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Abstract 

 The classical Solow model of economics development posits a negative relationship 

between GDP per capita and economics growth rate and therefore predicts output convergence. 

In this paper, I use Barro and Sala-i-Martin’s (1990) specification to estimate the output 

convergence rate among 50 U.S states by 10 year subperiods from 1930 to 2015. The 

convergence rate significantly declines after 1980s but improves when I control for regional 

shocks, sectoral shocks and education attainment. I conclude that while the Solow model is still 

applicable to the current U.S economy, including these additional controls helps improve its 

significance and robustness. 

 

I. INTRODUCTION 

In his seminal paper, Solow (1956) ushered in a new field in neoclassical economics, 

income convergence. The principles behind his model are strikingly simple: steady state output is 

determined by capital per labor and exogenous factors – the savings rate, the capital depreciation 

rate, and the population growth rate. Additionally, capital per labor exhibits diminishing 

marginal returns. His model predicts that capital will flow from capital-intensive to capital-

scarce economies, inducing output convergence in the long run. Research by Barro and Sala-i-

Martin (1990) as well as Mankiw (1992) has empirically tested the convergence hypothesis. 

Barro and Sala-i-Martin (1990) studied convergence among US states. They included a regional 

dummy and a sector composition variable in their specifications to control for regional and 



sectoral shocks. Mankiw (1992) introduced human capital per labor into the Solow model, 

thereby improving its statistical fit and reducing the implausibly high capital share of income it 

implied.  

This paper examines output convergence among the US states using Barro and Sala-i- 

Martin’s (1990) specification for ß-convergence. It contributes to the existing literature by 

testing the effectiveness of ß-convergence models with data up to 2015, and by suggesting 

additional controls for Barro and Sala-i-Martin’s (1990) specification. This paper is organized as 

the following. In section II, I discuss the classical Solow model, Barro and Sala-i-Martin’s 

(1990) model, and past empirical research. In section III, I introduce the conceptual model. In 

section IV, I discuss the ideal data and measurement of concepts in the model. Section V 

describes my data and estimation equation. In section VI, I discuss my results. Section VII 

concludes. 

 

II. LITERATURE REVIEW 

II.a. Classical Solow Model 

The Solow model begins by assuming a Cobb-Douglas production function with constant 

returns to scale and diminishing marginal returns to capital: 

Y = F(K,L) = KaL1-a (0<a<1)1        (1)  

Since output per labor is y = Y/L and capital per labor is k = K/L, dividing both side of (1) by L, 

we obtain: 

y = ka (0<a<1)           (2) 

                                                
1 The production function omits total factor productivity (A) because it’s expressed as the labor augmenting 
technology (E) in the equation Y = F(K,EL). I left E out of my discussion to simplify the model. 



The second assumption of Solow model is: income (Y) is saved and reinvested at the 

savings rate (s) and capital stock depreciates at rate δ. Both rates are exogenously given. 

Therefore, the change in capital (K’) is given by: 

K’ = sY - δK            (3) 

Solow then assumes that labor (L) is the entire population and grows at a fixed rate n:  

Lt =L0 ent           (4) 

Taking log on both sides of the capital per labor equation k = K/L, we obtain: 

log k = log K - log L           (5) 

Taking the derivative on both sides of (5) and substituting L for (4), we obtain: 

k’/k = K’/K - L’/L = K’/K - n          (6)  

Substituting K’ for (3), we obtain:      

k’/k = (sY - δK)/K - n          (7) 

Rearranging (7), we obtain: 

k’ = sy - (δ+n)k           (8) 

Therefore, the change in capital per labor (k’) is a function of the savings rate (s), capital 

depreciation rate (δ) and population growth rate (n). If k’=0, the inflow of new capital (sy) equals 

the outflow of capital (δ+n)k. We arrive at the steady state capital per labor (k0) and output per 

labor (y0) according to Figure 1. If an economy starts below the steady state at k1 and y1, k’ = sy 

- (δ+n)k > 0, capital and output per labor grow to approach k0 and y0. If an economy starts 

above the equilibrium at k2 and y2, k’ = sy - (δ+n)k < 0, capital and output per labor decline to 

approach k0 and y0. Therefore, equation (8) predicts that holding all else constant (s, δ and n), 

poorer economies grow faster than richer economies and income converges. 



Figure 1. Classical Solow Growth Model and the Steady State Output (y0)

   

II.b. Barro and Sala-i-Martin’s (1990) Specification  

To model the inverse relationship between initial output and growth rate implied by the 

classical Solow model, Barro and Sala-i-Martin (1990) derived the following equation: 

(1/T)log(yi,t+T/yi,t) = a - (1-e-ßt)/T*log(yi,t) + (other variables) + ui,t,t+T    (9)  

where yi,t is the output per labor of state i at time t; yi,t+T is the output per labor of state i at time 

t+T; and ui,t,t+T is the error term between time t and t+T. Therefore, T is the period that measures 

the convergence. 

On the left side of equation (9), (1/T)log(yi,t+T/yi,t) is the growth rate of output per labor 

between time t and t+T. On the right side of equation (9), a is the intercept; - (1-e-ßt)/T is the 

coefficient of log(yi,t), the initial output; and ß is the convergence coefficient. 

II.c. Empirical Research Using Barro and Sala-i-Martin’s (1990) Specification 

Barro and Sala-i-Martin (1991) observed a robust convergence rate of 2% among the US

 states and European countries when controlling for regional and sectoral shocks. 

Hart (2001) replicated Barro and Sala-i-Martin (1991) using updated data from the 2000 



census and observed a robust convergence rate of 1.7% among the US states when controlling 

for regional and sectoral shocks. He attributed the low convergence rate in 1930s and 1980s to 

the great depression and stagflation, respectively. 

Higgins (2006) tested convergence among the US states using county level data and 41 

control variables. He observed a robust convergence rate of 1.6% when controlling for 

geographical region, state government size, education attainment and the size of the finance, 

insurance, real estate and entertainment sectors. 

 When using county level data from 1970 to 1998, Young (2008) found that convergence 

among the US states is significant but convergence among counties within each individual state 

is not always significant. Nevertheless, the convergence rates are always positive when 

significant. 

     

III. CONCEPTUAL MODEL 

In this paper, I use Barro and Sala-i-Martin’s (1990) specification: 

(1/T)log(yi,t+T/yi,t) = a - (1-e-ßt)/T*log(yi,t) + (other variables) + ui,t,t+T    (9)  

If we assume all states have the same steady state output, we do not need to control for 

the exogenous determinants of the steady state: the savings rate (s), the population growth rate 

(n) and the capital depreciation rate (δ). This assumption is tenable among the US states, 

where these exogenous factors are assumed to be identical under the same institutions, social 

norms, and culture.      

However, if we assume that each state has a different steady state output, we need to 

control for s, n and δ by using the other variables option on the right side of equation (9). 

          



IV. IDEAL DATA AND CONCEPT MEASUREMENT 

The output growth rate (1/T)log(yi,t+T/yi,t) and the initial output log(yi,t) can be 

calculated from annual GDP per capita by state, or approximated with annual personal income 

per capita by state. The savings rate s is equal to the physical capital investment rate plus the 

human capital investment rate (Mankiw 1992). Unfortunately, neither are available by state as 

time series data. Besides, it is hard to define human capital investment, which includes 

education, job training and government programs among others. Therefore, past literature 

typically uses the percentage of population holding a bachelor’s degree as a proxy for the human 

capital investment rate. 

Capital depreciation δ is the rate at which the economic value of the capital stock 

decreases. Unfortunately, it is also not available by state as time series. Past literature typically 

fixes capital depreciation at 5% per year. Since it is assumed to be a constant, I do not control for 

capital depreciation in my specifications. 

The population growth rate can be calculated from the census in 10-year intervals or 

approximated with population estimates from the Bureau of Economic Analysis (BEA). 

      

V. DATA AND ESTIMATION 

The equation I estimate is: 

Output Growth Rate = ß0 + ß1 Initial Output + ß2 Regional Dummy + ß3 Sectoral Composition 

+ ß4 Population Growth Rate + ß5 Percentage of Population with Bachelor’s Degree + µ 

My dependent variable is Output Growth Rate, calculated from BEA annual personal 

income per capita by state. My key independent variable is Initial Output, also calculated from 

BEA personal income by state. 



Regional Dummy is a vector of four dummy variables that divides the states into four 

BEA regions: Northeast, Midwest, South and West.2 Each dummy variable has a value of one for 

states that belong to the region and zero otherwise. This variable controls for regional shocks. 

Sectoral Composition is calculated by: 

 

where Wijt is the total income share of sector j in state i at time t.3 log(yi,t+T/yit)/T is the national 

growth rate of sector j from time t to t+T. There are 9 sectors. Therefore, Sit is the output growth 

rate of state i at time t if each of its sectors grows at the national rate. Sectoral Composition 

controls for sectoral shocks. For example, if sector j suffers a shock between time t and t+T, 

log(yi,t+T/yit)/T will be low. States with high total income shares of sector j at time t will have a 

low Sit. All the inputs of Sectoral Composition are from BEA personal income by state and by 

industry. 

Population Growth Rate and Percentage of Population with Bachelor’s Degree are 

obtained from the decennial census. They control for steady state output. 

                                                
2 The regions are made up of the following states: 
Northeast: ME, NH, VT, MA, RI, CT, NY, NJ, PA. 
South: DE, MD. VA, WV, NC, SC, GA, FL, KY, TN, AL, MS, AR, LA, OK, TX. 
Midwest: MN, IA, MO, ND, SD, NE, KS, OH, IN, IL, MI, WI. 
West: MT, ID, WY, CO, NM, AZ, UT, NV, WA, OR, CA 
3 From 1930 to 2001, BEA personal income by state by industry has 9 industrial sectors: agriculture, mining, 
construction, manufacturing, wholesale and retail trade, finance and insurance, services, government, and 
transportation and communication. After 2001, these 9 sectors are split into 21. I aggregated these 21 sectors back 
into 9. My industrial classification is therefore consistent in this paper from 1930 to 2015. 
 



 
Note: output growth rate, percentage of population with bachelor’s degree, population growth 
rate and sectoral composition are aggregated over the full sample period 1930 – 2015. Initial 
output refers to 1930.      
  



Table 2 – Summary of Independent Variables by Availability, Source, Expected Sign and 

Economic Concept 

 

      

 

 



VI. RESULTS 

VI.a. Assuming the Same Steady State Output for All States 

If we assume all states have the same steady state output, we do not need to control for 

the exogenous determinants of the steady state. Therefore, I estimate three models. Model 1 is 

the basic model with initial output as the only independent variable. Model 2 is the basic model 

plus the regional dummy. Model 3 is the basic model plus the regional dummy and the sectoral 

composition variable. Each model is estimated in eleven periods: seven 10-year periods from 

1930 to 2000, three 5-year periods from 2000 to 2015, and one full sample period from 1930 to 

2015. 

Each regression estimates -(1-e-ßt)/T, the coefficient of initial output, from which I 

calculate the implied convergence rate ß. Intriguingly, the coefficient of initial output is inversely 

related to the convergence rate. If -(1-e-ßt)/T=0, then ß=0, implying that the initial output has no 

effect on the growth rate and thus no convergence. If -(1-e-ßt)/T<0, then ß>0, implying that states 

with higher initial output grow more slowly and thus output converges. If -(1-e-ßt)/T>0, then 

ß<0, implying that states with higher initial outputs grow faster and thus output diverges.  

  



Table 3 – Coefficients of Initial Output, T-Statistics, Implied Convergence Rate ß and Adjusted 

R-squared by Models and Estimation Periods   

 
Note: Hawaii, Alaska and District of Columbia are excluded according to Barro and Sala-i- 
Martin (1990) 
 

Table 3 shows that over the full sample period from 1930 to 2015, US states exhibit a 

robust and significant convergence rate of 0.9% across all three models, lower than the 2% 

consensus among earlier literature. The adjusted R-squared of the basic model is 0.88, indicating 

that the initial output in 1930 can explain most output growth rate variations in the subsequent 85 

years. The fitted line in Figure 2 shows the strong negative linear relationship between the output 

growth rate and the initial output. The residual plot in Figure 3 shows that the basic model is 

homoscedastic.    



Figure 2. Regression of Output Growth Rate from 1930 to 2015 Against Output in 1930

 



Figure 3. Rvfplot of the Regression in Figure 2

 

Unfortunately, output convergence in the 10-years and 5-year sub-periods is not 

consistent. From 1930 to 1980, ß is nearly always positive and significant at 0.001 across all 

three models. In the 1980s, however, ß suddenly drops from about 2% to about 0.5% and 

becomes insignificant across all three models. In the 1990s, ß becomes negative, implying output 

divergence. 



Figure 4. Fitted Line and Rvfplot of the 1940s and the 1990s (the Basic Model)

 

Figure 4 compares the 1940s (the most significant convergence) with the 1990s 

(divergence). The residual plots show that both sub-periods are homoscedastic. In fact, all the 

sub-periods from 1930 to 2015 are homoscedastic (Appendix). Furthermore, to examine whether 

weak convergence results from regional and sectoral shocks, we can compare the adjusted R- 

squared and T-statistics of Model 1 with those of Model 3. By adding the regional dummy and 

the sectoral composition variable, Model 3 improves the adjusted R-squared from -0.02 to 0.67 

and the T-statistics from -0.34 to -1.39 in the 1980s. This indicates that regional and sectoral 

shocks can explain most output growth rate variations in the 1980s. The significance of ß 

improved after controlling for these shocks but is still insignificant. In the 1990s, Model 3 



improves neither the adjusted R-squared nor the T-statistics. The output divergence becomes 

more significant when controlling for regional and sectoral shocks. These imply that during the 

1980s and the 1990s, output convergence was disrupted by factors other than regional and 

sectoral shocks. Intensive technological evolution, the emerging information technology sector, 

and the expanding service sector might be responsible factors. These transformations correspond 

with BEA industrial sector reclassification in 2001, which added the information sector and split 

the service sector into 9 subsectors. 

ß is positive and significant from 2000 to 2005 but becomes insignificant following the 

Great Recession. Fortunately, regional and sectoral shocks can explain the weak convergence 

from 2005 to 2010. When controlling for these shocks, ß rises from 0.7% to 3.3% and becomes 

significant. The adjusted R-squared improves from -0.01 to 0.22. However, the same is not true 

for the period 2010 to 2015. When controlling for regional and sectoral shocks, ß declines from 

0.5% to 0.2% and becomes less significant. 

Consequently, the full period convergence rate of 0.9% is lower than the 2% consensus 

among earlier literature, because the magnitude and significance of ß falls after 1980. Intensive 

technological evolution, uncontrolled by my models, might be responsible for the weak 

convergence since 1980. 

 

 

 

 

     



Figure 5. Implied ß of Model 1 (the basic equation) and Model 3 (Controlled for Regional and 

Sectoral Shocks)

 

Figure 5 compares the implied ß of the basic equation and that of Model 3, which 

controls for regional and sectoral shocks. It shows that for the sub-periods after 1980, the implied 

ß becomes larger after controlling for these shocks. Besides, Table 3 shows that for the sub- 

periods after 1980, Model 3 improves the significance of ß and the adjusted R-squared 4 out of 5 

times. Therefore, Model 3 is a good starting point for the next subsection, which relieves the 

assumption of identical steady state outputs. 

VI.b. Assuming Different Steady State Outputs 

If we assume that each state has a different steady state output, we need to control for the 

exogenous determinants of the steady state. In this section, I control for the population growth 

rate and the percentage of population with bachelor’s degree, a proxy for human capital 

investment rate. All three models in this section control for the regional and sectoral shocks. 



They are identical to Model 3 except that Model 4 controls for educational attainment 

(bachelor’s degree), Model 5 controls for population growth and Model 6 controls for both. 

Table 4 – Coefficients of Initial Output, T-Statistics, Implied Convergence Rate ß and Adjusted 

R-squared by Models and Estimation Periods   

 

Table 4 shows that over the full sample period from 1930 to 2015, US states exhibit a 

robust and significant convergence rate of about 1% across all three models. The adjusted R- 

squared for all three models is above 0.88. When controlling for educational attainment, Model 4 

and Model 6 improve the T-Statistics from -10.44 (Model 3) to -14.80 and the adjusted R- 

squared from 0.88 (Model 3) to 0.93. ß rises from 0.9% to 1.1%. In contrast, when controlling 

for the population growth rate, Model 5 has the same adjusted R-squared as and a lower T- 

Statistics than Model 3. This evidence suggests that educational attainment might be necessary in 

the specification, whereas the population growth rate might not be.     



Table 5 – Coefficients and T-Statistics of Educational Attainment in Model 4 and the Population 

Growth Rate in Model 5 

 To better determine whether educational attainment and the population growth rate are 

necessary in the specification, Table 5 summarizes the coefficients and t-statistics of educational 

attainment in Model 4 and population growth rate in Model 5. The coefficient of educational 

attainment is positive and significant over the full sample period and is positive in 10 out of 10 

sub-periods. This aligns with our expectation that higher human capital investment rate implies 

higher steady state output and higher output growth rate. In contrast, the population growth rate 

coefficient is negative but insignificant over the full sample period, and is positive in 8 out of 10 

sub-periods. This contradicts our expectation that higher population growth rate implies lower 



steady state output and lower output growth rate. This anomaly might result from interstate 

migration: people migrate from low-growth states to high-growth states seeking better 

opportunities, thereby driving up population growth in states with higher output growth rate. 

This evidence confirms that I should keep educational attainment and drop population growth 

rate in my specification. Therefore, I only use Model 4 for the rest of my discussion. 

Compared to Model 1, 2 and 3, Model 4 has three major improvements. First, as 

discussed above, Model 4 improves the overall fit and the significance of ß over the full sample 

period. Second, Model 4 has significant ß in all sub-periods except the 1990s. Third, Model 4 

observes a significant convergence rate in the 1980s and the 2010s, while Model 1, 2 and 3 all 

fail to do so. The improved significance of ß is especially obvious in the 2010s. The t-statistic 

rises from -0.73, 0.09 and -0.30 to -2.65. ß rises from 0.5%, -0.1% and 0.2% to 2.9%. The 

adjusted R- squared rises from -0.01, 0.23 and 0.29 to 0.42. Therefore, educational attainment is 

necessary in the specification as it makes ß more significant, improves the overall fit, and has 

theoretically justified signs. 

Figure 6 – Implied ß of Model 3 and Model 4

 Figure 6 compares the implied ß of Model 3 and Model 4, whose only difference is that 



Model 4 has educational attainment in its specification. Figure 6 shows that output convergence 

is more pronounced when Model 4 controls for educational attainment, especially in the 2010s. 

This indicates that human capital, especially investment in higher education (bachelor’s degree), 

has become more important in driving output growth recently. 

      

VII. CONCLUSION 

This paper uses Barro and Sala-i-Martin’s (1990) specification and estimates a robust and 

significant output convergence rate of 1% among US states over the full sample period 1930 – 

2015. This is markedly lower than the 2% consensus among earlier literature, because 

convergence is inconsistent over the sub-periods and declines after 1980. When controlling for 

regional and sectoral shocks, Model 3 improves the overall fit and the significance of ß, but still 

fails to isolate a significant ß from 1980 to 2000, which I attribute to intensive technological 

evolution after 1980. When controlling for human capital investment rates, Model 4 isolates a 

significant ß in the 1980s and the 2010s whereas all other models fail to do so. Therefore, I 

conclude that educational attainment is necessary in Barro and Sala-i-Martin’s (1990) 

specification if we assume different steady state outputs. 

My research, however, is limited in three ways. First, the ten-years and five-years sub- 

periods are arbitrarily set up to accommodate for the availability of decennial census data. 

Different convergence rates might arise simply if the sub-periods are divided differently. Second, 

my model does not control for technological evolution, which I suspect is responsible for the 

weak convergence since 1980. Third, to ensure consistency, I use BEA’s 9 industry 

classifications to calculate the sectoral composition variables throughout the entire period. 



However, this approach risks losing the nuances of sectoral shocks. For example, 9 subsectors 

are collapsed into one service sector, which now represents 80% of US GDP. 

Therefore, future research can explore the effects of technological evolution on 

convergence by controlling for the employment share or total income share of technology sectors 

by state. Besides, since controlling for educational attainment helps isolate more pronounced 

convergence effects and improves the overall fit, future research can also include proxies for 

physical capital investment rate in the specification. 
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APPENDIX: Fitted Lines and Residual Plots for Each Sub-period (the Basic Model)  
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