Chronic Sovereign Debt Crises in the Eurozone, 2010-2012

Cristina Arellano
Federal Reserve Bank of Minneapolis

Juan Carlos Conesa
Universitat Autònoma de Barcelona

Timothy J. Kehoe
University of Minnesota
Federal Reserve Bank of Minneapolis
and National Bureau of Economic Research

Introduction

Beginning in late 2009, the Greek government had difficulties selling its bonds to private investors, who demanded high interest rates. In May 2010, the European Union (EU) and the International Monetary Fund (IMF) approved a 110 billion euro loan package to the Greek government in return for promises of spending cuts to sharply reduce the Greek public deficit. The plan, negotiated by German Chancellor Angela Merkel and Greek Prime Minister George Papandreou, was intended to cover the borrowing needs of the Greek government through 2013. In spite of this rescue package and another, 130 billion euro, package put together between July 2011 and March 2012, the debt crisis in Greece continues into 2012.

Ireland and Portugal have required similar EU-IMF rescue packages. Cyprus, Italy and Spain have had difficulties selling their bonds. Similar difficulties threaten other members of the European Economic and Monetary Union (EMU)—the countries in the EU that use the euro as their currency, also referred to as the eurozone—like Belgium and France.

In fact, as of April 2012, of the 17 members of the eurozone, only four—Finland, Germany, Luxembourg and the Netherlands—have long-term government bonds with the highest Standard & Poor’s rating AAA, while the bonds of five countries—Cyprus, Ireland, Italy, Portugal and Spain—have junk ratings, BBB+ or lower. Greek bonds were...
The countries that have suffered debt crises, or are threatened by such crises, got into trouble in different ways. The two crucial common characteristics are that each of these countries is currently experiencing a deep and prolonged recession and each needs to frequently sell large quantities of bonds, either to finance large fiscal deficits or to roll over—and make interest payments on—a large public debt.

We sketch out a theory for analyzing the European sovereign debt crises based on the research of Harold Cole and Timothy Kehoe (1996, 2000) and Juan Carlos Conesa and Kehoe (2012). In this theory, the need to frequently sell large quantities of bonds leaves a country vulnerable to a financial crisis. This vulnerability gives the government the incentive to pay down its debt to a level where such a crisis is not possible. In the event of a deep and prolonged recession, however, the government has a conflicting incentive to “gamble for redemption”—to borrow to smooth government spending, to reduce the debt if the economy recovers and, possibly, to default if the recession continues for too long.

Using this theory, we analyze the various rescue packages and policy interventions made by the EU and the IMF. Policies that result in high interest rates on government bonds and high costs of default provide incentives for a government to gamble for redemption. Policies that result in low interest rates and low costs of default provide incentives for a government to pay down its debt. We conclude that, up until now, policy interventions by the EU and the IMF have encouraged eurozone governments to gamble for redemption. In the theory we present, a government that gambles for redemption is following a policy that is optimal for the citizens of its country. The policy goals of the EU and the IMF may be different from those of the government of an individual country, however, and, to the extent that the EU and the IMF want the government to reduce its debt to avoid a crisis to preserve the stability of the EU, they should adopt policies to discourage the government from gambling for redemption.

Timeline and some data

The Treaty on European Union—signed in Maastricht, Netherlands, on Feb. 7, 1992, and commonly referred to as the Maastricht Treaty—converted the European Community, which then had 12 members, into the European Union. The treaty established four “convergence criteria” as prerequisites for membership in the EMU. One criterion required a country to have an annual public deficit no greater than 3 percent of GDP and a public debt no greater than 60 percent of GDP. Another criterion required the country to participate in the European Exchange Rate Mechanism (ERM)—set up as a voluntary program in 1979—to maintain its exchange rate in a very narrow band around the European Currency Unit (ECU), which eventually became the euro. The other two criteria imposed restrictions on inflation rates and interest rates.

In the process of ratifying the Maastricht Treaty, Denmark and the United Kingdom obtained opt-out clauses from joining the monetary union. All 15 countries that have joined the EU since 1992 were required to join the monetary union. The ERM suffered a major crisis in 1992, with a number of countries forced to drop out, and—when the crisis threatened more countries in 1993—the exchange rates bands were widened considerably. The mechanism was restarted in 1999 and is now referred to as ERM II.

Sweden, which joined the EU in 1995, has managed to exploit a legal loophole to avoid adopting the euro: Its accession treaty required Sweden to join the monetary union after meeting the convergence criteria and participating in the ERM II for two years, but it did not explicitly require Sweden to join the ERM II, and it has not done so. The other seven countries in the EU that are not yet in the eurozone are required to go through the process of participating in ERM II and eventually joining the eurozone.

A timeline of the major events related to the sovereign debt crises that are ongoing in the eurozone is available online. (See the June 2012 Region at minneapolisfed.org.)

European leaders had seen the need to coordinate fiscal policy in a monetary union. In 1997, at the insistence of Germany, they adopted the Stability and Growth Pact (SGP), which imposed financial penalties on countries that violated the convergence criteria.
criterion that the public deficit not exceed 3 percent of GDP. Nonetheless, when the French and German governments announced that they had violated this deficit limit in 2003, they were not penalized, reducing the credibility of the SGP.

The details (available online) differ on how various countries became vulnerable to sovereign debt crises. In spite of these differences in initial conditions, Greece, Ireland, Italy, Portugal and Spain (GIIPS) share two crucial characteristics: First, as the data in Figure 1 show, the recoveries from the 2008–2009 recessions in these countries have been nonexistent. Notice that, in Figure 1, the German economy has started to recover in 2010 and 2011, if only weakly, while the GIIPS are still mired in recession. Second, as the data in Figure 2 show, the GIIPS have large borrowing requirements because of high deficits or large debts or both.

Self-fulfilling debt crises

The need to frequently sell large quantities of bonds leaves the countries vulnerable to self-fulfilling debt crises of the sort analyzed by Cole and Kehoe (1996, 2000) and Conesa and Kehoe (2012). In such a crisis, if investors expect a government to have trouble repaying its debt, they pay a low price at auctions of new government bonds. The resulting low value of the new bond sales makes it difficult for the government to repay the old bonds becoming due, thus justifying the expectation of a crisis. If, however, investors do not expect the government to have trouble repaying its debt, they are willing to pay a high price for new bonds. This expectation too is self-fulfilling.

To understand the reasoning in the model, we start by examining two crucial relations: the government budget constraint—which relates sales of new bonds and payments on old bonds to government expenditures and tax receipts—and the relation between the price that investors pay for bonds and the probability of a sovereign default. (These analyses are available online.) We then explain how the government determines its optimal policy and how financial crises can occur.

Optimal government policy and crises

In every time period in the model, the government must decide how much new debt to sell and whether or not to default. We assume that the government is benevolent, in that it values the welfare of consumers, that is, the citizens of the country, who value both private consumption and government expenditures. We also assume that consumers—and consequently the government—value smooth paths of private consumption and government expenditures. Sharp cuts in government expenditures are particularly painful. Defaults are also costly in that they disrupt financial markets, which causes a drop in the GDP of, say, 5 percent—
which we refer to as the default penalty—that is available for government expenditures, private consumption and repayment of debt. These assumptions are intuitively appealing and fairly innocuous.

We make a number of other assumptions that are more restrictive to keep the analysis simple. We assume, for example, that tax revenues are a constant fraction of GDP because tax rates are fixed. We also assume that the default penalty is permanent and that, if the government defaults, it is permanently excluded from borrowing. Cole and Kehoe (1996, 2000) model consumers within a country as making private investment decisions, but here—again to keep things simple—we follow Conesa and Kehoe (2012) in having consumers consume all after-tax GDP rather than investing some of it. These assumptions can be relaxed without changing the qualitative results of the model. How much quantitative results change depends on the parameterization, of course, and this is a topic that deserves future research.

A financial crisis is self-fulfilling if the expectation that the government will default causes it to default in a situation where it would otherwise pay for the bonds becoming due. For low levels of debt, self-fulfilling crises are not possible. For higher levels of debt—those above a threshold that we call the upper safe debt limit—self-fulfilling crises are possible. For even higher levels of debt—those above a threshold that we call the upper sustainable debt limit—the government prefers to default rather than pay for the bonds becoming due. The timing within a period is such that investors decide what price to bid in the auction for new government bonds before the government decides whether or not to default on the old bonds becoming due. Suppose that, before the auction, investors receive some sort of bad news that makes them expect the government to default this period. Under what conditions will this expectation be self-fulfilling? The investors expect that the government will be in default the subsequent period because it is excluded from financial markets. The price that the investors offer for new bonds is the present discounted expected payment in the case of default, which is low or zero. The government can either default or pay for the bonds becoming due. For levels of debt equal to or below the upper safe debt limit, the government prefers to pay for the bonds becoming due and suffer the drop in government expenditures but avoid paying the cost of defaulting. For these low levels of debt, investors will pay a high price, equal to the present discounted face value for new bonds, no matter what the news is. If, however, debt is above the upper safe debt limit, a self-fulfilling crisis occurs if there is bad news. For high levels of debt, those above the upper sustainable debt limit, the government chooses to default even if investors buy the new bonds offered.

The probability that investors assign to receiving bad news in a period is arbitrary. At the beginning of a period, the bad news arrives or it does not. Notice that, in the bond auction in a period, if bad news had not arrived early in the period, then the bond price depends on the probability of receiving bad news in the next period.

Cole and Kehoe (1996, 2000) call the interval of debt levels above the upper safe limit but equal to or below the upper sustainable limit the crisis zone. If debt is in this zone, a self-fulfilling crisis can randomly occur. Since interest rates are high when the debt being sold is in the crisis zone and the probability of a costly default is positive, a government will optimally choose to run surpluses to run its debt down to the upper safe limit. Once debt reaches the upper safe limit, interest rates drop and the probability of default disappears. Since sharp cuts to government expenditures are painful, however, the government may choose to pay down the debt over a number of periods.

In a quantitative model calibrated to match features of European data, Conesa and Kehoe (2012) show that the upper safe limit is about 120 percent of GDP while the upper sustainable limit is about 210 percent of GDP. These numbers make sense in terms of the numbers currently used by policymakers in Europe, in particular, the need to reduce Greek debt below 120 percent of GDP to eliminate the possibilities of future crisis.

Gambling for redemption

As we have just argued, financial crises and defaults on sovereign debt are costly for a country, and the government of a country that finds itself vulnerable to a self-fulfilling crisis has the incentive to pay down its public debt so that it does not need to frequently sell large quantities of bonds. As Conesa
and Kehoe (2012) point out, however, countries that are in deep recessions have an opposite incentive: to cut government spending very slowly and increase the public debt, gambling that a recovery in the economy will lead to a recovery in tax revenues, at which point it can stop increasing the debt. If the country is unlucky and the recession is prolonged, however, the country can find itself more vulnerable to a self-fulfilling debt crisis and ultimately may be forced to default.

Conesa and Kehoe (2012) modify the Cole-Kehoe model so that the country finds itself in an unexpected recession, where GDP is, say, 10 percent lower than its otherwise constant level.4 This is meant to correspond to the situation in Europe in 2008. In every period there is a constant probability—say 0.2, that is, one in five—that the economy will recover. With this stochastic process, which is like flipping a biased coin with the probability of heads being the probability of recovery, the expected waiting time for a recovery is a number of periods equal to the reciprocal of the probability of recovery. If, for example, the probability of an economic recovery is 0.2 per year, then, at any time where a recovery has still not occurred, the expected waiting time for a recovery is 1/0.2=5 years.

To understand gambling for redemption, consider first the case where self-fulfilling debt crises are not possible because, for some reason, the probability of bad news is zero. Then, because it wants to smooth expenditures as much as possible, a government would optimally choose to borrow when it is in recession at a high bond price equal to the present discounted face value, planning to pay back when the economy recovers. Like a gambler at a roulette wheel who keeps doubling his bet, the government is gambling that the recession will not continue for too long. Unlike the gambler, the government is doing something beneficial while it is gambling. It is smoothing government expenditures, something that the citizens of its country value.

If the recession does go on, there are two possibilities for the equilibrium outcome, depending on the costs of default: If the costs of default are high, the government will borrow less and less each period until its debt converges to an upper limit above which investors know that the government would default. If the costs of default are lower, the government will optimally choose to default after a finite number of periods, borrowing in the period before default at a price equal to the present discounted expected value of the face value if there is a recovery in the next period and the payoff in default if there is no recovery. This is not a self-fulfilling crisis: Investors and the government correctly anticipate default if there is no recovery. The only uncertainty is whether the economy will recover or not.

Consider now the general case where self-fulfilling crises are possible but where the economy is also in a recession from which it might recover. The government faces conflicting incentives. Various outcomes are possible and reasonable, depending on the values of parameters. The government could optimally choose either to pay down its debt to the upper safe limit or to borrow still more, running up its debt, gambling for redemption. The optimal choice depends on the costs of default, the probability of a crisis, and the probability of recovery from recession.

Cristina Arellano (2008) argues that defaults can also occur when GDP is low enough. In her model, countries borrow large amounts in booms because interest rates are low because debt is below the upper safe limit. When a recession hits, however, the same amount of debt may be above the new upper safe limit, and interest rates rise, making it costly to roll over the debt. For a sufficiently large drop in GDP, a level of debt that is safe if GDP is high can be above the upper sustainable limit if GDP is low, in which case the government now prefers to default.

Analyzing EU and IMF policy and extending the model

We can use our theory to evaluate the impact of policies followed by the EU and the IMF. Any policy that decreases the price that a country receives for its bonds (that is, increases the yields that it pays), or increases the costs of default, provides the government with incentives to reduce its debt to exit the crisis zone. In contrast, any policy that increases bond prices (lowers the yields), or lowers the costs of default, provides the government with incentives to gamble for redemption.

The rescue packages listed in the timeline
stopped self-fulfilling crises in Greece, Ireland and Portugal. They also provided credit to countries at lower interest rates than the yields presented in Figure 3. These policies can be interpreted as encouraging gambling for redemption. It is worth pointing out, however, that the rescue packages also explicitly required austerity measures, even if these requirements were later violated, especially in the case of Greece.

One policy that very clearly encourages gambling for redemption is the European Central Bank’s Securities Market Program (SMP). The SMP buys bonds of countries whose bond prices fall too low. By propping up their bond prices and keeping yields low, the SMP reduces incentives to pay down the debt and escape the crisis zone. Similarly, the ECB’s policy of reducing its repo rate and relaxing collateral constraints to encourage banks to buy government bonds with high yields drives up the price of bonds and encourages gambling for redemption.

Another policy that may have encouraged gambling for redemption was the 50 percent haircut on Greek bonds planned at the European Summit in July 2011 to be imposed on private investors, principally private banks in the EU. By labeling the haircut voluntary, the EU intended to eliminate some costs of default, such as triggering credit default swaps (CDSs), securities that pay the buyer in the event of a default. EU leaders thought that triggering CDSs would be very disruptive to the financial system, both inside and outside Greece. Greece had already reached a debt level that it could not hope to repay, but planning “voluntary” haircuts on Greek bonds signaled other troubled governments that such a reduction in the costs of default might be available for them.

By March 2012, it was clear, however, that this sort of “voluntary” haircut was not feasible, mostly because courts would not rule out claims on CDSs. Greece ended up imposing a much larger haircut, negotiating with the majority of bond holders and enforcing the settlement on the rest of bond holders by appealing to CACs (collective action clauses). There are currently doubts about the legality of this move, however, because the CACs were inserted into the bond contracts retroactively.

A challenge for Europe is how to best design restructuring procedures for countries that might follow Greece into default while minimizing adverse incentives for other countries. While our theory provides an appealing explanation of why the threat of sovereign debt crises in Europe has been going on for so long, it leaves open a couple of major questions. We can use our theory to understand the behavior of leaders of countries threatened by debt crisis, like George Papandreou in Greece, but it does not help us understand the behavior of EU leaders like Angela Merkel of Germany and Nicolas Sarkozy of France, who have struggled to provide rescue packages. It may be that they too have been gambling for the redemption of the eurozone itself, rather than their national economies. Merkel and Sarkozy may have believed that the only thing that will pull the eurozone out of the danger of debt crises is a vigorous economic recovery from the recession, and they are just trying to hold the EMU together until that happens. It would be useful to develop a model of this.

It is also clear that the institutional design of the EMU—in particular, the mechanisms to enforce fiscal discipline, like the Stability and Growth Pact—is inadequate. European leaders are currently struggling to come up with a better institutional design, and it would be worth developing a theory of the optimal design of the EMU.

A related question is why sovereign debt crises like those in Europe do not currently threaten countries like Japan, the United Kingdom and the United States. These countries, like those in the eurozone, have large public debts and have suffered from the recent recession. Thomas Sargent (2012) presents a provocative narrative arguing that a key difference in the United States is that the central government has the power to raise substantial resources through taxation, a power the EU lacks. Another crucial difference is that each of these countries, unlike the eurozone countries, has its own currency whose value can fluctuate freely in response to changing economic conditions. This too is worthy of further research.
Endnotes

1 The authors thank Tito Cordella, Isabel Correia, Patrick Kehoe, Narayana Kocherlakota, David Levine, Thomas Lubik, Fabrizio Perri and Pedro Teles for helpful discussions. They also thank Jose Asturias, Wyatt Brooks and Laura Sunder-Plassmann for excellent research assistance. The data presented in the figures are available at http://www.econ.umn.edu/~tkehoe.

2 Cole and Kehoe (1996, 2000) model this news shock as what economic theorists call a sunspot, a random variable that affects the equilibrium only through investors’ expectations. The value of bad news is arbitrary and can vary over time, which would account for fluctuations in the spreads in Figure 3 (available online). The arbitrary nature of exactly what constitutes bad news is how the model captures what finance ministers refer to when they complain about their country’s bonds being at the mercy of the financial markets.

3 Whether this gives us more confidence in the quantitative properties of the model or more confidence in European policymakers is an open question.

4 To keep things simple, we assume that GDP does not have a growth trend. If GDP is 100 before the recession, it falls to 90 during the recession. A recovery is a return to 100. If there is a default during the recession, GDP falls another 5 percent, to 85.5. A recovery now only increases GDP to 95. It is easy to convert the model to one in which the economy is growing at a constant rate and in which neither the qualitative results nor the quantitative results change. In a more complicated model, the shock could affect the growth trend. Mark Aguiar and Gita Gopinath (2006) argue that shocks to growth rates have stronger effects on default incentives than do changes in levels.

5 David Benjamin and Mark Wright (2009) and Pablo D’Erasmo (2011) provide a theory for renegotiation between a government and a representative of the bond holders. They argue that it is worth delaying restructuring until countries have low default risk and high output because those are times when mutually beneficial outcomes can be obtained more easily. Their results imply that renegotiation is particularly difficult now when many eurozone countries are still deep in recession and where there is substantial uncertainty about the future.

6 Arellano and Yan Bai (2012) argue that a reason for a lender—and the EU itself has become a major lender to troubled countries though the European Financial Stability Facility and the ECB’s SMP and repurchase agreements—to be lenient with a subset of borrowers in default is to avoid other defaults from other borrowers.

References

Editor’s note: This is an abridged version of the policy paper, which is available in full at the Economic Policy Papers site at minneapolisfed.org.