2014 INTERNATIONAL RESEARCH FORUM ON MONETARY POLICY

MARCH 21, 2014

NARAYANA KOCHERLAKOTA
PRESIDENT
FEDERAL RESERVE BANK OF MINNEAPOLIS
Disclaimer

- The views expressed in this talk are my own.

- They may not be shared by others in the Federal Reserve System ...

- Especially my colleagues on the Federal Open Market Committee.
Acknowledgements

I thank Ron Feldman, Terry Fitzgerald, Samuel Schulhofer-Wohl and Kei-Mu Yi for comments.
Monetary Policy and Financial Stability

- Major element of monetary policy conversation:

 Easy monetary policy could create risk of financial instability.

- My view: It is preferable to mitigate such risks using supervisory tools.

- But in reality: Supervision may leave residual systemic risk.

 How should this residual risk affect monetary policy?
This Talk

- A framework to incorporate systemic risk mitigation into monetary policymaking.
 - Theme: Systemic risk creates a mean-variance trade-off for policy.

- A suggestive calculation based on the framework.
Outline

1. A Mean-Variance Framework

2. Suggestive Calculation

3. Conclusion
A MEAN-VARIANCE FRAMEWORK
Simple Model

- Monetary policymaker (MP)’s goal is to set a gap \(X \) equal to zero.
 - \(X \) could equal inflation minus target.
 - \(X \) could equal natural unemployment rate (UR) minus actual UR.

- Note well: \(X \) is based on macroeconomic outcomes.

- MP can increase \(X \) by raising accommodation \(A \).

- After MP chooses \(A \), \(X \) is also affected by a number of shocks, including shocks to the financial system.
The Central Banker’s Problem

• MP’s loss is given by the square of the gap (that is, X^2).

 – Standard: MP wants gap to equal zero.

 – Equally bad to have positive or negative gaps.

• Recall: X depends on shocks realized after A is chosen.

• MP chooses A so as to minimize the mean loss associated with A:

 $$\text{Mean}(X^2|A)$$
Usual Approach

• Mean loss equals squared mean gap + variance of gap:
 \[Mean(X|A)^2 + Var(X|A) \]

• Typical assumption: MP can't influence variance of shocks.

• Then, minimizing expected loss is same as minimizing squared mean gap:
 \[Mean(X|A)^2 \]

• Solution is to choose accommodation \(A^* \) that eliminates mean gap:
 \[Mean(X|A^*) = 0 \]
Incorporating Financial Stability Risks

• Suppose higher A increases the risk of financial instability that lowers X.

• Then, higher A increases $\text{Var}(X|A)$.

• MP’s problem is to choose A so as to minimize:

 $$[\text{Mean}(X|A)]^2 + \text{Var}(X|A)$$

• Now: MP’s choice of A trades off mean versus variance.
Mean-Variance Trade-Off

- Trade-off means that MP’s appropriate choice A^{**} will result in:

$$Mean(X|A^{**}) < 0$$

- That is, on average, the gap is negative under appropriate policy.

- MP gives up some mean X in order to get less risk in X.

- But exactly how much mean X should MP give up?
Comparing Two Monetary Policy Alternatives

• It is appropriate for MP to choose \(A \) over \(A^* \) if \(A \) reduces risk sufficiently relative to \(A^* \):

\[
Var(X|A^*) - Var(X|A) > Mean(X|A)^2
\]

• Central banks know a lot about assessing the RHS – that is, the mean of \(X \) given choice \(A \).

 – In my view: The RHS remains large for current choice of \(A \).

• Key question is about the LHS:

 How do we assess the difference in the risk implied by policy choices?
A Possibly Helpful Simplification

• Suppose that a crisis causes the gap X to fall by Δ.

• Suppose that monetary accommodation A implies that the probability of a crisis is $p(A)$.

• Then (assuming statistical independence of the crisis from other shocks):

$$Var(X|A^*) - Var(X|A) \approx [p(A^*) - p(A)]\Delta^2$$

• Then: Given any policy choice A or A^*, we need to assess:

The **implied probability** of a crisis and its **impact** Δ on X.
SUGGESTIVE CALCULATION
Crisis Impact

• Assume: the natural UR is approx. 5% in 2017.

• Assume too that, under current policy A^*, projected 2017 UR is 5%.
 – That is, $E(X|A^*) = 0$ in 2017.

• Suppose too that a financial crisis would generate 2017 UR of 9%.

• In other words:

\[
\text{The impact } \Delta \text{ of a crisis is 4%}.
\]
According to the Survey of Professional Forecasters ...

• How likely is a crisis? As of 2014:Q1, the average SPF prediction is that:

\[\Pr(UR \geq 9\% \text{ in } 2017) = 0.29\% \]

• So, if \(A^* \) is current monetary policy:

\[p(A^*) \leq 0.0029 \]

– It’s an inequality because there are noncrisis sources of high UR.
(Implausibly) Highly Effective Monetary Policy

- Suppose monetary policy A' eliminates any chance of a crisis.

- That is, A' is a policy such that $p(A') = 0$.

- Then:

$$[p(A^*) - p(A')] \Delta^2 = (0.0029)(0.0016)
\approx (0.0022)^2$$
• Should the FOMC be willing to adopt A' over A^* (when $E(X|A^*) = 0$)?

• Only if the (implausibly effective) policy A' doesn’t increase projected gaps too much.

• Simple calculation: Only adopt tighter monetary policy A' if:

$$A' \text{ raises UR to less than } 5.22\% (!!).$$

• Main take-away: Current SPF forecasts imply that

Little benefit to reducing or eliminating the probability of a crisis.
CONCLUSIONS
Financial Stability Framework: What We Need To Know

• Mean-variance framework implies that policymakers need to assess:

\[Var(X|A) - Var(X|A') \]

• Possibly could simplify this problem to gauging:

\[[p(A) - p(A')]\Delta^2 \]
Assessing Crisis Probabilities

- Key measurement questions: what is the probability of a crisis?

- Current SPF forecasts suggest that it is very low under current policy.

- Some might argue that professional forecasters tend to underestimate probabilities of tail events.

- It would be useful to develop other approaches:
 - **Model-based** probability assessments of tail events
 - And **market-based** probability assessments of tail events