Elections and Strategic Voting: Condorcet and Borda

P. Dasgupta
E. Maskin
• voting rule (social choice function)
 method for choosing social alternative (candidate) on basis of voters’ preferences (rankings, utility functions)

• prominent examples
 – Plurality Rule (MPs in Britain, members of Congress in U.S.)
 choose alternative ranked first by more voters than any other
 – Majority Rule (Condorcet Method)
 choose alternative preferred by majority to each other alternative
- **Run-off Voting (presidential elections in France)**
 - choose alternative ranked first by more voters than any other, unless number of first-place rankings less than majority
 - among top 2 alternatives, choose alternative preferred by majority

- **Rank-Order Voting (Borda Count)**
 - alternative assigned 1 point every time some voter ranks it first, 2 points every time ranked second, etc.
 - choose alternative with lowest point total

- **Utilitarian Principle**
 - choose alternative that maximizes sum of voters’ utilities
• Which voting rule to adopt?
• Answer depends on what one wants in voting rule
 – can specify criteria (axioms) voting rule should satisfy
 – see which rules best satisfy them
• One important criterion: nonmanipulability
 – voters shouldn’t have incentive to misrepresent preferences, i.e., vote strategically
 – otherwise
 not implementing intended voting rule
decision problem for voters may be hard
• But basic negative result
 Gibbard-Satterthwaite (GS) theorem
 – if 3 or more alternatives, no voting rule is always nonmanipulable
 (except for dictatorial rules — where one voter has all the power)

• Still, GS overly pessimistic
 – requires that voting rule never be manipulable
 – but some circumstances where manipulation can occur may be unlikely

• In any case, natural question:
 Which (reasonable) voting rule(s) nonmanipulable most often?

• Paper tries to answer question
• \(X = \) finite set of social alternatives
• society consists of a continuum of voters \([0,1]\)
 – typical voter \(i \in [0,1]\)
 – reason for continuum clear soon
• utility function for voter \(i\) \(U_i : X \to \mathbb{R}\)
 – restrict attention to strict utility functions
 if \(x \neq y\), then \(U_i(x) \neq U_i(y)\)
 \(\mathcal{U}_X\) = set of strict utility functions
• profile \(U\) -- specification of each individual's utility function
• voting rule (generalized social choice function) F

 for all profiles U and all $Y \subseteq X$
 \[
 F(U, Y) \in Y
 \]

 $F(U, Y)$ = optimal alternative in Y if profile is U

• definition isn’t quite right -- ignores ties

 – with plurality rule, might be two alternatives that are both ranked first the most
 – with rank-order voting, might be two alternatives that each get lowest number of points

• But exact ties unlikely with many voters

 – with continuum, ties are nongeneric

• so, correct definition:

 for generic profile U and all $Y \subseteq X$
 \[
 F(U, Y) \in Y
 \]
plurality rule:
\[f^P(U_i, Y) = \{ a \mid \mu \{ i \mid U_i(a) \geq U_i(b) \text{ for all } b \} \geq \mu \{ i \mid U_i(a') \geq U_i(b) \text{ for all } b \} \text{ for all } a' \} \]
majority rule:
\[f^C(U_i, Y) = \{ a \mid \mu \{ i \mid U_i(a) \geq U_i(b) \} \geq \frac{1}{2} \text{ for all } b \} \]
rank-order voting:
\[f^B(U_i, Y) = \left\{ a \mid \int r_{U_i}(a) d\mu(i) \leq \int r_{U_i}(b) d\mu(i) \text{ for all } b \right\} , \]
where \(r_{U_i}(a) = \# \{ b \mid U_i(b) \geq U_i(a) \} \)
utilitarian principle:
\[f^U(U_i, Y) = \{ a \mid \int U_i(a) d\mu(i) \geq \int U_i(b) d\mu(i) \text{ for all } b \} \]
What properties should reasonable voting rule satisfy?

• *Pareto Property* (P): if \(U_i(x) > U_i(y) \) for all \(i \) and \(x \in Y \), then \(y \neq F(U_i, Y) \)

 – if everybody prefers \(x \) to \(y \), \(y \) should not be chosen

• *Anonymity* (A): suppose \(\pi : [0,1] \rightarrow [0,1] \) measure-preserving permutation. If \(U_i^{\pi} = U_{\pi(i)} \) for all \(i \), then

 \[
 F\left(U_i^{\pi}, Y\right) = F\left(U_i, Y\right)
 \]

 – alternative chosen depends only on voters’ preferences and not who has those preferences
 – voters treated symmetrically
• **Neutrality (N):** Suppose \(\rho : Y \to Y \) permutation.
 If \(U_{i}^{\rho,Y}(\rho(x)) > U_{i}^{\rho,Y}(\rho(y)) \iff U_{i}(x) > U_{i}(y) \) for all \(x, y, i \), then
 \[
 F\left(U_{\rho,Y}^{\rho}, Y\right) = \rho\left(F\left(U_{\rho,Y}, Y\right)\right).
 \]
 – alternatives treated symmetrically

• All four voting rules – plurality, majority, rank-order, utilitarian – satisfy P, A, N

• Next axiom most controversial
 still
 • has quite compelling justification
 • invoked by both Arrow (1951) and Nash (1950)
• **Independence of Irrelevant Alternatives (I):**

\[
\text{if } x = F(U, Y) \text{ and } x \in Y' \subseteq Y \\
\text{then} \\
x = F(U, Y')
\]

– if \(x \) chosen and some non-chosen alternatives removed, \(x \) still chosen

– Nash formulation (rather than Arrow)

– no “spoilers” (e.g. Nader in 2000 U.S. presidential election, Le Pen in 2002 French presidential election)
• Majority rule and utilitarianism satisfy I, but others don’t:
 – plurality rule

\[
\begin{array}{ccc}
0.35 & 0.33 & 0.32 \\
\underline{x} & \underline{y} & \underline{z} \\
y & z & x \\
z & x & y \\
\end{array}
\]

\[f^P(U_x, \{x, y, z\}) = x\]

\[f^P(U_x, \{x, y\}) = y\]

– rank-order voting

\[
\begin{array}{cc}
0.55 & 0.45 \\
\underline{x} & \underline{y} \\
y & z \\
z & x \\
\end{array}
\]

\[f^B(U_x, \{x, y, z\}) = y\]

\[f^B(U_x, \{x, y\}) = x\]
Final Axiom:

- *Nonmanipulability (NM):*

 \[x = F(U_i, Y) \text{ and } x' = F(U'_i, Y), \]

 where \(U'_j = U_j \) for all \(j \not\in C \subseteq [0,1] \)

 then

 \[U_i(x) > U_i(x') \text{ for some } i \in C \]

 - the members of coalition \(C \) can’t all gain from misrepresenting utility functions as \(U'_i \)
• NM implies voting rule must be ordinal (no cardinal information used)

• F is ordinal if whenever, for profiles U_x and U'_x,
 $$U_i(x) > U_i(y) \iff U'_i(x) > U'_i(y)$$
 for all i, x, y

$(*)$ \quad $F(U_x, Y) = F(U'_x, Y)$ for all Y

• Lemma: If F satisfies NM and I, F ordinal

 – suppose $x = F(U_x, Y) \quad y = F(U'_x, Y)$, where U_x and U'_x same ordinally

 – then $x = F(U_x, \{x, y\}) \quad y = F(U'_x, \{x, y\})$, from I

 – suppose $\begin{bmatrix} C & -C \\ y & x \end{bmatrix}$

 – if $F(U'_c, U_{-c}, \{x, y\}) = y$, then C will manipulate

 – if $F(U'_c, U_{-c}, \{x, y\}) = x$, then $-C$ will manipulate

• NM rules out utilitarianism
But majority rule also violates NM

- \(F^C \) not even always defined

\[
\begin{array}{ccc}
.35 & .33 & .32 \\
.35 & .33 & .32 \\
\hline
x & y & z \\
y & z & x \\
z & x & y \\
\end{array}
\]

\(F^C \left(U \cap \{x, y, z\}\right) = \emptyset \)

- example of Condorcet cycle
- \(F^C \) must be extended to Condorcet cycles
- one possibility

\[
F^{C/B} \left(U \cap Y\right) = \begin{cases}
F^C \left(U \cap Y\right), & \text{if nonempty} \\
F^B \left(U \cap Y\right), & \text{otherwise}
\end{cases}
\]

(Black's method)

- extensions make \(F^C \) vulnerable to manipulation

\[
\begin{array}{ccc}
.35 & .33 & .32 \\
.35 & .33 & .32 \\
\hline
x & y & z \\
y & z & x \\
z & x & y \\
\end{array}
\]

\(F^{C/B} \left(U \cap \{x, y, z\}\right) = x \)

\[
\begin{array}{ccc}
z & y & x \\
\hline
z & y & x \\
\end{array}
\]

\(F^{C/B} \left(U \cap \{x, y, z\}\right) = z \)
Theorem: There exists no voting rule satisfying P, A, N, I and NM

Proof: similar to that of GS

overly pessimistic --- many cases in which some rankings unlikely
Lemma: Majority rule satisfies all 5 properties if and only if preferences restricted to domain with no Condorcet cycles

When can we rule out Condorcet cycles?

- preferences single-peaked

2000 US election

![Graph showing Nader, Gore, Bush]

unlikely that many had ranking Bush or Nader

Nader or Bush

Gore or Gore

- strongly-felt candidate
 - in 2002 French election, 3 main candidates: Chirac, Jospin, Le Pen
 - voters didn’t feel strongly about Chirac and Jospin
 - felt strongly about Le Pen (ranked him first or last)
• Voting rule F works well on domain \mathcal{U} if satisfies P,A,N,I,NM when utility functions restricted to \mathcal{U}

 - e.g., F^c works well when preferences single-peaked
• **Theorem 1**: Suppose \(F \) works well on domain \(\mathcal{U} \), then \(F^C \) works well on \(\mathcal{U} \) too.

• Conversely, suppose that \(F^C \) works well on \(\mathcal{U}^C \).

Then if there exists profile \(U^\circ \) on \(\mathcal{U}^C \) such that
\[
F\left(U^\circ, Y\right) \neq F^C\left(U^\circ, Y\right)
\]
for some \(Y \),

there exists domain \(\mathcal{U}' \) on which \(F^C \) works well but \(F \) does not.

Proof: From NM and I, if \(F \) works well on \(\mathcal{U} \), \(F \) must be ordinal.

• Hence result follows from

 Dasgupta-Maskin (2008), *JEEA*

 shows that Theorem 1 holds when NM replaced by ordinality
To show this D-M uses

Lemma: F^C works well on \mathcal{U} if and only if \mathcal{U} has no Condorcet cycles

- Suppose F works well on \mathcal{U}

- If F^C doesn't work well on \mathcal{U}, Lemma implies \mathcal{U} must contain

 Condorcet cycle $x \ y \ z$

 $y \ z \ x$

 $z \ x \ y$
• Consider
\[
U^1_\square = \begin{array}{cccc}
1 & 2 & \ldots & n \\
 x & z & z & \\
 z & x & x & \\
\end{array}
\]

\[(*) \text{ Suppose } F\left(U^1_\square, \{x, z\}\right) = z\]

• \[
U^2_\square = \begin{array}{cccc}
1 & 2 & 3 & n \\
x & y & z & z \\
y & z & x & x \\
z & x & y & y \\
\end{array}
\]

\[
F\left(U^2_\square, \{x, y, z\}\right) = x \implies \text{ (from I) } F\left(U^2_\square, \{x, z\}\right) = x, \text{ contradicts (*)}
\]

\[
F\left(U^2_\square, \{x, y, z\}\right) = y \implies \text{ (from I) } F\left(U^2_\square, \{x, y\}\right) = y, \text{ contradicts (*) (A,N)}
\]

so

\[
F\left(U^2_\square, \{x, y, z\}\right) = z
\]

• so \[F\left(U^2_\square, \{y, z\}\right) = z \quad \text{(I)}\]

• so for
\[
U^3_\square = \begin{array}{cccc}
1 & 2 & 3 & \ldots & n \\
x & x & z & z & \\
z & z & x & x & \\
\end{array}
\]

\[
F\left(U^3_\square, \{x, z\}\right) = z \quad \text{(N)}
\]

• Continuing in the same way, let \[
U^4_\square = \begin{array}{cccc}
1 & \ldots & n-1 & n \\
x & x & z & \\
z & z & x & \\
\end{array}
\]

\[
F\left(U^4_\square, \{x, z\}\right) = z, \text{ contradicts (*)}
\]
• So F can’t work well on $\not\succeq$ with Condorcet cycle

• Conversely, suppose that F^C works well on $\not\succeq^C$ and

$$F\left(U_\circ, Y\right) \neq F^C\left(U_\circ, Y\right)$$

for some U_\circ and Y

• Then there exist α with $1 - \alpha > \alpha$ and

$$U_\circ = \frac{1 - \alpha}{x} \frac{\alpha}{y}$$

such that

$$x = F^C\left(U_\circ, \{x, y\}\right) \text{ and } y = F\left(U_\circ, \{x, y\}\right)$$

• But not hard to show that F^C unique voting rule satisfying P, A, N, and NM when $|X| = 2$ - - contradiction
• Let’s drop I
 – most controversial

• *no* voting rule satisfies P,A,N,NM on \mathcal{X}
 – GS again

• *F works nicely* on \mathcal{Y} if satisfies P,A,N,NM on \mathcal{X}
Theorem 2: $|X| = 3$

- Suppose F works nicely on \mathbb{U}, then F^C or F^B works nicely on \mathbb{U} too.

- Conversely suppose F^* works nicely on \mathbb{U}^*, where $F^* = F^C$ or F^B.

Then, if there exists profile \mathbb{U}^∞ on \mathbb{U}^* such that

$$F\left(\mathbb{U}^\infty, Y\right) \neq F^*\left(\mathbb{U}^\infty, Y\right)$$

for some Y,

there exists domain \mathbb{U}' on which F^* works nicely but F does not

Proof:

- F^C works nicely on any Condorcet-cycle-free domain

- F^B works nicely only when \mathbb{U} is subset of Condorcet cycle

- so F^C and F^B complement each other

 - if F works nicely on \mathbb{U} and \mathbb{U} does not contain Condorcet cycle, F^C works nicely too

 - if F works nicely on \mathbb{U} and \mathbb{U} contains Condorcet cycle, then \mathbb{U} can’t contain any other ranking (otherwise *no* voting rule works nicely)

 - so F^B works nicely on \mathbb{U}.
Striking that the 2 longest-studied voting rules (Condorcet and Borda) are also

- *only two* that work nicely on maximal domains