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Econometrica, Vol. 44, No. 1 (January 1976)

ESTIMATION IN THE PRESENCE OF STOCHASTIC
PARAMETER VARIATION!

By THoMas F. CooLEy AND EDWARD C. PRESCOTT!

In this paper we consider the estimation of a model with time varying structure. The
parameters of the model are assumed to be subject to permanent and transitory changes
over time. Estimation methods are developed, and the asymptotic properties of the
estimates are derived.

1. INTRODUCTION

ECONOMETRICS IS TYPICALLY CONCERNED with the estimation of relationships
that are characterized by: '

(1-1) Ve = F(y,_l,x,,(), gt)'

The form of the function F and the value of the parameter 0 are determined from
the behavior of the individual agents in the economy. The assumption that under-
lies most estimation theory is that F and 6 will be stable over time. In this paper,
we argue that the assumption of a stable F and 6 is frequently untenable and that
it would often be more reasonable to assume in estimation that relationships
vary over time. '

The problem of structural instability in econometric relationships has been
recognized by econometricians (see, for example, Dusenberry and Klein [8]),
but the underlying reasons for the instability have not been well explored. One,
perhaps obvious, source of instability in econometric relationships is misspecifica-
tion. If the relationship has been misspecified it implies that the true form (the
true F and 6 of (1.1)) either has not been discovered or cannot be estimated.
Cooley [4] and Rosenberg [20] explore a number of ways in which misspecification
may lead to parameter variation over time.
~ One need not appeal to ignorance, however, to justify the assumption that

econometric relationships vary over time. In many instances economic theory

suggests that relationships will change over time. Lucas [14], for example, has
shown that econometric models, as they are now structured, are inappropriate
tools for long-term policy evaluation precisely because they assume a stable
structure. The structure of an econometric model represents the optimal decision
_rules of economic agents. From dynamic economic theory we know that optimal
decision rules vary systematically with changes in the structure of series relevant
to the decision makers. It follows that changes in policy will systematically alter
the structure of the series being forecasted by decision makers, and, therefore, the
behavioral relationships as well. It also follows that other exogenous events,
such as changes in technology, will alter the structure of individual decision rules.
For all but the simplest kinds of exogenous changes, the derivation of the
changes in the optimal decision rules is analytically intractable. Thus, while theory
suggests that it would be appropriate to view behavioral relationships as varying
over time, it does not, in general, suggest how to capture the variation structurally.
! The authors would like to acknowledge the helpful comments of an anonymous referee.
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168 T. F. COOLEY AND E. C. PRESCOTT

We do know, however, that most policy or other exogenous changes will cause
changes in the decision rules that are permanent and thus permanent changes in
the behavioral relationships as well [14, pp. 15-17].

Some attempts have been made to deal with problems of parameter variation
as is evidenced by the work on the random coefficient model [12 and 22] and the
problem of testing for structural change [13 and 17]. Until the work of Rosenberg
[20], however, little attention was given to the fact that the parameters in the
econometric relationships are likely to vary systematically over time. In this
paper we develop an approach to varying parameter regression that is an ex-
tension of the work in Cooley and Prescott [5, 6]. In the next section, we develop
the general model of parameter variation to be considered. In developing a set of
assumptions to be used in estimation, we focus on a particular type of parameter
process although the estimation technique can be extended to others. In Section
3, we present a transformation which makes estimation no more capital intensive
than many commonly used nonlinear estimation techniques. Section 4 develops
the asymptotic properties of the estimates and presents their limiting distribution.
The final section presents the conclusions.

2. A THEORY OF VARYING PARAMETER REGRESSION

The regression structure with which we shall be concerned has the following
form: :

(2.1) Ve = x;B, ' t=12,...,7),

where x, is a k component vector .of explanatory variables, f, is a k component
vector of parameters subject to stochastic variation, and y, is the ¢th observation
of the dependent variable. If there is an intercept, then

22 x, =1 : . t=12...,7),

and f, represents the intercept. Since parameter changes are likely to come from
a variety of sources, it is reasonable to assume that some of them may persist
while others may not. Thus, we assume the parameters to be adaptive in nature,
subject to permanent and transitory changes. The hypothesized pattern of variation
is:

(23) B =Bl + u,
ﬁtp = ﬁf—l + vy,

where the superscript p denotes the permanent component of the parameters.

The u, and v, are identically and independently distributed normal variates
with mean vectors 0 and covariance structures known up to different scale factors.
A particularly convenient parameterization of this is as follows:

(2.4) cov(u) = (1 —y¢*2Z, and cov(v) = yoZ,

where 2, and X, are known up to scale factors. This assumption implies one of the
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elements of both X, and X, can be normalized to 1. When an intercept is present
and is subject to both permanent and transitory changes, setting ¢, = o}, = 1
is a convenient normalization. The transitory change in the intercept then corres-
ponds to the additive disturbance term in the conventional regression model. .
Subsequently, for expository purposes, we assume f,, is the intercept and that the
above normalization has been made. The unknown parameters are the f3,, and the
unchanging elements ¢ and y which specify the covariance structure. The
objective of the estimation techniques is to estimate ¢* and y and the permanent
components of the f,.

This particular specification of permanent and transitory change appeals to
us as useful for many econometric applications. As we noted in the introduction,
most exogenous changes that affect microeconomic decision rules are likely to
cause permanent changes in behavioral relationships. If knowledge of exogenous
events is imperfect, theory suggests that it is appropriate to view behavioral
relationships as changing slowly over time. Many of the kinds of misspecification
that are analyzed in [3 and 20] imply changes in parameters that are permanent
over time. The structure we are assuming in the subsequent analyses implies that
the permanent components of the parameters will drift systematically over time
away from their initial value with no inherent tendency to return to a mean
value. The methodology developed below, however, can be easily adapted to
different prior specifications of the parameter process if it is felt in a particular
application that the parameters might adapt differently. _

The process generating the parameters is non-stationary, and it is impossible
to specify the likelihood function. For the purpose of estimation, however, we
are interested in specific realizations of the parameter process. The likelihood-
function conditional on the value of the parameter process at some point in time
is well defined so we can treat specific realizations of the parameter process as
random parameters to be estimated. The most convenient procedure for fore-
casting is to focus on the value of the parameter process one period past the sample.
In this case, it follows that :

T+1
(2.5) Briy =Bl +vr =B+ Z Us,
s=t+1
T+1
(26) ﬁt = Bg‘+l - Z vs + U,
s=t+1

and (2.1) can be rewritten as:

QN y=xb+

where

28 =Pt

and

T+1

Q9  m=xu-x Y o

s=t+1
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It is easily verified that u is distributed normally with mean zero and covariance
matrix : ) ’

(2.10)  cov(w) = o*[(1 — PR + yQ] = a?Q(y)
where R is a diagonal matrix with

@11) = (GZ,x),

and @ is a matrix such that

@12)  gqy=min(T—i+1,T—j+ DxZx;

If one is concerned with the value of the permanent part of the parameter vector
in period ¢, that is B, the appropriate formulae for the g;; are

(213) g, = min {|t — i, |t — ji}xiZ,x;,

if both i and j exceed or are less than t. Otherwise, g;; = 0. This generalization is
useful in situations where one is not forecasting future values of the dependent
variable y, but rather attempting to draw inference about the path of the co-
efficients. This is of interest because economic theory sometimes suggests move-
ments in the coefficients and such information is needed to test the validity of
the theory. Alternatively, systematic drifts in the coefficients may suggest that the
model is subject to specification errors of a particular kind and the information
contained in the parameter changes may be useful in modifying the theory.
The full model can be rewritten as:

2149 Y=XB+yu,

where f is the k component vector
Bir+
BE.7+1

@15 p=| - |

Bir+i

X is the T x k matrix:

X11+- - Xgq

x12 ...xkz
(2.16) . ;

xlT.. .ka

and Y is the T component vector of the y,. From (2.10) it follows that Y is dis-
tributed as:

(2.17) Y ~ N[XB,a*Q(y)].
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If y were known, then the estimation would be a trivial application of Aitkens
generalized least squares (GLS) analysis because R and Q are functions of the
observed exogenous variables. The parameter y, however, plays a crucial role in
the analysis and is unlikely to be known in most econometric applications. The
parameter 7 tells us how fast the §’s are adapting to structural change. If y is large
(close to 1), then the permanent changes are large relative to the transitory changes.

Using (2.10), we can write the log likelihood function of the observations as:

T

T
(2.18) L(Y;B,0% 9, X) = —51n27z— 5

1
Ino? — Eln Q@)

1 N
—550 — XBYQX) "'y — XB).
20
We can maximize (2.18) partially with respect to f and 62 to obtain the estimators

conditional on y:

(2.19)  B@y) = [X'Q() 'X]"'X'Qp) 'Y,
1
(2200 sy = —7:[(Y — XB(y))Q(y)~ (Y — XB©))].

These are substituted in (2.18) to determine the concentrated likelihood function
as:

T T 5. 1 T
(221) L(Y;y) = zann flns(y) 21n|Q(y)| 3

T T, 1
= —E(ln 2n + 1) — —2-lns (y) — Eln 1Q(y)].

Thus, globally maximizing the log likelihood function (2.18) is equivalent to
maximizing this concentrated likelihood function. Note that y, because it is the
fraction of parameter variation due to permanent changes, is restricted to fall
within the range

222 0<y<l.

The strategy of estimation then is to divide the range for y into a number of
points

(223)  {y:i=12,...,n}.

For every y; evaluate (2.21) and choose as the estimator of vy, say g, the value such
that:

(224) L(Y;g X)> L(Y;y,X), alli

The estimates of B and o2 are determined from (2.19) and (2.20) above as B(g)
and s(g) respectively.?

2 Usually TAT — k)s*(g) would be a better estimate of ¢* than the maximum likelihood estimator
because it is unbiased if g = y.
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To apply the estimation technique X, and X, which along with y and o specify
the covariances of the permanent and transitory changes, must be known up to
scale factors. In many applications, it is likely that only one parameter will be
subject to variation over time:® In such cases, the appropriate elements of Z,
and Z, should be assumed equal to unity and the estimates of 6> and y will com-
pletely specify the variance component of interest. In other cases, such as speed
of adjustment and adaptive expectations models, the relationship between param-
eters is known and thus the appropriate elements of X, and X, can be specified
a priori.* Thus, there is a wide variety of well studied economic problems in which
the estimation technique proposed here would be appropriate.

In certain applications, other techniques would be more appropriate. For
example, if X, = X, and y = 0, then the model reduces to the random coefficient
model and the MINQUE procedure proposed by Rao [19] would be more ap-
propriate. In principle, it is also possible to estimate the elements 2, and Z,
by direct maximum likelihood techniques (see [1]). Even with well behaved data,
however, the number of observations required to achieve successful identification
of several variance components is very large. Given that most economic time
series exhibit substantial collinearity, the identification of variance components
from the data would be even more difficult and the number of observations
necessary correspondingly larger. Consequently, direct maximum likelihood
techniques are unlikely to be feasible in any applications.® The estimation tech-
nique proposed here, however, is well suited to the data commonly available in
econometric research, and the transformation presented in the next section greatly
simplifies the estimation.®

3. TRANSFORMATION OF THE MODEL

A possible drawback of the estimation scheme presented in the previous section
is that it requires the inversion of the T x T matrix (1 — y)R + yQ for each value
of y;. In this section, we present a transformation which greatly reduces the number
of computations required to obtain the estimators. The strategy of the transfor-
mation is to make the matrices R and Q diagonal so that inversion of the covariance
matrix is a trivial computation. The elements of R and ‘Q are known since they
depend on the exogenous variables and the matrices X, and Z,. To eliminate the
matrix R, the model can be transformed as follows:

Bl yE=ySra t=12...,7),
XE = Xan/Tu (i=12...k),

3 This is the case, for example, in the aggregate consumption function discussed by Lucas [14], and
in the efficient markets model discussed by Fama [9].

* Dynamic adjustment models of the type introduced by Nerlove [16] are an example w1t'h which
we have experimented.

% An additional problem is that the properties of the estimates have not been developed when many
components must be identified.

© Extensive tests of the robustness of thesé estimations are reported in [4] and they show surprisingly
small losses in estimation efficiency even for sizeable errors in a priori specification of the covariance
structure.



STOCHASTIC PARAMETER VARIATION 173

“where r, is the tth diagonal element of the matrix R. This yields a transformed
model where Y* is distributed as

(32 Y*~ N{X*B,0%[(1 — I + yQ*]}

where

(3.3) q;kj = qij/\/ Fiitjj -
Now, there exists an orthogonal matrix P whose columns are a set of orthonormal
eigenvectors of the matrix Q* so that

3.4 PP=1,
and (see [11, p. 255))
(3.5 P'Q*P = D.

D isa diagonal matrix whose elements are the eigenvalues of Q*. Now let
(3.6) Y=PY* X = P'X* = Pu*
Observe that Y is now distributed as:
(3.7) Y ~ N[XB,o*(P'P + yP'Q*P — yP'P)]

~ N{XB,a*[I + y(D — I)]}.

The matrix Q* is known so that its eigenvalues need only be computed once.
After this is done, estimation is trivial for each y; that is searched.

The computation of the eigenvalues and eigenvectors of Q* is a well-studied
problem. It is clear that every root of the characteristic equation must be obtained
in order to have the matrix D completely specified. We found the use of House-
holder’s tri-diagonalization followed by the QR method [18] quite accurate and
fast. This calculation need only be done once and the transformation reduces the
total number of computations significantly making these estimators less capital
intensive than many commonly used non linear estimation techniques.’

4. ASYMPTOTIC PROPERTIES

Thus far, we have developed a class of models in which the parameters are subject
to stochastic variation over time. The nature of the process, however, prohibits
any simple application of the usual asymptotic results because no consistent
estimator exists for the parameter set (B, 7, 6%). The variance of the ’s are bounded
away from zero because these parameters are subject to random changes in every
period.® In this section we prove that g is a consistent estimator of y which implies
that the maximum likelihood estimator B(g) is asymptotically efficient and yields
asymptotically optimal predictions.

7 If the number of observations available is very large, Kalman filtering techniques such as those
proposed in [20] might be more appropriate. )

8 An additional problem is that generally verifiable conditions for consistency of maximum likeli-
hood estimators for dependent processes have not been developed as has been done by Wald [24] for
independent observations. Silvey [21] has developed conditions which are almost impossible to verify.
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Following standard analysis (see [7, pp. 124-129)) it is easily seen that B(y)
satisfies the conventional definition of efficiency since it is unbiased and its co- '
variance satisfies the Cramer-Rao minimum variance bound. Thus, if y is known,
B(y) has minimum variance in the class of unbiased estimators. It can also be
established that, conditional on future values of the explanatory variables X,,
the forecaster X ,B(y) of future Y, has minimum quadratic loss in the class of
unbiased forecasters. It is now shown that the maximum likelihood estimator
of y is consistent so that all of these optimality results hold asymptotically.

The maximum likelihood estimators of 2 and B conditional on y for a given
sample of size T will be denoted by s%(y) and B(y) respectively and the true values
of (y, %) by (y,, 62). In the subsequent discussion, we are working with the trans-
formed model with diagonalized covariance matrix D(y). The tth diagonal element
of D(y) is

@) dy)=01-19) +d,

where d, is the rth eigenvalue of the matrix Q* defined in equation (3.3). In the
proofs of the following lemmas we shall make use of the result that is established
in the Appendix that the d, exceed 6* where 0 < §* < 1. The -bars and subscript
will be dropped from functions and variables for convenience, and all summations
are implicitly from 1 to T. We also assume that x;, are bounded by |x,;| < X.
Letting S(y) be the generalized sum of squared residuals conditional on 7, the
concentrated log likelihood function, (2.21), divided by T2 is, save for a constant,

42  Lp;T)= —In(S@)/T) — T~ 'In|Dy).
The function f(y; T) is defined to be.

d,(yo)
d(y)

Before presenting the consistency proof it is perhaps worthwhile to provide
the following guide to the reader: The functions L(y; T) — f(y; T) are shown to
converge pointwise in probability to zero. Pointwise convergence, however, does
not imply uniform convergence, which is convergence in the supremum norm.
Consequently we next establish a continuity condition, which along with point-
wise convergence implies uniform convergence over any interval [y*, 1] where
y* > 0. The functions L(y; T) and f(y; T) have in probability the same maxima
(actually the difference in maxima converge to zero) over such sets. ‘

Lemma C is the identification condition. The functions f(y; T) are shown to be
strictly less than f(y,; T) over any compact set not containing y,. This along with
the uniform convergence of L(y; T) — f(y; T) to zero insures that the m.le.
of y over an interval [y*, 1] where 0 < y* < y, must convergence in probability
to yo.-

The final part of the proof is to show that when y, exceeds zero, thereis a y* > 0
such that the probability that the m.lLe. over the entire interval is less than y*
goes to zero. We first show that there is a constant K which does not depend upon

43  f(;T)=—In [052 ] — T~ In|D(y).
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y* such that L(y; T) < L(y*;T) + K for all y < y*. Then we show that
f(yo; T) — f(»*; T) exceeds any positive number for y* sufficiently small and all
T sufficiently large. Thus if |[L(y; T) — f(y; T)| is small for both y* and y,, L(yo; T)
will exceed L(y; T) for all 0 < y < y* and consequently, the m.lLe. will exceed
P*.

LemMMA A: For ye (0, 1], plim [L(y; T) — f(y; T)] = 0.

PROOF : Assuming the variables have been transformed via transformation P,
. the generalized sum of squared residuals is
4.9 S(y) = wI — M(y)]w = ww — wM(y)w

where w ~ N[0,03D(y)"'D(yo)] and M(y) = D(y)"*X(X'D(y)~'X)™'X'D(y)*.
Since M(y) is idempotent of rank k, [w'M(y)w]}/T is non-negative with expectation
zero in the limit. By Tchebyschev’s inequality its probability 11m1t is 0. Therefore
to establish the lemma it must be shown that

t(Vo)
T a0)

If y > y,, the d/(y,)/d,(y) are increasing in d, and are therefore bounded by 1/y.
For y < y,, they are monotonically decreasing and therefore bounded by 1/6*;
both results follow from (4.1). This implies

(4.6) 0 <d(yo)dy) < 1/6* + 1/y.

Since this ratio is uniformly bounded in T, the variances of the w? are uniformly
bounded which implies

4.7) lim var (Ww/T) = 0.
T— o0

4.5) phm ww/T =

This along with the fact that

E(ww/T) = GOZ (y;;)

proves the lemma.

LEMMA B: The convergence of L(y; T) to f(y; T) is uniform in probability over
any such set I'; that is plim {sup.<,<,|1L(y; T) — f(y; T)|} = 0.

Proor: The extension of pointwise convergence to uniform convergence in
probability for a finite set is straightforward. One selects a sufficiently large T*
such that forall T > T*and alli=1,...,N,

48)  prile:T)— 0T <e2) <1 §N.
Then
@9) * prisuplLOsT) — £ TN < &2} > —
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We next prove that with probability one there is a constant K which bounds the
slope of the function L(y; T) — f(y; T) everywhere on the set I'. Differentiating
this function yields .

24 1 d(yo)d, — 1
‘ Z wt t Z t t
wi0) D) 4T a0 46

W (7o)
Zdt(y) 2 dy(y)
Both of the above expressions are weighted averages of the (d, — 1)/d,(y). As
these are bounded from below by —1/6* and from above by 1/y* for ye T, the
above expression is bounded in absolute value by

2 2
4.11)  2{sup|(d, — D/} < 5 + =K
t,yel 5

With this result the condition that |L(y;; T) - f(y;; T) < ¢/2 implies
(4.12) sup |L(y; T)— f(y; T <.

7=l <e2K

The finite set of points can be selected such that, for all ye I, |y — y| < ¢/2K for
some i. Then for all T > T*

(413)  pr {SUP|L(V; T)—fO; T <e>21-3,
ye
proving uniform convergence over I' in probability.
LEMMA C: There is a K(y; T) = > 0 such that
(4149 f'(r;T)=Ky; Tyo — )
for ye(0,1].
Proor: Differentiating f(y; T) yields
1 d(yo) /1 «dvo)
'(v;T)={— @ = )5 =
/ P I 0 T
Let ¢, = 1 — d, which implies d,(y) = 1 + y¢, and
dfyo) | !
K,(y;T) = Tli :
! ) B d(y)

The derivative can be rewritten as

d; . d
f@;T) = K03 Tz [Z;, G y (y(;) o) -Y dc.(y)fzyj?;)]'
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Combining the summations, this simplifies to

, 1 eld)dy) — di(yo)did»)] dy)
;T)=K(y; T)— J J J
f (y ) l(y ) Tz ~ d.(}))z dj(y)z
—y ey — ety + ¢ — e
T? Z,: dy)* diy)*
_ Yo — Y i — CiCj
=KD L der ay

i,Jj

y
=K,(y; T)°

Yo = ¥ Wei — ¢)
= K,(y;T) 4
DSy L aor an
Yo = ¥ [dy) — 401
C=K,y; T .
DSy 2 a0 4oy
In the Appendix it is shown that d,(y) > 1 — y + yé*, which implies the leading
term exceeds y/0*. Thus, with some additional .algebra, -

S0 T) = Koly; DIT ™ X d) ™2 = (T X dy) ™10 = 7)

with K,(y; T) > 6*/2. In the Appendix (see Result A1), a positive lower bound is
established for the average squared deviation of the d,(y)~! from their average
which holds for all T sufficiently large. This completes the proof of Lemma C.

Lemma C implies the functions f(y; T) have unique maxima at y,. Furthermore,
if |y — yol > & then | f(yy; T) — f(y; T)| = Ke?/2. By Lemma B the probability
that L(y; T) will be arbitrarily close to f(y; T) uniform over any set of the form
0 < y* <y < 1 approaches 1. If y, > y*, then the maximum likelihood estimator
of y over the set [y*, 1] will converge in probability to y,; otherwise if y, < y* it
will converge in probability to y*.

We now will show that when y, > 0 for a sufficiently small y*, the probability
that g, the m.L.e. over the entire unit interval is smaller than y* converges to zero;
this implies g is consistent. The following results established in the Appendix
will be used in the argument :

REesuLT A2: For any constant C > 0 and y, > 0, there are a T* and y* > 0
such that

0(2) d(yo)
(415 In [?Z d,(y)] >C

forall T> T*and 0 < y < y*.

ResuLT A3: The function T~ !In|D(y) is bounded from above and below
uniformly in y and T'; that is

1 1 '
(4.16) sup—In|D(y) — inf=In|D(y)| = K* < o0.
y,T T 7.T T
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Using Result A2, a y* < y, and T exist such that for any ¢ > 0
4.17) priL(y*; T) < f(yo; T) — K* — 1/6* — 2¢] > 1 — /2.

In Lemma B, a lower bound of —1/6* was established for the derivative of
—In [S(y)/T]. Using this fact along with Result A3, we conclude that

(4.18) L(y; T) — K* — 1/6* < L(y*; T) for 0<y <y~
These two relationships imply

(4.19)  prisup Liy; T)S f(vo; T) — 2] > 1 — 0/2

for T > T,. Pick T, sufficiently large that
(4.20)  pr{IL(yo;T) — f(ro; DI <&l >1—-9/2
for T > T,. Given (4.19) and (4.20),
(421)  prisup L(y;T) < L{yo; T)] > 1 — 6
r<o*

for T > max [T, T,]. This proves that

lim prg; < 9*] = 0.

T-0

We have established that g converges in probability to y, if y, is positive and

now establish this result for y, = 0. In this case, by Lemmas B and C, the m.Le.

over any interval [g, 1], 0 < & < 1, converges in probability to & Denoting this
restricted m.lLe. by g,

limpr [g, > 2¢] = 0.
But '

prg > 2¢] < pr[g, > 2¢],
so we can conclude that

limpr [g > 2¢] = 0.

Since ¢ can be any positive number less than one, g converges in probability to 0
if yo = 0.

The above discussion can be summarized by the following theorem:

THEOREM: The maximum likelihood estimator g of y converges in probability to
Yo, the true parameter value. '

COROLLARY : The maximum likelihood estimator, s*(g), of 6* converges in proba-
bility to a3. :

PROOF: Since s%(g) is just S(g)/T; and by Lemma A, plim S(y,)/T = o3, the con-
sistency of g implies this result.
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Following the usual analysis but using tlEe log likelihood function concentrated
on B only,® the asymptotic distribution of d, the m.le. for 6’ = (y, a2), will be

JT@ = 65) ~ N[0, 1(8,) 1],

where the information matrix I(0,) is

1 — 1) —ao

1 (8L ZTZ d{yo) Z .('Yo)
—0p i~ o
| 2T 2 di(vo) 2 ]

Inverting I(6,), the variance of the asymptotic distribution of g is obtained,

namely
d; — 1) 1 d — 1))\ |?
var [f(g = Po)] = 2/ [Tz(d(yo)z) B (TZg—dI)_’o—))—):l '

This may be used to test for the significance of the estimator g.

In practice one does not search the entire interval but searches over a finite
number of points as we proposed in Section 2. This estimator will converge in
probability to either the y; immediately to the right of y, or the one immediately
to the left. If every point in the unit interval is within ¢ of some point in the search
set, then the value to which g converges is within 2¢ of the true value.

5. CONCLUDING REMARKS

It may frequently occur in econometric research that the parameters of an
equation are subject to stochastic variation over time. In this paper we have
developed models and their estimators which explicitly incorporate this possibility.
Because parameter variation may arise from a variety of sources, the variation
process is assumed to be a general one, incorporating both permanent and tran-
sitory changes. The model proposed has a number of important special cases
which have different implications about the form of parameter variation. ,

The maximum likelihood estimation techniques developed provide estimates
of the permanent components of the parameters, the fraction of variation due to
permanent changes in the parameters and the variance. The transformation
developed makes estimation of the models quite feasible. The computations
required are no more capital intensive than many commonly used nonlinear
estimation techniques.!® The estimates of the permanent component of the
p’s will not be consistent because of the assumed probability structure. A subset
of the parameters (y and 62) can be estimated consistently, however, which implies

9 Analysis of this type is presented in detail in [7].
10 The authors have developed a Fortran program that efficiently performs this estimation. It is
available on the NBER TROLL system.
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the estimate of the permanent component of the f’s will be asymptotically efficient
and yield optimal predictions.

Tufts University and National Bureau of Economic Research
and
Carnegie-Mellon University

Manuscript received August, 1972 last revision received November, 1974.

APPENDIX

In the proof of consistency of the maximum likelihood estimators of y and ¢? certain propositions
about eigenvalues were relied upon. The transformed model is'!

(A1) Y* = X*B + p*.

The vector u* is distributed as

(A2) u* ~ N[O, 6(1 — P + yQ*],

where Q* is defined as

(A3) gh=min[T—i+ L T—j+ xFEx; and  x}F=x/XZX

It is the properties of the eigenvalues Q* that are of concern. The proof of consistency requires that the
eigenvalues be uniformly bounded away from zero and that they possess finite variability.

For the special case of the intercept variation model the necessary properties of the eigenvalues are
easily shown. For that case the matrix H corresponding to Q* has ijth element

(A4) hy=min[T—i+ 1, T—j+1].
The jth largest eigenvalue of H is'?
(AS) MH)Y = 2 + 2cos [2n(T — j + 1)/QT + 1]
which is bounded away from zero by 4. Also, since for this case d; = 4,(H), the expression
(A6) “Z(_ﬂi _L)z
df)  T=df)

has a positive lower bound for any y > 0. This is required for Lemma C to hold.

The following lemmas generalize the above result for the general model. Let X¥* be the diagonal
matrix with tth diagonal element equal to x} and assume X, is diagonal.® The matrix Q* can be written
as

(A7) Q* = Z ot X¥HX},
i=
‘where a; is the appropriate element of Z,.
In the subsequent discussion all matrices are symmetric and the notation 4 > B means matrix A — B
is positive semi-definite.

LeMMA Al If B is positive semi-definite, then A (A + B) > A, where A;denotes the jth largest eigenvalue
of a matrix.

1 The * notation on the transformed variables which was dropped for convenience is re-employed
here. It is necessary because it is important to make explicit the fact that the X’s and Y’s have been
transformed in a particular way.

121n [3, p. 66] the eigenvalues for the inverse of H (numbering of rows and columns reversed) is
developed, implying (A5).

'3 This assumption can be made without loss of generality because, alternatively, an appropriate
triangular factorization of X, could be made.
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PRrOOF: See Bellman [3, p. 115].

LEMMA A2: If A and B are diagonal, H positive definite, and for all i |a;| > |byl, then A{AHA)
J{BHB).

ProoF: See Anderson and Das Gupta [2].

LEMMA A3: The jth largest eigenvalue of Q* satisfies the following inequalities :

(A8) k\A(H) < 2(Q*) < k,A(H),
where
(A9) ky = maxotx? and  k, = max {2, o%x?}.

Proor: By Lemma Al and equation (A.7)
(A10) aWX¥HX} < Q*.
Next using Lemma A2,
(A11) A{xtH) < A{XFHXY)
which implies the left-hand inequality of (A12).

Since!'#
(A12) A{Q*) = minimum maximum {z'Y ohX*HX ¥z},
Vivedy1 Z¥a=0ln=1Loj— 1] Iz €1
it follows that
(A13) A{Q*) < minimum {} o%; maximum [z X HX}z]}
Visee¥y~1 Zyn=0in=1,..,j-L;llzll s1
< minimum {}’ ¢4%? maximum [2/X.2]}
Yireeo¥y-1 Zyn=0;n=1,.,j— L;]lz|| €1
= Z ot xIA(H).

This completes the proof.

ResuLT Al: The 1/d(y) have finite variability in the limit in the sense that the limit inferior of

(A9 ‘Z [W B 'Zd(y)]

is positive.

ProoF: The nature of the proof is to show that the limit inferior of the fraction of d(y) exceeding 2kz
is positive as is the limit inferior of the fraction less than k,. Clearly the limit mferlor of expression
(A14) must then be positive.

By Lemma A3 the limit inferior of the fraction of the d,(y) exceeding 2k, exceeds the limit of the
number of A(H) exceeding 2k,/k, . Since the latter limit is positive, the limit inferior of the fraction of
the d(y) exceeding 2k, is positive. Also by Lemma A3, the limit inferior of the number of d(y) that are
less than k, exceeds the limit of the number of A(H) that are less than 1. The latter limit is positive
and the result is established.

REesULT A2: For any y, > 0 and K > 0, there exista T* and y * > 0 such that

A1 =Y d'((v‘;)

forall T> T*and 0 < y < y*

14 This representation of the eigenvalues derives from the Courant-Fischer min-max theorem. See
Bellman {3, pp. 113-115].
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PRrOOF: Since d|(y) = (1 — y) + yA4,(Q*), Lemma A3 implies that
(A16) dyo) = yokiA(H) = yok,/4
and that
(A17) d(y) < k(1 — y) + ykoA(H):
Therefore ’
Yok 1 A{(H)
W, T2 )+ vaE)
Using (AS) to substitute for A,(H) yields
yok 1 1

ey T a—pl242 ( 2nt )] +
_ cos [ 2™
M Sr+a)l™?

(A18) h(y, vo) =

(A19) h(y, v0) =

_ Yok 1 1
4k T [ _
(1—y)f2-2cos (2_1ct n” +y
L 2t + 1
)’ok J-(ZT—B)/(2T+1) 1 .
X
4k2 T+ 1) (1 =72 - 2cosmx) +y

The last result follows from numerical integration theory for monotonically decreasing functions. By
substituting the smaller function 1 — nx for cos (zx) and reducing the range of the integration of this
positive function, we conclude

Yok, (* 1

(A20) h(y, yo) > ———dx.
0 4k, 1/(2'I‘+1)(1 —Pmx +y -

There are a T* and positive y* such that the right-hand side of (A20) exceeds any positive constant K.
Since that expression is increasing in T and decreasing in y, h(y, yo) > K for all y < y* and T > T*.

RESULT A3: The determinant of the matrix Q*(y) = (1 — y) + yQ* satisfies the following bounds:

(A21) In {min (1, k,/4)} < ~—ln |2*()| < In(ky) + 4/k,.

Proor: The eigenvalues of 2*(y) are (1 — y) + yA{Q*). Since the determinant of a symmetric matrix
-ust the product of the eigenvalues

1
(A22) T In |Q*(y)| < In {inf A (2%)}

by equation (AS) and Lemma A3
(A23) A(Q*) < ky/4,
so
(A24) 'inflj(ﬂ*) < min (1, k,/4)
which proves the left hand side of (A21).
To prove the right-hand inequality we observe that

1 1
(A25) Tl ol = :len {1 =) + 240"}

Differentiating twice yields a negative function which implies that the above function is convex. For
y = 1, we find

(A26) = ]n 1Q*1) = — Z In 4(Q*).
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From Lemma A3 we know that 1{Q*) < k,A{H), which implies
(A27) —I—Tln Q*1) < -,I:Z(ln k, + InA(H)).

The determinant of H is 1 so

(A28) %lnlﬂ*(l)l < Ink,.

Differentiating we find
dl1 1 A(Q%) — 1]
Tl * — Y A A—
(A29) dy[Tln 2 (v)l].m F [ 7 (Q*)
> 2%

—4/k,.

4 (Q*)

Given that the function is convex, has an upper bound at A = 1, and a lower bound for its derivative,
it follows that'®

1 4
(A30) Z 1240 < Ink; + k—

for0<y<1l
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