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Abstract 

Since the 1980s, middle-skilled occupations have experienced a steady 
decline in the share of U.S. employment, a phenomenon often attributed to advances 
in digital technology.  Among the explanations reported in the economic literature, 
the Autor Levy Murnane (ALM) hypothesis suggests that routine processes are most 
vulnerable to digital substitution – digital technology substitutes for routine 
occupations and compliments non-routine occupations.  Tests have involved a 
division of occupations as routine vs. non-routine, which are subdivided further as 
manual, cognitive or analytic.  

Unlike existing literature that examines the effect of digital technology on 
employment, this paper analyzes its effect on the unemployed.  Using data from the 
Current Population Survey and the Dictionary of Occupational Titles, I find that 
routine cognitive workers are more likely to be unemployed than non-routine 
cognitive workers, thus reinforcing the ALM hypothesis. However, the effect of 
advancements in digital technology on the unemployment gap between routine 
cognitive and non-routine cognitive occupations depends on the type of technology.  
Using VAR techniques, I find that the net effect of advances in hardware technology 
on the unemployment gap is zero, while the net effect of advances in software 
technology is positive.  
 

I. Introduction 

 Since the financial crisis in 2008 from which the U.S. economy spiraled into 

the deepest recession since The Great Depression, politicians and citizens await ‘job 

creation’.  Hoping that new jobs will be forthcoming, many also expect former jobs 

to return once the economy recovers.  But what if those former jobs will not return?  

What if the labor market has structurally changed?  Such that a job once occupied 

for over ten years has been filled not by someone else, but something else – digital 

technology.   

The scope of digital technology is not limited to the implementation of 

personal computers, but also encompasses the application, diffusion and replication 

of software on computers, smartphones and tablets.  Such diffusion has created 

online marketplaces – such as progromatic bidding – classrooms and applications 
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that have reduced skills at the hands of dozens of workers into one screen.  This 

paper aims to determine whether advancements in digital technology have 

historically led to the displacement of workers employed in routinized occupations.    

 It may be questioned whether advancing technology causes permanent net 

job shifts.  The corollary to job displacements by technology is increased 

productivity and new job creation – per growth models ranging from Solow’s to the 

Real Business Cycle model.  Isn’t this just another technology shock pushing 

aggregate demand outward?  

 In the last two decades, a vast array of literature has emerged citing one of 

two forces to structural changes in the labor market:  Skill-Biased Technological 

Change (SBTC) and the Autor Levy Murnane (ALM) hypotheses – the latter 

emerging from the inadequacy of the former to explain the rising job polarization in 

Western labor markets.  According to the SBTC hypothesis, technology increases the 

demand for skilled labor and reduces the demand for unskilled labor, resulting in a 

higher wage compensation for skilled relative to unskilled labor.  Acemoglu (1998)  

and Kramarz (1998) establish the correlation between skill acquisition and 

technological change.  Machin and Van Reenen (1998) supplement the SBTC 

hypothesis with empirical evidence that indicates faster skill upgrading is 

associated with higher industry research and development.      

Yet, if the SBTC hypothesis was true, then in the last decade, one would 

expect positive growth rates of employment for middle and  high-skilled labor, as 

well as a decline in low-skilled employment.  However, this is not the case.  As Autor, 

Katz and Kreuger (1998), Autor, Levy and Murane (2003), Goos & Manning (2007), 
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Nedelkoska (2012) have stipulated, Western labor markets exhibit a polarizing 

trend that can only be explained in part by the SBTC hypothesis.  Indeed, 

employment growth of high-skilled labor has increased, but so too has the growth of 

low-skilled employment.  The individuals losing out are not unskilled workers, but 

‘middling workers’ employed in routinized labor. Consequently, the SBTC 

hypothesis cannot fully explain the twin peaks phenomena of the labor market.  

Instead, the ALM hypothesis offers a nuanced view of the relationship between 

digital technology and the labor market, one that surpasses the binary 

categorization of labor as skilled and unskilled.   

 

II.  The SBTC & ALM Hypotheses 

Technological shocks can stimulate economic growth, yet the impact of these 

shocks on the labor market requires closer scrutiny.  In the short run, the effect of a 

change in technology – such as the invention of the railroad, computer or web 

browser – is palpable within the subsequent boost in real GDP.  However, the impact 

of a technological change on the labor market reveals itself over a longer period of 

time.  Often, the true impact – as with computerization – does not emerge until 

decades after the initial invention.   

 With increasing vigor, economists and citizens alike have raised alarm about 

widening job polarization in the U.S. economy, which they attribute to 

advancements in digital technology.  The SBTC hypothesis generalizes the impact of 

technology upon all skill types as equivalent.  Yet occupations within industries are 
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characterized by varying types of skills.  So much so that the Dictionary of 

Occupational Titles (DOT) assigns skill descriptions to twelve thousand unique jobs.  

 Contrary to the SBTC hypothesis, which categorizes occupations as skilled 

and unskilled, the ALM hypothesis applies two tiers of skill decomposition.  First, 

the tasks of labor are segmented into routine and non-routine skills.  Within these 

branches, tasks can be further broken down into cognitive and manual skills.  The 

ALM hypothesis predicts that technology replaces routine cognitive and manual 

tasks, but complements non-routine cognitive tasks.1  Once stated, this declaration 

seems obvious, especially since the assembly line epitomizes the replacement of 

manual labor by machines.  However, we must reconsider our standard conception 

of a routine task.  Routine tasks have become synonymous with manual tasks where 

the laborer repeats the same motion, whether that be smoothing the surfaces of 

ceramic toilet bowls or individually wrapping Galvadier chocolate truffles for 

packaging.  Routine tasks, though, also include routine cognitive skills.   

Prior to the invention of the computer, tasks that required repetitive 

information processing fell strictly within the mind’s domain.  With the invention of 

the computer, a machine whose primary function is to process information, the 

mind’s domain has been encroached upon and in many cases usurped by another 

domain – the network domain.  Computers and the bundles of software programs 

and communication capabilities packaged with them have expanded the 

replacement capabilities of technology to include human cognition.  As Autor et. al 

(2003) articulate: 
                                                        
1 For non-routine manual tasks, the ALM hypothesis predicts that digital technology 
is a weak, or limited, compliment.   
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 As symbolic processors–machines that store, retrieve, sort, and act 
upon information–computers augment or supplant human cognition 
in a vast set of information processing tasks that were historically the 
mind’s exclusive dominion…Computers have increasingly substituted 
for the information processing, communications, and coordinating 
functions of bookkeepers, cashiers, telephone operators and other 
handlers of repetitive information processing tasks. (5) 

 
Computers have expanded the types of tasks replaced by technology to include not 

only routine manual skills, but also routine cognitive skills.  Thus, computers 

function as substitutes for routine manual and cognitive tasks and complements for 

non-routine cognitive tasks by increasing productivity. 

              Over the past three decades, the share of employment has shifted in favor of 

non-routine cognitive labor, as displayed in Figure 1.1.  Furthermore, while the 

employment share of routine cognitive labor has fallen since 1970, the share of non-

routine manual labor remains constant over time.  If the SBTC hypothesis was true, 

we would expect the share of the lowest skilled occupations to decline as technology 

advances.  Yet – as the ALM hypothesis predicts – since computers function as a 

limited complement of non-routine manual labor, its share of employment remains 

stable as digital technology advances.   
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   Figure 1.1 

 

 As with all substitution effects, the primary component that drives the 

replacement of one process for another is cost.  In the decision to hire, a firm must 

choose whether the marginal product of labor of hiring an additional worker is 

equal to or exceeds the worker’s marginal cost.  A firm must also consider whether 

substitutes are available that offer a lower marginal cost for the same or greater 

marginal product of the worker.  As substitutes, the price of computers and the 

quantity of routine cognitive labor employed are positively related.  Conversely as 

compliments, the quantity of non-routine cognitive labor employed and the price of 

computers are inversely related.  Given this relationship between the price of 

computers and its substitutes and compliments, as the price of computers declines, 

the quantity demanded of routine cognitive labor will decrease while the quantity of 

non-routine cognitive labor will increase.  The corollary of this statement indicates 

that as computer prices decline, the number of individuals employed in routine 

cognitive labor will either become unemployed or switch occupations.  In order for 
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this effect to be true, the price of computers must have declined since 1977.  Indeed, 

as Bresnahan (2000) cites, the quality-adjusted price of computers has declined at a 

compound rate of twenty percent per year through the mid 1990s.2   

 These two functions of computers – as substitutes and compliments –are the 

central claim of the ALM hypothesis.  If the ALM hypothesis models the interaction 

between the labor market and digital technology, we would expect within the data 

that routine cognitive workers represent an increasing share of the unemployed.   

 

III. Hypotheses:  Adding the Lens of Job Loss 
 
 The majority of the economic literature concerning the displacement of 

routinized workers by digital technology measures the share of employment 

differential that can be attributed to computers (Goos and Manning, 2007, Autor, 

Levy and Murnane, 2003, Autor, Katz and Kreuger, 1998).  Such work attempts to 

determine the degree to which computers modify the tasks of a given occupation by 

examining those currently employed.  In part, this is a result of the nature of the 

data, since most surveys only ask employed individuals whether they use a 

computer at work and for what purpose.  Yet, by only measuring the effects of 

technology displacement on the employed, existing literature neglects the most 

important people of interest – the unemployed.   

What happens to the individuals whose routinized jobs are usurped by 

digital technology?  Do they find work elsewhere?  Are they more likely to become 

unemployed?  Must they accept a lower wage if changing occupations?  Ljubica 
                                                        
2 Figure 6.1 in the Appendix displays the steady decline of the computer price index 
since 2005.  
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Nedelkoska attempts to answer this very question for the case of another Western 

economic power:  Germany.  Nedelkoska (2012) attempts to track the adaptation 

process of German workers whose occupations require routine tasks.  An individual 

whose skills become obsolete faces two choices: unemployment or occupational 

change.  Nedelkoska concludes that workers performing routine tasks incur a higher 

probability of becoming unemployed and switching occupations.  Similar to 

Nedelkoska’s conclusions, I predict that workers performing routine cognitive tasks 

face a higher probability of unemployment compared to those performing non-

routine cognitive tasks.  

A question that remains, however, pertains to the causality assertion.  Is 

technology to blame for the decline of occupations requiring routine cognitive 

tasks?  Nedelkoska concludes that if such directional causality exists, then it is a 

weak causal relationship in production and manufacturing, and for coding 

technologies other than computers, the relationship can even be complementary, 

proving that not all digital technologies interact uniformly with the labor market.  

Autor, Levy and Murnane (2003) conclude opposite results.  Instead, within the 

most highly computerized industries, the trend exhibits an increase in labor input 

for non-routine cognitive skills and a decrease in labor input for routine cognitive 

skills.  As with most relationships in economics, direct causality remains elusive.  

Association, at best, can be attained.  Thus the second hypothesis to be tested is 

whether advancements in digital technology are historically followed by an 

expansion of the unemployment gap between routine cognitive and non-routine 

cognitive occupations.    
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IV. Data Methodology 
 

In order to measure the likelihood of unemployment for non-routine 

cognitive occupations compared to routine cognitive occupations and to test for 

causality between technological advancement and the unemployment gap, we 

require measures of skill task for all occupations.  The National Academy of Sciences 

and Committee of Occupational Classification and Analysis aggregate Dictionary of 

Occupation Titles (DOT) characteristics for the 574 occupation categories of the 

1970 U.S. Census.  In the COC-DOT aggregation, Census Occupation Codes (COC) are 

assigned a score for General Education Development, Aptitudes and Temperaments 

measured in the DOT.   

Using the same methodology as Autor, Levy and Murnane (2003), five 

characteristics indicate the degree to which an occupation is non-routine or routine.   

 
Non-routine Cognitive-Analytic:  Mathematical General Education 
Development (GEDMATH) captures an occupation’s quantitative and 
analytical reasoning skills. 
 
Non-routine Cognitive-Interactive:  Directional, Control, Planning (DCP) 
measures an occupation’s communication and management skills. 

 
Non-routine Manual:  Eye-Hand-Foot Coordination (EYEHAND) takes on high  
values for occupations requiring a high degree of physical agility and spatial  
recognition. 
 
Routine Cognitive: Set Limits, Tolerances or Standards (STP) indicates a 
worker’s ability to adapt to work requiring set limits, tolerances or 
standards. 
 
Routine Manual:  Finger Dexterity (FINGDEX) captures the level of motor 
skills an occupation requires. 
 

Based on the score of the DOT skill measures in the COC-DOT aggregation, I 

calculated a weighted DOT mean task in order to assign one of the five skill 
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measures to each of the 574 Census Occupation Codes.  In other words, I defined 

each occupation as non-routine cognitive-analytic, non-routine cognitive-

interactive, non-routine manual, routine cognitive or routine manual.   

 Although U.S. Census Data served to classify occupational codes by skill 

measure, I drew from the Current Population Survey (CPS) to analyze 

unemployment by skill measure.  Since the U.S. Census and the CPS code 

occupations differently, I created a crosswalk using the CPS translation page to 

assign a skill measure to the CPS occupation codes with base year of 1970.3  By 

using the 1970 base year occupation codes, occupations are comparable over time.  

However, in using the base year, we assume that the task requirement of 

occupations remains constant overtime.  Although this assumption could limit the 

regression results since technological advancement leads to changes in an 

occupation’s tasks, the benefit of the assumption outweighs its limitations.  By 

classifying each CPS occupation with a skill measure, characteristics of the 

occupation – instead of the individual – can be tracked overtime, in particular, 

unemployment status.   

  
 
 
 
 
 
 
 
                                                        
3 The Current Population Survey provides the translation page.  The page 
categorizes CPS occupation codes by U.S. Census Occupation Codes for all years.  The 
U.S. Census Occupation Codes are more detailed than the CPS occupation code.  Thus 
to create the crosswalk, I matched the U.S. Census Occupation Codes to their CPS 
counterpart as defined by the translation page.  
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Probit Model 

To measure the likelihood of unemployment of an individual with a routine 

cognitive or non-routine cognitive-analytic task, I created a probit model using CPS 

data from 1972-2013.4  The probit model is defined as follows: 

 
1.  (      |         )   (                     ) 
 

 
where       is the likelihood of unemployment of individual i at year T,   is a vector 

of coefficients for a vector of characteristics      that include age, sex, race, income, 

education and industry and   is a vector of coefficients for a vector of dependent 

variables      that include dummy variables defining the skill measure of an 

occupation.5     

  
Vector Auto-regression (VAR) Model 
 
 Testing for Granger Causality through Vector Auto-regression is one method 

of determining whether a causal relationship exists between two forces.  A casual 

relationship between digital technology and the unemployment rate of non-routine 

cognitive and routine cognitive jobs has yet to be established or refuted.  If the 

probit model supports the hypothesis that individuals employed in routine cognitive 

occupations incur a greater likelihood of unemployment than those employed in 

non-routine cognitive work, then the question remains as to why this disparity 

                                                        
4 The sample consists of individuals between the ages of 18-65 who are in the labor 
force.  For each year, T, the number of observations is between 40-90k individuals.  
See Table 1.2 in the Appendix for the probit model output.    
5 Income is measured using an individual’s wage.  All measures of income are 
inflation adjusted using the CPI less food and energy with 2007 as the base year. 
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exists.  The VAR model tests whether this difference in unemployment rates can be 

attributed to advancements in digital technology.   

 In order to create a VAR model, I converted the existing micro data from the 

CPS into time-series data.  From 1972-2013, I calculated the annual unemployment 

rate for routine cognitive and non-routine cognitive jobs within the aggregate 

economy.  Since the variable of concern is the disparity between the unemployment 

rate of routine and non-routine cognitive occupations, the dependent variable is the 

difference between the two unemployment rates.  (Since I subtracted the 

unemployment rate of non-routine cognitive jobs from the unemployment rate of 

routine cognitive jobs, we would expect this difference to be positive).   

For the primary explanatory variable, a measure of digital technology must 

be chosen.  Investment in digital technology will serve as a proxy for technological 

advancement in the VAR model.  The Bureau of Labor Statistics provides aggregate 

and industry level measures of digital technology investment in the National Income 

and Product Accounts (NIPA).  Categories of investment include PC (personal 

computer), printers, hard drives, user-owned software, licensed software etc.  I 

aggregated these sub-categories into two umbrella categories: hardware and 

software investment.   

Although investment in durable and non-durable computer goods 

commenced during the same time period, the respective growth rates of investment 

vary significantly.  Figure 1.2 and 1.3 displays the level of economic wide investment 

in hardware and software technology for the U.S. from 1972-2011.  Accompanied 
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with the graphs is a timeline that tracks the milestones of invention for the 

respective technologies.                                           

 

 

 

 

         Figure 1.26 

U.S. Hardware Investment, 1972-2011 
 

 

 

 

 

 

 

                                                        
6 The timeline of hardware and software technological advancements was compiled 
from the Computer History Museum. 
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Figure 1.3 

                                         U.S. Software Investment, 1972-2011 
 

 
 
Investment in both hardware and software increase over time – as expected – yet 

for hardware investment, the growth rate remains fairly constant while software 

investment exhibits varying rates of exponential growth.  Within the contours of 

these growth rates, the history of the digital technology revolution resides.   

 In 1989, Sir Timothy John Berners Lee invented the World Wide Web (it was 

released in 1990), but this invention alone did not spark the fastest rate of computer 

hardware investment from 1992-1996.  Without a format to navigate, read and post 

content, the World Wide Web was inaccessible to widespread users.  Once CERN 

uploaded the first website on August 6, 1991, the Internet became universally user-

friendly, which sparked the highest growth rate of hardware investment.  Software 

investment, however, did not respond in the same manner as hardware investment 

to the creation of the first website.  Not until 2002 – following the DOT-COM bubble 

and the invention of the web-browser – did software investment finally takeoff. 
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Since hardware and software investment responded with varying growth 

rates to technological disturbances, they may also exhibit differing effects on 

unemployment for routine cognitive and non-routine cognitive occupations.  Hence, 

the VAR model does not aggregate hardware and software investment.   

 The VAR model is as follows: 
 
 

2.   (      )                                             (        )  

       (         )       

 
 

where  (    ) is the difference in the unemployment rate at time T between occupations with 

skill measures i and k, I is a vector consisting of the log of aggregate investment in hardware 

and software, Y is the log of real GDP and   is the log of the CPI less food and energy.   

 

V. Results 
 
Probit Model  
 
 The first hypothesis predicts that individuals employed in routine cognitive 

work incur a higher likelihood of unemployment than their counterparts in non-

routine cognitive occupations.  If this hypothesis proves to be true and if we suspect 

that advancements in digital technology contribute to the result, then we would 

expect the shift of unemployment likelihood in favor of non-routine cognitive jobs to 

occur after 1977, when the Apple computer made its debut.7  Indeed, the probit 

model shows that routine cognitive workers become more likely to be unemployed 

than non-routine cognitive workers after the invention of personal computers.   

                                                        
7 Source: Autor (1998). 



 - 17 - 
 

 The coefficient of the dummy variable for routine cognitive labor, all else 

constant, becomes consistently significant in 1983, two years after the first IBM 

personal computer arrived on the market and at the beginning of the decade in 

which computer usage rapidly expanded across all industries.  Figure 1.4 presents 

the marginal effect of the coefficient for routine cognitive occupations from 1968-

2010.   

Figure 1.4 

 
From 1968-1983, the coefficient alternates between significance and non-

significance in the probit model, indicating that skill measure is not a conclusive 

factor in predicting the probability an individual will be unemployed from one year 

to the next.  Post 1983, individuals employed in routine cognitive occupations have 

a consistently higher probability of unemployment by 1-2 percentage points.  In 

other words, the unemployment rate for routine cognitive occupations is 1-2 

percentage points higher than for non-routine cognitive occupations (both analytic 

and interactive).  This percent difference in the unemployment rate is consequential 
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– especially considering the unemployment rate fluctuates within the bounds of 6 

and 8 percent. 

 The only anomaly within the data occurs in the year 2000, when the marginal 

effect of routine cognitive occupations is not statistically significant.  On March 10, 

2000, the dot-com bubble burst, sending the job status of all Americans, regardless 

of skill type, into a tailspin of uncertainty.  CPS data is collected at the end of March.  

Thus in 2000, CPS data was collected within weeks of the dot-com crash, which 

explains why all jobs, regardless of skill measure, incurred the same probability of 

unemployment.   

 The results of the probit model are consistent with the results of Nedelkoska 

(2012), where German individuals experienced a higher likelihood of 

unemployment given employment within a routine occupation.  Nedelkoska had 

access to a panel data set in Germany, which allowed her to measure the probability 

of occupational changes of individuals across time.  As expected, individuals 

occupied in routine work were more likely to switch occupations than those 

occupied in non-routine work.  When comparing the likelihood of unemployment vs. 

the likelihood of occupational changes, individuals were significantly more likely to 

switch occupations than to become unemployed.  Here lies the limitation of the CPS 

dataset: individuals cannot be tracked over time and consequently, occupational 

changes are not captured in the probit model.  Although the probit model cannot 

capture the probability of occupational changes by skill measure, it must be 

recognized that advancements in digital technology do not necessarily displace a 

worker, but instead force an individual to change occupation.   
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 The question remains, however, whether the 1-2 percentage point difference 

in the likelihood of unemployment between routine cognitive and non-routine 

cognitive occupations is a result of advancement in digital technology.  It cannot be 

assumed on the basis of skill measure alone that digital technology causes workers 

of routine cognitive occupations to face a higher unemployment rate than non-

routine cognitive workers.  The VAR model attempts to supplement the results of 

the probit model by determining whether a statistical link exists between the 

unemployment gap and digital technology.          

 

VAR Results  

 The VAR model measures whether advancements in digital technology are 

predictive of an expansion in the unemployment gap between routine cognitive and 

non-routine cognitive occupations.  Digital technology has been categorized as 

hardware and software investment, since we expect the effect on the unemployment 

gap to depend on the type of technological advancement.  In the VAR model, the 

unemployment gap is defined as the difference in the unemployment rate between 

routine cognitive and non-routine cognitive-analytic occupations.  Figure 1.5 

provides a visual representation of the unemployment gap. 
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              Figure 1.5 

 
 
Although one can imagine that other unemployment gaps exist – such as the 

gap between routine cognitive and non-routine cognitive-interactive or routine 

manual and non-routine manual unemployment – to avoid overcomplicating the 

empirical analysis, the unemployment gap will only pertain to the difference in 

routine cognitive and non-routine cognitive-analytic unemployment.  Since Autor et. 

al (2003) concluded that technological advancements had the greatest impact on the 

share of employment of routine cognitive and non-routine cognitive-analytic 

occupations, I will restrict my analysis to the unemployment gap between those two 

skill measures.  Furthermore, the empirical results of the other unemployment gaps 

did not generate significant findings.     

Table 1.1 in the Appendix presents the results of the Granger Causality test 

ordered by Cholesky Factorization for the estimated VAR model.8  Before examining 

the model’s estimated effects of hardware and software investment, we must first 

                                                        
8 The VAR model passes the unit root test and is stable.  Furthermore, the lag 
exclusion test recommends the use of two lags.   



 - 21 - 
 

determine whether the model exhibits expected relationships consistent with 

macroeconomic theory.  In the VAR model, GDP is exogenous and significantly 

effects inflation, meaning that an unexpected rise in GDP is associated with rising 

inflation.  Figure 2.1 displays the impulse response of the CPI to a shock in GDP.            

 
                                                                         Figure 2.1 

 
 
The impulse response generates a shock at time zero in order to measure the 

response of one variable to an unanticipated rise in another variable, thus 

simulating the dynamic between the two variables.  In Figure 2.1, an unexpected 

stimulus in GDP is followed by a rise in the CPI.  Contrary to expectations, hardware 

and software investment do not function as complements.  Instead, the model 

indicates that the primary driver of hardware and software investment is computer 

prices.  This result is consistent with the conclusions of Autor et. al (2003).  As 

demonstrated in the impulse response in Figure 3.1 and 3.2, an unexpected rise in 

prices is historically followed by a sudden decrease in software and hardware 

investment over the short run (approximately two years). 
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Figure 3.1                                                                                    Figure 3.2 

       
 
Once prices stabilize in the medium run, hardware and software investment return 

to their previous levels.  Since the VAR model exudes the expected macroeconomic 

relationships supported by theory and existing empirical analysis, the VAR model 

has the potential to capture the dynamics between advancements in digital 

technology and the unemployment gap.   

As stated by the ALM hypothesis, computer technology serves as substitutes 

for routine cognitive occupations and complements the work of non-routine 

cognitive-analytic occupations.  If this hypothesis is true, then we would expect 

hardware and software investment to be associated with an expansion of the 

unemployment gap.  The results of the Granger Causality test show that hardware 

and software investment, GDP and inflation are all significant contributors to the 

unemployment gap between routine cognitive and non-routine cognitive-analytic 

occupations over time.   

  The impulse response of the unemployment gap to a shock in GDP indicates 

that the gap responds in alignment with the expansions and contractions of the 

economy.  During an economic expansion, the unemployment gap contracts and the 
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reverse is true during an economic contraction.  Moreover, the unemployment gap 

also exhibits the trade-off between unemployment and inflation predicted by the 

Phillips Curve.  Figure 4.1 and 4.2 display the impulse response of the 

unemployment gap to a shock in GDP and inflation, respectively. 

 
                                   Figure 4.1                                                                                    Figure 4.2 

       
 

  However, the unemployment gap cannot solely be attributed to the cyclical 

nature of the economy.  Technological advancement contributes to the gap’s 

persistence, yet not all technologies exacerbate the unemployment gap to the same 

degree.  Contrary to expectations, an unanticipated rise in hardware and software 

investment leads to a contraction of the unemployment gap in the short-run (from 

year zero to year two), as displayed in Figure 5.1 and 5.2.  
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                                   Figure 5.1                                                                                    Figure 5.2 

       
 
However, in the medium run, the effect of hardware and software investment on the 

unemployment gap differs.  In response to a shock in hardware investment, the 

unemployment gap marginally rises above zero during the medium run (from year 

four to year seven).  In contrast, a shock in software investment leads to an 

expansion of the unemployment gap in the medium run that exceeds the initial 

contraction in the short run.  Thus the net change in the unemployment gap 

following a shock in software investment is positive, which means that 

advancements in software technology are historically followed by increased 

unemployment for routine cognitive workers and/or decreased unemployment for 

non-routine cognitive-analytic workers.  

In order to account for the differing effects of hardware and software 

investment on the unemployment gap, two possible explanations arise.  First, unlike 

automated devices responsible for replacing routine manual labor following the 

industrial revolution, the machine itself – the personal computer – may not fully 

substitute workers for routine cognitive tasks.  The computer cannot produce 

output without software (hence they are complementary goods).  Perhaps the 
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substitution value lies not in the machine itself, but the application of the machine 

realized through software.   

The computer acts as a mechanism upon which software – the true use-

function of the computer – can run.  Without the creation of software, the 

widespread accessibility and usability of the machine would not have been realized.  

For example, during the infancy of the World Wide Web, its usability was diminished 

without a means of navigating its terrain.  Until Netscape created the first user-

friendly web-browser, the webpages and information contained upon those pages 

went unread, like lone signs along an unpaved highway.   

Although the complementary nature of hardware and software lends itself to 

producing a good or service, digital technology’s greatest contribution is its 

connective power – the ability to connect individuals and to create a seamless 

interlay of all units of a firm.  As Bresnahan (2000) explains, advancement in digital 

technology alters the cost-effective structure and organization of a firm.  For 

example, Business Workflow software fundamentally changed what was considered 

the most cost-effective scale of a firm, which led to large organizational changes.  

According to Bresnahan, large organizational changes, which often include the 

decentralization of decision-making, lateral communication and a greater emphasis 

on the need for autonomous workers, have a larger effect on the acquisition of 

higher skilled labor than the technological change alone.   

Such mass organizational re-structuring does not come without a price – not 

only money, but also time.  Restructuring a firm in order to incorporate advances in 

digital technology requires time.  Consequently, a time-delay effect occurs that 
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postpones the efficiency gains following the implementation of the organizational 

changes.  The time-delay effect is precisely what occurs in the impulse response of 

the unemployment gap to a shock in software investment.  As Figure 5.2 displays, 

the expansion of the unemployment gap does not occur until two years after the 

initial shock.  Thus, the substitution effect of advances in digital technology on 

routine cognitive workers is not immediate.  Only after firms achieve the 

implementation of new digital technology do computers begin to replace routine 

cognitive workers.   

The substitution effect captured in the VAR model most likely 

underrepresents the magnitude of the actual substitution effect occurring in the U.S. 

labor market.  Since the model only includes the number of unemployed workers for 

each skill measure, those workers partially replaced by digital technology are not 

included.  ‘Partially replaced’ refers to occupations in which computers do not 

replace the entire worker, but only a subset of the worker’s skills.  Bresnahan 

(2000) labels this partial replacement effect as the ‘limited substitutability’ of digital 

technology.  Due to the nature of the dependent variable, the model does not 

capture those routine cognitive workers who experienced a subset of their tasks 

replaced by computers.  If the VAR model could capture those routine cognitive 

workers partially replaced by digital technology, we would expect the impulse 

response of the unemployment gap to be significantly larger.  
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VI. Conclusion 

The replacement effect of technology upon labor is nothing new, as this effect 

has occurred since the industrial revolution, during the creation of the assembly line 

and now, through advancements in digital technology.  Previously, the Skill-Biased 

Technological Change hypothesis provided a widely accepted explanation for the 

effect of advancing technology upon the labor market: technology increases the 

demand for skilled labor and decreases the demand for unskilled labor.   

Yet, this explanation fails to explain the recent decline of middle skilled labor 

in the last three decades – a decline that existing economic literature has attributed 

to advancements in digital technology.  The Autor Levy Murnane (ALM) hypothesis 

provides a more nuanced view of the effect of technology on the labor market by 

categorizing labor within routine and non-routine occupations.  Routine and non-

routine occupations can be further segmented by manual and cognitive occupations.  

The ALM hypothesis states that digital technology behaves as substitutes for routine 

cognitive occupations and as compliments for non-routine occupations.  Insofar as 

the ALM hypothesis accurately explains the dynamic of the labor market and digital 

technology, the substitution effect of digital technology impacts a large share of the 

labor market, since routine cognitive occupations are concentrated within the 

middle class.  

I tested two hypotheses: 1) Individuals employed in routine cognitive 

occupations incur a higher probability of unemployment than individuals employed 

in non-routine cognitive occupations and 2) The unemployment gap between 

routine cognitive and non-routine cognitive occupations can be attributed to 
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advancements in digital technology.  The probit model confirmed that since the 

1980s, routine cognitive workers are more likely to become unemployed than non-

routine cognitive workers.  In order to determine whether the unemployment gap 

between routine cognitive and non-routine cognitive occupations can be statistically 

linked to advancements in digital technology, a Vector Auto-regression Model (VAR) 

measured to what extent expansions in the unemployment gap can be explained by 

advancing digital technology.   

Using hardware and software investment as a proxy for digital technology, 

the results of the VAR model conclude that the effect of digital technology upon the 

unemployment gap depends on the type of technology.  Advancements in hardware 

technology are statistically significant, but the net effect on the unemployment gap 

over time is zero.  In contrast, advancements in software technology lead to a 

contraction of the unemployment gap in the short run, but an expansion of the gap 

in the medium run that exceeds the initial contraction.  Thus, the net effect of 

advancements in software technology on the unemployment gap is positive, which 

means that advancements in software technology are historically followed by an 

increase in unemployment for routine cognitive occupations and/or a decrease in 

unemployment for non-routine cognitive occupations.   

The implications of these results indicate that as software technology 

advances, a greater number of routine cognitive occupations will either be fully 

displaced or partially displaced by digital technology.  Partial displacement refers to 

the replacement of a subset of skills required within an occupation.  Future research 

should be concerned with how to transition workers with middling skills towards 
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higher skilled occupations that are complimented – not substituted – by digital 

technology.  Such transition efforts in the form of job training, education and skill-

upgrading programs will be of greatest importance not for new entrants of the labor 

market (such as college graduates), but for existing laborers.  As digital technology –

especially software – advances at an increasing rate, our cultural expectation of a 

‘lifetime’ career may be subject to evolution.  In the near future, the norm may no 

longer be to remain in one occupation until retirement, but rather to reinvent our 

careers multiple times in order to adapt to a labor market, economy and world 

buffeted by constant waves of digital technological advancements.   
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Appendix 
 

Table 1.1: VAR Granger Causality Test Results 
 

The table presents the p-values for the Granger Causality Test.  
 

      

  
Independent Variable 

  

      

 
log(GDP) log(CPI) log(Hardware) log(Software) 

URC - UNR-
C/A 

log(GDP) *** - - - - 

log(CPI) 0.0256** *** - - - 

log(Hardware) - 0.0015*** *** - - 

log(Software) - 0.0091*** - *** - 

URC - UNR-C/A 0.0643* 0.0536* 0.0434** 0.0252** *** 

      Adjusted R-Squared 0.74 
   Observations 34       

URC - UNR-C/A refers to the difference in the unemployment rate between routine cognitive 
(RC) and non-routine cognitive-analytic (NR-C/A) occupations.   

 
 
 

Figure 6.1 
 

             
 
            Source: Federal Reserve Bank 
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Appendix 
 

Table 1.2: Probit Model Output 
 

 

Year Observations McFadden	R-squared

1968 42775 0.1137

1969 43535 0.1072

1970 42267 0.0959

1971 42831 0.1145

1972 41590 0.1214

1973 41453 0.1013

1974 41266 0.1065

1975 40798 0.1315

1976 43277 0.1238

1977 52652 0.1129

1978 52062 0.1207

1979 52991 0.1090

1980 63459 0.1093

1981 64275 0.1286

1982 57580 0.1267

1983 57608 0.1355

1984 64670 0.1301

1985 65713 0.1367

1986 64571 0.1214

1987 64573 0.1263

1988 64831 0.1256

1989 60767 0.1120

1990 66902 0.1095

1991 66737 0.1072

1992 66042 0.1177

1993 65414 0.1131

1994 63469 0.1205

1995 63356 0.1048

1996 55167 0.1049

1997 56402 0.1144

1998 56709 0.1100

1999 57021 0.0904

2000 53425 0.0988

2001 87056 0.0937

2002 85818 0.0818

2003 83782 0.0761

2004 81627 0.0866

2005 80067 0.0864

2006 79311 0.0799

2007 78511 0.0842

2008 78099 0.0906

2009 77982 0.0913

2010 76535 0.1025

2011 73380 0.1027


