Bubbles and Unemployment

March 25, 2011

Narayana Kocherlakota

Federal Reserve Bank of Minneapolis

Disclaimer

• Usual disclaimer: I am not speaking for others in the Federal Reserve or on the Federal Open Market Committee.

• But I'll make an even stronger disclaimer: I'm exploring a new theoretical model ...

• And so the results do not necessarily reflect my thinking about policy.

Lots of Exciting Research on Great Recession

- But relatively little concerns the behavior of unemployment.
 - Nice exception: Farmer (2011)

- I will describe a (SIMPLE!) model that connects:
 - a bubble collapse
 - insufficiently accommodative monetary policy
 - elevated unemployment

Basic Modeling Approach

• Take a rational bubble model (in this case, OG).

• "Glue" a Diamond-Mortensen-Pissarides (DMP) model onto it.

- One key element: Ignore DMP job creation margin.
 - jobs are created as needed to satisfy demand

Basic Structure of Equilibria

- Continuum of bubbly equilibria
 - the size of the bubble varies across equilibria
 - zero real interest rate in all equilibria

- Continuum of non-bubbly equilibria
 - indexed by the real interest rate ≤ 0
 - no bubble in any of them

Result 1

• Take any bubbly equilibrium.

- There exists a non-bubbly equilibrium with same labor market outcomes.
 - it has a negative real interest rate

• Interpretation: Bubble collapses don't affect labor market if real interest rate falls enough.

Result 2

• Take any non-bubbly equilibrium with a negative real interest rate.

- The non-bubbly equilibrium with a zero real interest rate has:
 - higher unemployment
 - more slack in the labor market

• Interpretation: If monetary policy is not sufficiently accommodative after a bubble collapse, the economy will have high unemployment.

Similar Ideas to ...

- Hall (2011) and Krugman (1998)
 - ZLB disrupts adjustment of real interest rate
 - creates labor market disequilibrium

• Farmer (2011)

- continuum of steady-state unemployment rates indexed by beliefs

Outline

- 1. Sketch of the DMP Model
- 2. Some Empirics
- 3. DMP Meet OG
- 4. Structure of Equilibria
- 5. Results
- 6. Decline in Matching Efficiency
- 7. Conclusions

1. Sketch of the DMP Model

• Firms create jobs at exogenous cost k.

• Get matched with qualified worker with probability $f(\theta)$.

- $\theta = v/u$ is endogenous

• (Nash) bargain over wages.

Exogenous Parameters

- A is worker output in job
- \bullet *z* is unemployed worker output
- β is worker bargaining power
- s is separation rate
- ϕ is matching efficiency

Endogenous Parameters

- u is unemployment rate
- v is vacancy rate
- $\theta \equiv v/u$ is market tightness

Steady-State in DMP Model

$$k = \frac{(1-\beta)(A-z)}{\beta\theta} \quad (\text{approx. job creation})$$
$$u = \frac{s}{s+\phi f(\theta)} \quad (\text{Beveridge curve})$$

2. Some Empirics

• Job creation wedge has grown in past three years:

$$\frac{(1-\beta)(A-z)}{\beta\theta}-k$$

- θ has fallen by 65% from December 2007 to December 2010.
 - BLS data on unemployment and job openings

• The matching efficiency parameter has also fallen ...

$$\phi = \frac{s(1-u)}{uf(\theta)}$$

• ϕ has fallen between 32% and 44% over the past three years

– as elasticity of f ranges between 0.5 and 0.3

3. DMP - Meet OG

• Consider a standard OG model, with 2-period lived households.

• Households have *apple* endowments (e^y, e^o) .

- They have utility functions $U(c^y) + U(c^o + h)$ over banana consumption.
 - h is a small positive parameter
 - U has non-decreasing relative risk aversion

A Bubbly Asset

• Initial old each have one unit of intrinsically useless asset (land).

• Assume: $e^y > e^o + h$.

• This creates possibility of bubbly equilibria (usual OG).

DMP Part of the Model

- Distinct equal population of infinitely lived workers.
 - Matched workers/firms create A bananas.
 - Unmatched workers create z bananas, z < A.

• Worker and firm owners have linear utility over apples

• They can't participate in asset markets.

Two Novel Features of Model

• Firms create jobs as needed to satisfy banana demand.

- no job creation condition in equilibrium.

• Central bank picks real interest rate.

4. Structure of Equilibria

- Define bubbly equilibria
- Define non-bubbly equilibria
- Apples (household endowment) are numeraire.

Bubbly Equilibria

• Given a land price P^L , $(c^y_{bub}, c^o_{bub}, P^B_{bub}, u_{bub}, \theta_{bub})$ is a bubbly equilibrium iff:

$$U'(c_{bub}^y) = U'(c_{bub}^o + h)$$

$$P^B_{bub}c^y_{bub} = e^y - P^L$$

$$P^B_{bub}c^o_{bub} = e^o + P_L$$

$$u_{bub}z + (1 - u_{bub})A = c_{bub}^y + c_{bub}^o$$

$$u_{bub} = \frac{s}{s + \phi f(\theta_{bub})}$$

Properties

• The bubbly equilibria are indexed by P^L ; $r^* = 0$ in all equilibria

• Given a specification for P^L :

$$P_{bub}^{B} = \frac{e^{y} - e^{o} - 2P^{L}}{h}$$
$$[u_{bub}z + (1 - u_{bub})A] = \frac{(e^{y} + e^{o})h}{(e^{y} - e^{o} - 2P^{L})}$$

• Big bubbles imply low banana prices, high agg. demand, and low unemployment.

• They also imply small wedges in job creation first-order condition because

$$\frac{(A-z)(1-\beta)}{\beta\theta_{bub}} - \frac{k}{P_{bub}}$$

is small.

Non-Bubbly Equilibria

• Given an interest rate r^* , $(c_{nb}^y, c_{nb}^o, P_{nb}^B, u_{nb}, \theta_{nb})$ is a non-bubbly equilibrium iff:

$$U'(c_{nb}^{y}) = (1 + r^{*})U'(c_{nb}^{o} + h)$$
$$P_{nb}^{B}c_{nb}^{y} = e^{y}$$
$$P_{nb}^{B}c_{nb}^{o} = e^{o}$$
$$u_{nb}z + (1 - u_{nb})A = c_{nb}^{y} + c_{nb}^{o}$$
$$u_{nb} = \frac{s}{s + \phi f(\theta_{nb})}$$

4. Results

Result 1

• Suppose $(c^{y*}, c^{o*}, P^{B*}, u^*, \theta^*)$ is a bubbly equilibrium given P^L .

- Then: There exists $(c^{y\prime}, c^{o\prime}, r^*)$ such that:
- $(c^{y'}, c^{o'}, P^{B*}, u^*, \theta^*)$ is a non-bubbly equilibrium given r^* .

• Pick $(c^{y\prime}, c^{o\prime}, r^*)$ so that:

(

$$c^{y'} = \frac{e^y}{e^y + e^o} (c^{y*} + c^{o*})$$
$$c^{o'} = \frac{e^o}{e^y + e^o} (c^{y*} + c^{o*})$$
$$1 + r^*) = \frac{U'(c^{y'})}{U'(c^{o'} + h)}$$

• Simple intuition: Divide the aggregate bananas so that young don't save.

Interpretation

• Note: $r^* < 0$.

• Given appropriate monetary policy, a bubble collapse has no impact on labor market outcomes.

• Bubble collapse does mean that households are worse off (lower r^*).

Result 2

• Suppose $(c^{y'}, c^{o'}, P^{B*}, u^*, \theta^*)$ is a non-bubbly equilibrium given $r^* < 0$.

• Suppose $(c^{y''}, c^{o''}, P^{B''}, u'', \theta'')$ is a non-bubbly equilibrium given r' = 0.

• Then:

$$u'' > u^* \text{ and } \theta'' < \theta^*$$

Mechanics

• Equilibrium banana price P_{nb}^B satisfies Euler equation:

$$U'(\frac{e^{y}}{P_{nb}^{B}}) = (1 + r^{*})U'(\frac{e^{o}}{P_{nb}^{B}} + h)$$

• Comparative statics:

$$\frac{d(1/P_{nb}^B)}{dr} = \frac{P_{nb}^B(1+r^*)}{-CRRA(e^y/P_{nb}^B) + CRRA(e^o/P_{nb}^B+h)(\frac{e^o/P_{nb}^B}{e^o/P_{nb}^B+h})} < 0$$

- Denominator is negative because U has non-decreasing RRA.
- As r^* rises, P_{nb}^B rises, and so u_{nb} rises.

Intuition

- Think of there being three goods apples, bananas, and banana bonds.
- Young households demand banana bonds that pay off when they are old.
 - that drives up the price of banana bonds in terms of apples
- But with the fixed real interest rate the price of bananas has to go up.
- Conclusion: all households demand fewer bananas.

Interpretation

- Bubble collapse implies no effect on unemployment if r^* is lowered enough.
- BUT: ZLB + sticky inflation expectations imply lower bound on r^* .
- If r^* doesn't fall enough, then we get an increase in unemployment.

Increase in Labor Market Wedge

- As r^* rises, u rises, P^B_{nb} rises, and θ falls.
- Hence, the firm's job creation wedge:

$$rac{(1-eta)(A-z)}{eta heta_{nb}} - rac{k}{P^B_{nb}}$$

rises.

• As noted: over past three years, wedge has increased by 65% in US data.

6. Decline in Matching Efficiency

- We have seen that US labor market matching efficiency has declined since 2007.
- What's the impact of such a decline in the model, assuming:
 - r^* is fixed
 - no bubbles

No Effect on Unemployment Rate

• Given
$$r^*$$
, $(c_{nb}^y, c_{nb}^o, P_{nb}^B)$ satisfy:

$$U'(c_{nb}^y) = (1+r^*)U'(c_{nb}^o+h)$$

$$c_{nb}^y = \frac{e^y}{P_{nb}^B}$$

$$c_{nb}^o = \frac{e^o}{P_{nb}^B}$$

• Then, u_{nb} is pinned down by aggregate demand:

$$u_{nb}z + (1 - u_{nb})A = c_{nb}^y + c_{nb}^o$$

• Decline in ϕ has no effect on the unemployment rate.

Increased Job Openings Rate

• With fixed u_{nb} , fall in ϕ implies that θ_{nb} rises:

$$u_{nb} = \frac{s}{s + \phi f(\theta_{nb})}$$

- Hence, with fixed r^* , fall in ϕ results generates vertical upward shift in Beveridge curve.
- Intuition: need more job openings to replace separations.

7. Conclusions

- Kocherlakota (2011) considers a wide class of rational bubble models.
- That paper describes how a bubble collapse can generate a fall in labor supply.
 - Loss of wealth leads to increase in labor supply.
 - Fall in real interest rate leads to decrease in labor supply.
 - Aggregate effect is ambiguous but can be negative.

- In this paper: unemployment rate is wholly determined by demand.
 - labor supply is irrelevant
- Bubble collapse generates a fall in demand ...
- and unemployment rises if ZLB prevents accommodative monetary policy.
- It would be useful to extend results to a wider class of rational bubble models.