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1 Introduction

Is the US economy heading towards a lost decade of productivity growth? It has been widely

documented that the recovery from the 2008 Great Recession has been unusually slow, in spite

of significant debt-financed government stimulus programs. At the same time, average annual

productivity growth since 2011 has been a mere 1.1%, not even half the roughly 2.5% average

which boosted growth and welfare in the US since 1948. As pointed out recently by Prescott

and Ohanian (2014), projecting this low growth rate over the next ten years would suggest

an increase of US living standards by about 12% only, a figure reminiscent of the Japanese

post-1990 lost decade slump.

In this paper, we examine what the government can do to facilitate productivity growth

even when it is severely burdened by debt after a long lasting recession. Specifically, we fol-

low Ramsey and look for optimal tax and subsidy schemes in an environment in which growth

is driven and sustained by the entry of new innovative firms that facilitate the production of

output, in the spirit of Romer (1990). As in Lucas and Stokey (1983), the government needs to

find a sustainable way to finance stochastic expenditures with distortionary taxation. In con-

trast to Lucas and Stokey, the government uses both labor income and profits taxes to support

both exogenous unproductive expenditures and subsidies to production. The resulting tax

plan accounts for persistent exogenous shocks that can generate expansions and long-lasting

recessions.

Our framework captures a number of elements that we think are at the heart of the current

policy debate. In our stochastic environment, fiscally sustainable tax and subsidy schemes

need to be intimately tied to both short- and medium-term cycles, so that fiscal prescriptions

are allowed to vary both with current and projected growth. In order to relate to the current

economic context, consider a government facing elevated debt burden in the aftermath of a

great recession. Our analysis shows that such a situation restricts the set of feasible policies

that can stimulate growth when distortionary tax instruments affect endogenous innovation

prospects. Equivalently, fiscal tightness is associated with sluggish endogenous entry of inno-

vative firms and poor long-term growth. This result is broadly consistent with the empirical
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observation in Prescott and Ohanian (2014) about US business creation: the current annual

rate of new business creation is about 30 percent lower than it was at the beginning of the IT

revolution.

In our model, new business creation through innovation reflects prospects of monopolistic

rents after entry. Consistent with prior literature and many empirical studies, we allow for (i) a

congestion in business creation, so that innovation is effectively subject to decreasing returns to

scale, and (ii) a positive externality that makes business creation more efficient when the mass

of startups in the economy is larger. The mass of incumbent firms determines final output

jointly with labor input. In this simple economy, the endogenous growth rate thus reflects

three margins, namely i) labor input, ii) the scale of incumbent firms, and iii) entry of new

firms.

Given monopoly and externality distortions, as well as unproductive government expen-

ditures, even with access to lump-sum taxation, a benevolent planner needs additional instru-

ments to implement a first-best allocation. In the absence of lump-sum taxes, our Ramsey

planner, in turn, faces the much harder problem of using distortionary tax instruments, such

as labor and profit taxes, a production subsidy, as well as deficit financing, to implement a

constrained optimal allocation.

Our results emphasize the importance of profit taxes in the presence of congestion external-

ities at entry, even when the government has access to lump-sum taxation. In this case, while

the government can overcome monopolistic distortions by financing a production subsidy by

lump-sum taxation, innovators fail to take into account the externality, resulting in excessive

business creation. A profit tax restores the first-best allocation, featuring lower growth, but

higher consumption, and thus welfare.

Profit taxation is optimal also in the presence of distortionary labor taxes and production

subsidies. When restricting the governments tools to distortionary instruments, the second

best features lower average growth than the first best and comes with substantial welfare

losses relative to the first-best, no matter what the initial debt burden the government faces is.

Intriguingly, however, in our stochastic environment, the presence and nature of risk has sig-
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nificant implications for the dynamics of optimal tax rates and growth. For example, a higher

initial debt burden requires significantly more volatile tax rates, amplifying and propagating

cycles both at the shorter (business cycle) and the medium horizon. Notably, most of the wel-

fare losses from uncertainty are due to government expenditure risk. In the context of the

present debate, this suggests that optimizing innovation and growth may come at the cost of

endogenously higher risk.

Related Literature. Our work is a step towards bringing ideas of optimal taxation to bear

on the literature on innovation-based endogenous growth in the context of the recent current

debate.1 While both strands of literature are vast, few papers only recently started considering

optimal tax and subsidy scheme in the context of innovation, and ours is, to the best of our

knowledge, the first to emphasize the role of macroeconomic risk and risky innovation.

Recent work includes Akcigit et al. (2016), who develop a Mirrleesian approach to optimal

taxation in an estimated model with a rich firm heterogeneity. Aghion et al. (2013) revisit the

classical Chamley result about capital taxation in a Schumpeterian growth framework with

endogenous R&D, while Jones et al. (1993) consider Ramsey taxation in a deterministic model

in which growth results from investment in human capital. Atkeson and Burstein (2015) ex-

amine the medium term effects of changes in innovation policies across a variety of stationary

growth models with rich cross-sectional heterogeneity. Our work differs from these papers by

studying taxes and subsidies across cycles, in an environment with aggregate shocks.

Regarding optimal taxation in business cycle models, our work builds on the classic contri-

bution of Lucas and Stokey (1983), and the business cycle analysis in Chari et al. (1994). Chugh

and Ghironi (2010) examine Ramsey taxation in a model with endogenous product variety,

similar to Melitz et al. (2012), but abstract away from innovation and endogenous growth.

The important contribution of Stokey (1995) contrasts the efficient accumulation of varieties to

market outcomes. Karantounias (2013) analyzes optimal taxation and debt management with

recursive utility, whereas Ferrière and Karantounias (2016) examine the emergence of austerity
1See the seminal contribution of Comin and Gertler (2006), who build on Romer (1990), and studies like

Anzoategui et al. (2016) and Bianchi et al. (2016), who use this type of models to fit the data with Bayesian
methods.
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policies when there is ambiguity about the business cycle.

Our paper builds on Croce et al. (2011) and Croce et al. (2012), who examine the effects of

fiscal policy in an endogenous growth similar to the one considered here, but focus on risk-

sensitive fiscal rules, rather than the optimal schemes as in this paper.

2 Economy

Our model economy is based on a stochastic version of the economy of Romer (1990) with a

rich government sector. In contrast to exogenous growth models as Lucas and Stokey (1983),

growth is sustained through innovation in varieties of intermediate inputs.

Time is discrete and the horizon is infinite. The economy is populated by a representative

household that trades in complete asset markets with the government. Lump-sum taxes are

not available. We assume a complete tax system and allow three tax instruments to the govern-

ment: a labor tax, a purchase subsidy and a profit tax in order to be able to affect three margins

of interest: the labor supply margin, the intermediate input margin, and the profit margin that

determines new varieties.

There are two types of shocks in the economy, a productivity shock zt and a government

expenditure shock κt. Let ht ≡ (zt, κt) denote the shocks at t and let ht ≡ (h0, h1, ..., ht) de-

note the partial history of shocks up to t that occur with probability πt(ht). The conditional

expectation operator with respect to π is denoted Et. The initial realization of the shocks h0 is

known, so π0(h0) = 1.

2.1 Household

The household enjoys utility from consumption ct(ht), dislikes labor Lt(ht) and discounts the

future with discount factor β. The notation denotes that these variables are measurable func-

tions of the history ht. There is one unit of time available, so leisure is lt(ht) ≡ 1 − Lt(ht).

The household gets paid a wage rate wt(ht), pays linear labor income taxes at the rate τt(ht)

and buys shares of equity Zt(ht) at price Qt(ht), that provide dividends Dt(ht). The house-
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hold trades also Arrow securities at the price pt(ht+1, ht). This is the price at ht of a security

that gives one unit of consumption next period when the shock ht+1 realizes and zero oth-

erwise. The respective holdings are denoted as bt+1(ht+1). The corresponding price of an

Arrow-Debreu contract at t = 0 is qt(ht) with the normalization q0 ≡ 1.

The problem of the household is to choose {ct(ht), Lt(ht), bt+1(ht+1), Zt(ht)}t,ht to maxi-

mize

∞

∑
t=0

βt ∑
ht

πt(ht)u(ct(ht), 1− Lt(ht))

subject to

ct(ht) + ∑
ht+1

pt(ht+1, ht)bt+1(ht+1) + Qt(ht)Zt(ht) ≤ (1− τt(ht))wt(ht)Lt(ht)

+(Qt(ht) + Dt(ht))Zt−1(ht−1) + bt(ht),

the non-negativity and feasibility constraints ct(ht), Zt(ht) ≥ 0, Lt(ht) ∈ [0, 1], given an ini-

tial level of debt or assets b0 and initial equity shares Z−1 = 1. The period utility function u is

assumed to be consistent with balanced growth restrictions. For the problem of the household

to be well-defined, we need also the no-Ponzi-game condition

lim
t→∞ ∑

ht

qt(ht)
[
Qt(ht)Zt(ht) + ∑

ht+1

pt(ht+1, ht)bt+1(ht+1)
]
≥ 0. (1)

The household is also subject to the no-arbitrage condition between Arrow securities and

equity2

2This condition will be also derived as a first-order condition of the household.
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Qt(ht) = ∑
ht+1

pt(ht+1, ht)(Qt+1(ht+1) + Dt+1(ht+1)). (2)

2.2 Production

The production side of the economy consists of three sectors; a competitive final good sector,

a monopolistic intermediate input sector and a competitive R&D sector.

Final good. The final good Yt(ht) is produced by labor Lt(ht) and a continuum of interme-

diate input varieties i ∈ [0, At(ht−1)]. At denotes the mass of varieties of inputs and is known

one period in advance. The respective amount of input i is denoted by Xt(i, ht). The produc-

tion function of the final good takes the form

Yt(ht) = F(Lt, Xit, At) = ztLt(ht)1−α
∫ At(ht−1)

0
Xt(i, ht)αdi (3)

where α ∈ (0, 1) the share of intermediate inputs in the final good production. The production

function is constant returns to scale with respect to labor Lt and intermediate inputs Xit, which,

together with competitive factor pricing, leads to zero profits. The price of intermediate inputs

is Pit. The purchase of intermediate inputs is subsidized at rate τx
t (h

t). The problem of the firm

is

max
Lt,Xit

Yt − wtLt −
∫ At

0
(1− τx

t )PitXitdi

Profit maximization leads to equalization of factor prices to marginal products:
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wt = FL ⇒ wt = (1− α)
Yt

Lt
(4)

(1− τx
t )Pit = Fi ⇒ Xit =

( αzt

(1− τx
t )Pit

) 1
1−α

Lt (5)

Condition (5), which determines the demand of intermediate inputs, implies an elasticity of

demand of 1/(1− α).

Intermediate good sector. Each technology for an intermediate input is operated by a mo-

nopolist that faces the demand function (5). The monopolist uses one unit of final good to

produce one unit of intermediate input Xit. His problem is to choose Pit to maximize profits

Πit = PitXit − Xit

subject to the demand function (5).

R&D sector. New varieties of intermediate inputs are created in the R&D sector. After devel-

oping a new variety, the innovators sell at the end of the period a patent on it at a competitive

market. From next period on, the patent can be used by a monopolist of the intermediate input

sector. Each new variety survives for sure the first period. After that, it becomes obsolete with

probability δ ∈ (0, 1) every period. Monopoly profits are taxed at rate τπ
t (ht). Under these

assumptions, the present value of the profits of the monopolist is

Vit = (1− τπ
t )Πit + (1− δ)EtΛt+1Vi,t+1, (6)

where Λt+1 the stochastic discount factor. Let 1/ϑt denote the cost of producing one new

variety in units of final good. The free-entry condition in the R&D sector equates this cost to
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the expected present value of profits,

1
ϑt

= EtΛt+1Vi,t+1. (7)

The free-entry condition (7) determines the growth rate in the economy by determining the

amount of investment in R& D. In particular, let St(ht) denote the amount of R&D investment

in units of the final good. Then, the mass of varieties evolves as

At+1(ht) = (1− δ)At(ht−1) + ϑt(ht)St(ht), (8)

where the initial mass of varieties A0 is given. The growth rate in this economy is given by

At+1/At.

We assume that the marginal rate of transformation ϑt depends on the research intensity

St/At, ϑt = ϑ(St/At). The individual innovators are small and do not take this type of de-

pendence into account, leading to an externality in the innovation process. In particular, we

assume that

ϑt = χ
( St

At

)η−1, η ∈ (0, 1). (9)

The parameter η captures the elasticity of new varieties with respect to R&D investment.

The formulation in (9) follows Comin and Gertler (2006), and captures two elements: nega-

tive congestion externalities in the R&D sector (∂ϑ/∂S < 0) and positive spillover externalities

coming from an increase in the mass of varieties, (∂ϑ/∂A > 0). These externalities are shut off

when η = 1, which implies a constant marginal rate of transformation, ϑ = χ.
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2.3 Government, stock market and equilibrium

Government. We assume that government expenditures grow at the same rate as varieties

and set gt(ht) = κt At(ht−1), in order to have a balanced growth path where government

expenditures are relevant. Thus, κt is the fiscal shock in the stationary version of our economy.

The government issues state-contingent debt and uses three instruments, the labor tax τt, the

input purchase subsidy τx
t and the profit tax τπ

t . The dynamic government budget constraint

reads

bt(ht) = τt(ht)wt(ht)Lt(ht) + τπ
t (ht)

∫ At

0
Πitdi− τx

t (h
t)
∫ At

0
PitXitdi− gt

+ ∑
ht+1

pt(ht+1, ht)bt+1(ht+1). (10)

Stock market. We close the model by specifying aggregate dividends. We assume that the

stock market values all production sectors, and therefore aggregate dividends are equal to the

the aggregate after-tax profits of the intermediate input sector, minus investment in R&D,

Dt(ht) = (1− τπ
t (ht))

∫ At

0
Πitdi− St(ht). (11)

Market equilibrium. The definition of equilibrium is standard. The equilibrium consists of a

government policy {τ, τx, τπ, b, g}, an allocation {c, L, S, Xi,i∈[0,A], b, Z}, prices {p, w, Pi,i∈[0,A], Q},

dividends {D}, and a mass of varieties {A} such that: 1) Given prices {p, w, Q}, dividends

{D} and government policy {τ}, {c, L, b, Z} solves the household’s problem 2) Given {w, Pi,i∈[0,A]}

and subsidies {τx} the final good firm maximizes profits 3) Given subsidies {τx} and profit

taxes {τπ}, the monopolist sets prices Pi to maximize profits 4) The free-entry condition (7)

holds, varieties accumulate according to (8) and aggregate dividends satisfy (11) 5) Prices and

government policy are such that the resource and the government budget constraint (10) hold
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and the equity market clears, Zt(ht) = 1, ∀t, ht. The resource constraint reads

ct(ht) +
∫ At(ht−1)

0
Xt(i, ht)di + St(ht) + gt(ht) = Yt(ht) (12)

2.4 Analysis of market equilibrium

Optimality conditions of household. The labor supply decision is governed by the typical

equalization of the marginal rate of substitution of consumption and leisure to the after-tax

wage,

ul(ht)

uc(ht)
= (1− τt(ht))wt(ht) (13)

The respective demand for labor is determined by (4), which equates the wage to the

marginal product of labor, wt = FL. The first-order condition with respect to Arrow securities

and equity are

pt(ht+1, ht) = βπt+1(ht+1|ht)
uc(ht+1)

uc(ht)
(14)

Qt(ht) = β ∑
ht+1

πt+1(ht+1|ht)
uc(ht+1)

uc(ht)

[
Qt+1(ht+1) + Dt+1(ht+1)

]
, (15)

which imply the no-arbitrage condition (2) and the standard stochastic discount factor for

time-additive expected utility, Λt+1 ≡ β
uc,t+1

uct
.

Equilibrium production. Due to the constant demand elasticity, each monopolist charges a

price that is a constant markup over the unitary marginal cost, Pit = P∗ = 1
α > 1∀i. Since the

optimal price and the subsidy do not depend on i, the equilibrium intermediate inputs and

profits are the same for each variety,
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Xit = Xt =
( αzt

P∗(1− τx
t )

) 1
1−α

Lt∀i (16)

Πit = Π∗t = (P∗ − 1)Xt (17)

The resource constraint simplifies to

ct + St + AtXt + gt = Yt (18)

where gross output becomes Yt = zt AtL1−α
t Xα

t . We can express output as a linear function

of labor, and total intermediate inputs as function of output,

Yt =

(
α

P∗(1− τx
t )

) α
1−α

z
1

1−α
t AtLt (19)

AtXt =
αYt

(1− τx
t )P∗

(20)

Surplus. Using (20) we get the following relationships for aggregate profits and aggregate

subsidies Tx
t ,

AtΠt =
P∗ − 1

(1− τx
t )P∗

αYt (21)

Tx
t = τx

t AtP∗Xt =
τx

t
1− τx

t
αYt (22)

Using (4) and (21-22), allows us to write the government surplus as

St ≡ τtwtLt + τπ
t AtΠt − Tx

t − gt =
[
(1− α)τt + τπ

t
P∗ − 1

(1− τx
t )P∗

α− τx
t

1− τx
t

α
]
Yt − gt. (23)
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Growth and R&D returns. We have Vit = Vt, ∀i. Use (6) and (7) in order to express the

present value of profits as

Vt = (1− τπ
t )Πt +

1− δ

ϑt

By updating the above relationship one period (i.e. by taking into account that in the future

the present value of profits will be equal to the cost of new varieties) we can rewrite the free-

entry condition as a condition that prices returns to R&D:

1 = EtΛt+1RRD
t+1, (24)

where

RRD
t+1 ≡

ϑt

ϑt+1

[
1− δ + ϑt+1(1− τπ

t+1)Πt+1
]

(25)

the return on R&D.3

3 First-best problem

The first-best entails three margins: the labor supply margin, the intermediate input margin

and the new variety margin that determines the growth rate in the economy.

Problem 1. The first-best problem is to choose {ct(ht), Lt(ht), Xt(i, ht), St(ht), At+1(ht)}t,ht to max-

imize
3Equivalent definitions of the return are RRD

t+1 = Vt+1
ϑ−1

t
= (1−δ)Vt+1

Vt−(1−τπ
t )Πt

.
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∞

∑
t=0

βt ∑
ht

πt(ht)u(ct(ht), 1− Lt(ht))

subject to the resource constraint (12) and the law of motion (8), given (h0, A0).

3.1 Labor supply and intermediate inputs

Labor supply margin. At the first-best we get the standard intratemporal efficiency condi-

tion that equalizes the marginal rate of substitution of consumption and leisure to the marginal

product of labor,

ul
uc

= FL = (1− α)
Yt

Lt
(26)

In the market equilibrium instead we have distortionary labor taxation.

Intermediate input margin. The second margin is that intermediate inputs have to be em-

ployed up so that their marginal product is equal to their marginal cost, which is unity,

Fi = 1, ∀i (27)

This leads to the same use of inputs across i andXt = (αzt)
1

1−α Lt, Yt = α
α

1−α z
1

1−α
t AtLt. Note

furthermore that AtXt = αYt, thus the net output that goes to private consumption, govern-

ment consumption and R&D investment is (1− α)Yt.

Condition (27) contrasts to the market condition Fi = (1 − τx
t )P∗. Assume for example

that there are no subsidies, τx
t = 0. Then, Fi = P∗ = 1/α > 1. Thus, monopoly power leads

to a high price and therefore to limited demand of intermediate input Xt and therefore to a

marginal product of input i that is too high. This is the main source of inefficiency in models

of endogenous growth à la Romer (1990).

14



3.2 Optimal growth

The third margin that characterizes the first-best is involving R&D investment and the optimal

expansion of varieties. Let λt denote the multiplier on the resource constraint and µt the

multiplier on the law of motion of varieties. The first-order condition with respect to St(ht),

takes the form

λt = µtϑt(1− εt), (28)

where εt ≡ −ϑ′t
ϑt

St
At

> 0 denotes the elasticity of cost with respect to research intensity. The

larger it is, the more costly it is to produce one additional variety. The optimality condition

(28) shows that the shadow value of St has to be adjusted downwards in comparison to the

shadow value of the final good, which is equal to the marginal utility of consumption, λt = uct,

due to the negative effect of an increase in research intensity. For the power specification in (9)

we have εt = 1− η, so λt = ηµtϑt.

The optimality condition with respect to the mass of varieties At+1 takes the form

µt = βEtλt+1

[ Yt+1

At+1
− Xt+1 − κt+1

]
︸ ︷︷ ︸
net benefit of a new variety

+ βEtµt+1[1− δ + ϑt+1(1− η)
St+1

At+1︸ ︷︷ ︸
increase in ϑ due to increase in At+1

] (29)

Inventing a new variety has a benefit in terms of final good produced, Yt/At, and a cost

in terms of the amount Xt that is used in the production of the final output and in terms

of wasteful government expenditures κt. This net benefit is captured by the first-term in the

right-hand side. The second term in the right-hand side captures the probability that this new

variety will survive next period, together with the positive spillover effect of new varieties.

Use (28) and the fact that λt = uct to finally get

1 = βEt
uc,t+1

uct
Rsoc

t+1, (30)
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where

Rsoc
t+1 ≡

ϑt

ϑt+1

[
1− δ + ϑt+1

{
η(

Yt+1

At+1
− Xt+1 − κt+1) + (1− η)

St+1

At+1

}]
. (31)

Contrast (30) with the market free-entry condition that prices returns to R&D (24). The

discrepancies come from three differences in the private return to R&D, RRD
t+1, from the social

return to R&D, Rsoc
t+1. First, the planner is considering a weighted average of the net benefit of

a new variety and the cost reduction that this implies, due to the positive spillovers. In the

calculation of the net benefit, the planner is taking into account that is costly to convert final

goods to new varieties due to the congestion externalities. Both the congestion externality and

the positive spillovers are not taken into account at the market equilibrium. Second, at the

market equilibrium agents do not take into account that an expansion in varieties increases

also government expenditures, which are a negative wealth shock to the economy since they

provide no utility. Third, the market condition depends on after-tax profits of a new variety,

which are not necessarily the same as the output benefit of a new variety Yt/At − Xt.

By correcting the monopoly distortion through a subsidy and setting the profit tax in such a

way so that the private and social returns to R&D are equated, we can implement the first-best

allocation as a market equilibrium.

Proposition 1. The first-best allocation can be implemented as a market equilibrium with lump-sum

taxes, a purchase subsidy τx
t = 1− α (⇒ (1− τx

t )P∗ = 1), and a profit tax that equates the social

return Rsoc to the private return RRD

τπ
t = η

gt

(1− α)Yt
+ (1− η)

[
1− St

(1− α)Yt

]
(32)

Proof. Set the profit tax so that RRD
t = Rsoc

t . This implies that

(1− τπ
t )Πt = η(

Yt

At
− Xt − κt) + (1− η)

St

At
.
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Use now the fact that under the optimal subsidy we have Πt = Yt/At − Xt = (1− α)Yt/At,

simplify and rearrange to get (32).

The profit tax that implements the first-best (32) corrects for excessive growth in the market

equilibrium coming from wasteful government expenditures and the congestion externalities

(that dominate the positive spillovers). It is a weighted average of the share of government

expenditures in net output and the share of private and government consumption in net out-

put (since 1− St
(1−α)Yt

= ct
(1−α)Yt

+ gt
(1−α)Yt

). When there are no government expenditures and

no externalities, gt = 0, η = 1, the profit tax is not necessary and just correcting the static

monopoly distortion is sufficient to achieve the first-best.

4 Optimal fiscal policy

In contrast to the previous section, we will now assume away lump-sum taxes and analyze

the second-best problem of a Ramsey planner that maximizes the utility of the representative

household under commitment. We follow the primal approach of Lucas and Stokey (1983)

and simplify the optimality conditions of the market equilibrium by eliminating prices and

tax rates whenever possible.

4.1 Implementability constraints

Condition (1) holds with equality in equilibrium. Use this fact together with the no-arbitrage

condition (2) and the initial condition Z−1 = 1 to get the household’s intertemporal budget

constraint,

∞

∑
t=0

∑
ht

qt(ht)
(
ct(ht)− (1− τt(ht))wt(ht)Lt(ht)

)
= b0 + Q0 + D0

We can replace Q0 with the present value of dividends. Solve (2) forward and impose the

asymptotic condition limt→∞ ∑ht qt(ht)Qt(ht) = 0 to get
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Q0 + D0 =
∞

∑
t=0

∑
ht

qt(ht)Dt(ht).

Therefore the household’s budget constraint in equilibrium can be written as

∞

∑
t=0

∑
ht

qt(ht)
(
ct(ht)− (1− τt(ht))wt(ht)Lt(ht)− Dt(ht)

)
= b0.

Note that the term in the parenthesis, i.e. consumption minus after-tax labor income minus

aggregate dividends is equal in equilibrium to the government surplus St, a fact which makes

redundant the government budget constraint in equilibrium. Use now the fact that Arrow-

Debreu prices are qt = βtπt
uct
uc0

and (13) to eliminate prices and after-tax wages and get the

implementability constraint

∞

∑
t=0

∑
ht

βtπt(ht)
(

uc(ht)ct(ht)− ul(ht)Lt(ht)− uc(ht)[At(ht−1)(1− τπ
t (ht))Πt(ht)− St(ht)]

)
= uc0b0.(33)

In formulating the Ramsey problem, we have to take into account the present value of prof-

its Vt and the free-entry condition (7). However, we can eliminate Vt from the constraints and

use only the period-by-period condition (24). There is no information lost by this substitution.

Furthermore, without loss of generality, we are going to assume that the profit tax is known

one period in advance, so τπ
t+1 = τπ

t+1(h
t). The initial profit tax τπ

0 acts as lump-sum tax and is

given.

4.2 Ramsey problem

Problem 2. The Ramsey planner chooses {ct(ht), Lt(ht), St(ht), At+1(ht), Yt(ht), Lt(ht), τx
t (h

t), τπ
t+1(h

t)}t,ht

to maximize
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∞

∑
t=0

βt ∑
ht

πt(ht)u(ct(ht), 1− Lt(ht))

subject to

∞

∑
t=0

∑
ht

βtπt(ht)
[
uc(ht)ct(ht)− ul(ht)Lt(ht)

−uc(ht)
(

At(ht−1)(1− τπ
t (ht−1))(P∗ − 1)Xt(ht)− St(ht)

)]
= uc(h0)b0 (34)

ct(ht) + At(ht−1)Xt(ht) + St(ht) + κt At(ht−1) = Yt(ht) (35)

At+1(ht) = ϑ(
St(ht)

At(ht−1)
)St(ht) + (1− δ)At(ht−1) (36)

uc(ct(ht), 1− Lt(ht)) = β ∑
ht+1

πt+1(ht+1|ht)uc(ct+1(ht+1), 1− Lt+1(ht+1))

·ϑ
( St(ht)

At(ht−1)

)[
(1− τπ

t+1(h
t))(P∗ − 1)Xt+1(ht+1) +

1− δ

ϑ
(St+1(ht+1)

At+1(ht)

)] (37)

where Xt and Yt are given by the formulas (16) and (19) respectively, and (h0, b0, A0, τπ
0 ) given.

The planner faces as constraints the intertemporal budget constraint of the household (34),

the resource constraint (35), the law of motion of the mass of varieties (36), and the pricing

equation (37) that we derived from the free-entry condition at the R&D sector. The endogenous

growth elements show up as aggregate dividends (in 34), the law of motion (36) and especially

the forward-looking condition (37).

5 Ramsey analysis

Assign multipliers Φ on the implementability constraint (34), βtπt(ht)λt(ht) on the resource

constraint (35), βtπt(ht)µt(ht) on the law of motion (36), and βtπt(ht)ρt(ht) on the pricing

equation of R&D returns (37). The initial condition on the multiplier on the forward-looking

constraint is zero, ρ−1 ≡ 0, because the Ramsey planner is not constrained by any past
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promises at t = 0.

5.1 Profit tax

Consider first the optimality condition with respect to the profit tax τπ
t . This takes the form

Φ︸︷︷︸
MB of relaxing the budget

=
ρt−1ϑt−1

At︸ ︷︷ ︸
MC of reducing profits

, t ≥ 1 (38)

Equation (38) has a marginal benefit and marginal cost interpretation. An increase in tax rev-

enues from profits relaxes the government budget constraint, which has shadow value Φ > 0

at the second-best. This marginal benefit is equated to the marginal cost of profit taxation: an

increase in profit taxes reduces the expected discounted profits at t− 1 and reduces entry. This

is captured by the shadow value of free-entry condition (24) at t− 1, ρt−1.

The first-best is captured by Φ = ρt = 0, ∀t. Condition (38) makes clear also why we take

as given the profit tax at t = 0. A planner that chose τπ
0 would face only the marginal benefit

of relaxing the government budget and no marginal cost, since there are no past promises to

abide to, ρ−1 = 0. Thus, the profit tax would act as a lump-sum tax and, if the tax base is

sufficiently large, we would achieve the first-best, Φ = 0.

5.2 Optimal subsidy

Consider now the optimal subsidy for t ≥ 0. The optimality condition takes the form

∂Yt

∂τx
t
− At

∂Xt

∂τx
t︸ ︷︷ ︸

net output benefit

= [ΦAt − ρt−1ϑt−1]
uct

λt
(1− τπ

t )(P∗ − 1)
∂X
∂τx

t
(39)

The left-hand side denotes the net output effect of a subsidy to the production of the final

good by subsidizing the purchase of intermediate inputs. This would be the only relevant
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margin in the first-best. Subsidies though are costly at the second-best because they have to be

financed by distortionary taxation, but they can be beneficial because they increase the present

value of profits and increase entry. These marginal costs and benefits are at the right-hand side

of (39) and are equal to zero for t ≥ 1, as we saw from the analysis of the profit tax. Thus, we

get

Proposition 2. Assume the availability of a profit tax to the Ramsey planner. Then

1. The optimal subsidy of the Ramsey problem for t ≥ 1 corrects only the monopolist distortion,

τx
t = 1− α, t ≥ 1.

2. When τx
t = 1− α, aggregate subsidies, profits and labor income are equal to net output,

Tx
t = AtΠt = wtLt = Yt − AtXt = (1− α)Yt

Proof. Note that ∂Yt
∂τx

t
= αYt

1−α (1− τx
t )
−1 and ∂Xt

∂τx
t
= Xt

1−α (1− τx
t )
−1. Thus, the net output benefit

is (1−τx
t )
−1

1−α [αYt − AtXt] = 0. Thus, aggregate inputs are AtXt = αYt, which by (20) implies that

(1− τx
t )P∗ = 1. Under the optimal subsidy, equations (21) and (22) deliver the second part of

the proposition.

Proposition 2 brings to mind the production efficiency results of Diamond and Mirrlees

(1971). Note the importance of a complete tax system. In the absence of a way to affect the

profit margin, (38) would not hold. Then it easy to see that if the shadow cost of financing the

subsidy is larger (smaller) than the benefit of increasing entry, Φ > (<)ρt−1ϑt−1/At, then the

subsidy is smaller (larger) than at the first-best, τx
t < (>)1− α.

5.3 Optimal labor tax

Let consumption minus after-tax labor income in marginal utility terms be denoted as

Ω(c, L) ≡ uc(c, 1− L)c− ul(c, 1− L)L. (40)
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The first-order condition with respect to ct, t ≥ 1 is

uct + ΦΩct︸ ︷︷ ︸
effect on net consumption

− ucct
[
ΦDt + ρt − ρt−1RRD

t
]︸ ︷︷ ︸

devaluation of Dt and effect on (24)

= λt. (41)

An increase in consumption has the following effects. First, it increases utility, uc > 0. Sec-

ond, it has an effect on the government surplus, by affecting consumption net of after-tax la-

bor income and by devaluing dividends in marginal utility units. Third, it decreases marginal

utility and therefore the way how the period return of a patent is priced in (24). A decrease in

marginal utility has two effects: it increases the valuation of next periods profits and return,

(which is captured by ρt) and it decreases the valuation of current period’s return RRD
t at the

previous period, captured by ρt−1. This is a problem under commitment, i.e. the planner has

to respect its past promises of marginal utility, as captured by their shadow value (ρt−1). How-

ever, the total effect of dividend devaluation and manipulating the forward-looking equation

(24) is zero, due again to the availability of the profit tax.

Lemma 1. Assume the availability of a profit tax to the Ramsey planner. Then,

1. The change in the shadow value of the pricing equation ρt (adjusted by the surviving mass of

varieties) is

ρt − ρt−1
ϑt−1

ϑt
(1− δ) = ΦSt, t ≥ 1 (42)

2. The total effect of changing the value of dividends and the present value of profits is zero,

ΦDt + ρt − ρt−1RRD
t = 0, t ≥ 1 (43)

Proof. See Appendix.
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Using lemma 1 leads to

uct + ΦΩct = λt, (44)

which is actually the same optimality condition as in an economy with exogenous growth.

Similar interpretations hold for the first-order condition with respect to labor for t ≥ 1:

ult − ΦΩLt︸ ︷︷ ︸
effect on net consumption

− uclt
[
ΦDt + ρt − ρt−1RRD

t
]︸ ︷︷ ︸

zero due to lemma 1

+ (ΦAt − ρt−1ϑt−1)︸ ︷︷ ︸
zero due to (38)

uct(1− τπ
t )

Πt

Lt

= λt
[Yt

Lt
− AtXt

Lt
]︸ ︷︷ ︸

net output benefit

,

which leads to

ult −ΦΩLt = λt
[Yt

Lt
− AtXt

Lt

]
. (45)

In comparison to the analysis of (41), there is an additional effect that comes from the

increase of profits due to an increase in labor. Higher profits tighten the government budget

but increase entry. When the profit tax is optimally chosen, these marginal costs and benefits

are equal though, leading to the simplified optimality condition (45). The above optimality

conditions allow us to derive an expression for the optimal labor tax.

Proposition 3. Assume the availability of a profit tax to the Ramsey planner. Then, the optimal labor

tax at t ≥ 1 is

τt =
Φ
(
εcc + εcL + εLL + εLc

)
1 + Φ(1 + εLL + εLc)

(46)

where εcc ≡ −uccc/uc, εcL ≡ ucl L/uc, εLL ≡ −ull L/ul, εLc ≡ uclc/ul own and cross elasticities
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of the marginal utility of consumption and the marginal disutility of labor.

Proof. See the Appendix.

Note that this formula is exactly the same as in the exogenous growth economies of Lucas

and Stokey (1983) and Chari et al. (1994). The optimal labor tax depends only on the multiplier

on the implementability constraint Φ, a measure of fiscal tightness, and the elasticities εij, i, j =

c, L. This is a strong result and depends, as the optimal subsidy result in proposition 2, on the

completeness of the tax system.

5.4 Optimal expansion of varieties and the profit tax

Consider now the optimality condition with respect to R&D investment St(ht), t ≥ 0:

λt = ηµtϑt + Φuct︸︷︷︸
effect on surplus

− (1− η)
uct

St
[ρt − ρt−1

ϑt−1

ϑt
(1− δ)]︸ ︷︷ ︸

effect on (24) through ϑt

. (47)

In comparison to the respective first-best equation (28) we have two new elements. An in-

crease in R&D investment relaxes the government budget (because it decreases aggregate div-

idends and therefore it increases the surplus). Furthermore, due to the sensitivity of marginal

rate of transformation ϑt to the research intensity, the current cost of entering the market is

affected. This affects both current entry and entry at t− 1, which is based on the expectation

of current profits. The last term in (47) captures these effects. Using lemma 1, we get

λt = ηµtϑt + ηΦuct, t ≥ 1. (48)

Having the relationship between the shadow value of investment in R&D and the shadow

value of output, allows ut to derive the optimal expansion of varieties prescribed by a Ramsey

planner.
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Proposition 4. (“Optimal growth at the second-best”) The optimal accumulation of varieties is gov-

erned by

1 = EtΛ?
t+1Rsoc

t+1, t ≥ 1 (49)

where Λ?
t+1 = βλt+1/λt, where λt the second-best multipliers on the resource constraint (44), and

Rsoc
t+1 the social return to a new variety, defined in (31).

Proof. See Appendix.

Note that the discrepancies at the new variety margin between the market equilibrium

(pricing condition (24)) and the Ramsey equilibrium (condition (49)) consist in pricing different

returns (RRD
t+1 versus Rsoc

t+1) and using different discount factors (Λt+1 versus Λ?
t+1). The Ram-

sey discount factor incorporates the effects of distortionary taxation whereas the stochastic

discount factor does not. The profit tax can capture both of these effects.

Proposition 5. (“Ramsey profit tax”) The profit tax is

τπ
t+1 =

Et(Λt+1 −Λ?
t+1)ϑ

−1
t+1

(
1− δ + ϑt+1Πt+1

)
EtΛt+1Πt+1

+
EtΛ?

t+1Πt+1
[
η

gt+1
(1−α)Yt+1

+ (1− η)(1− St+1
(1−α)Yt+1

)
]

EtΛt+1Πt+1
, t ≥ 1 (50)

The first term in (50) captures the effects of the lack of lump-sum taxes on taxing the in-

tertemporal margin, through the difference Λt+1 − Λ∗t+1, whereas the second term the dif-

ference between the private and social returns due to externalities and wasteful government

expenditures.4 The second term would be identically zero if η = 1 and gt ≡ 0.

The requirements for a balanced growth path place restrictions on the utility function u

and therefore on the Ramsey discount factor Λ?
t+1. Consider the following two classes of

preferences:

4The first term of the formula corresponds to the formula for capital taxation in environments with exogenous
growth, if we replace profits with the marginal product of capital. See Karantounias (2013) for details.
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Corollary. 1. Assume separable logarithmic preferences, u = lnc− v(L). Then,

Λt+1 = Λ?
t+1 = β

( ct+1

ct

)−1, ∀t ≥ 1

τπ
t+1 = Etζt+1

[
η

gt+1

(1− α)Yt+1
+ (1− η)(1− St+1

(1− α)Yt+1
)
]

with positive weights that integrate to unity, ζt+1 ≡ Λt+1Πt+1
EtΛt+1Πt+1

> 0.

2. Assume balanced growth preferences as in Chari et al. (1994),

u =

(
c1−γ(1− L)γ

)1−ψ

1− ψ
(51)

Then, Λt+1 6= Λ?
t+1. At the deterministic balanced growth path we have Λ = Λ? and the profit

tax becomes a weighted average that depends on the balanced growth path shares of government

consumption and investment in R&D in net output,

τπ = η × g
(1− α)Y

+ (1− η)× [1− S
(1− α)Y

].

Proof. See the Appendix for the proof of proposition 5 and the corollary.

Note the resemblance of the result above with the results on capital taxation in environ-

ments with exogenous growth as in Chari et al. (1994), Zhu (1992) and in the classic contribu-

tions of Chamley (1986) and Judd (1985). In the event of zero externalities and zero govern-

ment expenditures, we recover the zero profit tax result for either t ≥ 2 (for the logarithmic

preferences) or at the steady state (for the preferences in (51)).
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6 Numerical results

In this section, we present a calibrated version of our model and highlight the main trade-offs

active in the economy. We then describe the main dynamics of the model and run a welfare

analysis.

6.1 Calibration and Solution Methods

6.1.1 Functional Forms

In order to calibrate the model and assess its quantitative implications, we need to pick the

functional forms in our specification. We adopt the balanced growth preferences in (51), where

ψ the coefficient of relative risk aversion in the consumption bundle, and γ the relative weight

of leisure in the utility kernel.

Exogenous shocks are mean reverting and stationary, that is, we have

log(zt) = ρ log(zt−1) + εt, εt
iid∼ N(0, σ2). (52)

The absence of an exogenous drift in productivity emphasizes that in this model, growth is

sustained endogenously by the accumulation of varieties.

Finally, government expenditures are specified as κt =
1

1+e−Gt
where

Gt = (1− ρG)Ḡ + ρGGt−1 + εG,t, εG,t
iid∼ N(0, σ2

G). (53)

6.1.2 Calibration

We summarize our quarterly calibration in table 1. Both the relative risk aversion coefficient

and the subjective discount factor are set to values well within the typical range adopted with

CRRA preferences. The weight assigned to leisure in the consumption bundle is set to have a

share of hours worked of 30%, consistent with the data.

On the technology side, our calibration is inspired by Comin and Gertler (2006) and Kung
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TABLE 1: Benchmark Calibration
Parameter Symbol Value
Preferences:
Subjective Discount Factor β 0.99
Relative Risk Aversion ψ 5.00
Weight on Leisure γ 0.83
Technology:
Patent Capital Income Subshare α 0.30
Patent Capital Congestion, Scale Parameter χ 0.16
Patent Capital Congestion, Elasticity η 0.80
Patent Survival Rate (1− δ) 0.99
Exogenous Processes:
Productivity Shock, Volatility σ 0.02
Productivity Shock, Persistence ρ 0.97
Average Expenditure Parameter Ḡ -4.25
Expenditure Shock, Volatility σG 0.02
Expenditure Shock, Persistence ρG 0.98

Notes: This table reports our benchmark quarterly calibration.

and Schmid (2015). The share of intermediate inputs in output, α, is set to 30%; the annual

depreciation of patents is 4%. The congestion elasticity parameter is smaller than one and

it introduces diminishing returns from R&D, similarly to a convex adjustment cost function

(Jermann (1998)). The scale parameter χ is calibrated in a residual fashion in order to have an

average annual growth rate as close as possible to 2% under the first best.

The exogenous forces in our model are the productivity shocks and the government ex-

penditure shocks. Both processes are calibrated to replicate key features observed in the data

(as an example, see Croce et al. (2012)). Specifically, the government expenditure process is

modeled so that the government expenditure-to-GDP ratio evolves as in US aggregate data.

Aggregate productivity evolves such that consumption and production resemble the US data.

Given these parameters, we use perturbation methods to solve our system of equations.

We compute an approximation of the second order of our policy functions using the dynare++

package. This approximation accounts for the effect of volatility on the intercept of all policy

functions.
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6.2 First-Best Analysis

In table 2, we report the implied steady state values of our main variables of interest under

the first best. Since two tax margins are required to replicate the first best, we also look at

the special case in which we remove one of them. Specifically, we assume the government

has access to lump sum taxation to finance a production subsidy designed to overcome the

distortion originated by monopoly power. In this second setting profits are not taxed.

We note that without profit taxation there is too much investment in innovation. Specifi-

cally, since aggregate R&D congestion is not fully taken into account by the individual innova-

tors, the absence of a profit tax produces over-investment in R&D and excessive growth. Even

though the economy grows at a rate twice as large as that of the first best, welfare declines by

1.71% of life-time consumption bundle. This is the result of both a lower consumption-to-GDP

share and a lower share of hours devoted to leisure.

In table 3, we report a comprehensive list of simulated moments resulting from these two

tax settings. Most of these moments differ slightly across tax systems and are relevant mainly

for our comparison with the second best setting. We highlight a well-known result: with time-

additive CRRA preferences, it is impossible to obtain a significant risk premium with Gaussian

shocks. As a result, the only way in which we can obtain a realistic cost of capital of about 8%

per year is by exaggerating the average risk-free rate. We note that the quarterly risk-free rate

at the deterministic steady state, log R f
= − log β + [(ψ − 1)(1− γ) + 1]∆c, depends on the

relative risk aversion with respect to the consumption commodity and hence is affected by an

additional (ψ− 1)(1− γ) ≈ 0.7 of consumption growth.

Since time-additive preferences are not particularly sensitive to small Gaussian shocks, the

discrepancies between the deterministic steady state and the one that accounts for uncertainty

are small. As a result, the over-accumulation of patents depresses welfare by 1.73% when

profits are not taxed. This number is very close to its deterministic counterpart.

In order to better compare the behavior of macroeconomic aggregates under the first best

and the case of no profit tax, we find it convenient to look at the impulse response functions

implied by these two settings. The responses are depicted in figure 1 with respect to both
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TABLE 2: First-Best Steady State Analysis

C/GDP S/GDP G/GDP Labor ∆A ∆Wel f are
First-Best 47.49 41.61 10.90 30.88 2.01

Lump+Prod 36.99 53.77 9.24 36.44 4.40 -1.71

Notes: This table reports the deterministic steady states of both the First-Best and the Lump-Sum Taxa-
tion plus Production Subsidy (Lump+Prod) models. C/GDP is the consumption-to-GDP ratio, S/GDP
is the R&D investment-to-GDP ratio, and G/GDP is the government expenditure-to-GDP ratio. ∆A is
the annualized percentage growth rate of the economy on the balanced growth path. ∆Wel f are is the
percentage loss in welfare from the Lump-Sum Taxation plus Production Subsidy model compared to
the First-Best.

a positive productive shock (left panels) and an adverse positive expenditure shock (right

panels).

When an unexpected positive productivity realizes, the economy immediately expands,

as it is optimal to work more and increase production. Going forward, agents expect lower

growth of measured GDP, just because of mean reversion in both productivity and R&D in-

vestment. Consumption growth instead, increases as it supported by a slow de-cumulation of

stock of patents.

These results are standard in a Romer (1990) model of endogenous growth. Our analysis,

however, shows a novel result on expected growth following a positive productivity shock.

Specifically, in a model with congestion and no profit tax, expected consumption growth can

fluctuate much more than under the first best. At the optimum, profit taxation should be

reduced to support more investment, i.e., the slow down of investment growth should be

mitigated with a tax cut and hence the response of expected consumption growth should be

less severe.

Turning our attention to expenditure shocks, we see that they produce a contemporaneous

expansion of measured GDP as seen for productivity shocks. Since expenditure is unproduc-

tive, these shocks produce an adverse income effect that stimulates labor supply and hence

production.

In the aftermath of the unexpected expenditure shock, however, expected consumption

growth should decline under the first best. To better understand this result, recall that we an-

chor government expenditure to the size of the stock of patents. Hence in order to minimize
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TABLE 3: First-Best Moments
First-Best Lump + Prod

Mean SD ACF(1) Mean SD ACF(1)

∆y 2.01 2.30 −0.01 4.40 2.18 0.00
∆c 2.01 1.46 0.00 4.40 1.44 0.01
∆s 2.01 3.88 −0.01 4.40 3.06 0.00
Et[∆ct+1] 2.01 0.02 0.97 4.41 0.03 0.97
Labor 30.88 0.37 0.97 36.45 0.36 0.97
R f 7.43 0.12 0.97 11.50 0.16 0.97
Rrd 7.44 0.84 0.06 11.51 0.69 0.11
Rrd − R f 0.01 0.83 0.00 0.01 0.67 0.01
∆Wel f are −1.73

Notes: This table reports summary moments from a long simulation path for both the First-Best and
the Lump-Sum Taxation plus Production Subsidy (Lump+Prod) models. Growth rates and returns
are presented in annualized percentages. ∆y is output growth, ∆c is consumption growth, ∆s is R&D
investment growth, Et[∆ct+1] is expected consumption growth, Labor is the percent of time worked,
R f is the risk-free rate, Rrd is the return to R&D investment, Rrd − R f is the excess return to R&D
investment, and ∆Wel f are is the percentage decrease in welfare from the Lump+Prod model compared
to the First-Best.

waste it is optimal to temporarily reduce the growth of the economy and wait for the expen-

diture shock to dissipate. This outcome can be achieved by persistently increasing the profit

tax upon the arrival of an adverse expenditure shock. Absent this margin, we have a slight

increase in expected consumption growth resulting from suboptimal excessive labor.

6.3 Second-Best

We now turn our attention to the second-best and compare results across two different values

of Φ. Specifically, we consider both a low (Φ = 0.05) and a high value (Φ = 0.45) in order to

assess the relevance of the time-0 tightness of the government budget constraint. We set the

high value of Φ so that the implied average labor tax rate is 35%, a number high enough to

capture a situation of strong fiscal tightness.

In table 4, we focus on the second-best deterministic steady state and compare it to the

first-best one. The top panel refers to our benchmark calibration. In this class of models, dis-

tortionary labor taxation depresses labor and endogenously reduces both the consumption-to-

GDP share and the growth rate of the economy. As a result, when Φ = 0.45 the relative welfare
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FIG. 1: First-Best Impulse Response Functions
Notes – This figure shows the impulse responses of the First-Best (FB) and the Lump-Sum Taxation
plus Production Subsidy (Lump+Prod) models to positive one standard deviation shocks to the tech-
nology (εz) and government expenditure (εg) processes. Responses are shown in quarterly percentage
deviations from the stochastic steady state. ŷ represents GDP.

loss from the first best can become as severe as 2.05%. Even though the share of consumption-

to-GDP declines by about 50 basis points, the implied decline of long-term growth from 2%

to 0.43% is significant and highlights very well the connection between sluggish growth and

fiscal tightness.

At the second-best the tax revenue from labor income (profits) as share of GDP equals the

labor (profit) tax rate. When Φ is high, the total government inflow is about 58% of GDP.

The labor income tax flow is the major source of revenue, as in the data. Given that the total
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TABLE 4: Second-Best Steady State Analysis
Percent of GDP Tax Rates

C S G LR PTR Deficit Labor ∆A τL τx τπ ∆W
Panel A: Baseline (η = 0.80)

First-Best 47.49 41.61 10.90 — — — 30.88 2.01 0.00 70.00 20.40
Low Φ 47.43 41.16 11.41 6.42 20.89 84.10 29.50 1.74 6.42 70.00 20.89 -0.05

High Φ 47.00 38.31 14.69 34.13 24.09 56.46 22.91 0.43 34.13 70.00 24.09 -2.05

Panel B: Lower Patent Accumulation Externality (η = 0.90)
First-Best 46.24 43.06 10.70 — — — 31.45 0.71 0.00 70.00 15.33

Low Φ 46.28 42.50 11.22 6.45 15.84 88.92 30.01 0.46 6.45 70.00 15.84 -0.06
High Φ 46.56 38.87 14.58 34.10 19.23 61.25 23.09 -0.75 34.10 70.00 19.23 -2.16

Notes: This table reports the deterministic steady states for the Second-Best models under two calibra-
tions of increasing lifetime government constraint (Low Φ and High Φ), as well as for the First-Best.
Panel A reports results under our baseline calibration and Panel B reports results when we increase the
patent congestion elasticity parameter to η = 0.90. Consumption (C), R&D investment (S), government
expenditures (G), labor revenue (LR), profit tax revenue (PTR), and government deficit (Deficit) are pre-
sented as a percentage of GDP. Labor is the percent of time worked. ∆A is the annualized percentage
growth rate of the economy on the balanced growth path. The labor tax (τL), production subsidy (τx),
and profit tax (τπ) rates are in percentages. The First-Best tax rates are from the tax policies necessary
to implement the First-Best in a market economy with lump-sum taxation. ∆W is the percentage loss
in welfare from the two Second-Best models compared to the First-Best.

production subsidy is equal to 100% of GDP and that the government expenditure share of

GDP is 14.7%, the government finds it optimal to run a primary deficit as high as 56.46% of

GDP.

When Φ is low, instead, the government finds it optimal to use the profit tax as the main

source of revenue and run an even more severe deficit. At a broader level, these results suggest

that the debate on the relative magnitude of profit and labor taxes cannot be disconnected

from the joint analysis of the tightness of both the government budget constraint and the labor

market of interest to R&D firms.

In the bottom panel of table 4 we show results for the case in which η = 0.90. All other

parameters are kept at their benchmark value. Consistent with the results highlighted in our

previous sections, the extent of profit taxation is crucially driven by the externality in the

accumulation of patents. Specifically, when we increase η from 0.80 to 0.90, the optimal level

average level of profit taxation declines by about 500 basis points under the first-best. That

is, the average profit tax declines from 20.40% to 15.33%. A similar decline is observed also
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across second-best scenarios.

We report simulated moments from our second-best setting in table 5. The top portion

of this table considers a scenario with both productivity and expenditure shocks. The bottom

panel, instead, focuses on the case in which productivity shocks are null. Consistent with prior

analysis, productivity shocks are a dominant source of aggregate fluctuations, regardless of the

value of Φ.

We now examine the impulse response functions of the second best models. The right

column panels in figures 2 and 3 confirm that expenditure shocks tend to have a modest impact

on aggregate variables. Consistent with what we noted when studying the first best, upon the

arrival of an adverse expenditure shock the government finds it optimal to increase profit taxes

in order to slow down intangible capital accumulation and therefore waste. Under the second

best, this first-best reaction is amplified and enhanced by higher values of Φ.

The most interesting result, however, pertains to the optimal response of the labor tax rate.

When Φ is high, the government should cut the labor tax both when productivity is subject to

a positive shock and public expenditure suddenly increases.

When the government faces a looser budget constraint at time-0, i.e., when Φ = 0.05, the

government should do the exact opposite. As a result, the government should take advantage

of positive productivity shocks in order to collect more labor income revenue and finance a

relatively more generous profit tax cut, consistent with the prescription of the first-best.

Given these considerations, the following remarks apply. When Φ is low, the government

manipulates the labor and profit tax rates in such a way that it stabilizes the government’s

deficit. That is, the deficit-to-GDP ratio features modest volatility and almost no persistence. In

contrast, when Φ is high, persistent productivity shocks should be associated with persistent

and pronounced fluctuations of deficit-to-GDP. As reported in table 5, when Φ = 0.45 and all

shocks are active, the persistence of the deficit-to-GDP ratio can be as high as 0.92.
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TABLE 5: Second-Best Moments
Low Φ High Φ

Mean SD ACF(1) Mean SD ACF(1)

Panel A: All Shocks
∆y 1.77 2.30 −0.03 0.46 2.42 −0.04
∆c 1.77 1.46 −0.03 0.46 1.56 −0.03
∆s 1.77 3.93 −0.04 0.46 4.42 −0.04
Et[∆ct+1] 1.77 0.01 0.97 0.46 0.03 0.97
Labor 29.54 0.34 0.97 22.95 0.31 0.97
τL 6.42 0.02 0.97 34.13 0.07 0.97
τx 70.00 0.00 − 70.00 0.00 −
τπ 20.90 0.69 0.97 24.16 0.59 0.98
Deficit/GDP 84.09 0.16 0.01 56.46 0.58 0.92
∆Wel f are −0.05 −2.05

Panel B: No Technology Shocks
∆y 1.74 0.07 0.00 0.43 0.10 −0.01
∆c 1.74 0.03 0.14 0.43 0.03 0.27
∆s 1.74 0.23 −0.03 0.43 0.32 −0.03
Et[∆ct+1] 1.74 0.01 0.98 0.43 0.01 0.98
Labor 29.51 0.05 0.98 22.92 0.06 0.98
τL 6.42 0.00 0.98 34.13 0.01 0.98
τx 70.00 0.00 − 70.00 0.00 −
τπ 20.93 0.40 0.98 24.14 0.58 0.98
Deficit/GDP 84.10 0.09 0.04 56.47 0.12 0.09
∆Wel f are −0.05 −2.05

Notes: This table reports summary statistics from a long simulation path for the Second-Best mod-
els under two calibrations of increasing lifetime government constraint (Low Φ and High Φ). Panel
A presents statistics when the model has been solved and simulated subject to both the exogenous
technology and government expenditure shocks. Panel B presents statistics when the model has been
solved and simulated subject to only the government expenditure shocks. We report the mean, stan-
dard deviation, and autocorrelation at the first lag of the simulated model paths. Growth rates are
presented in annualized percentages. ∆y is output growth, ∆c is consumption growth, ∆s is R&D in-
vestment growth, Et[∆ct+1] is expected consumption growth, and Labor is the percent of time worked.
The labor tax (τL), production subsidy (τx), and profit tax (τπ) rates are in percentages. Deficit/GDP
is the government’s deficit as a ratio of GDP. ∆Wel f are is the percentage decrease in welfare from the
Second-Best models compared to the First-Best.

6.4 Welfare Analysis and Sensitivity

We conclude this section by comparing welfare results across different fiscal settings and shock

configurations. In the first column of table 6, we report the welfare losses incurred when there

are no shocks and we move away from the first best either because we abstract away from the
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FIG. 2: Second-Best Impulse Response Functions (I)
Notes – This figure shows the impulse responses of the Second-Best models under two calibrations
of increasing lifetime government constraint (SB-Low Φ and SB-High Φ), as well as for the First-Best
(FB), with respect to positive one standard deviation shocks to the technology (εz) and government
expenditure (εg) processes. Responses are shown in quarterly percentage deviations from the stochastic
steady state. ŷ represents GDP.

profit tax (second row), or because we are in a second-best scenario with high Φ (last row).

The next three columns show the same computations when (i) all shocks are active; (ii) only

productivity shocks are active; and (iii) the economy is affected only by expenditure shocks.

Across all scenarios, the welfare loss incurred at the second best is significant and stable at
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FIG. 3: Second-Best Impulse Response Functions (II)
Notes – This figure shows the impulse responses of the Second-Best models under two calibrations
of increasing lifetime government constraint (SB-Low Φ and SB-High Φ), as well as for the First-Best
(FB), with respect to positive one standard deviation shocks to the technology (εz) and government
expenditure (εg) processes. Responses are shown in quarterly percentage deviations from the stochastic
steady state. GS denotes government surplus-to-GDP; LR refers to labor income revenue-to-GDP; and
PTR represents profit tax revenue-to-GDP.

2.05% of life-time consumption, as in the previous section.

In the right panel of the same table, we compute welfare cost of uncertainty across fiscal

regimes. Under the first-best, the welfare losses due to the presence of both productivity and

expenditure shocks is in the order of 0.303 basis points. This modest welfare loss should not
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TABLE 6: Welfare Comparison
Welfare Loss Compared to First-Best

Determ. Stochastic Steady State Basis Point Deviations

Steady All No No All Shocks From All Shocks
State Shocks Gov Tech from DSS No Gov No Tech

First-Best −0.303 0.261 0.042
Lump+Prod −1.71 −1.72 −1.72 −1.72 −0.581 0.440 0.141
SB-High Φ −2.05 −2.05 −2.05 −2.05 −0.297 0.251 0.046

Notes: This table reports percentage changes in welfare compared to the First-Best (left panel), and the
welfare loss in basis points of the stochastic steady state with all shocks on compared to the determin-
istic steady state (DSS) (right panel). In addition, the right panel contains the decomposition of this
welfare loss, as we report the welfare gains of removing government expenditure shock (No Gov) or
the technology shock (No Tech).

be surprising given that we employ CRRA preferences. Investigating further the origin of this

cost, we note that most of it is due to government shocks, as removing government shocks

alone produce a welfare gain of 0.261 basis points of life-time consumption.

Interestingly, the total welfare cost of uncertainty doubles when the government does not

tax profits. In this case, uncertainty amplifies the over-investment in innovation and produces

more pronounced welfare losses. Under the second best, instead, the state-contingent tax plan

of the government limits the welfare losses of uncertainty; we observe values very close to

those obtained under the first best.

7 Directions for future work

There are several next steps that we would like to take, both theoretically and numerically.

At first, we would like to examine the transition to the vicinity of the steady state, which, as

we saw, features deficits, when the economy starts with positive debt. Second, we would like

to dig deeper into the importance of the profit tax, by performing a third-best analysis where

either the profit tax or the input subsidy are not available. Third, we would like to contrast

our numerical results to the respective optimal taxation results without endogenous growth.

Fourth, we would like to contrast our policy prescriptions with current U.S. policy. And finally,

we would like to enrich our model by adding capital as an additional factor of production as
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in Comin and Gertler (2006) and Kung and Schmid (2015). This extension provides both a

better quantitative fit and allows the analysis of the interaction of traditional capital taxation

and profit taxation.

8 Concluding Remarks

We examine optimal Ramsey fiscal and innovation policy in a model in which growth is en-

dogenously sustained by the entry of new innovative businesses. Our paper takes first steps

towards understanding the optimal design of fiscally sustainable innovation policies in the

aftermath of a debt burdened recession. With monopolistic rents rewarding innovation and

spillovers from technological innovation, our results emphasize the relevance of profit taxes to

finance appropriate subsidies. The higher the initial tax burden of the government, the more

volatile are the required taxes, depressing growth and further amplifying and propagating

cycles. In the context of the current debate about fiscal stimulus and innovation policies, this

suggests that optimizing innovation and growth may come at the cost of endogenously higher

risk.
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A Ramsey problem

A.1 Lagrangian of Ramsey problem

L = ∑
t=0

βt ∑
ht

πt(ht)u(ct(ht), 1− Lt(ht)) + Φ
{ ∞

∑
t=0

∑
ht

βtπt(ht)
(
Ω(ct(ht), Lt(ht))

−uc(ct(ht), 1− Lt(ht))[At(ht−1)(1− τπ
t (ht−1))(P∗ − 1)Xt(ht)− St(ht)]

)
− uc0b0

}
−

∞

∑
t=0

∑
ht

βtπt(ht)λt(ht)
[
ct(ht) + At(ht−1)Xt(ht) + St(ht) + κt At(ht−1)−Yt(ht)

]
−

∞

∑
t=0

∑
ht

βtπt(ht)µt(ht)
[
At+1(ht)− ϑ(

St(ht)

At(ht−1)
)St(ht)− (1− δ)At(ht−1)

]
−

∞

∑
t=0

∑
ht

βtπt(ht)ρt(ht)
{

uc(ct(ht), 1− Lt(ht))

−β ∑
ht+1

πt+1(ht+1|ht)uc(ct+1(ht+1), 1− Lt+1(ht+1)) · ϑ
( St(ht)

At(ht−1)

)[
(1− τπ

t+1(h
t))(P∗ − 1)Xt+1(ht+1)

+
1− δ

ϑ
(St+1(ht+1)

At+1(ht)

)]}
where in order to save space, we did not explicitly write intermediate inputs and output as

functions of labor and the subsidy τx
t .

A.2 Initial period optimality conditions

To be completed.

A.3 Proof of lemma 1

1. Write the change in ρt as

ρt − ρt−1
ϑt−1

ϑt
(1− δ) =

At

ϑt

[ ρtϑt

At+1
· At+1

At
− ρt−1ϑt−1

At
(1− δ)

]
But ρtϑt

At+1
= ρt−1ϑt−1

At
= Φ due to (38). Thus, we have

ρt − ρt−1
ϑt−1

ϑt
(1− δ) = Φ

At

ϑt

[At+1

At
− 1 + δ

]
= Φ

At

ϑt
ϑt

St

At
= ΦSt,

by using the law of motion of the mass of varieties, (8).

2. To show that the total effect is zero, use the definition of aggregate dividends, Dt =
(1− τπ

t )AtΠt − St, and the return on R&D (25) and collect terms as
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ΦDt + ρt − ρt−1RRD
t = −ΦSt + ρt − ρt−1

ϑt−1

ϑt
(1− δ) + (ΦAt − ρt−1ϑt−1)(1− τπ

t )Πt

= −ΦSt + ΦSt + 0 = 0,

by using (38) and (42).

A.4 Proof of proposition 3

Combine (44)-(45) to get

ult
uct
·

1−Φ ΩLt
ult

1 + Φ Ωct
uct

=
Yt

Lt
− AtXt

Lt

Under the optimal subsidy though we have AtXt = αYt. This implies that the right-hand
side above is equal to the marginal product of labor, Yt

Lt
− AtXt

Lt
= (1− α)Yt

Lt
= FL. Set now

ul/uc = (1− τ)FL, use the formulas

Ωc

uc
= 1− εcc − εcL

ΩL

ul
= −1− εLL − εLc

and simplify to finally get (46).

A.5 Proof of proposition 4

New varieties are determined by the optimality condition with respect to At+1(ht), t ≥ 0:

µt = βEtλt+1
[ Yt+1

At+1
− Xt+1 − κt+1

]
+ βEtµt+1

(
1− δ + (1− η)ϑt+1

St+1

At+1

)
−ΦβEtuc,t+1(1− τπ

t+1)Πt+1 + (1− η)βEt
uc,t+1

At+1

(
ρt+1 − ρt

ϑt

ϑt+1
(1− δ)

)
(A.1)

Use (42) to replace the last term and use condition (48) to replace the multipliers µt, µt =
λt

ηϑt
− Φuct

ϑt
, t ≥ 1. Then, (A.1) becomes

λt

ηϑt
− Φuct

ϑt
= βEtλt+1

[ Yt+1

At+1
− Xt+1 − κt+1

]
+ βEt

( λt+1

ηϑt+1
− Φuc,t+1

ϑt+1

)(
1− δ + (1− η)ϑt+1

St+1

At+1

)
−ΦβEtuc,t+1(1− τπ

t+1)Πt+1 + (1− η)ΦβEtuc,t+1
St+1

At+1
, t ≥ 1.

Simplify and collect terms to get
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λt

ηϑt
= βEtλt+1

[ Yt+1

At+1
− Xt+1 − κt+1

]
+ βEt

λt+1

ηϑt+1

(
1− δ + (1− η)ϑt+1

St+1

At+1

)
+

Φuct

ϑt

[
1− βEt

uc,t+1

uct
RRD

t+1
]

Use the pricing condition (24) and rewrite to get (49).

A.6 Proof of proposition 5 and its corollary

Proof of proposition. Remember that under the optimal subsidy we have Πt = (1−α)Yt
At

=
Yt
At
− Xt. Using this fact and remembering that gt = κt At, we can rewrite the social return as

Rsoc
t+1 =

ϑ

ϑt+1

[
1− δ + ϑt+1Πt+1 − ϑt+1Πt+1{η

gt+1

(1− α)Yt+1
+ (1− η)

(
1− St+1

(1− α)Yt+1

)
}
]
.

Use (24) to express the profit tax as

τπ
t+1 =

EtΛt+1
ϑt

ϑt+1
(1− δ + ϑt+1Πt+1)− 1

ϑtEtΛt+1Πt+1
.

Replace unity in the numerator with (49), use the above decomposition of the social return
and simplify to get (50).

Proof of corollary. As in Karantounias (2013), use (44) and the formula for Ωc/uc to express
the difference in the two discount factors as

Λt+1 −Λ?
t+1

Λt+1
= Φ

εcc,t+1 + εcL,t+1 − εcc,tt − εcL,t

1 + Φ(1− εcc,t − εcL,t)
.

For separable logarithmic preferences we have constant elasticities (εcc = 1, εcL = 0), so
Λt+1 = Λ?

t+1 and the result follows from (50). For the balanced growth preferences (51) we
have εcc = γ + (1− γ)ψ and εcL = γ(1− ψ)L/(1− L), which obviously fall in the previous
category if ψ = 1. Otherwise, the difference in the two discount factors depends on changes
in equilibrium labor,

Λt+1 −Λ?
t+1

Λt+1
= Φ

γ(1− ψ)
[ Lt+1

1−Lt+1
− Lt

1−Lt

]
1 + Φ(1− ψ)(1− γ− γ Lt

1−Lt
)

At the deterministic balanced growth path labor is constant and the two discount factors be-
come constant and the same, Λ = Λ?. The result follows from (50).
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B Welfare calculations

We calculate welfare (Wt) within each model as:

Wt = Ut + βEt[Wt+1]

W̃t = Ũt + βEt[∆A(1−γ)(1−ψ)
t+1 W̃t+1]

where Ũt =
Ut

A(1−γ)(1−ψ)
t

and W̃t =
Wt

A(1−γ)(1−ψ)
t

are the stationary versions of these variables. At

time 0 we define φ such that W0 = (u0φ)1−ψ

1−ψ , where u0 is the consumption bundle at time 0.
Solving this expression for φ yields:

φ =
[(1− ψ)W0]

1
1−ψ

u0
=

[(1− ψ)W̃0]
1

1−ψ

ũ0
(B.1)

where ũ0 = u0

A1−γ
0

is the stationary version of the consumption bundle at time 0.

Next we want to find the multiple (λ) of the time 0 compensating consumption bundle in
model 1 such that welfare is equivalent across two competing models (W0,1, W0,2). Namely set
λ such that:

W0,1(λ) = W0,2 (B.2)

(u0,1φ1λ)1−ψ

1− ψ
=

(u0,2φ2)
1−ψ

1− ψ
(B.3)

λ =
u0,2φ2

u0,1φ1
(B.4)

The calibration and intial conditions are the same across the competing models; A0 is identical
in both models. Therefore:

λ =
u0,2φ2

u0,1φ1
(B.5)

λ =
ũ0,2φ2

ũ0,1φ1
=

[(1− ψ)W̃0,2]
1

1−ψ

[(1− ψ)W̃0,1]
1

1−ψ

=
[W̃0,2]

1
1−ψ

[W̃0,1]
1

1−ψ

(B.6)

Finally, this implies:

log(λ) =
1

1− ψ
log
(

W̃0,2

W̃0,1

)
(B.7)

We report log(λ) in the paper when welfare in each model is computed at (1) the de-
terministic and stochastic steady states (W̃SS,1, W̃SS,2) and (2) the average of simulated paths
(ET[W̃t,1], ET[W̃t,2]).
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