the weight on an agent with uninsurable idiosyncratic

productivity component α takes the form exp(−θα). Here the parameter θ determines the taste

for redistribution. To facilitate comparison with the existing literature, we use the utilitarian case

(θ = 0) as our baseline, but we will also assess how robust our policy prescriptions are to alternative

values for θ. We will argue that the degree of progressivity built into the actual U.S. tax and

transfer system is informative about U.S. policymakers’ taste for redistribution. In particular, we

characterize in closed form the mapping between the taste for redistribution parameter θ in our

class of social welfare functions and the progressivity parameter τ that maximizes welfare within

the HSV class of tax / transfer systems. This mapping can be inverted to infer the U.S. taste

for redistribution θ∗ that would lead a planner to choose precisely the observed degree of tax

progressivity τ∗.

The form of the distribution of uninsurable risk is known to be critical for the shape of the

optimal tax function. In our calibration we are therefore careful to replicate observed dispersion
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in U.S. wages. Using cross-sectional data from the Survey of Consumer Finances, we show that

the empirical earnings distribution is very well approximated by an Exponentially-Modified Gaus-

sian (EMG) distribution. We estimate the corresponding parameters of the labor productivity

distribution by maximum likelihood. We then use external estimates and evidence on consumption

inequality to discipline the relative variances of the uninsurable and insurable components of wage

risk.

Our key findings are as follows. First, in our baseline model, the welfare gains of moving from

the current tax system to the tax system that decentralizes the Mirrlees solution are sizable. The

best policy in the HSV class is preferred to the best policy in the affine class, indicating that it

is more important that marginal tax rates increase with income than that the tax system allows

for lump-sum transfers. The best policy in the HSV class generates 84 percent of the maximum

possible welfare gains from tax reform.

Second, the potential for large welfare gains from tax reform is very sensitive to the assumed

taste for redistribution in the social welfare function. When we consider the case θ = θ∗ (the

“empirically motivated” social welfare function), the potential gains from tax reform shrink to

less than 0.1 percentage points of consumption, and moving to the best affine tax system is now

welfare-reducing by around 0.6 percentage points of consumption.

Third, counter-factually assuming away private insurance while retaining our baseline social

welfare function leads to a larger role for government redistribution and thus more progressive

taxation. In this case, an affine tax function is preferred to the best policy in the HSV class. Thus,

if we were to abstract from the existence of private insurance we would draw the wrong conclusions

about the shape of the optimal tax function.

Fourth, all these quantitative results can be illuminated by focussing on the amount of fiscal

pressure the government faces. Reducing the planner’s taste for redistribution or increasing private

insurance both reduce the pressure to raise revenue to finance lump-sum transfers, and therefore

imply a more upward-sloping optimal tax profile. In a sensitivity analysis, we show that larger re-

quired exogenous government purchases also translate into higher marginal tax rates at the bottom

of the income distribution, and a U-shaped profile similar to the ones reported by Saez (2001).

In an extension to our baseline model, we introduce a third component of idiosyncratic produc-

tivity, κ, which is privately uninsurable but observed by the planner. This component is designed

4



to capture differences in wages related to observable characteristics such as age and education. Be-

cause wages vary systematically by these characteristics, a constrained efficient tax system should

explicitly index taxes to these observables (see, e.g., Weinzierl 2011). In our model we assume that

κ is drawn before the agent can trade in financial markets and therefore cannot be insured privately.

We set the variance of this observable fixed effect to reflect the amount of wage dispersion that can

be accounted for by standard observables in a Mincer regression. We find that if the planner can

condition taxes on the observable component of labor productivity, it can generate large welfare

gains, in part because tagging translates into lower marginal rates on average.

Related Literature Seminal papers in the literature on taxation in the Mirrlees tradition include

Mirrlees (1971), Diamond (1998), and Saez (2001). More recent work has focused on extending

the approach to dynamic environments: Farhi and Werning (2013) and Golosov et al. (2016) are

perhaps the most important examples. Golosov and Tsyvinski (2015) offer a survey of the key

policy conclusions from this literature.

There are also many papers on tax design in the Ramsey tradition in economies with hetero-

geneity and incomplete private insurance markets. Recent examples include Conesa and Krueger

(2006), who explore the Gouveia and Strauss (1994) functional form for the tax schedule, and

Heathcote et al. (2016), who explore the function used by Feldstein (1969), Persson (1983), and

Benabou (2000). Our paper shares the goal of offering quantitative and practical guidance on tax

design, but also provides systematic comparisons to the optimal Mirrlees policy.

Our interest in constructing social welfare functions that are broadly consistent with observed

tax progressivity is related to Werning (2007). Werning’s goal is to characterize the Pareto efficiency

or inefficiency of any given tax schedule, given an underlying skill distribution. In contrast, our

focus will be on quantifying the extent of inefficiency in the current system, rather than on a

zero-one classification of efficiency.1

Recent papers by Bourguignon and Spadaro (2012), Brendon (2013), and Lockwood and Weinzierl

(2016) address the inverse of the optimal taxation problem, which is to characterize the profile for

social welfare weights that rationalize a particular observed tax system: given these weights, the

observed tax system is optimal by construction. Heathcote and Tsujiyama (2016) pursue the

1In our model environment, the distribution of productivity will be bounded above. It follows immediately that
the current tax system is not Pareto efficient, since it violates the zero-marginal-tax-at-the-top prescription.
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inverse-optimum approach in an environment similar to the present paper.

Our approach is similar to the inverse-optimum approach in that it uses the progressivity built

into the observed tax system to learn about the shape of the planner’s social welfare function.

In contrast to the inverse-optimum approach, however, our approach restricts the social welfare

function to a one parameter functional form which only allows for a simple tilt in social prefer-

ences toward (or against) relatively high productivity workers. We find this parametric assumption

attractive because it allows for a closed-form mapping between structural model parameters, in-

cluding the observed progressivity of the tax system, and the planner’s taste for redistribution. At

the same time, it is flexible enough to nest most of the standard social welfare functions used in

the literature. Restricting the social welfare function to belong to a simple parametric class rather

than solving for the non-parametric inverse optimum Pareto weights is analogous to restricting the

tax function to a simple parametric class (a la Ramsey) rather than solving for the fully optimal

non-parametric Mirrlees schedule. We see merit in both approaches, and hope that the simplicity

and flexibility of our approach will prove useful in future quantitative work on tax design.

Hendren (2014), Weinzierl (2014), and Saez and Stantcheva (2016) propose various interesting

ways to generalize inter-personal comparisons that allow one to go beyond an assessment of Pareto

efficiency, without insisting on a specific set of Pareto weights. For example, Saez and Stantcheva

(2016) advocate the use of generalized social marginal welfare weights, which represent the value

that society puts on providing an additional dollar of consumption to any given individual. One

advantage of our approach, which uses fixed Pareto weights that are specified ex ante, is that we can

evaluate alternative functional forms for taxes that correspond to large differences in equilibrium

allocations, in addition to local perturbations around a given tax system.

Chetty and Saez (2010) is one of the few papers to explore the interaction between public and

private insurance in environments with private information. They consider a range of alternative

environments, in most of which agents face a single idiosyncratic shock that can be insured privately

or publicly. Section III of their paper explores a more similar environment to ours, in which there

are two components of productivity and differential roles for public versus private insurance with

respect to the two components. Like us, they conclude that the government should focus on

insuring the source of risk that cannot be insured privately. Relative to Chetty and Saez (2010),

our contributions are twofold: (i) we consider optimal Mirrleesian tax policy in addition to affine
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tax systems, and (ii) our analysis is more quantitative in nature.

2 Environment

Labor Productivity There is a unit mass of agents. Agents differ only with respect to labor

productivity w, which has two orthogonal components: logw = α + ε. These two idiosyncratic

components differ with respect to whether or not they can be observed and insured privately.

The first component α ∈ A ⊂ R represents shocks that cannot be insured privately. The second

component ε ∈ E ⊂ R represents shocks that can be privately observed and perfectly privately

insured. Neither α nor ε is observed by the tax authority. A natural motivation for the informational

advantage of the private sector relative to the government with respect to ε shocks is that these are

shocks that can be observed and pooled within a family (or other risk-sharing group), whereas the

α shocks are shared by all members of the family but differ across families. In Appendix A.1, we

consider an alternative model for insurance in which there is no family and individual agents buy

insurance against ε on decentralized financial markets. For the purposes of optimal tax design, the

details of how private insurance is delivered do not matter as long as the set of risks that is privately

insurable remains independent of the choice of tax system, which is our maintained assumption.

We let the vector (α, ε) denote an individual’s type and Fα and Fε denote the distributions for

the two components. We assume Fα and Fε are differentiable.

In the simplest description of the model environment, the world is static, and each agent draws α

and ε only once. However, it will become clear that there is an isomorphic dynamic interpretation in

which agents draw new values for the insurable shock ε in each period. In that case, the differential

insurance assumption could be reinterpreted as assuming that α represents fixed effects that are

drawn before agents enter the economy, whereas ε captures life-cycle productivity shocks against

which agents can purchase insurance.2 A more challenging extension to the framework would be to

allow for persistent shocks to the unobservable noninsurable component of productivity α. However,

Heathcote et al. (2014) estimate that life-cycle uninsurable shocks account for only 17 percent of

the observed cross-sectional variance of log wages.

2Although explicit insurance against life-cycle shocks may not exist, households can almost perfectly smooth
transitory shocks to income by borrowing and lending.
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Preferences Agents have identical preferences over consumption, c, and work effort, h. The

utility function is separable between consumption and work effort and takes the form

u(c, h) =
c1−γ

1− γ −
h1+σ

1 + σ
,

where γ > 0 and σ > 0. Given this functional form, the Frisch elasticity of labor supply is 1/σ. We

denote by c(α, ε) and h(α, ε) consumption and hours worked for an individual of type (α, ε).

Technology Aggregate output in the economy is simply aggregate effective labor supply

Y =

∫ ∫
exp(α+ ε)h(α, ε)dFα(α)dFε(ε).

Aggregate output is divided between private consumption and a publicly provided good G that

is nonvalued:

Y =

∫ ∫
c(α, ε)dFα(α)dFε(ε) +G.

The resource constraint of the economy is thus given by

∫ ∫
c(α, ε)dFα(α)dFε(ε) +G =

∫ ∫
exp(α+ ε)h(α, ε)dFα(α)dFε(ε). (1)

Insurance We imagine insurance against ε shocks as occurring via a family planner who dictates

hours worked and private within-family transfers for a continuum of agents who share a common

uninsurable component α and whose insurable shocks ε are distributed according to Fε. As will

become clear, by modeling private insurance as occurring within the family, it will be very clear

that there is no way for the government to monopolize all provision of insurance in the economy.

Government The planner / tax authority observes only end-of-period family income, which we

denote y(α) for a family of type α, where

y(α) =

∫
exp(α+ ε)h(α, ε)dFε(ε) for all α. (2)

The tax authority does not directly observe α or ε, does not observe individual wages or hours

worked, and does not observe the within-family transfers associated with within-family private
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insurance against ε.

Let T (·) denote the income tax schedule. Given that it observes income and taxes collected,

the authority also effectively observes family consumption, since

∫
c(α, ε)dFε(ε) = y(α)− T (y(α)) for all α. (3)

Family Head’s Problem The timing of events is as follows. The family first draws a single

α ∈ A. The family head then solves

max
{c(α,ε),h(α,ε)}

∫ {
c(α, ε)1−γ

1− γ − h(α, ε)1+σ

1 + σ

}
dFε(ε) (4)

subject to (2) and the family budget constraint (3). In Appendix A.2 we show that allowing the

planner to observe and tax income (after within-family transfers) at the individual level would not

change the solution to the family head’s problem. Thus, there would be no advantage to taxing at

the individual rather than the family level.

Equilibrium Given the income tax schedule T , a competitive equilibrium for this economy is a

set of decision rules {c, h} such that

1. The decision rules {c, h} solve the family’s maximization problem (4).

2. The resource feasibility constraint (1) is satisfied.

3. The government budget constraint is satisfied:

∫
T (y(α))dFα(α) = G. (5)

3 Planner’s Problems

The planner maximizes a social welfare function characterized by weights W (α) that potentially

vary with α.3

3We assume symmetric weights with respect to ε to focus on the government’s role in providing public insurance
against privately uninsurable differences in α. In addition, we will show that constrained efficient allocations cannot
be conditioned on ε.
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3.1 Ramsey Problem

The Ramsey planner chooses the optimal tax function in a given parametric class T . For example,

for the class of affine functions, T = {T : R+ → R|T (y) = τ0 + τ1y for y ∈ R+, τ0 ∈ R, τ1 ∈ R}.

The Ramsey problem is to maximize social welfare by choosing an income tax schedule in T

subject to allocations being a competitive equilibrium:

max
T∈T

∫
W (α)

∫
u(c(α, ε), h(α, ε))dFε(ε)dFα(α) (6)

subject to (1) and to c(α, ε) and h(α, ε) being solutions to the family maximization problem (4).

The first-order conditions (FOCs) to the family head’s problem are

c(α, ε) = c(α) = y(α)− T (y(α)), (7)

h(α, ε)σ = [y(α)− T (y(α))]−γ exp(α+ ε)
[
1− T ′(y(α))

]
. (8)

The first FOC indicates that the family head wants to equate consumption within the family.

The second indicates that the family equates – for each member – the marginal disutility of labor

supply to the marginal utility of consumption times individual productivity times one minus the

marginal tax rate on family income.

If the tax function satisfies

T ′′(y) > −γ [1− T ′(y)]2

y − T (y)
(9)

for all feasible y, then the second derivative of family welfare with respect to hours for any type

(α, ε) is strictly negative, and the first-order conditions (7) and (8) are therefore sufficient for

optimality.

We now offer a sharper characterization of the efficient allocation of labor supply within the

family for the tax functions in which we are particularly interested.

Affine Taxes Suppose taxes are an affine function of income, T (y) = τ0 + τ1y.
4 Then we have

4Note that in this case, condition (9) is satisfied because

T ′′(y) + γ
[1− T ′(y)]

2

y − T (y)
= γ

(1− τ1)2

y − T (y)
> 0.
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the following explicit solution for hours worked as a function of productivity exp(α+ ε) and family

income y(α):

h(α, ε) =
[
(y(a)(1− τ1)− τ0)−γ exp(α+ ε) (1− τ1)

] 1
σ .

HSV Taxes Suppose income taxes are in the HSV class, T (y) = y−λy1−τ .5 Then hours worked

are given by

h(α, ε) =
[
exp(α+ ε) (1− τ)λ1−γy(α)−(1−τ)γ−τ

] 1
σ
. (10)

3.2 Mirrlees Problem: Constrained Efficient Allocations

In the Mirrlees formulation of the program that determines constrained efficient allocations, we

envision the Mirrlees planner interacting with family heads for each α type, where each family con-

tains a continuum of members whose insurable component is distributed according to the common

density Fε. Thus, each family is effectively a single agent from the perspective of the planner.

The planner chooses both aggregate family consumption c(α) and income y(α) as functions of the

family type α. It is clear that, by choosing taxes, the tax authority can choose the difference be-

tween income and consumption. It is less obvious that the planner can also dictate income levels

as a function of type. To achieve this, the Mirrlees formulation of the planner’s problem includes

incentive constraints that guarantee that for each and every type α, a family of that type weakly

prefers to deliver to the planner the value for income y(α) the planner intends for that type, thereby

receiving c(α), rather than delivering any alternative level of income.

The timing within the period is as follows. Families first decide on a reporting strategy α̂ : A →

A. Each family draws α ∈ A and makes a report α̃ = α̂(α) ∈ A to the planner. In a second stage,

given the values for c(α̃) and y(α̃), the family head decides how to allocate consumption and labor

supply across family members.

Family Problem As a first step toward characterizing efficient allocations, we start with the

family problem in the second stage, taking as given a report α̃ = α̂(α) and a draw α. The family

5Then condition (9) becomes

T ′′(y) + γ
[1− T ′(y)]

2

y − T (y)
= λy(−τ−1) (1− τ) [τ + γ (1− τ)] > 0.

This is satisfied for any progressive tax, τ ∈ [0, 1), because τ +γ (1− τ) > 0. It is also satisfied for any regressive tax,
τ < 0, if γ ≥ 1, because γ ≥ 1 > −τ

1−τ . Therefore, for all relevant parameterizations, condition (9) is also satisfied for
this class of tax functions.
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head solves

U(α, α̃) ≡ max
{c(α,α̃,ε),h(α,α̃,ε)}

{
c(α, α̃, ε)1−γ

1− γ − h(α, α̃, ε)1+σ

1 + σ

}
dFε(ε),

subject to
∫
c(α, α̃, ε)dFε(ε) = c(α̃),∫
exp(α+ ε)h(α, α̃, ε)dFε(ε) = y(α̃).

The first-order conditions to this problem give

c(α, α̃, ε) = c(α̃),

h(α, α̃, ε) =
y(α̃)

exp(α)

exp(ε)
1
σ∫

exp
(

1+σ
σ ε
)
dFε(ε)

. (11)

Substituting in the allocations above, we get

U(α, α̃) =
c(α̃)1−γ

1− γ − Ω

1 + σ

(
y(α̃)

exp(α)

)1+σ

,

where Ω =

(∫
exp(ε)

1+σ
σ dFε(ε)

)−σ
.

First Stage Planner’s Problem The planner maximizes social welfare, evaluated according

to W (α), subject to the resource constraint, and subject to incentive constraints that ensure that

family utility from reporting α truthfully and receiving the associated allocation is weakly larger

than expected welfare from any alternative report and associated allocation:

max
{c(α),y(α)}

∫
W (α)U(α, α)dFα(α), (12)

subject to

∫
c(α)dFα(α) +G =

∫
y(α)dFα(α), (13)

U(α, α) ≥ U(α, α̃) for all α and α̃. (14)

Note that ε does not appear anywhere in this problem (the distribution Fε is buried in the

constant Ω). The problem is therefore identical to a standard static Mirrlees type problem, where

the planner faces a distribution of agents with heterogeneous unobserved productivity α.6 We will

solve this problem numerically.

6Note that the weight on hours in the agents’ utility function is now Ω rather than 1.
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Decentralization with Income Taxes We have formulated the Mirrlees problem with the

planner inviting families to report their unobservable characteristic α and then assigning the fam-

ily an allocation for income y(α̃) and consumption c(α̃) on the basis of the report α̃. But since the

planner is offering agents a choice between a menu of alternative pairs for income and consump-

tion, it is clear that an alternative way to think about what the planner does is that it offers a

mapping from any possible value for family income to family consumption. Such a schedule can

be decentralized via a tax schedule on family income y of the form T (y) that defines how rapidly

consumption grows with income.7

Suppose the family head maximizes family welfare, taking as given a tax on family income. We

have already discussed the first-order conditions to this problem, eqs. (7) and (8). Substituting the

expression for hours from eq. (11) into eq. (8) and letting c∗(α) and y∗(α) denote the values for

family consumption and income that solve the Mirrlees problem (12), we can recover how optimal

marginal tax rates vary with income:

1− T ′ (y∗(α)) =
Ω

c∗(α)−γ exp(α)

(
y∗(α)

exp(α)

)σ
. (15)

3.3 First Best

If the planner can observe α directly, the welfare maximization problem is identical to the one

described above, except that there are no incentive compatibility constraints (14). Formally, the

planner’s problem is to maximize (12) subject to (13).

4 Estimating Social Preferences

Absent knowledge of the government’s objective function, it is difficult to compare alternative

tax systems unless one Pareto dominates the other. As a baseline, we will compare alternative

tax systems assuming the planner is utilitarian, since this is the most common approach in the

literature. However, we will also be interested in comparing tax systems under alternative social

welfare functions that embed a stronger or weaker taste for redistribution.

7Note that some values for income might not feature in the menu offered by the Mirrlees planner. Those values
will not be chosen in the income tax decentralization if income at those values is heavily taxed.
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Throughout we will assume the social welfare function takes the form

W (α; θ) =
exp(−θα)∫

exp(−θα)dFα(α)
. (16)

Here the single parameter θ controls the extent to which the planner puts relatively more or less

weight on low relative to high productivity workers. With a negative θ, the planner puts relatively

high weight on the more productive agents, whereas with a positive θ the planner overweights the

less productive agents. One way to motivate an objective function of the form (16) is to appeal to

a positive political economic model of electoral competition.8

This one-parameter specification is flexible enough to nest several standard social preference

specifications that have been advocated in the literature. First, the case θ = 0 corresponds to

the baseline utilitarian case, with equal Pareto weights on all agents. Second, the case θ → ∞

corresponds to the maximal desire for redistribution. We label this the Rawlsian case, because in the

environments we will consider (with elastic labor supply and unobservable uninsurable productivity)

a planner with this objective function will seek to maximize the minimum level of welfare in the

economy.9 Third, the case θ = −1 corresponds to a laissez-faire planner. The logic is that given

preferences that are logarithmic in consumption (our baseline assumption), these planner weights

are the inverse of equilibrium marginal utility absent any taxation.10

Empirically Motivated Social Welfare Function In addition to these special cases just

described, there is one value for θ in which we will be especially interested, which is the value

for θ that rationalizes the extent of redistribution embedded in the actual U.S. tax and transfer

system. Heathcote et al. (2016) argue that the following income tax function closely approximates

8In the probabilistic voting model (see Persson and Tabellini 2000), two candidates for political office (who care only
about getting elected) offer platforms that appeal to voters with different preferences over tax policy and over some
orthogonal characteristic of the candidates. If the amount of preference dispersion over this orthogonal characteristic
is systematically declining in labor productivity, then by tilting their tax platforms in a less progressive direction,
candidates can expect to attract more marginal voters than they lose. Thus, in equilibrium, both candidates offer
tax policies that maximize a weighted social welfare function similar to eq. (16) with θ < 0, i.e., a function that puts
more weight on more productive (and more tax sensitive) households.

9With elastic labor supply and unobservable shocks, the rankings of productivity and welfare will always be
aligned. So maximizing minimum welfare is equivalent to maximizing welfare for the least productive household.
With inelastic labor supply or observable shocks, a planner with θ > 0 could and would deliver higher utility for low
α households relative to high α households, so in such cases it would be wrong to label the case θ →∞ Rawlsian.

10If the government needs to levy taxes to finance expenditure G > 0, then given θ = −1, a planner that could
observe α and apply α−specific lump-sum taxes would choose: (i) consumption proportional to productivity, c(α) ∝
exp(α), and (ii) hours worked independent of α.
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the actual U.S. tax and transfer system (see Section 5 for more details):

T (y) = y − λy1−τ . (17)

Thus, we adopt this specification as our baseline tax function. The marginal tax rate on individual

income is given by T ′(y) = 1 − λ(1 − τ)y−τ . For τ > 0, the tax system embeds the following

properties: (i) marginal tax rates are increasing in income, with T ′(y) → −∞ as y → 0, and

T ′(y) → 1 as y → ∞, (ii) taxes net of transfers are negative for y ∈
(

0, λ
1
τ

)
, and (iii) marginal

and average tax rates are related as follows: (1− T ′(y)) /
(

1− T (y)
y

)
= 1− τ for all y.

Because a higher value for τ corresponds to a higher ratio of marginal to average tax rates, τ

is a natural index of tax progressivity. We let τ∗ denote the degree of progressivity of the actual

U.S. tax and transfer system.

Now, consider a Ramsey problem of the form (6) where the planner uses a social welfare function

characterized by (16) and is restricted to choosing a tax-transfer policy within the parametric class

described by (17). Although in principle the planner chooses two tax parameters, λ and τ, it has

to respect the government budget constraint and therefore effectively has a single choice variable,

τ . Let τ̂(θ) denote the welfare-maximizing choice for τ given a social welfare function indexed

by θ. We define an empirically motivated social welfare function W (α; θ
∗
) as the special case of

the function defined in eq. (16) in which the taste for redistribution θ
∗

satisfies τ̂(θ
∗
) = τ

∗
. This

approach to estimating a social welfare function can be generalized to apply to alternative tax

function specifications.11

We find the welfare function W (α; θ
∗
) appealing for two related reasons. First, it offers a

positive theory of the observed tax system: given θ∗ a Ramsey planner restricted to the HSV

functional form would choose exactly the observed degree of tax progressivity τ∗. Second, given

θ = θ∗, any tax system that delivers higher welfare than the HSV function with τ = τ∗ must do so

by redistributing in a cleverer way; by virtue of how θ∗ is defined, simply increasing or reducing τ

within the HSV class cannot be welfare-improving. In this sense, the case θ = θ∗ emphasizes the

welfare gains from tax reform that have to do with changing the efficiency of the tax system.

11In particular, for any representation of the actual tax and transfer scheme T (y), one can always compute the
value for θ that maximizes the social welfare associated with W (α; θ), given the equilibrium allocations corresponding
to T (y).
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At the same time, assuming that the social welfare function is in the class described by eq.

(16) is an ad hoc restriction, and there likely exist alternative social welfare functions that make

the maximum potential welfare gains from tax reform (relative to the HSV function with τ = τ∗)

even smaller.12 Thus, the welfare gains from optimal tax reform that we will find assuming the

social welfare function is given by W (α; θ∗) offer only an upper bound estimate for the inefficiency

of the current HSV system. Still, this upper bound will turn out to be informative. Anticipating

some of our quantitative results, we will find that moving to the best fully nonlinear Mirrlees policy

generates very large welfare gains assuming θ = 0 (a utilitarian objective) but very small welfare

gains when θ = θ∗. The large gains in the former case simply reflect the fact that a utilitarian

planner prefers much more redistribution that the current tax and transfer system delivers, while

the small gain in the latter case indicates that the current tax system cannot be grossly inefficient.

A Closed-Form Link between Tax Progressivity and the Taste for Redistribution We

now describe the operational details of how we reverse engineer an empirically motivated θ
∗

given

the observed value for progressivity τ
∗
.

Our baseline calibration will assume that utility is logarithmic in consumption (γ = 1), that

Fα is Exponentially-Modified Gaussian, EMG(µα, σ
2
α, λα), and that Fε is Gaussian, N(−σ2

ε/2, σ
2
ε).

Given these functional form assumptions, we can use the government budget constraint (5) to solve

in closed form for λ for any possible values for τ and G.13 Given this expression for λ, we can

derive a closed-form expression for social welfare for any possible taste for redistribution θ. This

expression offers an implicit closed-form mapping between τ and θ. We use this mapping to ask for

what value θ∗ the social-welfare-maximizing value for τ is equal to the value for progressivity τ∗

estimated from tax data.

Proposition 1 The social preference parameter θ
∗

consistent with the observed choice for progres-

sivity τ∗ is a solution to the following quadratic equation:

σ2
αθ
∗ − 1

λα + θ∗
= −σ2

α(1− τ)− 1

λα − 1 + τ
+

1

1 + σ

[
1

(1− g) (1− τ)
− 1

]
, (18)

12In Heathcote and Tsujiyama (2016) we characterize the (non-parametric) social welfare weights such that given
those weights the observed tax system is fully optimal.

13With logarithmic consumption, we can solve in closed form for λ as a function of G and other structural param-
eters. For γ > 1, we must solve for λ numerically.
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where g is the observed ratio of government purchases to output.

Proof. See Appendix A.3.

Equation (18) is novel and very useful. Given observed choices for g and τ, and estimates for the

uninsurable productivity distribution parameters σ2
α and λα and for the labor elasticity parameter

σ, we can immediately infer θ∗. This is especially simple in the special case in which Fα is normal,

since taking the limit λα →∞ in (18) gives the following explicit solution for θ∗14

θ
∗

= −(1− τ) +
1

σ2
α

1

(1 + σ)

[
1

(1− g) (1− τ)
− 1

]
. (19)

For the purpose of inferring θ∗, we can treat g as exogenous.15

From eq. (18) it is straightforward to derive comparative statics on the mapping from structural

policy and distributional parameters to θ∗, which we now briefly discuss (see Appendix A.4 for more

details).

First, θ
∗

is increasing in τ . Thus, if we observe more progressive taxation, all else constant, we

can infer that the policymaker puts less relative weight on high wage individuals. Second, θ∗ is

increasing in g. The logic is that tax progressivity reduces labor supply, making it more difficult to

finance public spending. Thus, governments with high revenue requirements will tend to choose a

less progressive system – unless they have a strong desire to redistribute. Third, θ
∗

is decreasing

in σ2
α. More uninsurable risk (holding fixed tax progressivity) suggests that the planner has less

desire to redistribute. Fourth, θ
∗

is decreasing in σ. The less elastic is labor supply (and thus

the smaller the distortions associated with progressive taxation), the less desire to redistribute we

should attribute to the planner. Finally, θ∗ is increasing in λα, holding fixed the total variance of

the uninsurable component (namely, σ2
α + λ−2

α ). Thus, a more right-skewed distribution for α (a

smaller λα) suggests a weaker taste for redistribution.

14This special case provides numerical guidance about which is the relevant root among the two solutions to the
quadratic equation (18).

15If we were to contemplate the welfare effects of varying τ (holding fixed θ∗ and G), it would be important to
recognize that output and thus the ratio G/Y (τ) would change with different values for τ .
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5 Calibration

Preferences We assume preferences are separable between consumption and labor effort and

logarithmic in consumption:

u(c, h) = log c− h1+σ

1 + σ
.

This specification is the same one adopted by Heathcote et al. (2016). We choose σ = 2 so

that the Frisch elasticity (1/σ) is 0.5. This value is broadly consistent with the microeconomic

evidence (see, e.g., Keane 2011) and is also very close to the value estimated by Heathcote et al.

(2014). The compensated (Hicks) elasticity of hours with respect to the marginal net-of-tax wage

is approximately equal to 1/(1 + σ) (see Keane 2011, eq. 11) which, given σ = 2, is equal to 1/3.

Again this value is consistent with empirical estimates: Keane reports an average estimate across 22

studies of 0.31. Given our model for taxation, the elasticity of average income with respect to one

minus the average income-weighted marginal tax rate is also equal to 1/(1+σ).16 According to Saez

et al. (2012), the best available estimates for the long run version of this elasticity range from 0.12

to 0.40, so again our calibration is consistent with existing empirical estimates. Note that because

our logarithmic consumption preference specification is consistent with balanced growth, high and

low wage workers will work equally hard in the absence of private insurance and redistributive

taxation.

Tax and Transfer System The class of tax functions described by eq. (17) and that we label

“HSV” was perhaps first used by Feldstein (1969) and introduced into dynamic heterogeneous agent

models by Persson (1983) and Benabou (2000).

Heathcote et al. (2016) begin by noting that the functional form in (17) implies a linear rela-

tionship between log(y) and log (y − T (y)), with a slope equal to (1−τ). Thus, given micro data on

household income before taxes and transfers and income net of taxes and transfers, it is straight-

forward to estimate τ by ordinary least squares. Using micro data from the Panel Study of Income

Dynamics (PSID) for working-age households over the period 2000 to 2006, Heathcote et al. (2016)

estimate τ = 0.161. Figure 1, borrowed from that paper, shows the relationship between income

before and after taxes and transfers for fifty equal-size bins of the distribution of household taxable

16The average income-weighted marginal tax rate is 1− (1− g)(1− τ) (see Heathcote et al. 2016, eq. 4).

18



8.5 9 9.5 10 10.5 11 11.5 12 12.5 13

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

Log of Pre−government Income

Lo
g 

of
 D

is
po

sa
bl

e 
In

co
m

e

Figure 1: Fit of HSV tax function. Figure 1 in Heathcote et al. (2016), shows the relationship between
log household income before and after taxes and transfers for working age households in the PSID. The
red line shows the least squares best fit through the underlying micro data, with slope (1-0.161).

income, ranked from lowest to highest. The x -axis shows log of average pre-government taxable

income for each bin, while the y-axis shows log of average income after taxes and transfers. The

red line shows the least squares best fit through the underlying PSID micro data, with estimated

slope (1− 0.161).

The remaining fiscal policy parameter, λ, is set such that government purchases G is equal to

18.8 percent of model GDP, which was the ratio of government purchases to output in the United

States in 2005. When we evaluate alternative tax policies we always hold fixed G at its baseline

value.

Wage Distribution We need to characterize individual productivity dispersion and to decom-

pose this dispersion into orthogonal uninsurable and insurable components.

We assume that the insurable component of productivity, ε, is normally distributed, ε ∼

N(−σ2
ε/2, σ

2
ε), and that the uninsurable component, α, follows an exponentially modified Gaus-

sian (EMG) distribution: α = αN + αE , where αN ∼ N(µα, σ
2
α) and αE ∼ Exp(λα) so that

α ∼ EMG(µα, σ
2
α, λα). This distributional assumption allows for a heavy right tail in the distribu-

tion for the uninsurable component of the log wage, which is heavier the smaller is the value for

λα. Saez (2001) argued that there is more mass in the right tail of the log wage distribution than

would be implied by a log-normal wage distribution and that this right tail is well approximated by
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an exponential distribution. By attributing the heavy right tail in the log wage distribution to the

uninsurable component of wages we are implicitly assuming that there is limited insurance against

the risk of becoming extremely rich.17

Note that given these assumptions on the distributions for α and ε, the distribution of the log

wage (α + ε) is itself EMG (the sum of the independent normally distributed random variables

αN and ε is normal) so the level wage distribution is Pareto log-normal. Furthermore, given our

specifications for preferences and the baseline tax system, the distribution for log earnings is also

EMG. Because preferences have the balanced growth property, hours worked are independent of

the uninsurable shock α, and the exponential coefficient in the EMG distribution for log earnings

is again λα, as for log wages. Hours do respond (positively) to insurable shocks, and the implied

normal variance coefficient in the EMG distribution for log earnings is given by

σ2
y =

(
1 + σ

σ + τ

)2

σ2
ε + σ2

α. (20)

As Mankiw et al. (2009) emphasize, it is difficult to sharply estimate the shape of the produc-

tivity distribution given typical household surveys, such as the Current Population Survey, in part

because high income households tend to be under-represented in these samples. We therefore turn

to the Survey of Consumer Finances (SCF) which uses data from the Internal Revenue Service (IRS)

Statistics of Income program to ensure that wealthy households are appropriately represented.18

We estimate λα and σ2
y by maximum likelihood, searching for the values of the three parameters in

the EMG distribution that maximize the likelihood of drawing the observed 2007 distribution of log

labor income.19 The resulting estimates are λα = 2.2 and σ2
y = 0.4117. Figure 2 plots the empirical

density against a normal distribution with the same mean and variance and against the estimated

EMG distribution. The density is plotted on a log scale to magnify the tails. It is clear that the

heavier right tail that the additional parameter in the EMG specification introduces delivers an

17This assumption is consistent with the fact that a large fraction of individuals in the far right tail of the earnings
distribution are entrepreneurs, and entrepreneurial risk is notoriously difficult to diversify.

18The SCF has some advantages over the IRS data used by Saez (2001). First, the unit of observation is the
household, rather than the tax unit. Second, the IRS data exclude those who do not file tax returns or who file late.
Third, people in principle have no incentive to under-report income to SCF interviewers.

19The empirical distribution for labor income in 2007 is constructed as follows. We define labor income as wage
income plus two-thirds of income from business, sole proprietorship, and farm. We then restrict our sample to
households with at least one member aged 25-60 and with household labor income of at least $10,000 (mean household
labor income is $77,325).

20



15 50 500 5,000 50,000

10
−15

10
−10

10
−5

D
en

si
ty

 (
lo

g 
sc

al
e)

Labor Income ($1,000, log scale)

 

 

Data (SCF 2007)
EMG
Normal

Figure 2: Fit of EMG distribution. The figure plots the empirical earnings density from the SCF
against the estimated EMG distribution and against a normal distribution.

excellent fit, substantially improving on the normal specification.

Given values for σ and τ, and an estimate for σ2
y , it remains only to partition the normal

component of earnings dispersion, σ2
y , into the components due to insurable versus uninsurable

shocks (see eq. 20). Heathcote et al. (2016) estimate a richer version of the model considered in

this paper using micro data from the PSID and the Consumer Expenditure Survey (CEX). They are

able to identify the relative variances of the two wage components by exploiting two key implications

of the theory: a larger variance for insurable shocks will imply a smaller cross-sectional variance

for consumption and a larger covariance between wages and hours worked. Depending on how

they model the right tail of the earnings distribution, their estimate for the variance of insurable

shocks is either σ2
ε = 0.139 or σ2

ε = 0.164. In light of this evidence, we simply assume σ2
ε = σ2

α,

which implies, via eq. (20), that σ2
ε = σ2

α = 0.1407. Thus, the total model variance for log wages is

σ2
ε +σ2

α+λ−2
α = 0.488. For comparison, Heathcote et al. (2010, Figure5) report a log wage variance

for men of 0.499 in the Current Population Survey in 2005.

Given these parameter values, 28.8 percent of the model variance of log wages and 43.8 percent

of the variance of log earnings reflects insurable shocks.20 One way to assess whether our decom-

position of wage risk into uninsurable and insurable components is reasonable is to compare the

extent of consumption inequality implied by the model to its empirical counterpart. Given the

20These shares are computed as σ2
ε/(σ

2
ε + σ2

α + λ−2
α ) and

((
1+σ
σ+τ

)2
σ2
ε

)
/

(((
1+σ
σ+τ

)2
σ2
ε

)
+ σ2

α + λ−2
α

)
.
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Table 1: Model Productivity Distribution and Offered Wage Distribution in Low and Pistaferri (2015)

Percentile Ratios Model LP (2015)

P5/P1 1.48 1.48

P10/P5 1.24 1.20

P25/P10 1.44 1.40

Note: P1, P5, P10 and P25 denote the 1st, 5th

10th, and 25th percentiles respectively.

calibration described above, the variance of log consumption in the model is 0.246. Heathcote et al.

(2010, Figure 13) report a corresponding variance in the Consumer Expenditure Survey in 2006

of 0.332. However, Heathcote et al. (2014, Table 3) estimate that 29.6 percent of the variance of

measured consumption reflects measurement error. Thus, we conclude that the model implies a

realistic level of consumption inequality. In Section 6.1.1, we will explore how changing the relative

magnitudes of insurable and uninsurable wage risk changes the optimal tax schedule.

We have documented that our assumptions on the wage distribution deliver an extremely close

approximation to the top of the earnings distribution, as reflected in the SCF. In order to charac-

terize optimal transfers and the optimal profile for marginal tax rates at the bottom of the earnings

distribution, it is important to assess whether our wage distribution also accurately captures the

distribution of labor productivity at the bottom. A well-known challenge here is that some low

productivity workers choose not to work, and thus their productivity cannot be directly observed.

Low and Pistaferri (2015) estimate a rich structural model of participation in which workers face

disability risk and can apply for disability insurance. Table 1 compares statistics for the left tail of

our calibrated productivity distribution to corresponding statistics from the distribution of latent

offered wages from the estimated model in Low and Pistaferri (2015).21 Reassuringly, the two sets

of statistics are very similar.

Discretization In solving the Mirrlees problem to characterize efficient allocations, the incentive

constraints only apply to the uninsurable component of the wage α, and the distribution for ε

appears only in the constant Ω. Thus, there is no need to approximate the distribution for ε, and

we therefore assume these shocks are drawn from a continuous unbounded normal distribution with

21We thank Low and Pistaferri for sharing their estimates.
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mean −σ2
ε/2 and variance σ2

ε .

We take a discrete approximation to the continuous EMG distribution for α that we have

discussed thus far. We construct a grid of I evenly spaced values {α1, α2, ..., αI} with corresponding

probabilities {π1, π2, ..., πI} as follows. We make the endpoints of the grid, α1 and αI , sufficiently

extreme that only a tiny fraction of individuals lie outside these bounds in the true continuous

distribution. In particular, we set α1 such that exp(α1)/
∑

i (πi exp(αi)) = 0.05, and set αI such

that exp(αI)/
∑

i (πi exp(αi)) = 74, which corresponds to household labor income at the 99.99th

percentile of the SCF labor income distribution ($6.17 million) relative to average income.22 We

read corresponding probabilities πi directly from the continuous EMG distribution, rescaling to

ensure that (i)
∑

i πi = 1, (ii)
∑

i πi exp(αi) = 1, and (iii) the variance of (discretized) α is equal to

σ2
α + λ−2

α . For our baseline set of numerical results we set I = 10, 000. The resulting model wage

distribution exp(α+ ε) is plotted in Figure 3. The distribution appears continuous, even though it

is not, because our discretization is very fine. In Section 6.6 we report how the results change when

we increase or reduce I. Note that when we compare the optimal Mirrlees tax schedule to various

parametric Ramsey alternatives, we always use the same discrete grid for α, thereby ensuring that

the environments differ only with respect to the tax and transfer system.

6 Quantitative Analysis

We now explore the structure of the optimal tax and transfer system, given the model specification

described above.23 We start in Section 6.1 by comparing welfare under alternative tax and transfer

schemes, assuming a utilitarian social welfare function. Specifically, we compute the optimal tax

and transfer systems in (i) the HSV class, (ii) the affine class, and (iii) the fully nonlinear Mirrlees

framework, and compare allocations and welfare in each of those three cases with their counterparts

under our baseline HSV approximation to the current U.S. tax and transfer system.

Section 6.2 explores alternative values for the taste for redistribution parameter θ. In Section

6.3 we develops our fiscal pressure intuition for the shape of the optimal tax schedule, using sensi-

22Assuming 2, 000 household hours worked, the average hourly wage is $41.56, so 5 percent of the average corre-
sponds to $2.08 which is less than half the federal minimum wage in 2007 ($5.85). Reducing α1 further would not
materially affect any of our results, since given the parameters for the EMG distribution, the probability of drawing
α < log(0.05) is vanishingly small.

23In Appendix A.5 we explain how we numerically solve the Mirrlees optimal tax problem.
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Figure 3: Model wage distribution. The plot is truncated at eight times the average wage, which is
normalized to one.

tivity analyses with respect to government purchases, the extent of private insurance, the taste for

redistribution, and the elasticity of labor supply. We also explain why we find optimal marginal

rates to be monotonically increasing in income, while Saez (2001) finds a U-shaped profile to be

optimal. Section 6.4 discusses some alternative calibrations, including a case in which we replace

our baseline EMG distribution for the uninsurable shock α with a normal distribution.

In Section 6.5 we explore richer tax structures. First, we consider polynomial tax functions that

add quadratic and cubic terms to the affine functional form, thereby giving the Ramsey planner

more flexibility. Second, we introduce a new component to individual labor productivity that

cannot be insured privately but which is observed by the planner. This allows us to quantify the

potential welfare gains from tagging: indexing taxes and transfers to characteristics such as age,

education, gender, and marital status that are observable and correlated with wages.

6.1 Optimal Taxation in the Baseline Model

Table 2 presents outcomes for each tax function. The outcomes reported, relative to the baseline

(HSVUS), are (i) the change in welfare, ω (%), (ii) the change in aggregate output, ∆Y (%), (iii)

the average income-weighted marginal tax rate, T ′, and (iv) the size of the transfer (income after

taxes and transfers minus pre-government income) received by the lowest α type household, relative
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Table 2: Optimal Tax and Transfer System in the Baseline Model

Tax System Tax Parameters Outcomes

ω (%) ∆Y (%) T ′ Tr/Y

HSVUS λ : 0.839 τ : 0.161 − − 0.319 0.018

HSV λ : 0.817 τ : 0.330 2.08 −7.22 0.466 0.063

Affine τ0 : −0.259 τ1 : 0.492 1.77 −8.00 0.492 0.279

Mirrlees 2.48 −7.99 0.491 0.213

to average income, Tr/Y .24

The first thing to note is that there are large potential welfare gains from tax reform here, and

the nature of optimal reform is to make the tax system much more progressive. The best policy

in the HSV class, for example, dictates an increase in the progressivity parameter τ from 0.161 to

0.330. This increases the average effective marginal tax rate from 31.9 percent to 46.6 percent. The

associated additional disincentive to work is large, and reduces output by 7.22 percent. Nonetheless,

the welfare gains to the utilitarian planner from larger net transfers to low income households are

large, and overall the reform generates a welfare gain equivalent to giving all households 2.08

percent more consumption. The optimal non-linear tax system generates only a slightly larger

welfare gain of 2.48 percent, and thus the best policy in the HSV class delivers 84 percent of the

maximum possible welfare gains from tax reform. The best policy in the affine class does less well,

delivering only 71 percent of the welfare gains from the optimal Mirrlees reform. This indicates

that for welfare it is more important that marginal tax rates increase with income – which the HSV

functional form accommodates but which the affine scheme rules out – than that the government

provides universal lump-sum transfers – which only the affine scheme admits.

To develop intuition for these results, Figure 4 plots decision rules for consumption and hours

(Panels A and B) and marginal and average tax schedules (Panels C and D) for each best-in-class

24We define the welfare gain of moving from policy T to policy T̂ as the percentage increase in consumption for
all agents under policy T needed to leave the planner indifferent between policy T and policy T̂ . Given logarithmic
utility in consumption, this gain, which we denote ω(T, T̂ ), is given by 1+ω(T, T̂ ) = V (T̂ , θ)−V (T, θ), where V (T, θ)
denotes the planner’s realized value under a policy T given a taste for redistribution θ :

V (T, θ) =

∫
W (α; θ)

∫ [
log c(α, ε;T )− h(α, ε;T )1+σ

1 + σ

]
dFε(ε)dFα(α).

For the welfare numbers in Table 2, the baseline policy T is the current HSV tax system, and allocations are valued
using θ = 0.
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Figure 4: Mirrlees, HSV, and affine tax functions. The figure contrasts allocations under the HSV tax
system (blue dashed line), the affine system (blue dotted), and the Mirrlees system (red solid). Panels
A and B plot decision rules for consumption and hours worked, while Panels C and D plot marginal
and average tax schedules. The plot for hours worked is for an agent with average ε.

tax and transfer scheme. The figure compares particular third-best Ramsey-style tax functions

(i.e., HSV and affine) to the second-best Mirrlees case.25

Allocations under the HSV policy are very similar to those in the constrained efficient Mirrlees

case in the middle of the distribution for α, with larger differences in the tails of the distribution,

especially for hours worked. Allocations are similar because the HSV marginal and average tax

schedules are broadly similar to those under the optimal policy, especially for α between zero and

one, corresponding to wages between the average wage and 2.7 times the average. In particular,

the profile for marginal tax rates that decentralizes the constrained efficient allocation is generally

increasing in productivity, and the HSV schedule captures this. However, while marginal tax rates

25At the very top of the distribution for uninsurable productivity α, the Mirrleesian marginal tax rate drops to
zero. However, this happens only very close to the upper bound for α, the choice for which is somewhat arbitrary.
To avoid being visually distracted by this property, we have truncated the visible range for productivity α at the
99.95th percentile of the model distribution for α in this Figure and in subsequent similar ones.
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increase smoothly under the HSV specification, the optimal schedule has a more complicated shape.

The optimal marginal rate starts at 6 percent for the least productive households and is fairly flat

(between 30 and 40%) up to half of average productivity.26 The optimal marginal rate then rises

rapidly to peak at 66.9 percent at 15 times average productivity. Because marginal rates are too

high at the top under the HSV scheme, very productive agents work too little. At the same time,

because transfers are too small, very unproductive agents work too much. Recall, however, that

the mass of agents in these tails is small.

Panel C of Figure 4 offers a straightforward visualization of why an affine tax schedule is

welfare inferior to the HSV form. Because the best affine tax function necessarily features a

constant marginal rate, it cannot replicate the optimal marginal tax schedule, which rises rapidly

in the middle of the productivity distribution. Under the affine scheme, low wage households face

marginal tax rates that are too high relative to the optimal tax schedule, and in addition they

receive relatively large lump-sum transfers. Thus, low productivity workers end up working too

little relative to the constrained efficient allocation. At the same time, because marginal tax rates

are too low at high income levels, high productivity workers end up consuming too much.

Panel D of Figure 4 plots average equilibrium tax rates by household productivity. The difference

between the average tax rates a household of a particular type faces under alternative tax schemes

is closely tied to the difference in conditional welfare the household can expect: a higher average tax

rate under one scheme translates into lower welfare. Thus, we can use the distribution of average

tax rate differences across alternative tax schemes as a proxy for the distribution of relative welfare

differences. Moving from the HSV schedule to the optimal one generates lower average tax rates

and thus welfare gains for households in the tails, but not for the bulk of households who are in

the middle of the productivity distribution.

To summarize, the optimal Mirrlees scheme redistributes via both lump-sum transfers and in-

creasing marginal tax rates. The best affine schedule (which does not admit increasing marginal

rates) does too much redistribution via lump-sum transfers, while the best HSV schedule (which

does not admit lump-sum transfers) does too much redistribution via increasing marginal rates.

Overall, having marginal rates that increase with income is a more important component of redis-

26At the very bottom of the productivity distribution the optimal allocation exhibits bunching: consumption and
income are independent of α. This implies that hours are decreasing in α, while the marginal tax rate is strictly
positive (see Ebert 1992) and increasing in α (see eq. 15).
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Table 3: Optimal Tax and Transfer System with No Insurable Shocks

Tax System Tax Parameters Outcomes

ω (%) ∆Y (%) T ′ Tr/Y

HSVUS λ : 0.842 τ : 0.161 − − 0.319 0.019

HSV∗ λ : 0.804 τ : 0.383 4.17 −9.72 0.511 0.084

Affine τ0 : −0.283 τ1 : 0.545 5.34 −10.45 0.545 0.326

Mirrlees 5.74 −10.64 0.550 0.284

tribution than lump-sum transfers, in the sense that the best HSV schedule is closer to the Mirrlees

solution, in terms of welfare, than the best affine schedule.

6.1.1 Role of Private Insurance

The result that the best policy in the HSV class is preferred to the best affine policy hinges on

the existence of private insurance. Table 3 shows how allocations and tax schedules change when

we rule out private insurance by setting σ2
ε = 0 and increasing the variance of αN , the normally

distributed uninsurable component, so as to leave the total variance of log wages unchanged. All

other parameter values are set to their values in the baseline calibration.

Since the dispersion of uninsurable shocks is now larger than in the baseline calibration, there

would now be more poverty, absent public redistribution. Thus, second-best policy now features

larger lump-sum transfers to provide a firmer consumption floor (28.4 percent of GDP rather than

21.3 percent) which in turn necessitates higher marginal tax rates: the optimal income-weighted

marginal tax rate is now 55.0 percent compared to 49.1 percent in the baseline model. The maximal

welfare gains from tax reform are now more than twice as large as in the baseline model and are

associated with an output decline of 10.6 percent.

The finding we want to emphasize is that the best affine tax system is now preferred to the

best policy in the HSV class. We conclude that to accurately characterize the qualitative nature

of optimal taxation it is essential to explicitly account for the existence of private insurance. In

Section 6.3.2 we offer further intuition for why changing the extent of private insurance changes

the shape of the optimal tax schedule.

28



6.2 Alternative Social Welfare Functions

We now consider alternative social welfare functions. There are two reasons to do so.

First, the fact that a utilitarian planner prefers much more redistribution that is embedded in

the current U.S. tax and transfer scheme suggests that the U.S. planner is not in fact utilitarian

and in fact has a weaker taste for redistribution. Thus, we want to explore tax reforms for planners

with smaller values for θ than the utilitarian θ = 0 case. We are particularly interested in our

empirically motivated value θ∗, given which the observed progressivity parameter τ∗ is welfare-

maximizing within the HSV class of tax systems.

Second, we would like to explore the robustness with respect to alternative objective functions

of our two key findings, first that the best policy in the HSV class delivers most of the feasible

welfare gains from tax reform, and second that the best policy in the HSV class is preferred to the

best affine schedule. As we will see, these findings extend to a wide range of alternative welfare

functions with an intermediate taste for redistribution, but not to objective functions that would

dictate either much more or much less redistribution that is currently observed.

Given our fiscal policy parameter estimates and the productivity distribution parameters de-

scribed, we apply the procedure described in Section 4 to infer the taste for redistribution parameter

θ∗. The implied estimate is θ∗ = −0.566, indicating that the U.S. social planner wants more redis-

tribution than a laissez-faire planner (θ = −1) but less than a utilitarian one (θ = 0).27 The relative

Pareto weights implied by θ∗ = −0.566 are illustrated in Panel A of Figure 5. Pareto weights are

increasing in the uninsurable shock α.

The logic for why the model interprets the U.S. planner as having a weaker taste for redis-

tribution than a utilitarian planner is that the U.S. tax and transfer system is not particularly

progressive, even though Americans face a lot of uninsurable wage risk. At the same time, the

theory implies quantitatively relatively minor roles for the factors that would cut against high

progressivity: elastic labor supply and the need to finance public expenditure. As we discussed

in Section 4, a possible political economic interpretation for this weak taste for redistribution is

that politicians view high wage workers as more pivotal in elections and put more weight on their

preferences in crafting tax policy.

27Moser and de Souza e Silva (2015) adopt our functional form for the social welfare function and estimate the
taste for redistribution parameter to be −0.60.
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Figure 5: Social welfare functions. Panel A plots our empirically-motivated social welfare function
(red solid line) and the utilitarian and laissez-faire alternatives (blue dashed lines). Panel B plots
the mapping from τ to θ obtained from the expression in Proposition 1. We use the version of the
expression involving G in eq. (31).

How sensitive is our estimate for θ∗ to our estimate for τ∗, the index of progressivity of the

U.S. tax system? Panel B of Figure 5 uses Proposition 1 to plot the mapping from progressivity

τ to the taste for redistribution θ∗, holding fixed our baseline values for the structural parameters

(σ2
α, λα, σ) and for the level of government purchases G. The value for progressivity that would

signal a utilitarian (θ = 0) social planner is τU = 0.332, which implies an average effective marginal

tax rate of 47 percent, much higher than we see in the United States. A laissez-faire social planner

(θ = −1) would choose a regressive scheme, with τLF = −0.06. The actual tax and transfer system

in the United States lies in between these two values: τ = 0.161 and the average marginal tax rate

is 32 percent. Thus, observed policy appears inconsistent with the U.S. planner having either a

utilitarian or a laissez-faire objective.

Alternative Social Welfare Functions Table 4 shows results for all the social welfare func-

tions we have discussed so far, moving downwards from the weakest to the strongest taste for

redistribution.28 The line labelled “Utilitarian” repeats the findings from Table 2. The first set

of columns describes some properties of the optimal Mirrlees tax schedule for each social welfare

28When we compute the Rawlsian case, we simply maximize welfare for the lowest α type in the economy, subject
to the usual feasibility and incentive constraints. A numerical value for θ is not required for this program.

30



Table 4: Alternative Social Welfare Functions

SWF Mirrlees Allocations Welfare Gain ω (%)

θ T ′ Tr/Y ∆Y HSV∗ Affine Mirrlees ω(HSVUS,HSV∗)

ω(HSVUS,Mirrlees)

Laissez-Faire −1 0.083 −0.082 9.72 2.98 3.14 3.15 95%

Emp. Motivated −0.566 0.314 0.051 0.16 − −0.48 0.05 0%

Utilitarian 0 0.491 0.213 −7.99 2.08 1.77 2.48 84%

Rawlsian ∞ 0.711 0.538 −22.55 354.9 649.1 708.3 50%

function. The second set of columns describes the welfare gains of moving from the current tax

system (HSV with τ = 0.161) to the Mirrlees policy and to the best-in-class affine and HSV policies.

The first takeaway from the table is that the optimal policy prescription is enormously sensitive

to the choice for θ. This is worth emphasizing given the explosion of policy research in heterogeneous

agent environments. Here, the stronger the planner’s desire to redistribute, the higher the marginal

tax rates the planner chooses. Moving from the laissez-faire to the Rawlsian social welfare function,

the average income-weighted marginal tax rate rises from 8.3 percent to 71.1 percent.29

A second takeaway is that the choice of social welfare function has a huge impact on the

potential welfare gains from policy reform. Recall that the moving to the optimal tax schedule

in the utilitarian case increases welfare by 2.48 percent. If we measure welfare gains using a

Rawlsian welfare function as our baseline, we would conclude that tax reform could raise welfare

by 708 percent. Given the empirically motivated social welfare function, in contrast, the maximum

welfare gain from tax reform is only 0.05 percent! This indicates that the current tax system –

more precisely, our HSV approximation to it – must be close to efficient. The small size of the

maximum welfare gain from tax reform is perhaps surprising given that the HSV schedule violates

some established theoretical properties of optimal tax schedules. In particular, it violates the

prescriptions that marginal rates should be everywhere non-negative, and that the rate should be

zero at the upper bound of the productivity distribution.

Our third takeaway from Table 4 is that assuming an empirically motivated social welfare

function does not change our finding from the utilitarian case that the best-in-class HSV function

is preferred to the best affine policy. In fact, given θ = θ∗ moving from the current HSV system to

29Recall that public consumption G is fixed exogenously, and is thus invariant to θ.
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Figure 6: HSV versus Mirrlees tax functions with θ = θ∗. The figure contrasts allocations and tax rates
under the current HSV tax system to those under the Mirrlees policy using our empirically-motivated
social welfare function.

the best possible affine tax scheme reduces welfare by 0.48 percent.

Why, under the empirically motivated social welfare function, are the maximum welfare gains

from tax reform so small? Figure 6 plots allocations under the current HSV tax schedule against

those under the Mirrlees policy, given θ = θ∗. It is clear that consumption and hours allocations are

very similar across most of the distribution for α under the two schemes, which is consistent with

welfare being very similar. While allocations are more different at the extremes of the distribution,

the population density in those ranges is very small. We conclude that the fact that the HSV

schedule does not satisfy theoretical prescriptions for efficiency at the bounds of the α distribution

is quantitatively largely irrelevant.

Figure 7 offers another perspective on the properties of optimal allocations at the bottom end

of the income distribution. Here we plot the level of household consumption against the level of

household income: net transfers is the difference between the two. We truncate the plot at 30
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Figure 7: Allocations for low income households. The figure plots household consumption against
household income at the bottom of the income distribution under the Mirrlees (red solid), HSV (blue
dashed), and best-in-class affine (blue dotted) tax systems. Each tax scheme is best-in-class given the
empirically motivated social welfare function.

percent of average income to highlight how the different tax systems treat the poor. The red

solid line traces out the budget set associated with constrained efficient allocations. The line stops

at the red dot, which corresponds to the level of household income that the planner asks the

least productive household to produce, y∗(α1). As reported in Table 4, this household receives

a small net transfer. What does the Mirrlees tax schedule look like for lower income levels? An

upper bound on net transfers is given by the indifference curve for the α1 type that is tangent to

the Mirrlees budget set at the point (y∗(α1), c∗(α1)). Any consumption schedule (and associated

net tax schedule) that lies everywhere below this indifference curve will decentralize the Mirrlees

solution; the set of possible such schedules is shaded light grey in the figure.

Figure 7 also plots the best income tax schedules in the affine and HSV classes. It is clear from

the plot that the HSV schedule is closer than the affine one to the optimal Mirrlees schedule. The

affine schedule implies net transfers that are much too generous at the bottom of the distribution.

Part of the explanation is that the optimal Mirrlees allocation dictates high marginal tax rates

at higher income levels, but under an affine scheme, imposing high marginal rates on the rich
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Figure 8: Maximum welfare gains from tax reform. The figure plots the maximum possible gains from
tax reform for a range of values for the taste for redistribution parameter θ. Three lines are plotted,
corresponding to the best policies in the unrestricted Mirrlees class (red solid), the HSV class (blue
dashed), and the affine class (blue dotted).

necessitates high marginal rates across the distribution – and thus large lump-sum transfers. At

the same time, transfers to the least productive households are small under the optimal Mirrlees

policy. Transfers are optimally small in part because the planner puts relatively low weight on

the least productive households, and in part because the fact that a portion of wage dispersion is

privately insurable reduces the need for public insurance.30

Figure 8 plots welfare gains under alternative tax systems, for a range of values for θ. The

red solid line is the welfare gain associated with moving from the current HSV tax system to the

optimal Mirrlees scheme, and the blue dashed and dotted lines are the gains moving from to the

best-in-class HSV and affine schemes.

The first message from Figure 8 is that for most intermediate values for θ, the red solid and

blue dashed lines are not far apart, indicating that the lion’s share of potential welfare gains from

tax reform can be achieved by adjusting progressivity while retaining the HSV functional form.

For example, the sizable welfare gains from tax reform that are possible under the utilitarian

30In Section 6.1.1 we shut down private insurance and find larger optimal lump-sum transfers.
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social welfare function (θ = 0) almost entirely reflect the fact that a utilitarian planner wants a

more redistributive tax system – and do not signal that the current system redistributes in a very

inefficient way.

Second, the optimal HSV scheme outperforms the optimal affine scheme for a wide range of

intermediate values for θ between −0.878 and 0.160.

Third, when the taste for redistribution is either sufficiently weak or sufficiently strong, an affine

scheme is preferred. For example, the laissez-faire planner prefers an affine tax because he wants to

use lump-sum taxes to raise revenue; this planner chooses negative transfers. The Rawlsian planner

prefers an affine tax because he values a high consumption floor for the least productive agents.

However, as we argued earlier, it is difficult to reconcile the tax and transfer system currently in

place in the United States with either a very low or a very high taste for redistribution.

6.3 Increasing versus U-Shaped Marginal Rates

While the Mirrleesian literature on optimal taxation is large, the shape of the optimal tax schedule

is not yet fully resolved, even in the simple static environment we have studied. For example, in our

baseline model specification, optimal marginal tax rates are always increasing in income (except

at the very top), while in influential quantitative exercises Saez (2001) found a U-shaped pattern

for optimal marginal tax rates. We now offer a new way of thinking about what determines the

shape of the optimal tax schedule that emphasizes the strength of the government’s desire to raise

revenue, which in turn is driven in part by its desire to provide lump-sum transfers.

The basic intuition is simple. The government’s problem is to raise revenue to finance exogenous

public expenditure G and endogenous universal lump-sum transfers Tr. The more revenue the

governments needs (for G) or wants (for Tr) the higher marginal tax rates must be, on average.

The government must choose how these marginal rates should vary with income. It will typically

be optimal to extract close to as much tax revenue as possible from people at the top of the income

distribution, so marginal rates there will always tend to be high. If the government can largely raise

as much money as it needs from taxing the rich alone, marginal tax rates will tend to be low at

the bottom of the income distribution, and will therefore increase with income. If the government

faces more fiscal pressure – either because it must finance more G, because it wants more Tr, or

because it cannot squeeze as much revenue out of the rich – then marginal rates will necessarily
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be higher at the bottom of the distribution, and therefore either declining or U-shaped in income.

While this intuition seems simple and compelling, we have not seen it previously spelled out in the

literature.

We now “test” this intuition by experimenting with various alternative ways of changing fiscal

pressure. First, we experiment with increasing G, and show that, as expected, raising the revenue

requirement changes the shape of the optimal tax schedule from our baseline upward-sloping (pro-

gressive) schedule to a U-shaped one. Second, we increase fiscal pressure to provide transfers by (i)

shutting off private insurance, which creates more low income households, and (ii) increasing the

planner’s taste for redistribution. Both these experiments increase optimal lump-sum transfers, and

also drive up optimal marginal rates at the bottom. Third, we increase the labor supply elasticity,

which reduces the government’s ability to satisfy revenue demands just by taxing the rich. This

again flattens the optimal tax schedule. With this intuition in hand, we contrast our optimal tax

schedule to those in Saez (2001) and trace out the differences in assumptions that account for the

differences in optimal tax rates.

6.3.1 Role of Government Purchases

Figure 9 shows how optimal allocations and the marginal tax rate profile change as we vary the

level of public expenditure G that must be financed. The red solid lines are the baseline model,

while the blue dashed lines correspond to higher expenditure levels. The dotted (dashed) lines

correspond to a value for G equal to 50% (75%) of output given a tax system in the HSV class

with τ = 0.161 (this value for G is a smaller share of output under the optimal tax schedule for

the high g cases). It is clear that raising the amount of expenditure that must be financed raises

optimal marginal tax rates by the most at the bottom of the income distribution, and by much less

at the high income levels. The result is that the schedule eventually becomes U-shaped (with the

qualification that rates still decline to zero at the very top).

We want to explain: (i) why tax rates at the top are relatively insensitive to the level of G,

(ii) why increasing G raises marginal tax rates at low income levels, and (iii) why the optimal tax

schedule becomes U-shaped for high values for G.

To understand these points, we start by noting that as we increase G and thus fiscal pressure,

the government has to decide between raising marginal tax rates and reducing lump-sum transfers.
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Figure 9: Alternative government expenditure levels. The figure plots allocations and tax rates under
the optimal Mirrlees tax policy for different values for government purchases. For example, the line
labelled g = 0.5 corresponds to allocations when G is equal to 50% of GDP in the baseline economy
with the HSV tax scheme and τ = 0.161. Panel D is truncated at six times average income.

It naturally chooses to do a bit of both: very high marginal rates would be very distortionary, while

very small lump-sum transfers would badly hurt the very poor. Why does the government not raise

marginal tax rates at the top? The explanation is that it is already close to the top of the Laffer

curve in terms of how much revenue it can extract from the most productive agents. In particular,

the well-known formula for the rate that squeezes the maximum revenue from the most productive

households (eq. 9 in Saez 2001) is

T̄ ′ =
1

1 + ζ̄u + ζ̄c(λ∗y − 1)
=

1 + σ

σ + λa
(21)

where T̄ ′, ζ̄u and ζ̄c are limiting values of the marginal tax rate and uncompensated and compen-

sated labor supply elasticities, and where λ∗y is the Pareto parameter defining the right tail of the
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optimal earnings distribution. Given our utility function, ζ̄u = 0, ζ̄c = (1 + σ)−1, and λ∗y = λa,

which delivers the second equality in eq. (21). Note that this expression is independent of the value

for government purchases. Evaluated at our calibrated values for σ and λa, eq. (21) implies that

there is nothing to be gained from raising marginal rates at the top above 71 percent. Because

there is little room to raise marginal tax rates at the top, the government instead responds to a

higher revenue requirement by raising marginal tax rates at low income levels.

An alternative perspective for understanding why optimal marginal tax rates are high at low

income levels when the government needs to raise a lot of revenue is that having marginal tax rates

decline with income means that marginal tax rates will be low relative to average tax rates. A low

marginal rate boosts labor supply via the substitution effect, while a high average tax rate boosts

labor supply via the associated income effect.31

Why does the tax schedule becomes U-shaped for high values for G? The reason is that there

is always some convexity in the middle of the optimal marginal tax schedule, which depresses rates

around the mode of the α distribution (in the range α = −0.5 to α = 0). This convexity appears

as something resembling an upward step in the marginal tax schedule when G is low, and as a

U-shape when G is high. It reflects the fact that the government wants to keep marginal rates and

labor supply distortions relatively low where the heaviest population mass is located.32

In Appendix A.6 we relate our fiscal pressure intuition for the shape of the optimal tax schedule

to the Diamond-Saez equation that is widely used to interpret optimal tax schedules. We note

that this equation is formally identical for the different parameter values for government purchases

plotted in Figure 9, and thus the equation cannot be used to explain why the optimal tax schedule

is increasing when purchases are low but U-shaped when purchases are high.

6.3.2 Alternative Ways to Increase Fiscal Pressure

Figure 10 illustrates how the shape of the optimal marginal tax schedule changes when we rule out

private insurance, as described in Section 6.1.1. Greater dispersion of uninsurable shocks would now

31Heathcote et al. (2016) show that under the HSV functional form for taxation, a regressive tax system (a negative
value for τ) is required to induce the efficient level of labor supply in an environment with valued public goods. In an
environment with both inequality and valued public goods there is therefore an interesting trade-off between desired
public good provision (which calls for regressivity) and desired fiscal redistribution (which calls for a progressive
system).

32We have verified that if G is increased sufficiently, the optimal tax schedule eventually becomes monotonically
declining.
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Figure 10: Alternative specifications with higher fiscal pressure. This figure plots optimal marginal
tax rates for (i) the baseline model parameterization (red solid line), (ii) a version with a stronger taste
for redistribution (blue dash-dot line), (iii) a version without private insurance (green dashed line), and
(iv) a version with more elastic labor supply (light blue dotted line).

mean more poverty than under the baseline calibration, absent more public redistribution. Recall

that the second-best policy now features larger lump-sum transfers to provide a firmer consumption

floor (28.4% of GDP rather than 21.3%). As expected, the planner finances this additional spending

by imposing higher rates primarily at the bottom of the income distribution, so that the optimal

tax schedule becomes flatter.

We next consider how the optimal tax schedule changes as we increase the taste for redistribution

from θ = 0 to θ = 1. Recall that we expect this to induce the planner to increase desired transfers,

and to finance those with higher marginal tax rates at low income levels. Figure 10 shows that this

is exactly what happens: when we increase the taste for redistribution, the optimal marginal tax

schedule moves from being upward sloping to becoming U-shaped.

At a basic level the intuition for the U-shaped tax schedules in the high G and high θ cases are

similar: in both cases the planner wants to raise a lot of revenue. In the g = 0.75 case, government

purchases plus transfers are 62 percent of GDP, while in the θ = 1 case the corresponding number

is 63 percent. In both cases, the best way to raise this revenue is to have high marginal rates at

the bottom.

An alternative way to increase fiscal pressure on the government is to reduce its ability to soak
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the rich. We therefore consider a case in which σ = 0.5, so that the Frisch elasticity is equal to two.

This implies at revenue-maximizing marginal tax rate on the rich of 56 percent, compared to 71

percent in the baseline parameterization. Because raising revenue is now more difficult, the planner

reduces lump-sum transfers, but the planner is reluctant to cut transfers too far, because the least

productive agents rely on them. The planner therefore tilts the marginal tax schedule towards the

poor, so that while marginal rates on the rich fall sharply relative to the baseline parameterization,

marginal rates on the poor are little changed.

6.3.3 Reinterpreting the Literature

With all these experiments in hand, we are now well-positioned to revisit the contrast between the

upward-sloping marginal rates in our baseline calibration, and the U-shaped pattern reported by

Saez (2001) and others.

Why does Saez find U-shaped rates while we do not? The reason is that Saez’s calibration

implies very high fiscal pressure on the government. For example, in his Table 2, the calibration

reported in Column (3) (a utilitarian welfare criterion, a utility function with income effects, and a

compensated elasticity of 0.5) delivers optimal transfers of 31% of GDP, while government purchases

are 25% of GDP. Thus, the required government tax take is 56 percent of GDP. In our baseline

parameterization (Table 2), the corresponding number is 42 percent (transfers are 21.3% of GDP

and purchases are 20.4%). Assuming our empirically-motivated social welfare function (Table 4)

gives an even smaller total tax take of 24 percent (transfers are 5.1% of GDP and purchases 18.8%).

There are a variety of differences in calibration that underlie these differences: relative to Saez,

we impose a smaller value for government purchases, and optimal transfers are smaller in our model,

in part because we allow for private insurance.33 If we change our calibration to impose a similar

amount of fiscal pressure to Saez, we also get a U-shaped profile for marginal rates. For example,

the two cases with higher government purchases plotted in Figure 9 both give U-shaped optimal

tax schedules: in these two cases government purchases plus transfers are 51 and 62 percent of

output.

33Golosov et al. (2016) and Mankiw et al. (2009) also find U-shaped marginal rates. Both papers abstract from
private insurance. The Golosov et al. (2016) calibration implies that most households have very low productivity,
while Mankiw et al. (2009) assume that 5 percent of households have zero productivity. Together these assumptions
translate into strong fiscal pressure to finance large lump-sum transfers, which in turn translates into very high and
U-shaped marginal rates.
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Thus, different amounts of fiscal pressure correspond to different shapes for the optimal marginal

tax schedule. How much fiscal pressure does the U.S. government face? In 2015, total government

spending including public consumption, gross investment, transfer payments and interest on debt

was 33.5% of U.S. GDP.34 This is in between the values that are optimal for our baseline calibration

under the utilitarian and empirically-motivated social welfare functions, but it is much lower than

the 56% value under Saez’s policy. We conclude that given a government of the current U.S. size,

the optimal marginal tax schedule is increasing in income, like the current U.S. system. Switching

to a U-shaped schedule would only be desirable if one wanted to massively expand the size of

government.

6.3.4 Summary

We take away several related messages from this analysis. First and foremost, the U-shaped profile

for marginal rates emphasized by Saez (2001) is not a general feature of an optimal tax system.

In particular, when the existence of private insurance is modeled, our calibrated model indicates

upward-sloping marginal tax rates. Second, the commonly-held notion that marginal rates should

be high at the bottom in order to rapidly tax away transfers intended only for the very poor

is misleading. In particular, reducing fiscal pressure on the government (e.g., by reducing G)

both increases lump-sum transfers and reduces marginal tax rates on low incomes. Third, if the

government needs to increase net tax revenue (e.g., to finance a war) it should do so primarily by

raising marginal tax rates at the bottom of the productivity distribution rather than at the top.

Finally, developing intuition for the shape of the optimal tax schedule from the perspective of fiscal

pressure to finance government purchases and lump-sum transfers is a valuable complement to the

usual focus on versions of the Diamond-Saez equation.

6.4 Additional Sensitivity

We first counter-factually assume a log-normal wage distribution. Specifically, we assume that α is

normally rather than EMG distributed, and adjust the variance so that the variance of α is identical

to the baseline case. Relative to the baseline, the distribution for the uninsurable component of

wages now has a much thinner right tail and a heavier left tail. We hold fixed all other parameter

34National Income and Product Accounts, Table 3.1
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values and set θ = 0.

The best HSV-class tax function now features less progressivity than under the baseline calibra-

tion (τ = 0.285 versus 0.330). The second-best policy implies a lower average marginal tax rate of

44 percent, but also features larger net transfers for the least productive households. A key result

is that the best affine tax and transfer system now dominates the best system in the HSV class and

very closely approximates the second-best allocation. Thus, assuming a log-normal distribution

for wages resurrects the original conclusion of Mirrlees (1971), namely, that the optimal nonlinear

income tax is approximately linear. We conclude, like Saez (2001), that it is essential to carefully

model the empirical productivity distribution for the purposes of providing quantitative guidance

on the design of the tax and transfer system. See Appendix A.7 for more details.

We have also conducted a sensitivity analysis with respect to preference parameters: the risk

aversion coefficient, γ, and the labor supply elasticity parameter, σ. Holding fixed all other structural

parameters, including the taste for redistribution θ, a higher value for risk aversion and a lower

labor supply elasticity (higher σ) both translate into greater optimal redistribution.

Finally, we have considered a utility function with no wealth effects, as is quite common in the

public finance literature (e.g., Diamond 1998). In particular, we assumed u(c, h) = log
(
c− h1+σ

1+σ

)
.

In this case we recalibrated productivity distribution parameters so as to ensure that the model

still replicates the empirical distribution of labor earnings. We then find a qualitatively similar

profile for optimal marginal tax rates to the baseline case.

6.5 Extensions to Richer Tax Structures

We now explore richer tax structures. First we consider polynomial tax functions that add quadratic

and cubic terms to the affine functional form. Next we consider an economy in which there is a

third component of idiosyncratic productivity, κ, that is privately uninsurable but observed by

the planner. We find that the potential welfare gains from indexing taxes to κ are as large as 1.5

percent of consumption.35

35One interpretation of our previous analysis is that the κ component has always been present, but we have up to
now imposed a restriction on tax functions such that net taxes must be independent of κ.

42



6.5.1 Polynomial Tax Functions

In the baseline model we have learned that for welfare it is more important that marginal tax

rates increase with income - which the affine scheme rules out – than that the government provides

universal lump-sum transfers. Relative to the affine case, we now ask how much better the Ramsey

planner can do if we introduce quadratic and cubic terms in the net tax function, thereby allowing

marginal tax rates to increase with income.

Let Tn(y) denote an n-th order polynomial tax function: Tn(y) = τ0 + τ1y + · · · + τny
n. We

assume that the marginal tax rate becomes constant above an income threshold ȳ equal to 10 times

average income in the baseline HSV-tax economy. We focus on the cases n = 2 and n = 3 (i.e.,

quadratic and cubic tax functions). Table 8 and Figure 12 in Appendix A.8 contain detailed results,

which we summarize here.

As we give the Ramsey planner access to increasingly flexible tax functions, outcomes and

welfare converge to the Mirrlees solution, which is reassuring.36 With the best quadratic function,

marginal tax rates are increasing in income (τ2 > 0) – the key property of the optimal tax schedule

– and lump-sum transfers are smaller than under the best affine scheme. Under the best cubic

system, lump-sum transfers are reduced still further and the cubic coefficient τ3 is negative, which

ensures that marginal rates flatten out before income reaches the threshold ȳ. Because marginal

and average tax rates under the best cubic policy are generally very similar to those implied by

the Mirrlees solution, allocations are close to being constrained efficient. Thus, moving to the best

cubic policy generates about 97 percent of the maximum potential welfare gains from tax reform.

6.5.2 Type-Contingent Taxes

In the baseline model, idiosyncratic productivity was divided into a privately uninsurable compo-

nent, α, and a privately insurable component, ε. Now we introduce a third component, κ, which is

privately uninsurable but observed by the planner. This component is designed to capture differ-

ences in wages related to observable characteristics such as gender, age, and education. We assume

that κ is drawn before family insurance comes into play and therefore cannot be insured privately.

We set the variance of this observable fixed effect, σ2
κ, equal to the variance of wage dispersion

36By the Weierstrass Approximation theorem, a sufficiently high order polynomial tax function could approximate
the Mirrlees solution to any desired accuracy.
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that can be accounted for by standard observables in a Mincer regression. Heathcote et al. (2010)

estimate the variance of cross-sectional wage dispersion attributable to observables to be σ2
κ = 0.108.

For the sake of simplicity, we assume a two-point equal-weight distribution for κ. This gives

exp(κHigh)/ exp(κLow) = 1.93.

The total variance of the privately uninsurable component of wages is unchanged relative to the

baseline model, but we now attribute part of this variance to κ. The three parameters µα, σ
2
α, and

λα characterizing the EMG distribution for α are therefore recalibrated so that (i) the variance of

(discretized) α is equal to 0.239 (i.e., 0.488− σ2
ε − σ2

κ), (ii)
∑

i πi exp(αi) = 1, and (iii) the value of

the shape parameter σαλα is the same as that in the baseline model (i.e., 0.827).37

When the planner can observe a component of productivity, the optimal tax system explicitly in-

dexes taxes to that component (see, e.g., Weinzierl 2011). In the extreme case in which productivity

is entirely observable, so that logw = κ, the optimal system simply imposes a κ−specific lump-sum

tax for each different value for κ. More generally, each different κ type faces a type-specific income

tax schedule T (y;κ).

Table 9 in Appendix A.8 describes optimal type-contingent tax functions and the associated

outcomes. We find that if the planner can condition taxes on the observable component of labor

productivity, it can generate large welfare gains relative to the current tax system, which does not

discriminate by type. The maximum welfare gain is now 6.54 percent of consumption, compared

with 2.48 percent in the baseline analysis. This large welfare gain arises in part because the average

effective marginal tax rate drops to 42 percent, which translates into a smaller output loss. Recall

that if productivity were entirely observable, the planner could implement the first best, with a

zero marginal rate for all households.

If the Ramsey planner is allowed to impose a different tax schedule on each κ type, he can

achieve welfare gains that nearly match those for the Mirrlees planner. Under the best affine

system, the high κ type faces a double whammy, paying higher marginal tax rates than the low

type and receiving only tiny transfers.

One important caveat to this analysis is that we have treated all the variation in κ as exoge-

nous and have therefore ignored potential feedback from the tax system to the distribution for κ.

However, an education-dependent tax system would likely affect agents’ educational decisions (see,

37The shape parameter controls the relative importance of the normal and exponential distribution components.
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Table 5: Grid points

# of grid points I ω (%, relative to HSV)

Affine Mirrlees First Best

10 1.75 20.90 47.04
100 1.77 4.84 45.43

1,000 1.77 2.70 45.35
10,000 1.77 2.48 45.34
100,000 1.77 2.46 45.34

e.g., Heathcote et al. 2016). In particular, relatively high taxation of high κ households would

discourage education investment. Thus, we regard our 6.54 percent welfare gain as an upper bound

on the feasible welfare gains from tagging.

6.6 Coarser Grids

In the baseline model, we set the number of grid points for α to I = 10, 000. This is a very large

number relative to grid sizes typically used the literature. However, assuming the true distribution

for α is continuous, a very fine grid is required to accurately approximate the second-best allocation.

To make this point, in Table 5 we report welfare gains from tax reform (relative to the HSV

baseline) as we increase the number of grid points from I = 10 to I = 100, 000. Reassuringly, the

number of grid points does not affect the results for the affine case or for the first best. However, as

the number of grid points decreases, welfare gains for the Mirrlees planner increase substantially. For

I = 10 these gains are 20.9 percent of consumption, compared with 2.48 percent with I = 10, 000.

The intuition behind this result is that with a coarse grid, ensuring truthful reporting becomes

easier for the Mirrlees planner. Consider a grid of size I. A common result is that only local

downward incentive constraints bind at the solution to the planner’s problem. Now suppose that

we remove every other point from the grid, leaving all else unchanged. At the original conjectured

solution, none of the incentive constraints are now binding. Thus, the planner can adjust allocations

to compress the distribution of consumption or to strengthen the correlation between productivity

and hours worked.

In our static model, using a very fine grid is not too costly from a computational standpoint. In

dynamic Mirrleesian settings, however, the presence of additional state variables typically necessi-

tates a very coarse discretization of types, often using fewer than 50 points. The findings in Table 5
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cast some doubt on the quantitative robustness of such analyses if the true underlying productivity

distribution is continuous.

7 Conclusions

The goal of this paper has been to characterize the optimal income tax schedule and to explore how

closely it can be approximated by simple parametric functions. We found that optimal marginal

tax rates are generally increasing in income, and are neither flat nor U-shaped. We also found that

the optimal policy can be well approximated by a simple two parameter function. Our hope is that

this result will help strengthen the bridge between the extensive theoretical literature on optimal

taxation and the practical policy debate.

We now highlight five lessons from our analysis that should be useful for future work that aims

to provide quantitative advice on tax and transfer design.

First, careful thought should be given to the specification of the planner’s social welfare function,

since this has an enormous impact on policy prescriptions. We have proposed a functional form

for social welfare indexed by a single taste-for-redistribution parameter and have argued that a

natural baseline for this parameter is the value that rationalizes the progressivity embedded in

the current tax and transfer system. Our approach could easily be generalized to construct social

welfare functions in much richer models.

Second, it is important to recognize the existence of private insurance, if one views the role of

the tax and transfer system as being limited to offering a degree of public insurance against risks

that cannot be insured privately. In our environment, introducing privately-insurable risk has an

important quantitative impact on the shape of the optimal tax schedule.

Third, for interpreting the shape of the optimal tax schedule, a useful complement to the

familiar Diamond-Saez functional equation is to consider how much pressure the planner faces to

raise revenue. When fiscal pressure is low, the optimal marginal tax schedule will be an upward-

sloping function of income. As fiscal pressure is progressively increased, the optimal schedule

becomes first flatter, then U-shaped in income, and ultimately downward-sloping.

Fourth, in a calibration to the United States, the optimal tax system features marginal tax

rates that increase with income. One reason an upward-sloping schedule is optimal is that the
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government faces modest fiscal pressure: total spending under the optimal system is a relatively

small share of GDP, as it is in the United States.

Fifth, although the fully optimal profile for marginal rates is quite complicated, it is very well

approximated by a simple two parameter power function of the form used by Benabou (2000) and

Heathcote et al. (2016). Thus, in terms of welfare, a simple parametric Ramsey-style policy that

can be easily communicated to policymakers comes very close to replicating the constrained efficient

Mirrlees allocation.

Our model environment could be enriched along several dimensions. First, labor supply is the

only decision margin distorted by taxes. Although this has been the focus of the optimal tax

literature, skill investment and entrepreneurial activity are additional margins that are likely sensi-

tive to the tax system. Second, our model features no uninsurable life-cycle shocks to productivity:

modeling such shocks would allow the Mirrlees planner to increase welfare by making taxes history-

dependent. The associated welfare gains may be modest, however, given that privately-uninsurable

life-cycle shocks are small relative to permanent productivity differences.
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A Appendix

A.1 Insurance via Family versus Insurance via Financial Markets

We show that, with one caveat, all the analysis of the paper remains unchanged if we consider

an alternative model of insurance against ε shocks. In particular, we put aside the model of the

family and suppose instead that each agent is autonomous, buys private insurance in decentralized

financial markets against ε shocks, and is taxed at the individual level.

Decentralized Economy Suppose agents first observe their idiosyncratic uninsurable compo-

nent α and then trade in insurance markets to purchase private insurance at actuarially fair prices

against ε. The budget constraint for an agent with α is now given by∫
B(α, ε)Q(ε)dε = 0, (22)

where B(α, ε) denotes the quantity (positive or negative) of insurance claims purchased that pay

a unit of consumption if and only if the draw for the insurable shock is ε ∈ E and where Q(E)

is the price of a bundle of claims that pay one unit of consumption if and only if ε ∈ E ⊂ E for

any Borel set E in E . In equilibrium, these insurance prices must be actuarially fair, which implies

Q(E) =
∫
E dF (ε).

In this decentralization, taxation occurs at the individual level and applies to earnings plus

insurance payments. Thus, the individual’s budget constraints are

c(α, ε) = y(α, ε)− T (y(α, ε)) for all ε, (23)

where individual income before taxes and transfers is given by

y(α, ε) = exp(α+ ε)h(α, ε) +B(α, ε) for all ε. (24)

The individual agent’s problem is then to choose c(α, ·), h(α, ·), and B(α, ·) to maximize ex-

pected utility (4) subject to eqs. (22), (23), and (24). The equilibrium definition in this case is

similar to that for the specification in which insurance takes place within the family.

It is straightforward to establish that the FOCs for this problem are exactly the same as those

for the family model of insurance with taxation at the individual level. Thus, given the same tax

function T, allocations with the two models of insurance are the same. Part of the reason for this

result is that each family is small relative to the entire economy and takes the tax function as

parametric. Moreover, taxes on income after private insurance / family transfers do not crowd out

risk sharing with respect to ε shocks.

Planner’s Problem Now consider the Mirrlees planner’s problem in the environment with de-

centralized insurance against ε shocks. We first establish that if the planner is restricted to only ask

agents to report α, the solution is the same as the one described previously for the family model.

We then speculate about what might change if the planner can also ask agents to report ε.
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Suppose that the planner asks individuals to report α before they draw ε. Then, given their true

type α and a report α̃ and associated contract (c(α̃), y(α̃)), agents shop for insurance. Consider

the agent’s problem at this stage:

max
{h(α,α̃,ε),B(α,α̃,ε)}

∫ {
c(α̃)1−γ

1− γ − h(α, α̃, ε)1+σ

1 + σ

}
dFε(ε),

subject to ∫
B(α, α̃, ε)Q(ε)dε = 0,

exp(α+ ε)h(α, α̃, ε) +B(α, α̃, ε) = y(α̃).

Substituting the second constraint into the first, and assuming actuarially fair insurance prices,

we have ∫
[y(α̃)− exp(α+ ε)h(α, α̃, ε)] dFε(ε) = 0.

The first-order condition for hours is

h(α, α̃, ε)σ = µ(α, α̃) exp(α+ ε),

where the budget constraint can be used to solve out for the multiplier µ(α, α̃) :

h(α, α̃, ε) =
y(α̃)

exp(α)

exp(ε)
1
σ∫

exp(ε)
1+σ
σ dFε(ε)

.

Now note that this expression is exactly the same as the one for the family planner decentral-

ization (eq. (11)). Moreover, in both cases c(α, ε) = c(α̃). It follows that for any values for (α, α̃),

expected utility for the agent in this decentralization with private insurance markets is identical to

welfare for the family head in the decentralization with insurance within the family. Thus, the set

of allocations that are incentive compatible when the social planner interacts with the family head

are the same as those that are incentive compatible when the planner interacts agent by agent.

It follows that the solution to the social planner’s problem is the same under both models of ε

insurance. Similarly, the income tax schedule that decentralizes the Mirrlees solution is also the

same under both models of ε insurance, and marginal tax rates are given in both cases by eq. (15).

Note that marginal tax rates do not vary with ε under either insurance model because income

(including insurance payouts / family transfers) does not vary with ε.38

Finally, note that if insurance against ε is achieved via decentralized financial markets, the

planner could conceivably ask agents to report ε after the ε shock is drawn and offer allocations

for consumption c(α̃, ε̃) and income y(α̃, ε̃) indexed to reports of both α and ε. With decentralized

38It is clear that the Mirrlees solution could equivalently be decentralized using consumption taxes. In that case
we would get

1 + T ′(c∗(α)) =
c∗(α)−γ exp(α)1+σ

(∫
exp(ε)

1+σ
σ dFε(ε)

)σ
y∗(α)σ

.
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insurance, the planner might be able to offer contracts that separate agents with different values

for ε (recall that under the family model for insurance, this was not possible). One might think

there would be no possible welfare gain to doing so, since private insurance already appears to

deliver an efficient allocation of hours and consumption within any group of agents sharing the

same α. However, it is possible that by inducing agents to sacrifice perfect insurance with respect

to ε, the planner can potentially loosen incentive constraints and thereby provide better insurance

with respect to α.39 We plan to explore this issue in future work. For now, we simply focus on the

problem in which the planner offers contracts contingent only on α, which is the natural benchmark

under our baseline interpretation that the family is the source of insurance against shocks to ε.

A.2 Individual- versus Family-Level Taxation

Our baseline model specification assumes that the planner only observes – and thus can only tax

– total family income. However, taxing income at the individual level would have no impact on

allocations. We now prove that if the tax function for individual income satisfies condition (9),

then equilibrium consumption and income are independent of ε, as in the version when taxes apply

to total family income.

Proposition 2 If the tax schedule satisfies condition (9), then the solution to the family head’s

problem is the same irrespective of whether taxes apply at the family level or the individual level.

Proof. We will show that given condition (9), the FOCs for the family head with individual-level

taxation are identical to those with family-level taxation, namely, eqs. (7) and (8).

If income is taxed at the individual level, the family head’s problem becomes

max
{h(α,ε),y(α,ε)}

∫ {
[y(α, ε)− T (y(α, ε))]1−γ

1− γ − h(α, ε)1+σ

1 + σ

}
dFε(ε)

subject to ∫
y(α, ε)dFε(ε) =

∫
exp(α+ ε)h(α, ε)dFε(ε),

where y(α, ε) denotes pre-tax income allocated to an individual of type ε.

The FOCs are

[y(α, ε)− T (y(α, ε))]−γ
[
1− T ′ (y(α, ε))

]
= µ(α), (25)

h(α, ε)σ = µ(α) exp(α+ ε), (26)

where µ(α) is the multiplier on the family budget constraint.

39When we introduce publicly observable (but privately uninsurable) differences in productivity, we see that con-
strained efficient allocations typically have the property that agents with the same unobservable component α but
different observable components of productivity κ are allocated different consumption (see Section 6.5.2).
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If the tax schedule satisfies condition (9) (the condition that guarantees first-order conditions are

sufficient for optimality) then we can show that optimal consumption and income are independent

of ε, as in the version when taxes apply to total family income.

In particular, differentiate both sides of FOC (25) with respect to ε. The right-hand side is

independent of the insurable shock ε, and hence its derivative with respect to ε is zero. The

derivative of the left-hand side of this equation with respect to ε is, by the chain rule,

∂

∂ε

{
[y(α, ε)− T (y(α, ε))]−γ

[
1− T ′(y(α, ε))

]}
=

{
−γ (y − T (y))−1 [1− T ′(y)

]2 − T ′′(y)
}

(y − T (y))−γ
∂y(α, ε)

∂ε
.

The first term is nonzero by condition (9), which immediately implies that ∂y
∂ε = 0. Therefore,

pre-tax income is independent of ε, and hence consumption is also independent of ε. Thus, the

FOCs (25) and (26) combine to deliver exactly the original intratemporal FOC with family-level

taxation, namely, eq. (8). Q.E .D.

A.3 Proof of Proposition 1

We provide the proof of Proposition 1.

Given the HSV tax function (17), decision rules as a function of τ are as follows:

c(α;λ, τ) = λ(1− τ)
1−τ
1+σ exp [(1− τ)α] exp

(
1− τ
σ

σ2
ε

2

)
, (27)

h(ε; τ) = (1− τ)
1

1+σ exp

(−1

σ2

σ2
ε

2

)
exp

( ε
σ

)
. (28)

Plugging these into the resource constraint (1), we get

λ(τ) =
(1− τ)

1
1+σ exp

(
1
σ
σ2
ε
2

)
−G

(1− τ)
1−τ
1+σ exp

(
1−τ
σ

σ2
ε
2

) ∫
exp [(1− τ)α] dFα(α)

.

We substitute these expressions into the planner’s objective function in order to get an un-

constrained optimization problem with one choice variable, τ. Specifically, the planner’s objective

function is ∫
W (α)

[
log (c(α; τ))−

∫
h(ε; τ)1+σ

1 + σ
dFε(ε)

]
dFα(α),

and government expenditure is given by

G = g

∫ ∫
exp(α+ ε)h(ε; τ)dFα(α)dFε(ε).
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Substituting eqs. (27) and (28) into these, the optimization problem can be rewritten as

max
τ

(1− τ)
∫
α ·W (α)dFα(α)− log(

∫
exp [(1− τ)α] dFα(α)) + log

[
(1− τ)

1
1+σ exp

(
1
σ
σ2
ε
2

)
−G

]
− 1−τ

1+σ

where

G = g(1− τ)
1

1+σ exp

(
1

σ

σ2
ε

2

)
. (29)

Note that the level of the government expenditure G is fixed when the planner is solving the

problem, and hence it is not a function of τ .

Given the social welfare function (16), the optimization problem becomes40

max
τ

(1−τ)

λα
λα+θ

exp

[
−µαθ+σ2αθ

2

2

] ∫ α exp(−θα)dFα(α)− log
(

λα
λα−1+τ

)
− µα(1− τ)− σ2

α(1−τ)2

2

+ log
[
(1− τ)

1
1+σ exp

(
1
σ
σ2
ε
2

)
−G

]
− 1−τ

1+σ .

(30)

Assume this problem is well-defined; that is,
∫
α exp(−θα)dFα < ∞. We want to further simplify

this term.

Define V (α, θ) ≡ exp(−θα)fα(α), where fα is the derivative of Fα. We then have

∂V (α, θ)

∂θ
= −α exp(−θα)fα(α).

Lemma 3 Assume the support of θ is compact, [θ, θ̄]. Then the integral and the derivative of V

are interchangeable; that is, ∫
∂

∂θ
V (α, θ)dα =

∂

∂θ

∫
V (α, θ)dα.

Proof. It suffices to show that (i) V : R × [θ, θ̄] → R is continuous and ∂V
∂θ is well-defined and

continuous in R×[θ, θ̄], (ii)
∫
V (α, θ)dα is uniformly convergent, and (iii)

∫
∂
∂θV (α, θ)dα is uniformly

convergent.

(i) is obvious since fα is continuous.

To prove (ii), we rely on the Weierstrass M-test for uniform convergence. That is, if there

exists V̂ : R → R such that V̂ (α) ≥ |V (α, θ)| for all θ and V̂ has an improper integral on R, then∫
V (α, θ)dα converges uniformly. Now define V̂ (α) ≡ sup

θ∈[θ,θ̄]

|V (α, θ)|. Then V̂ (α) ≥ |V (α, θ)| by

40The moment-generating function for the EMG distribution, EMG(µα, σ
2
α, λα), for t ∈ R is given by∫

α

exp (αt) dFα =
λα

λα − t
exp

[
µαt+

σ2
αt

2

2

]
.
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construction. Also V̂ has an improper integral on R because∫ ∞
−∞

V̂ (α)dα =

∫ 0

−∞
V (α, θ̄)dα+

∫ ∞
0

V (α, θ)dα

≤
∫ ∞
−∞

V (α, θ̄)dα+

∫ ∞
−∞

V (α, θ)dα

=
λα

λα + θ̄
exp

[
−µαθ̄ +

σ2
αθ̄

2

2

]
+

λα
λα + θ

exp

[
−µαθ +

σ2
αθ

2

2

]
<∞,

where the first inequality comes from V (α, θ) ≥ 0 for any α and θ ∈ [θ, θ̄]. Thus,
∫
V (α, θ)dα is

uniformly convergent.

We apply a similar logic to prove (iii) and find Ṽ : R→ R such that Ṽ (α) ≥
∣∣∣∂V (α,θ)

∂θ

∣∣∣ for all θ and

Ṽ has an improper integral on R. Specifically, define Ṽ (α) ≡ sup
θ∈[θ,θ̄]

∣∣∣∂V (α,θ)
∂θ

∣∣∣ . Then Ṽ (α) ≥
∣∣∣∂V (α,θ)

∂θ

∣∣∣
by construction and Ṽ has an improper integral on R, because the original problem is assumed to

be well-defined, and hence
∫
α exp(−θα)dFα <∞ for any θ ∈ [θ, θ̄].

Applying this lemma, we get∫
α exp(−θα)dFα(α) = − ∂

∂θ

∫
exp(−θα)dFα(α)

= − ∂

∂θ

{
λα

λα + θ
exp

[
−µαθ +

σ2
αθ

2

2

]}
=

λα
λα + θ

exp

[
−µαθ +

σ2
αθ

2

2

](
1

λα + θ
+ µα − σ2

αθ

)
.

Substituting this expression into eq. (30), the optimization problem becomes

max
τ

(1− τ)
(

1
λα+θ − σ2

αθ − 1
1+σ

)
+ log (λα − 1 + τ)− σ2

α(1−τ)2

2 + log
[
(1− τ)

1
1+σ exp

(
1
σ
σ2
ε
2

)
−G

]
.

The first-order condition with respect to τ is

0 = − 1

λα + θ
+ σ2

αθ +
1

1 + σ
+

1

λα − 1 + τ
+ σ2

α(1− τ)−

1− G

exp

(
1
σ
σ2ε
2

)
(1−τ)

1
1+σ

−1

(1− τ)(1 + σ)
. (31)

Substituting eq. (29) into this, we have

σ2
αθ −

1

λα + θ
= −σ2

α(1− τ)− 1

λα − 1 + τ
+

1

1 + σ

[
1

(1− g) (1− τ)
− 1

]
.

Therefore, the planner’s weight θ∗ must solve eq. (18). Q.E .D.
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A.4 Comparative Statics for θ∗

Comparative statics with respect to τ : The values for τ that signal a laissez-faire or a

utilitarian planner, which we denote τLF and τU respectively, can be derived from eq. (18) by

substituting in, respectively, θ∗ = −1 and θ∗ = 0 and solving for the relevant root. Equation (18) is

a cubic equation in τ, and the closed-form expressions for τ that correspond to these two baseline

welfare functions are somewhat involved. The normal distribution case (λα →∞) is simpler, since

(19) is quadratic in τ . In that case, τLF and τU are, respectively,

τLF = 1 +
1− (1 + σ)σ2

α −
√

1 + (1 + σ)2 (σ2
α)2 − 2(1 + σ)σ2

α + 41+σ
1−g σ

2
α

2(1 + σ)σ2
α

, (32)

τU = 1 +
1−

√
1 + 41+σ

1−g σ
2
α

2 (1 + σ)σ2
α

. (33)

Note that τU > τLF , as expected. It is straightforward to verify that when g = 0, τLF = 0. The

same result also extends to the general EMG distribution for α, as can be readily verified from eq.

(18).

The clearest signal of a Rawlsian welfare objective (θ∗ →∞) is a ratio of expenditure to output

g = G/Y (τ) approaching one.41 This signals that the planner has pushed τ to the maximum value

that still allows the economy to finance required expenditure G. This limiting value for τ is

τR = 1−G1+σ exp

(
−1 + σ

σ

σ2
ε

2

)
. (34)

Note that with G = 0, τR = 1, but for G > 0, τR < 1. Indeed, if G ≥ exp
(
σ2
ε

2σ

)
, then τR ≤ 0,

since only a regressive scheme induces sufficient labor effort to finance expenditure. The Rawlsian

planner pushes progressivity toward the maximum feasible level because under any less progressive

system, households with sufficiently low uninsurable productivity α would gain from increasing

progressivity. This result hinges on the distribution for α being unbounded below. The only

component of welfare that varies with α (given utility that is logarithmic in consumption and the

HSV tax schedule) is log consumption, which contains a term (1 − τ)α (see eq. (27) in Appendix

A.3). A Rawlsian planner’s desire to minimize the negative welfare contribution of this term for

unboundedly low α households leads it to choose the maximum feasible value for τ. If instead

there was a lower bound α1 in the productivity distribution (as in the numerical example we shall

consider later), the Rawlsian planner would stop short of pushing progressivity to the maximum

feasible level. The same would be true for any planner with a finite value for θ.

Comparative statics with respect to g : Now consider the comparative statics with respect

to the observed ratio g. The implied taste for redistribution θ∗ is increasing in g. Thus, if we saw

two economies that shared the same progressivity parameter τ (and the same wage distribution),

41This implies that aggregate consumption and thus consumption of every agent must also converge to zero.
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but one economy devoted a larger share of output to public expenditure, we would infer that the

planner in the high spending country must have a stronger taste for redistribution. The logic is

that tax progressivity reduces labor supply, making it more difficult to finance public spending.

Thus, governments with high revenue requirements will tend to choose a less progressive system –

unless they have a strong desire to redistribute.

A corollary of this comparative static is that the larger is g, the smaller are the values τLF and

τU consistent with a planner being either laissez-faire or utilitarian (see (32) and (33)). Similarly,

the larger is G, the smaller is the value τR consistent with a Rawlsian objective (see (34)).

Comparative statics with respect to σ2
α : Comparative statics with respect to the variance

of uninsurable shocks σ2
α are straightforward. The parameter θ

∗
is decreasing in σ2

α. Thus, more

uninsurable risk (holding fixed tax progressivity) means we can infer the planner has less desire to

redistribute.

Comparative statics with respect to σ : The implied redistribution preference parameter θ
∗

is decreasing in σ, meaning that the less elastic is labor supply (and thus the smaller the distortions

associated with progressive taxation), the less desire to redistribute we should attribute to the

planner. Consider the limit in which labor supply is inelastic σ →∞. Then output is independent

of τ , and we get θ∗ = τ − 1. Thus, in this case a utilitarian planner (θ∗ = 0) would set τ = 1,

thereby ensuring that all households receive the same after-tax income. A planner with a higher

θ∗ would actually choose τ > 1, implying an inverse relationship between income before taxes and

income after taxes.

With elastic labor supply, one would never observe τ ≥ 1, since in the limit as τ → 1, labor

supply drops to zero (given that, at τ = 1, all households receive after-tax income equal to λ,

irrespective of pre-tax income).

Comparative statics with respect to λα : Finally, θ∗ is increasing in λα, holding fixed the

total variance of the uninsurable component (namely, σ2
α + λ−2

α ). Thus, if two economies were

identical except that one had a more right-skewed distribution for α (a smaller λα), one would

infer that the heavier right tail economy must have a weaker taste for redistribution. The mirror

image of this finding is that a heavier right tail in the distribution for α implies higher optimal

progressivity (holding fixed θ).

A.5 Computational Method

We briefly describe how we compute the optimal allocation in the baseline economy. We solve the

Mirrlees planner’s problem (12) for our discretized economy numerically. We first note that the

local downward and local upward incentive compatibility constraints are necessary and sufficient

for the global incentive compatibility constraints (14) to be satisfied:

U(αi, αi) ≥ U(αi, αi−1) for all i = 2, · · · , I

U(αi−1, αi−1) ≥ U(αi−1, αi) for all i = 2, · · · , I.
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Table 6: Deviation from Diamond-Saez formula

Prod. Percentile 0.01 0.1 1 25 50 75 99 99.9 99.99

A(α)B(α)− T ′(y(a))
1−T ′(y(α)) 0.0006 0.0006 0.0006 0.0007 0.0008 0.0010 0.0019 0.0022 0.0018

We then solve for the allocation exactly at each grid point. Specifically, we use forward iteration

(forward from α1 to αI) to search for an allocation that satisfies all the first-order conditions, the

incentive constraints above, and the resource constraint (13). Finally, we confirm that before-tax

income is nondecreasing in wages, concluding that the resulting allocation is optimal given that

our utility function exhibits the single-crossing property. Note that we never assume that the

upward incentive constraints are slack, because their slackness is not guaranteed for any economy

with I > 2. In our baseline economy, some upward incentive constraints are indeed binding at the

bottom of the α distribution, which results in bunching.

This computational method contrasts with the typical approach in the literature that looks

for approximate marginal tax rate schedules that satisfy the Diamond-Saez formula (the social

planner’s first-order condition), which implicitly defines the optimal tax schedule (see, e.g., the

appendix to Mankiw et al. (2009)). Since we do not iterate back and forth between candidate tax

schedules and agents’ best responses to those schedules, our method is much faster, especially when

the grid is very fine.

Table 6 shows that our numerical solution satisfies the Diamond-Saez formula (eq. 37) almost

exactly, even though (i) we have assumed a discrete distribution for α, while the formula assumes

a continuous distribution, and (ii) we have not used the formula directly for computation.

A.6 Diamond-Saez Formula

We now describe how the fiscal pressure intuition described in Section 6.3 meshes with the Diamond-

Saez formula. We first derive the Diamond-Saez formula for our economy. We then use a modified

version of the Diamond-Saez formula to discuss the factors that determine the shape of the optimal

marginal tax schedule.

Diamond-Saez Formula Reproducing the Mirrlees planner’s problem from eqs. (12-14), we

have
max

{c(α),y(α)}

∫
W (α)

[
c(α)1−γ

1−γ − Ω
1+σ

(
y(α)

exp(α)

)1+σ
]
dFα(α)

s.t. c(α)1−γ

1−γ − Ω
1+σ

(
y(α)

exp(α)

)1+σ
≥ c(α̃)1−γ

1−γ − Ω
1+σ

(
y(α̃)

exp(α)

)1+σ
for all α and α̃,∫

[y(α)− c(α)] dFα(α)−G ≥ 0.

The IC constraints state

U(α) ≡ c(α)1−γ

1− γ − Ω

1 + σ

(
y(α)

exp(α)

)1+σ

= max
α̃

c(α̃)1−γ

1− γ − Ω

1 + σ

(
y(α̃)

exp(α)

)1+σ

.
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Using the envelope condition:

c(α)−γc′(α)− Ω

exp([(1 + σ)α]
y(α)σy′(α) = 0,

we get

U ′(α) =
Ω

exp([(1 + σ)α]
y(α)1+σ.

Thus, we can reformulate the planner’s problem as follows:
max

{U(α),y(α)}

∫
W (α)U(α)dFα(α)

s.t. U ′(α) = Ω
exp([(1+σ)α]y(α)1+σ for all α,∫

[y(α)− c(α;U, y)] dFα(α)−G ≥ 0,

where c(α;U, y) is determined by U(α) = c(α)1−γ

1−γ − Ω
1+σ

(
y(α)

exp(α)

)1+σ
. Denoting by µ(α) and ζ the

corresponding multipliers, we then set up a Hamiltonian with U as the state and y as the control:

H ≡ {W (α)U(α) + ζ [y(α)− c(α;U, y)−G]} fα(α) + µ(α)
Ω

exp([(1 + σ)α]
y(α)1+σ,

where fα is the derivative of Fα. By optimal control, the following equations must hold
0 = ζ [1− c(α)γΩ exp(−(1 + σ)α)y(α)σ] fα(α) + µ(α) Ω(1+σ)

exp([(1+σ)α]y(α)σ,

−µ′(α) = [W (α)− c(α)γζ] fα(α),

µ(0) = µ(∞) = 0.

(35)

Integrating the second equation over α and using µ(∞) = 0, we solve for the costate:

µ(α) =

∫ ∞
α

[W (s)− c(s)γζ] dFα(s).

Using µ(0) = 0, we also get the expression for ζ:

ζ =

∫
W (s)dFα(s)∫
c(s)γdFα(s)

=
1∫

c(s)γdFα(s)
.

We now consider the decentralization via income taxes (see Section 3.2). Using the FOC (15),

the first equation in (35) can be written as

0 = ζT ′ (y(α)) fα(α) + µ(α)
[
1− T ′ (y(α))

]
c(α)−γ (1 + σ) ,
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where T ′ is the marginal tax rate. Rearranging terms, we obtain

T ′ (y(α))

1− T ′ (y(α))
= (1 + σ)

1− Fα(α)

fα(α)

∫ ∞
α

[
1− W (s)c(s)−γ

ζ

]
c(α)−γ

c(s)−γ
dFα(s)

1− Fα(α)
,

where ζ =
1∫

c(s)γdFα(s)
.

Assuming the social welfare function in eq. (16) and imposing logarithmic preferences in consump-

tion, we finally get the Diamond-Saez formula for our economy:

T ′(y(α))

1− T ′(y(α))
= (1 + σ)

1− Fα(α)

fα(α)

∫ ∞
α

[
1− exp(−sθ) · C

c(s)

]
c(s)

c(α)

dFα(s)

1− Fα(α)
, (36)

where C denotes aggregate (and average) consumption.

Discussion After some straightforward algebra, eq. (36) can be rewritten as

T ′(y(α))

1− T ′(y(α))
= A(α)×B(α), (37)

where A(α) = (1 + σ)× 1− Fα(α)

fα(α)
,

B(α) = Fa(α)× E [c(α̃)|α̃≥α]− E [c(α̃)|α̃<α]

c(α)
.

The two terms labelled A(α) and B(α) (as in Saez 2001) can be used to discuss the factors that

determine the shape of the optimal marginal tax schedule. In the following we interpret these

terms, taking the exercise varying government expenditure levels as an example. See Section 6.3.1

for more detail.

The first component of the A(α) term, (1 + σ), indicates that the more elastic is labor supply,

the lower are optimal marginal tax rates, all else equal. The second component of the A(α) term

is the ratio of fraction of households more productive than α relative to the density at α. Marginal

rates should be high in regions of the productivity distribution where this ratio is high, so that

there are lots of more productive agents who will pay extra taxes, but relatively few whose labor

supply will be directly distorted by higher rates at the margin. This explains the convexity in the

optimal tax schedule described in Section 6.3.1. While the components of the A(α) term are easy

to interpret, since they involve only structural primitives of the model, they cannot explain the

differential marginal tax profiles corresponding to different values for G, since the A(α) term is

independent of G.

Instead the way changes in G show up in the right-hand side of the Diamond-Saez formula is in

the B(α) term, which indicates a relationship between optimal marginal tax rates and the shape

of the consumption distribution. In particular, this term indicates that marginal rates should be

low when the particular measure of consumption inequality defined by B(α) is low. With this

observation in hand, the consumption schedules in Panel A of Figure 9 and the marginal tax
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Table 7: Optimal Tax and Transfer System with Log-Normal Wage Distribution

Tax System Tax Parameters Outcomes

ω (%) ∆Y (%) T ′ Tr/Y

HSVUS λ : 0.836 τ : 0.161 − − 0.319 0.017

HSV∗ λ : 0.813 τ : 0.285 0.88 −5.20 0.427 0.048

Affine τ0 : −0.230 τ1 : 0.451 2.19 −6.01 0.451 0.242

Mirrlees 2.28 −5.74 0.443 0.254

schedules in Panel C are mutually consistent when viewed through the lens of eq. (37). From the

Figure it is clear that when G is low, this measure of consumption inequality is relatively low at

low productivity values – because generous lump-sum transfers offer a decent consumption floor

– which is consistent with low marginal tax rates at low income levels. Conversely, when G is

high and optimal transfers are smaller, there is more consumption inequality at the bottom of the

productivity distribution (a higher B(α)) which is consistent, via eq. (37), with higher optimal

marginal tax rates.

While this discussion illustrates that the Diamond-Saez equation (37) and the plots in Figure

9 are mutually consistent, it does not quite get to the bottom of why the optimal consumption

allocation looks the way it does. In particular, the B(α) term, that is the critical factor for

interpreting the optimal tax schedule, involves the distribution of consumption, which is obviously

endogenous to the tax system. The only reason that the consumption distribution – and thus the

B(α) term – varies with G is because the optimal tax schedule itself varies with G. We thus conclude

that while the Diamond-Saez formula is useful, it offers limited intuition about the fundamental

drivers of the shape of the optimal tax schedule.

A.7 Log-Normal Wage Distribution

Table 7 presents results when we counter-factually assume a log-normal wage distribution.

Our finding that the shape of the empirical wage distribution is an important driver of the shape

of the optimal tax function is not new. Saez (2001) notes that the government should apply high

marginal rates at income levels where the density of taxpayers is low – so that the marginal labor

supply choices of relatively few households are distorted – but where the fraction of income earned

by higher income taxpayers is high – so that higher marginal rates generate significant additional

revenue.

The left panel of Figure 11 plots the ratio of the complementary CDF for household income

relative to the income-weighted density for (i) the baseline model (in which the α distribution is

EMG) and (ii) the log-normal alternative. The ratio declines monotonically with income in the

log-normal case, since the mass of income earned by higher income households declines rapidly with

income. This weakens the planner’s incentive to impose high marginal tax rates at high income

61



0 2 4 6 8
0

0.2

0.4

0.6

0.8

1
C
o
effi

ci
en
t

1
−
F
(y

)
y
·f
(y

)

Income (y)

 

 
Baseline: Pareto Log−Normal
Log−Normal

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ar

gi
na

l T
ax

 R
at

e

Income (y)

Figure 11: Log-Normal versus Pareto Log-Normal Wage Distribution. The left panel plots the ratios
of the complementary CDF for household income relative to the income-weighted density. The right
panel plots the profiles of optimal marginal tax rates. The plots are truncated at eight times average
income.

levels. In the Pareto log-normal case, in contrast, the same ratio stabilizes as the Pareto tail kicks

in. Thus, the temptation to impose high marginal tax rates to raise revenue at high income levels

remains strong relative to the associated distortion.

This discussion illuminates the profiles of optimal marginal tax rates for the same two distri-

butional assumptions, shown in the right panel of Figure 11. The baseline specification exhibits a

general upward-sloping profile for marginal rates that obviously cannot be replicated by an affine

tax system. With a normal distribution for α (given the baseline value for θ), the optimal tax

schedule is much flatter, and not surprisingly, an affine schedule can now deliver nearly the same

value to the planner.

A.8 Results from Extensions to Richer Tax Structures

With polynomial tax systems, the households’ first-order conditions are not sufficient in general.

However, it is possible to prove that marginal utility is decreasing in income at sufficiently high

income levels. Hence, for a given tax system, equilibrium allocations can be found by evaluating

all roots of the household first-order necessary conditions in the range [0, y] with y sufficiently

large. For both the quadratic and cubic polynomial cases we search for the optimal tax function

coefficients using the Nelder-Mead simplex method. We check that the social welfare maximizing

policy is independent of the initial set of tax parameters used to start the search process. Table 8

presents outcomes for the best policies in the quadratic and cubic classes.

With the quadratic function, marginal tax rates are increasing in income (τ2 > 0) – the key

property of the optimal tax schedule. Relative to the affine case, the linear coefficient τ1 is reduced,
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Table 8: Polynomial Tax Functions

Tax System and Tax Parameters Outcomes

ω (%) ∆Y (%) T ′ Tr/Y

Baseline HSV

λ : 0.839 τ : 0.161 − − 0.319 0.018

Polynomial

τ0 τ1 τ2 τ3

Proportional − 0.177 − − −5.25 6.03 0.177 −0.009

Affine −0.259 0.492 − − 1.77 −8.00 0.492 0.279

Quadratic −0.236 0.439 0.014 − 2.21 −8.01 0.492 0.254

Cubic −0.212 0.370 0.049 −0.002 2.40 −8.01 0.491 0.228

Mirrlees 2.48 −7.99 0.491 0.213

and lump-sum transfers τ0 are also smaller. Thus, the planner relies more heavily on increasing

marginal tax rates, rather than lump-sum transfers, as the primary tool for redistribution. Under

the cubic system, the linear coefficient and lump-sum transfers are reduced still further, whereas

the quadratic coefficient τ2 is larger, so that marginal tax rates now rise more rapidly at low income

levels. The cubic coefficient τ3 is negative.

Figure 12 is the analogue to Figure 4 for the cubic tax function. The top panels show that

allocations under the cubic policy are generally close to the constrained efficient Mirrlees solution.

In particular, for intermediate values for productivity (where the vast majority of households are

concentrated), marginal and average tax rates are very similar to those implied by the Mirrlees

solution. This explains why the cubic system comes very close, in welfare terms, to the Mirrlees

solution.

Table 9 describes optimal type-contingent tax functions and the associated outcomes. The sub-

scripts H and L correspond to tax schedule parameters for the κHigh and κLow types, respectively.

By implementing type-contingent tax systems, the Ramsey planner achieves welfare gains that

nearly match those under the Mirrlees planner. Under an affine system, the high κ type faces a

double whammy, paying higher marginal tax rates than the low type (τH1 > τL1 ) and paying lump-

sum taxes rather than receiving transfers (τH0 > 0 > τL0 ). Higher marginal rates are an effective

way for the planner to redistribute from the high to the low type (recall that κ enters the level

wage multiplicatively), whereas the wealth effect associated with lump-sum taxes ensures that high

κ households still work relatively hard.
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Figure 12: Cubic Tax Function. The figure contrasts allocations under the best-in-class cubic and
Mirrlees tax systems. The top panels plot decision rules for consumption and hours worked, and the
bottom panels plot marginal and average tax schedules. The plot for hours worked is for an agent with
average ε.

Table 9: Type-Contingent Taxes

Tax System Outcomes

ω (%) ∆Y (%) T ′ Tr/Y

HSVUS λ : 0.834 τ : 0.161 − − 0.319
0.015

0.020

HSV∗
λL : 1.069

λH : 0.595

τL : 0.480

τH : 0.073
6.21 −2.80 0.416

0.147

−0.019

Affine
τL0 : −0.403

τH0 : −0.032

τL1 : 0.345

τH1 : 0.452
6.15 −2.53 0.421

0.420

0.008

Mirrlees 6.54 −2.53 0.418
0.368

0.007
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