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THE MULTI-PERIOD CONTROL PROBLEM UNDER UNCERTAINTY

EpwarD C. Prescorr!

The multi-period control problem analyzed assumes the data are generated by the simple
regression model with an unknown slope coefficient. There is a tradeoff between stabiliza-
tion and experimentation to learn more about the unknown coefficient. When parameter
uncertainty is large, experimentation becomes an important consideration.

OPTIMAL CONTROL when there is uncertainty in the effect of a policy instrument is
receiving the increased attention of the economics profession. Single period prob-
lems have been analyzed by [1, 4, 8, and 9], but the multi-period problem has
largely been ignored.? The latter is far more complicated because one must consider
not only the effect of a decision upon the current period’s expected loss but also
its effect upon the resulting expected information. For example, as Dréze [3]
points out, it may be optimal for a monopolist to experiment with price to learn
more about the elasticity of demand. This action reduces expected profit in the
current period, but possibly the loss can be recouped in subsequent periods using
the improved information.

1. THE THEORY
The process assumed to generate the data is a simple regression model, namely,
(1) yve=px,+u for t=12...,T,

where y, is the tth observation of the dependent variable, x, is the rth value of a
control variable, § is an unknown scalar parameter, and u, is the tth unobserved
random error term. The u,’s are normally and independently distributed, each with
mean zero and common known variance, which without loss of generality will be
taken to be one. Further, we assume our prior knowledge at the time X, is selected
can be represented by a normal distribution with mean m,; and precision (the
reciprocal of the variance) h,. It is readily verified that the distribution on the
unknown parameter at the time of the tth decision will be normal with precision
satisfying the difference equation

(2 h,=h,_, +xt2—l’
and mean satisfying
3) m, = (me_h_ 1 + X1y 1)/h.

! The author acknowledges helpful comments of Professors Morris H. De Groot, Michael C.
Lovell, and Arnold Zellner.

2 There are numerous examples of problems of this type in the mathematical statistics, control
engineering, and management science literature. The only economic applications to our knowledge
are [5 and 7], where two period examples are considered. The latter has developed approximate solu-
tions for two period simple regression models under the assumption of diffuse priors. See [2] for a
summary of what has been done in the area and an extensive bibliography.
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1044 EDWARD C. PRESCOTT

If one had a locally uniform initial prior on § and previous observations were
available, m, would be the least squares estimator and 1/h, its variance. Sub-
sequently N(m, h) will denote a normal distribution function with mean m and
precision h.

Given initial prior N(m,, h,) on f3, the control problem is to select the x, sequen-
tially so as to minimize the sum of the expected losses

(4) E[ Y q,(y,)]

t=1

where the g, are the non-negative losses, E is the expectation operator, and
x? < Kh,. Besides assuming E[g,(y,)] exists when f is normally distributed, we
require its derivative with respect to m to exist and be continuous with respect to
x, for x? < Kh,.

REMARK 1: This constraint set is invariant to the units in which x, is measured,
a result needed to prove Theorem 1, and is compact, which is needed to insure
existence of optimal decisions. Alternatively we could have removed this constraint
and imposed conditions on the loss functions to insure all optimal decisions were
finite.

Let
T
(5) film,, hy) = infEl: Z q{y)lm, ht:I

fort = 1,..., T. This is the infimum for the sum of the expected losses for periods
t through T inclusive given prior N(m,, h) on f at time t. As the initial prior has
been assumed normal, the prior at the time of the tth decision will necessarily
be normal. By backward induction

(6) f;(mt’ ht) = min E[qt(yt) + ft+ 1(m1+ 1> ht+ l)lxn m, ht], xtz S Kht,

for t =1,...,T with f;,, = 0. Because x is constrained to a compact set, the
infimum is obtained and the minimum operator may be used in (6). The first term
in the expectation measures the effect of decision x, upon the loss in the current
period while the second the effect upon future losses givzn optimal future behavior.
From (2), the larger x2, the more precise will be the future knowledge of 8 as the
precision (variance) of the posteriori will be larger (smaller). Current decisions
affect future as well as current losses so there will be a trade off between stabiliza-
tion and experimentation.

THEOREM 1: The functions f, have the following property:

(7 Sikm, ht/kz) = f(m,, h)
fork # 0.
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PRrOOF: Consider the transformed problem
e = ﬁ*x,*+ U,
where f* = kf and x¥ = x,/k. If the prior on § is N(m,, h,), the prior on f* is
N(km,, h,/k?). In addition if x? < Kh,, then (x*)?> < Kh,/k* = Kh* Theequivalence
of these two problems imply (7).
Setting k = h? and then k = —h? in (7) yields
f;(mth-t%a 1) = f;(mn ht) = f;(—mth;ira 1)

Thus, the minimal obtainable expected loss depends only upon the absolute value
of the location parameter

(8) S = m,h?

of the normal prior on . For this decision problem it measures the degree of un-
certainty in the unknown coefficients. Let

fds) = fils, ).

The system of functional equations become
©)  fls) = min E[q() + four(sis Dlsio x]-
From (2), (3), and (8), the distribution of s, is N(s,/1 + x2, x;” ?).

ReMARK 2: This simplification is important for with a single state variable
numerical solutions may be obtained in a fraction of a minute with the aid of a
high speed computer. If there were two state variables, the time required would
increase by a factor of 100. To see why computation costs increase so rapidly,
consider the method of solution. One begins with f;, ;, = 0 and uses (9) to compute
fr which in turn is used to compute fr_;, etc, until f; is obtained. It does not
appear that these functions can be characterized by a few parameters. Rather the
functions must be tabulated for a grid of points. If there are 100 points per dimen-
sion and n state variables, the functions must be evaluated at 100" points. For each
evaluation a number of numerical integrations are required when searching for the
optimal decision.

Let
(10) h(x,s) = E[q(y) + fi+ ()X, s],

the s" denoting the location parameter of the posteriori and let
B, = lim sup |(s) = {s*I/ls = s*

where N, is a neighborhood of s with radius 1/n.

LemMA A. For any s, B, is finite.
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ProOF: The theorem is trivial for T + 1 as fr,; = 0. Let g(x, s) = E[q,(y,)ls, x].
By assumption g,(x, s) exists and is continuous with respect to x for x? < K.
Therefore for ¢, sufficiently small

(11) lg(x,s) — glx,s*) < [1 + sup 1g2(x, s)|]Is — s*|

whenever |s — s*| < ¢; and x? < K.
There are 6 > 0 and ¢, > 0 such that

(12) |EL[fi+1(NX, ] = E[fi41(8)X, s*]| < |Brsy + 1] |s — s¥]

whenever x? < § and |s — s*| < ¢, given the assumption that the theorem is true
fort+ 1.3
Let B = sup f,, 4(s) and

Bs)=B if <14 x}s+ s%)2,

B(s) = — B otherwise.

Observe
[ELS(s)x, s] — E[f(s)x, s*]| < |E[B(s')x,s] — E[B(s)x, s*]|
=2Pr[ls' — 1+ x*(s + s%)/2| < 2./1 + x?|s — s*|].
Thus,

|ELf(s)x,s] — E[f(s)x, s*]] < 2B /1 + x?%|s — s*|/x.
For x? > ¢ and x? < K, this implies
(13) |ELf(s)x, s] — E[f(s)x,s*]| < 2B/1 + K25 *|s — s*.
Results (11), (12), and (13) insure

| fi(s) — fils*)| < Bjls — s*|

provided |s — s*| < min (¢, &,) and x? < K where B, is the maximum of the three
bounds. By backward induction all the B, are finite given By, , is finite.

THEOREM 2: The functions f(s) are continuous everywhere and differentiable
almost everywhere.

ProoF: The existence of B, for a given s insures the Lipschitz condition will
be satisfied in an interval containing s. This implies the function will be absolutely
continuous in this interval and therefore differentiable almost everywhere within
it. Given this is true for all s, the theorem follows.

Previously the f; have been considered functions of a real variable but now
will be functionals on the space of distribution functions P. The symbol s now
denotes the distribution function N(s, 1).

3 Note the f;, ; are bounded, as the decision rule x; = 0 for all s results in finite expected loss.
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LemmA B: The functions f,(p), p € P, are convex and

(14 Efi(p) < f(Ep).

Proor: For p,,p,eP, and 0 <0 <1, p,=0p; + (1 — O)p, will be a dis-
tribution function. Then

0fp;) + (1 — 0) fi(py) = 0 mg}( E[q(y,) + fi+1()py,x]
+ (1 —0) iné’} E[q,(y) + fi+10)lp2, x] < J{ng}( E[q,(y,)

+ fi+1(P)pe> X] = fi(Do)s

the p’ denoting the posteriori distribution. Convexity and Jensen’s inequality
imply (14).

THEOREM 3: The functions f, are non decreasing in |s| and bounded.

ProOF: Selecting x, = 0 for all ¢ results in expected loss

i E[q,(u,)]
whe.re u, are N(0, 1). This is a bound for f;. Since the f; are symmetric, only positive s
need be considered. First
EN(s,1) = N[m, (1 + 0%~ 1]
if s has distribution N(m, ¢ ~2). By Lemma B, above, and Theorem 1,
(15) Ef(8) < fIEN(s, D] = fIN(n, (1 + 0%~ )] = fom//T+ o°)

Suppose f; has a relative minimum at m* > 0 and is increasing at that point.
Consider sequence (o;, m;) such that o; decreases to 0 while m;/./1 + o7 = m*.
For i sufficiently large

(16) Ef(s) > f(m*) = fim;/\/1 + o?)

for s ~ N(m;,a; ?), since by Theorem 2 the function is absolutely continuous.
This contradiction to (15) establishes that f, has no relative minimum except
possibly at m = 0. If it did, however,

(17) Ef(s) > £(0)

if s ~ N(0, 0?) for o sufficiently small given f, is symmetric. This contradicts (15)
establishing the result that f(s) has no minimum. Thus the functions are non-
increasing in |m|, proving the Theorem.

We were surprised at the difficulty encountered in proving this obvious result
that more precise is better than less precise information.
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Suppose before selecting decision ¢, the results of the experiment x (the distribu-
tion of y being N(fx, 1)) may be observed. The location parameter of the distribu-
tion on f§ at time ¢ will be s’ rather than s as a result of this additional observation.
From (10)

(18) E[£(s")]s, x]

E[min hy(z, s')|s, x] < min E[h,(z, s')|s, x]
= min h(z, s) = f(s).

This proves any experiment x can be expected to reduce, or at least not increase,
future expected losses.

Suppose two experiments x,; and x, may be observed or alternatively one experi-
ment x5 with x3 = x} + x2, before selecting x,, . . ., x;. Since both s, ,, the location
parameter with experiments x;, and x,, and s;, the location parameter with
experiment x;, will be distributed N(s\/1 + x3, x32),

E[f(s3)lx3,5] = E[fis12)x1, X3, 5]
Assuming X, is the first experiment
E[fi(s12)Ix1, X5, 8] = E{E[f(s12)Ix2, 5111x1, s} < E[f((sy)lxy, 5],

by (18). Thus
E[f(s3)lx3,5] < E[fi(s1)xy, 5]

where x3 = x3 + x% < x?. This discussion can be summarized by the following
theorem.

THEOREM 4: The larger x2, the more informative is the experiment ; that is,
E[fi+ 1S, x,1] < E[f+1(5")ls, X;2]

: 2 2
lfxrl = Xt2 -

This result implies the optimal decision will be larger in absolute value than the
one which minimizes expected loss in the current period, so the optimal policy is
to sacrifice some stability in order to gain information.

The optimal decision for h, = 1 is of the form

xp = x7(s),
where x? minimizes the right side of (9). In general the optimal decision will be
(19) x) = hfxQ(s,);

the optimal decision in each period is equal to the scale parameter of the prior at
time ¢ times a function of the location parameter.
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2. NUMERICAL ANALYSIS FOR QUADRATIC LOSS

In this section the loss functions will be restricted to be quadratic:

Qt(yt) = (yt - dt)z,

the d, being the desired or target levels for the performance variable. All the
variables and targets have been divided by the standard deviation of the error
term so the variances of the transformed disturbances are 1. The single period
problem, T = 1, has been analyzed by Zellner and Geisel [8] though they did not
assume the variance of the additive disturbance known. They explored many
forms for the loss function finding the quadratic reasonably robust for the class of
symmetric loss functions. Given this result, we thought the quadratic loss most
interesting for purposes of the quantitative exploration of the importance of
experimentation. The analysis could equally well have been performed using other
loss functions without increasing computation costs.

To apply the theorem of the previous section, the x> must be constrained by
Kh, for some K. We let

T
K= d’.
t=1
For larger x2, the expected loss in the current period would exceed the sum of the
expected losses in the remaining periods if x, = 0 for s > t. This constraint will
never be binding and any larger value for K would have yielded the same results.

2.1. Two Alternative Decision Rules

For this problem the conventional decision approach, which is called the
certainty equivalence decision rule in [9], is to select

(20) Xy = dl/mt .

This rule was obtained by determining the optimal decision rule if § were known
and substituting the expected value for this unknown parameter. The expected
loss in period ¢ for rule (20) is

(2 1) E[(yt - dt)zlxt = dt/mz] =1+ dtzmt— th_l =1+ (dl/Sl)Z,

which is large when |s| is small. Selecting x, = 0 results in smaller expected loss than
rule (20) if |s,| < 1. Given this result, we define our certainty equivalence rule as
follows:

ce __
;. =

d,/m, if  |s] > 1,
0 otherwise.
A procedure such as the one above would probably be recommended by a non-

Bayesian econometrician, for he would recommend (20) only if the estimate of
were statistically significant. The certainty equivalent decision rule depends upon
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the significance level and therefore is not unique.* Some will surely question
whether in fact x, = 0 is the appropriate passive policy. Possibly a better definition
would be the policy of not changing the instrument. In fact if x, and y, are measured
as deviations from their value in period 0, x, = 0 corresponds to the alternative
definition.

The second approach considered is the myopic decision rule which minimizes
expected loss in the current period without regard for the future. The expected loss
in period t conditional on x, and the prior’s parameters is

(22) El(y, — d)*|x,, m,, h] = (mx, — d)* + x2/h, + 1.

It is easily shown the myopic decision rule is®

(23) xm™ = dm,/(m? + 1/h,),

and by substituting (23) into (22) the corresponding expected loss,
24 E[(y, — d)*1x"] = 1 + dZ/(1 + s}).

In the subsequent section the performance of these alternative decision rules will
be compared with the optimal procedure.

2.2. Some Results

The optimal, certainty equivalence, and myopic decision rules and their cor-
responding expected losses were computed for a number of sets of targets {d,}.
Table I presents the minimal expected loss as a function of the location parameter
s, for a number of examples with the same target in every period. The expected
losses are decreasing functions of |s,|, demonstrating more precise knowledge of
the unknown parameter is preferable.

Table II gives the value of the decision rules at selected s, for the optimal and
the alternative procedures. The table assumes the prior on  has precision 1, but
it may be used to find the appropriate decisions in the more general situation by
multiplying its entries by the scale parameter h. The table may also be used to
obtain decision values for negative s, as the functions are asymmetric. With the
optimal procedure different decision rules are used in each period. The optimal
rule for period t is, of course, the optimal first period rule for the T — ¢t + 1
problem. In other words, the optimal decision ¢ depends only upon the prior at
the time of the tth decision and the targets in the periods remaining in the process.

4 The null hypothesis B = 0 seemed appropriate in this situation, for if = 0, control is impossible.
With diffuse priors s, corresponds roughly to the t statistic so the required level of significance is lower
than conventional ones. It was selected because it is the best level for the single period problem and,
given the results of Section 1, has uniformly smaller expected loss for multi-period problems than any
higher level.

5 This rule has been called the sequential updating procedure by [7].
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TABLE II
VALUES OF THE DECISION VARIABLE FOR THE ALTERNATIVE RULES: EQUAL TARGETS

Location Certainty Myopic First Period Optimum Decision
Parameter  Equivalence Rule Rule T=2 T=4 T=6
Targets = 1.0
0.0 0.0 0.0 13 .56 71
0.2 0.0 .19 40 69 80
0.4 0.0 .34 .50 72 85
0.7 0.0 47 53 68 81
1.0 0.0 .50 52 58 67
24 71 47 48 50 53
2.0 50 40 41 41 42
3.0 33 .30 .30 30 31
4.0 25 24 .24 24 24
5.0 20 .19 .19 19 19
Targets = 4.0
0.0 0.0 0.0 1.58 2.00 2.08
0.2 0.0 77 1.93 2.30 2.34
0.4 0.0 1.38 2.21 2.55 2.68
0.7 0.0 1.88 2.40 2.63 2.70
1.0 0.0 2.00 2.30 2.54 2.55
1.4 2.86 1.89 2.09 2.20 222
20 2.00 1.60 1.68 1.76 1.76
3.0 1.33 1.20 1.23 1.25 1.26
4.0 1.00 .94 .96 97 97
5.0 80 77 78 78 79

Targets = 16.0

0.0 0.0 0.0 5.00 5.00 5.01.
0.2 0.0 3.08 6.05 6.26 6.27
0.4 0.0 5.52 7.43 7.66 7.67
0.7 0.0 7.52 8.40 8.40 8.40
1.0 0.0 8.00 8.53 8.53 8.53
1.4 11.43 7.57 7.88 7.88 7.88
2.0 8.00 6.40 6.53 6.55 6.55
30 5.33 4.80 4.84 4.84 4.84
4.0 4.00 3.76 3.78 3.79 3.79

As can be seen from Table II, the optimal x? are larger in absolute value than
the myopic x7?, the difference reflecting the degree of experimentation. The longer
the planning horizon and the greater the degree of uncertainty, the more experi-
mentation is optimal. For values of the location parameter larger than 2.0, the
first period optimum decision is almost the same for T=2, T=4,and T =6
and about the same as that for the myopic rule but not the certainty equivalence
rule.

A comparison of the performance of the alternative with the optimal rules is
found in Table III. The certainty equivalence rule performs well only when un-
certainty in f is small; say, |s| > 2 if the targets are 1 or |s| > 4 if the d, = 16.
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TABLE III
EXPECTED LOSSES As PER CENT OF MINIMUM FOR ALTERNATIVE DECISION RULES: EQUAL TARGETS

Location
Parameter Certainty Equivalence Rule Myopic Rule
Is4l T=2 T=4 T=6 T=2 T=4 T=6
Targets = 1.0
0.0 100 107 115 100 106 112
0.2 104 111 118 101 106 111
0.4 110 116 122 101 104 108
0.7 121 125 131 100 102 105
1.0 134 136 140 100 101 102
14 111 110 110 100 100 101
2.0 104 104 104 100 100 100
3.0 101 101 101 100 100 100
4.0 100 100 100 100 100 100
5.0 100 100 100 100 100 100
Targets = 4.0
0.0 120 190 261 120 165 181
0.2 133 209 285 112 131 138
.04 151 236 319 106 117 122
0.7 189 286 380 103 111 114
1.0 238 349 454 102 109 112
14 125 130 142 101 106 108
2.0 113 107 124 101 103 104
3.0 104 103 103 100 101 101
4.0 102 101 100 100 100 100
5.0 101 100 100 100 100 100
Targets = 16.0
0.0 153 297 442 153 193 196
0.2 171 330 491 108 113 114
0.4 197 380 565 102 106 107
0-7 255 491 727 101 104 105
1.0 340 650 959 100 103 104
14 140 141 145 100 102 102
2.0 121 131 143 100 101 101
3.0 109 111 113 100 100 100
4.0 104 104 103 100 100 100
5.0 103 102 102 100 100 100

The myopic rule is superior to the certainty equivalence rule with near optimal
performance over a wider range that probably includes most cases encountered in
economics. Its performance is worse the greater the degree of uncertainty and
longer the planning horizon, namely when one would expect experimentation to be
important.

A number of three period problems having targets varying among periods were
evaluated and are summarized in Table IV. The larger future targets and the smaller
the current target, the more important is experimentation. This is easily explained
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TABLE IV

EXPECTED Loss As PER CENT OF MINIMUM FOR MyoPIC DECISION RULE:
UNEQUAL TARGETS {d;} AND T =3

Location Parameter Value of Target: d; = d, = 4 and
5; dy =1 dy=4 dy = 16
0.0 121 147 418
0.2 112 123 258
0.4 106 113 205
0.7 103 107 177
1.0 102 105 164
1.4 101 103 150
20 100 102 129
30 100 100 110
40 100 100 105
5.0 100 100 103
Value of Target: d, = d; = 4 and
d, =1 d, =4 d, =16
0.0 186 147 106
0.2 171 123 100
0.4 151 113 100
0.7 130 107 100
1.0 115 105 100
1.4 104 103 100
20 102 102 100
3.0 100 100 100
4.0 100 100 100
5.0 100 100 100

as increasing future targets increases the payoff for experimentation while reducing
the current target reduces experimentation costs.

2.3. The Moving Horizon Rule

Three considerations lead us to examine the performance of a first order moving
horizon scheme. With this rule, the decision maker looks one period ahead,
selecting the decision which would be optimal if the next period were the last.
First, Theil [6, pp. 154-6] suggested a moving horizon approach as an approximate
solution to an infinite period planning problem. Second, in the previous section we
found the amount of experimentation for the two and the six period problems
differed by only a small amount, suggesting that little is gained by looking further
into the future. Finally, it is easily computed and one is not constrained by com-
putation considerations to a formulation involving but a single state variable.

With this rule for t < T, the x, selected minimizes

(25) E{(J’t - dt)z + min E[{(y, 4+, — d,+ 1)2|Sz+ img, by, xt}a

Xt -1
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TABLE V
EXPECTED Loss AS PER CENT OF MINIMUM FOR MOVING HORIZON RULE: EQUAL TARGETS

Location

Parameter Targets = 1.0 Targets = 4.0 Targets = 16.0
s, T=4 T=6 T=4 T=6 T=4 T=6
0.0 103 106 101 102 100 100
0.2 102 104 101 102 100 100
0.4 101 103 101 102 100 100
0.7 101 102 101 101 100 100
1.0 100 101 101 101 100 100
1.4 100 101 100 101 100 100
20 100 100 100 100 100 100
3.0 100 100 100 100 100 100
4.0 100 100 100 100 100 100
5.0 100 100 100 100 100 100

or, using (24),
(26) L+ (mx, —d)* + x}/h, + E[1 + di /(1 + st lmg, by, x].

For t = T, the myopic rule is used.

For our problem this procedure is an excellent approximation, particularly
when the targets are large. From Table V, its expected loss is less than a half a
per cent greater than the minimal obtainable value when the targets are 16 in every
period and within 2 per cent when they are 4. When |s| < 2, which generally is not
the case in economic applications, this rule performs better than the myopic
procedure.

2.4. Misspecification of Error Variance

As part of the problem statement, the variance of the error term ¢ was assumed
known. In most applications, however, this will not be the case, and ¢ must first
be estimated. This is not a serious drawback to our analysis as the optimal decision
rule is surprisingly insensitive to errors in specifying o2, at least, in the range of
uncertainty where experimentation is important. If |s,| is not small and experi-
mentation unimportant, the myopic rule can be used. Since the myopic rule is
easily computed (see [7]) even if 62 is treated as a second unknown parameter, there
is no need to estimate ¢ when using this rule.

Suppose observations are available beginning with period t = N < 0, a locally
uniform prior describes the decision maker’s initial knowledge of 5, and

=1+e, le] <1,

rather than the assumed value of 1. The precision of the normal prior at time of
decision t will be
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and mean

t—1
m, = Z Xsys/hy.-
s=—N
But, the variance of u, is not 1, so there is an error in specifying h, (none in m,).
The correct precision is

h, = h/(1 + ).

We found this error of incorrectly specifying the precision of the prior has little
effect upon the performance of the optimal decision rule when |s| < 1. On the
other hand, when |5, is reasonably large, the myopic procedure is nearly optimal.
This suggests the following decision rule:

xf:{\/1+ex?(\/l+es,), Is| < landt < T,
x7(s,) otherwise.

Note, when |s| < 1and t < T, x{ is the decision value obtained by substituting the
incorrect precision h; for A, in the optimal decision rule (19).

For all the examples considered, the increase in expected losses resulting from
the use of x{ is surprisingly small. When the error in ¢ is 25 per cent, Table VI
reveals a maximum increase of 3 per cent. Even with a 50 per cent error, the increase
is at most 8 per cent and is generally much less. The percentage increases were
almost the same for all planning horizons between 2 and 6, the only cases con-
sidered in this study. Similar results held when there were unequal targets. Given
these results, it would be surprising if a scheme treating 62 as a second unknown
parameter would perform significantly better than one where it is estimated.

2.5. Summary

A multi-period control problem was analyzed using numerical methods. The
principle conclusions are these:

(i) The certainty equivalent approach is a reasonable procedure only when
uncertainty in the unknown parameter is small, say when the ratio of the prior’s
mean to its standard deviation is at least 4 in absolute value.

(i) The myopic procedure performance is nearly optimal over a wider range.
But, when |s| < 2, experimentation becomes a relevant consideration; e.g., it pays
to select a decision larger in absolute value than the one which minimizes current
expected loss in order to obtain improved information about the unknown
parameter.

(iii) The more periods remaining in the planning horizon, the more important
is experimentation.

(iv) The first order moving horizon scheme is an excellent approximation to the
optimal solution and is easily computed even for more complex problems.
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TABLE VI

PERCENTAGE INCREASES IN EXPECTED L0SS RESULTING FROM ERRORS IN SPECIFYING 62:
EQuAL TARGETS AND T = 4

Location
Parameter Error = 25%, Error = —25%  Error = 50% Error = — 509,
[l

Targets = 1.0

N
cococoocococo
coocococococoo
CO0CO0OO = — — —
COCO O — — = - —

Targets = 4.0

-
SO = = W= = = O
OO = = = N = - —
OO =W W R AW
SO—= NP, N A

Targets = 16.0

(9]

=
COoO0O—————C
COCO =N = — = —
COO0O — & s B L —
COoOOC O~ A W

(v) The analysis is surprisingly insensitive to errors in specifying the error of
the additive error term. A 25 per cent error increases expected losses by at most a
few per cent for the examples considered.

Carnegie-Mellon University
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APPENDIX

Notes on the Computations

Piecewise linear functions were used to approximate the expected loss functions for the alternative
decision rules. Letting h(s|p) be the expected loss for periods ¢ through T with policy p, backward
induction implies

h,(SAp) = E[(yt - dx)z + ht+1(st+1)lsn hr =1, Xy = pt(st)]

with hy,; = 0. For a set of points S, the above functions were evaluated and linear interpolations used
for points in between. For|s,| > 500, the functions h, were approximated by T — t + 1, the expected loss
if the decision maker knew the true value of § and used any of the decision rules considered. The points
in S were in steps of 0.1 between 0 and 1, in steps of 0.2 between 1 and 2, in steps of 0.5 between 2 and 3,
in steps of 2 between 6 and 20, in steps of 5 between 20 and 50, and 500. In addition the negatives of
these points were included in S.
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