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RECURSIVE COMPETITIVE EQUILIBRIUM: THE CASE OF
HOMOGENEOUS HOUSEHOLDS

By EDWARD C. PRESCOTT AND RAJNISH MEHRA!

Recursive equilibrium theory is extended and generalized. Optimality of equilibria and
supportability of optima are established in a direct way. Four economic applications are
reformulated as recursive competitive equilibria and analyzed.

1. INTRODUCTION

ONE WAY OF MODELLING dynamic uncertain economic phenomena is to use
Arrow-Debreu general equilibrium structures and to search for optimal actions,
conditional on the sequence of realizations of all past and present random
variables or shocks. An alternative approach which is proving very useful in
developing testable theories is to replace the attempt to locate equilibrium
sequences of contingency functions with the search for equilibrium decision rules.
These decision rules specify current action as a function of a limited number of
“state variables” which summarize the effects of past decisions and current
information. These equilibrium decision rules must be time invariant in order to
apply standard time series methods and this necessitates a recursive structure. The
purpose of this paper is to further the development of recursive competitive
theory in the hope of facilitating its use in economics. In particular, we expect it to
prove useful in explaining regularities in asset price movements and in the
co-movements of economic aggregates, both of which have been the subject of
extensive empirical research.

Although our structure is a generalization of the one used by Lucas [12] in his
model of capital asset pricing, our method of analysis is very different. As in his
analysis, a homogeneous class of individuals is assumed; but, unlike his analysis,
ours permits capital accumulation. This paper also subsumes the structure con-
sidered in Lucas and Prescott’s [13] analysis of equilibrium investment under
uncertainty. Optimality of recursive equilibria and supportability of Pareto
optima by recursive equilibria is established in a simpler and more direct way
which does not rely upon the equivalence of recursive and state-contingent
equilibrium allocations.

The homogeneity of consumers is admittedly not a realistic assumption for most
applications. If all heterogeneous agents discount at the same rate and conditions
are satisfied that insure Pareto optimality of a competitive equilibrium, the
equilibrium processes for economic aggregates and prices will be observationally
equivalent to those for some homogeneous consumer economy. Heterogeneity, of
course, will typically necessitate the introduction of supplementary securities to
allocate risk.
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Chari, Milton Harris, Finn Kydland, Robert E. Lucas, Jr., and an anonymous referee.
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1366 E. C. PRESCOTT AND R. MEHRA

Recently some other equilibrium analyses of capital asset pricing have
appeared. Included is the work of Brock [4] who exploits variational rather than
recursive methods. In Section 8, we show how his structure can be formulated as a
recursive equilibrium problem. In addition we present Sargent’s [18] model in
which he examines the consistency between Tobin’s g theory and the equilibrium
stochastic growth model of Mirman and Zilcha [16]. Other closely related papers
are the analyses of Breeden [3], Constantinides [5], Cox, Ingersol, and Ross [6],
Danthine [7], Johnsen [9], Kanodia [10], and Merton [15].

2. THE ECONOMY

Individuals are infinitely lived and have identical preferences and endowments
of initial capital stocks. Each industry consists of many identical (except for size)
firms producing capital and consumption goods. Over time each industry is
subject to shocks which affect that industry’s production possibility set. Since a
main thrust of the analysis is the pricing of capital assets, we structure the trading
as follows: individuals sell their labor services and capital stocks to firms at
competitively determined prices. Firms in each industry use capital and labor to
produce consumption and/or capital goods (for use next period) which they sell to
the consumer. Capital goods may be industry specific; i.e., capital of type j may be
used only by industry j. This formulation differs from the more conventional
approach in which individuals rent capital to firms. We choose this alternative
approach because it prices capital types each period which should facilitate the
development of a general equilibrium theory to explain observed asset pricing
regularities.

Each period, a typical consumer chooses a finite dimensional real vector x,, his
period t commodity point, from his period consumption possibility set X (k). The
vector x, describes the quantities of commodities he actually consumes (positive)
and the quantities of inputs (negative) he provides. We find it convenient to split x,
into three sets of components, x, ={x1, X2, X3,}. The components x,, are all
negative and correspond to the capital types supplied by the individual, while x1,
and x3, correspond to the individual’s period ¢ consumption and the capital stock
he owns at the end of period ¢ and can sell to firms in period ¢+ 1.

The individual is constrained to choose x € X in each period. This set is closed
and convex and imposes constraints upon components of x; including constraints
such as labor supplied does not exceed available time. In addition the capital
supply, x», is constrained by capital purchased last period, k. Thus, the period
consumption. possibility set given k is

X(k)={x:xeX and —k <x,<0}.

The individual’s holding of capital at the beginning of the next sale period (that is
k.+1) equals the amount of new capital purchased this period (that is x3,). Thus
k.+1= x5, specifies how capital holdings depend upon the previous period
decision. The set of possible capital stocks is the positive orthant.
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It is assumed that the vector of random shocks A € R" is subject to a stationary
Markov process with a bounded ergodic set A. The transition function of the
process is F: AxA-[0,1]. F(-|-) is continuous in both its arguments and for
fixed A, F( - [A) is the probability distribution for next period’s shock.

Preferences

The representative individual orders his preferences over random consumption
paths for which x, € X (k,) with probability one and k.1 = x3, for all ¢ by

E{ T gt a)]

where E{ - } is the expectation operator, 8 is the discount factor 0<g8 <1, A, isa
random shock vector, and u(-) is the period utility function. The function
u:XxA->R is assumed to be strictly increasing, strictly concave in x, and
differentiable.

A measure space (I, B(I), u) of consumers is assumed, where I is the unit
interval, % (I) the Borel subsets, and u the Lebesque measure. To obtain the
aggregate demand function, the demands of individuals are integrated rather than
summed as would be done if there were a finite number of consumers. This insures
consumers are small and justifies the price taking assumption. Since all individuals
are alike and the measure of the unit interval is one, the density of the represen-
tative individual’s demand just equals aggregate consumer demand.

Technology

Firms produce under constant returns to scale. Under constant returns to scale,
the price taking industry will behave as a single price taking firm. This assumption
is consistent with percentage growth rates being uncorrelated with firm size
(Gibrat’s Law) and the observed variability of firm size. There are a number of
interesting models that satisfy this assumption including those of Lucas [12],
Lucas and Prescott [13], and Sargent [18].

The constant returns to scale assumption is innocuous. Typically when the
convex constraint set is not a cone, it is because some factor such as land is owned
rather than rented by the firm and is not included in the commodity vector. In
general a factor can be added to the commodity vector such that the resulting
technology set for a firm is a convex cone. (See McKenzie [14].) The equilibrium
price of this factor is the value of the firm. This is done for Brock’s and Lucas’
capital asset models (see Section 8).

Each period a firm in industry j chooses a commodity point y; from its
production possibility set Y;(A,), where Yj(A,) is a closed convex set. The com-
modity vector y;, is an element of the same finite-dimensional commodity space as
x.. The constant returns to scale assumption implies that given a random shock A
and a positive v, if y; € Y;(A) then yy; € Y;(A).
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Let Y(A) be the aggregate production set obtained by summing sets Y;(A) over
j € J. The correspondence Y (A) is assumed continuous. We also assume that there
is abounded set K suchthatk € K,A € A and y € X (k) n Y(A) implies y; € K. This
assumption is satisfied for growth models as there is a maximal sustainable capital
stock. It will be satisfied given the constant returns to scale assumption if some
factor, say labor, is essential for production and its supply is bounded. (See Arrow
and Hahn [1, Chapter 3].) The technology Y (A) is assumed available to all.

3. SINGLE AGENT RECURSIVE STATISTICAL DECISIONS THEORY

A particularly useful class of dynamic structures are those of the recursive or
time invariant variety, since the resulting equilibrium is a system of time invariant
stochastic differential equations as assumed in most econometric testing. The
structure considered in this paper falls into this category. In this section we present
a brief description of some key concepts and results which are used in subsequent
sections.

The stationary statistical decision problem, which was analyzed by Blackwell [2]
and for the convex case by Lucas and Prescott [13], is one for which:

(i) The return function u : X XS - R is time separable jointly in the period ¢
decision variable x, € X and an appropriately defined state variable s; € S. Returns
are discounted by a factor 8(0 <8 < 1) and the return function has the form

3.1) 20 Bu(xy, s:).

These state variables include those elements which determine the technology
available to the agents, such as the stock of capital goods, and those elements
which specify the effect of past decisions on contemporary preferences. The state
variables also include those elements which specify the relevant aspects of the
agents’ information sets. We emphasize that the state variables should be of
minimal dimension, indexing only those factors which can (potentially) change
over time. Our use of the term state differs from Arrow’s use of the term.
Our definition is the appropriate generalization to dynamic competitive environ-
ments of the state variable concept used by Bellman and the statistical decision
theorists. -

(ii) The state variable is observed or is an invertible function of observables at
time ¢ The conditional distribution of s,.1 given current and past decisions
depends only upon (x, s;) and the conditional distribution function F(s,,1|x,, s;) is
time invariant or stationary. We assume a set S exists such that

S ={s'|pr[s' € S|x, s]=1for all x € X (s), s € S}.

(The prime indicates next period’s value.)
(iii) The decision x, is constrained to belong to the set X (s,). We let

X ={x:x € X(s) for some s € S}.
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A recursive or stationary allocation policy 8 : S - X is a measurable decision rule
specifying the current decision as a function of the current state:

(3.2) x,=8(s,).

It is feasible if 8(s;) € X (s,) for all possible s,.

With some continuity assumptions that are typically satisfied for economic
applications there exists a unique, bounded, measurable, in fact continuous
function satisfying Bellman’s optimality equation:

B33 ()= max {u(x, 5)+ B J o(s") dF(s'|x, 5)}

subject to x € X (s).

Sufficient conditions for the above result are: (i) The function u: X XS >R is
continuous and bounded; (ii) the probability distribution function F: S X X (s) X
S - R is continuous with respect to (x, s) € X (s) xS for all s'e S; (iii) the cor-
respondence X (s) is continuous almost everywhere; and (iv) the sets X (s), s € S,
are compact. The function v:S- R, under these conditions is the maximal
obtainable expected returns over all feasible policies. Further, a recursive policy
exists which is optimal in that its return is v. A necessary and sufficient condition
for a feasible recursive policy to be optimal is that

(3.4) v(s)=u[6(s),s]+[3j‘ v(s") dF[s'|8(s), 5]

where v is the unique solution to the optimality equation (3.3) for all s € S.
In economic applications return functions u are typically concave and the
constraint sets convex. If u is concave and the set

(3.5) {(x, s): xe X(s),s€S}

convex, then the optimal return function v is concave. If so, the maximization in
(3.3) is a standard finite dimensional concave programming problem.

4. RECURSIVE COMPETITIVE EQUILIBRIUM

In Section 3 we defined the concept of a state variable. In the economy
considered in this paper, all relevant information for individual decision making
can be characterized by a triple (k, k, A), which we will refer to as the state of the
individual. Here k is the individual’s holding of capital types. The element k is the
distribution of capital types among the other individuals in the economy. As all
individuals are assumed to be identical (and thus have identical holdings), the
distribution can be summarized by the holdings of a representative individual and
hence k has the same dimensionality as k. (Anticipating the discussion on
equilibrium we will find that k = k in equilibrium. In order to solve correctly the
consumer’s problem, however, each consumer must be free to vary k.) The current
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period realization of the random shock A constitutes the third component of the
state. The state of the economy is characterized by (k, A).

We observe that the structure of the economy is time invariant and economic
agents solve a similar problem each period. A feasible recursive or stationary
allocation can be defined as a measurable decision rule x(k, k, A), specifying the
period commodity point chosen by a consumer with capital kK when the state of the
economy is (k, A) and a set of measurable decision rules y;(k, A ), which specify the
period commodity point chosen by each firm j € J as a function of the state of the
economy such that:

6)) x(k,k,A)e X (k), allkeKk,
(ii) vilk, A\)e Y;(2), alljeJ and keKk,

G ¥ y,-(l_c,m:f x(k, &, 1) du = x(k, k, A).

jeJ

(Since we are dealing with a homogeneous class of individuals, I is the unitinterval
and u the Lebesgue measure.)

For our economy homogeneous individuals, the Pareto optima of interest are
ones for which the weights for all individuals’ utility functions are equal. To
characterize these optima (it will turn out that there is only one), we define the
equal weight aggregate utility function as follows:

U(ac,A>=maxj w(x, A) du
I

subject to x = [; x; du and x; € X all i. Strict concavity of u implies the best x; are all
equal. Thus an allocation is Pareto optimal if it maximizes

E{ £ )]

subject to x € Y(A) n X (k) and k.1 = x3.. The concavity of u, the convexity of the
production possibility set Y and the consumption possibility set X (k), together
with the fact that the set

{(x,k): xeX(k)n Y(2) and k K}

is convex and compact, ensures the existence of an optimal allocation policy.
Before proceeding to a discussion of an equilibrium in this economy we need to
make some additional assumptions. We assume optimizing and price-taking
behavior on the part of all agents. Firms maximize profits each period (the
maximum profits will be zero because of the constant-returns-to-scale assump-
tion) and consumers maximize their expected discounted utility of consumption
over feasible plans subject to their budget constraint. We assume that the
economy is closed under the assumption of rational expectations (Muth [17], and
Lucas and Prescott [13]). That is, the prices and price distributions on which the
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economic agents base their consumption-investment-production decisions are
exactly the same as those that result as a consequence of their decisions through
market clearing. Thus, current prices p(kA) and future distribution of prices are
determined endogenously as a function of the state of the economy.

The structure used considerably simplifies the firm’s problem. Since in each
period there is a market value for end-of-period capital stock, the firm faces a
sequence of static problems and the firm simply produces so as to maximize profits
each period given market prices.

The consumer does not have a well defined decision problem, until the
equilibrium law of motion, k'=f(k,A), and the pricing function, p(k, A), are
specified. Knowledge of these elements along with F(A'|A) is sufficient for
forecasting future prices (actually forming predictive probability distributions of
future prices) and selection of optimal current actions. This leads us to the
following.

DEeFINITION—Recursive Competitive Equilibrium : A period equilibrium for this
economy is characterized by the following functions:

(1) an almost everywhere continuous pricing function p : K X A -» L, where the
linear space L has the same finite dimensionality as the period commodity point;

(2) an almost everywhere continuous value function v : K X K X A - R, where
v(k', k', A") values capital taken into next period, k', conditional upon the next
period capital of other households, k', and the next period realization of the
shock, A';

(3) a period allocation policy x : K X K X A - R, where x(k, k, A) specifies the
individual decision as a function of the current individual state;

(4) a J-tuplet of economy state contingent points {y;(k, A)}/-1, where y; : K X
A - L specifies the decisions of firm je J;

(5) a continuous function f: K X A -> K, where k' = f(k, A) is the law of motion
of capital stock;

such that for all (k, k, A\)e K XK X A:

(i) Allocation policy x (k, k, A ) maximizes u(x1,A) + B [ v(x3, f(k, 1), A"V dF(A'|A)
subject to x € X (k) and p(k, A) - x <0. (Utility maximization subject to a budget
constraint.)

(i) For all y; € Y;(A), allocation rule y;(k, A) maximizes valuation y; - p(k, A)
over all y; € Y;(A). (Profit maximization.)

(iii) Sjesyi(k, A)=frx(k, k, A) du = x(k, k, A). (Supply equals demand.)

(iv) f(k,A)=xa(k, k, A). (The law of motion of the representative consumers
capital stock is consistent with the maximizing behavior of agents.)

W) v(k, k, A)=u(xi(k, k, A), A)+BJ v(xa(k, k, ), f(k, 1), A') dF(X'|X). (If this
condition is_satisfied, then by results cited in Section 3, the consumer is using an
appropriate value function to evaluate capital stock taken into the subsequent
period. As the function v satisfies the optimality equation, the representative
consumer is maximizing discounted expected utility given the process generating
prices and his initial capital stock holdings.)
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5. PARETO OPTIMUM ALLOCATION

The equal weight Pareto optimum allocation maximizes the expected value of

CRU TN

subject to the constraints x, € X (k;) » Y (A,) and k.1 = x3, for all z. As the function
u is strictly concave, all individuals i € I consume the same commodity bundle
(except for sets of measure zero). By the results listed in Section 3, the optimal
social return w°(k, A) is continuous and concave in k and is the unique bounded
solution to the optimality equation:

(52)  wie, )=max {us, 0+ [ wias, 1) dFO}

subjectto xe X(k)nY(A).

As w° is concave and continuous in k, it is differentiable with respect to k almost
everywhere. Furthermore, it is increasing in &, strictly increasing in k if u is strictly
increasing, since increases in k increase the set X (k). The equal weight Pareto
optimum allocation is denoted by x; = 8%k Ay).

The concavity, with respect to x, of the function

(53)  hx A wO)=ulx, A)+3I wo(xs, A7) AE(VIA),

the convexity of the closed set Y (1), and the convexity of the set X (k) implies the
existence of a separating hyperplane. This hyperplane separates the set of points
belonging to X (k) and yielding a higher value for h(x, A, w?) than obtained by
x =8%k, A), from the production possibility set Y (). In order to insure the
existence of an almost everywhere continuous pricing function selection we make
the following assumption:

ASSUMPTION: If ko> kg (i.e. strict inequality for at least one component), then
for any point xg € X (kg) N Y (L) there exists a point xa € X(ka) N Y (L) such that
X¥a>xpand x14> X1

This assumption implies that with more capital more current consumption of
some good is possible without any reduction in capital available for next period.
Given u(x1, A) is assumed strictly increasing, strictly concave, and differentiable,
the function 4 is differentiable with respect to x. Consequently, the hyperplane
po(l_c, A) which is tangent to the upper contour set at x = 5°(k, A) is unique. The
continuity of the constraint correspondences X (k) and Y (1) and of the function A
are sufficient to insure that the pricing function p°(k, A) is continuous.

The pricing vector conditional upon (k, A) has the same finite dimensionality as
the period commodity point x and is indexed by the economy state (k, A). This
implies that

p°Uk, A) -y <p°(k, A) - 8°(k, 1) =0
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for all ye Y(A) =2Y;(A). The zero profit arises because of constant returns to
scale. In addition, provided there is an xeX(k) such that p°(k,A)-x<
p°k, ) - 8%k, A), it also implies that h(8°%k, A), A, w®)=h(x, A, w°) for all
x € X (k) such that

p°k, ) - x<p°(k,A) - 8%k, 1) =0;

that is, it implies utility maximization subject to the budget constraint. This pricing
function along with the law of motion k.., = 83 (k,, A.), a continuous function, will
be used to support a recursive competitive equilibrium.

6. OPTIMALITY OF RECURSIVE EQUILIBRIUM

An equilibrium is an optimum if the representative individual’s utility
vk, k, ) =w (K, A).

THEOREM: A recursive equilibrium is optimal under the assumptions of Sections 2
and 3.

PrOOF: The nature of the proof is to establish that v (k, k, A) = w°(k, A) which
implies that the competitive solution achieves the optimum w°(k, A). Let g(k, A)
be the maximum utility that an individual can achieve with access to technology
Y (1) and initial state (k, A) but without access to markets. With the additional
option to trade at some set of prices, the consumer is not worse off. Hence
v(k, k, A) = g(k, A). The constant returns to scale technology along with convex1ty
of preferences implies g(k, A) = w°(k, A), establishing the theorem.

7. SUPPORTING PARETO OPTIMUM BY RECURSIVE COMPETITIVE EQUILIBRIUM

Let P be the set of individual value functions for which wv(k, k, A) (i) is
continuous and concave in k, (ii) equals w'(k, A) if k =k, and (iii) has a zero
derivative with respect to k if kK = k. The set P is nonempty since the function
v(k, k,A)= wo(k, A)+wi(k, A) - (k —k) satisfies these conditions. Given p*=p°
and f* =83, the problem facing the individual is a standard concave dynamic
programming problem with a unique value function v* defined below.

Let Tv be the value function which results from the maximization of

wer) +8 [ 0(es, 3306 1), 1) dF )

subject to p°(k, A) - x <0 and x € X (k). As T is a contraction mapping, and maps
the set P into itself, the unique fixed point (i.e., bounded function for which
Tv =v) is an element of P. Let v* be that element and x*(k, k, A) be an optimal
policy with the property x*(k, k, A) = 8°(k, A) for all (k, A). Finally let y* = 8°. The
set of functions x*, y*, p*, f*, v™* satisfy the definition of a recursive competitive
equilibrium.
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CoMMENT: This establishes the existence of a recursive competitive equili-
brium. The equilibrium will be unique if the equal weight Pareto optimum is
unique.

8. EXAMPLES

The model developed by Lucas and Prescott [13] to analyze an industry
equilibrium with uncertain demand, the asset pricing models of Lucas [12] and
Brock [4], and Sargent’s [18] analysis of Tobin’s “q theory” will be used to
illustrate the usefulness of the recursive competitive equilibrium construct
developed in this paper.

EXAMPLE 1-—Investment under Uncertainty : Lucas and Prescott [13] consider a
competitive industry with constant returns to scale, increasing costs of rapid
adjustment, and uncertain demand. The industry is subject to demand shocks A..
Letting x;, be industry “output” the downward sloping inverse demand function
is

(8.1) D(Xu, )h)-

The process generating A, is a stationary first order Markov process with ergodic
set A = R. The conditional distribution function of A,.1 given A, is F(A,+1|A,). We
also assume that the area under the demand curve is uniformly bounded in A.

Preferences: In order to match the format developed earlier we modify their
analysis slightly by introducing identical fictitious individuals. An individual’s
utility function is:

2| T Bulr, %]
where
(8.2) u(xl,,\)=J'x“D(z,A)dz+x12.
0

Thus the individual supplies the investment good x5 infinitely elastically at price
1, and his demand for the consumption good is given by (8.1).

Technology: A constant-returns-to-scale production technology is assumed.
The constant-returns-to-scale assumption simplifies the analysis because only
total industry capacity or capital is relevant, and not how it is distributed over
price-taking firms. Firms face increasing costs of rapid adjustment. A represen-
tative firm’s production possibility set Y < R *is a closed convex cone constraining
the next period’s capital ys, current period output y;;, current investment — y1,,
and capital or capacity —y,. The set Y is defined as follows:

Y ={y €R4|0<)’3< —y28(y12/y2); O<yu<-—yz V12, y2<0}

where g is strictly increasing and strictly concave and for some 6 >0, g(§) = 1. An
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investment of § times the capital stock is required to maintain the capital stock at
its current level and therefore corresponds to a depreciation rate.

In the original analysis the objective of the firm was to maximize the expected
present value of its cash flows

;0 Bt{pllty11t+y12t}a 0<B<1l,

subject to y, € Y for all ¢. For our structure the firm need only solve a static
maximization problem each period—namely, maximize p, - y,. This is accom-
plished by adding the capital stock used this period and capital stock available for
production next period to the commodity vector y,.

The consumers consumption possibility set is

X(k)={x € R*x11=0;x12<0; —xo<k; x3=0}.

All the assumptions of the recursive competitive equilibrium theory are satisfied
and hence we can establish the existence of an industry equilibrium. (See Lucas
and Prescott [13, Theorem 1].) Further, the industry equilibrium investment
function depends on k and A and maximizes discounted expected utility.

EXAMPLE 2—Lucas’ Capital Asset Pricing Model: The production technology
for Lucas’ [12] model is very simple. Output of firm j is constrained by A; for
j=1,2,...n The n-component vector A of the A; is subject to a stationary first
order Markov process. F(A’|A) denotes the distribution function of next period’s
constraint vector, A’, given the current constraint vector A.

It is necessary to consider a slightly more general structure in order to price the
shares of the firms. We assume that output of the consumption good y;; € R is
constrained as follows:

0<y1; <—yz;s

where —y,;; is the “number of rights” to use process j purchased by price-taking
firm j. The production of rights to use process j next period by firm j, y;;, is
constrained as follows:

0=<ys;i < —y2,

so production rights cannot be increased. The firm chooses y; = (y1j, ¥2;, y3;) €
R*"*! subject to the above constraints, which define the production possibility set
Y (1), so as to maximize period valuation. The consumer’s utility function is

2 t
2 Bu(xi,)
t=0
and the consumption possibility set is

X(k)={xeR2"+1|x120; 0?}622—](; x320}.

The initial value of k is a vector of ones; so that k corresponds to shares.
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All the assumptions for the existence of a recursive competitive equilibrium are
satisfied. Further,

o(k b )= u( £ ndo) +8 [ (ke 4) dF )

as the optimal x; is to consume all of the perishable goods that can be produced.
The equilibrium of interest is the one for which k; =1 for all j for then k;
corresponds to shares. The first-order conditions associated with the consumer’s
maximization problem give

P3jt =D2jt —Ajr = ﬂEt{[uI(x1,t+1)/u,(xlt)]p2j,t+l}-
This result is the same as equation 6 in Lucas [12].

ExAMPLE 3—Brock’s Capital Asset Pricing Model: Brock [4], using non-
recursive methods, analyzes the pricing of capital assets using a general equili-
brium model. In his model the structure of preference and technology is recursive
and can be mapped into the structure considered here as follows:

Technology: The contribution of process j to total output available this period
for allocation to current consumption and investment is a function of the capital of
type j allocated to the process, s;, and random shock A. Output of the jth process is
fi(sj, A) where f; is increasing and concave in s; and uniformly bounded over all
(s, A)€[0,00]xA. Brock also considers the case for which the production
functions are not necessarily bounded but requires a bounded utility function. Our
analysis can be modified to analyze this case. We do not do so because the
resulting equilibrium process will typically not have a stationary distribution
making it of less econometric interest.

The finite dimension vector of random shocks is identically and independently
distributed over time. This production technology does not display constant
returns to scale which necessitates the introduction of another factor denoting the
right to use process j. Output is constrained by z;f;(s;/z;, A) where z; is positive.
This function is homogeneous of degree one in the inputs and outputs and for
z; =1 places the appropriate constraint on current output. Letting ¢ be consump-
tion, s; investment in capital of type j (next period’s capital of type j), and z; the
number of next period rights, the production possibility set is:

Y(A)= {(c, -z,-s,2',8VeRY ¢, z,5,2',5'=0;

c+ Y sis< Y zifi(si/zy A);  z; $Z,-}

jeJ jeJ
where z=(z1,...,2;) and s=(s1,...,s;). The z; correspond to rights to use
process j and the initial endowment owned by the consumer is one. In equilibrium
zi,=1 for all j and ¢. The price of z; is the market value of the firm prior to the
distribution of dividends. The dividends paid by firm j (possibly negative, if the
firm invests more than it produces that period) is equal to the price of z; less the
price of z}. The price of z; is the ex dividend stock price while z; is the pre dividend
value.
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Preferences: The commodity point (c, —z, —s, z', s') is an element of R*'*',
Relative to our notation, ¢ corresponds to xi, (—z, —s) to x», and (z', s') to xs.

The capital k owned by the consumer at the beginning of the period constrains
the factors supplied and is an element in the positive orthant of R*’. The
consumption possibility set is

X(k)={(c,~z,—s,2",s"eRY ¢, z,5,2',5'=0; (z,5)<k}.

The consumer’s utility function, whose expected value is maximized, is

o

Z Btu(ct)

t=0
where function u satisfies all the usual assumptions. The initial holding of rights to
use process j isone forall j=1,...,J.

The assumptions of our recursive equilibrium theory are again satisfied.
Consequently a recursive competitive equilibrium exists and is optimal. With
strict concavity of the utility and production functions, the equilibrium allocation
is unique. If, in addition, technology and references are sufficiently smooth to
insure a unique plane separating the production set Y(A) and the set of com-
modity points x for which

w(e)+ 8 [ oxs, x5, 4 FIN) = 00k, 5 2)
is unique for all x € X (k), then the equilibrium pricing function is unique as well.

EXAMPLE 4—Sargent’s Analysis of Tobin’s “q theory”: Sargent [18] analyzes
Tobin’s “q theory” in a general equilibrium framework using techniques related
to those developed here. This model can easily be analyzed within our framework.
Sargent uses a putty-clay version of the stochastic one-sector growth model of
Mirman and Zilcha [16] as a vehicle for making some observations about the “q
theory” of investment. There is one capital good ‘“putty” that can either be
consumed or be rented to firms at a competitively determined rate. However,
once in place capital cannot be consumed (hence “putty-clay”). The individuals
also supply one unit of labor at a competitively determined wage rate w. Firms use
capital and labor to produce “‘putty’’ and either consume it or rent it out and so it
goes on.

Technology : Constant returns to scale technology is assumed. The production
function relating output of new “putty’’ to input labor » and capital k is nf(k/n)é.
Sargent considers the case when the individual inelastically supplies one unit of
labor, i.e., n =1 and assumes f'(-)>0, f'(0)=o00, and f'(c0)=0. Shock 8 is
identically and independently distributed over time.

Preferences: The representative individual maximizes E{Y . ,Bu(c, &)},
0< B <1, where u is bounded, differentiable, increasing, and concave in c¢. Shocks
¢, are independently and identically distributed over time and are independent
of 6.
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The period commodity point is (c, —n, x», x3) € R*. The vector (¢, —n) cor-
responds to x1; x is capital supplied and is constrained by available capital k ; x5 is
next period’s capital. The constraints on the consumption possibility set X (k) are
X(k)={(c,~n, x2,x3)€ R*c=0; 0<n=<1; x,=—k; x3=0}. The production
possibility set Y(A), where A = (6, ¢), is

Y(A) ={(c, —n, x2, x3) € R*|c, n, —x5, x3=0;
c+xs<nf(—x2/n)0—(1-8)x2; c<nf(—x,/n)6}.

The set of obtainable commodity points is bounded since f'(c0) = 0 and deprecia-
tion rate § is positive. All the assumptions for the recursive competitive equili-
brium are satisfied and consequently the equilibrium exists.

The above examples illustrate that the assumptions of the recursive competitive
equilibrium theory are satisfied for an interesting class of infinite horizon equili-
brium problems.

Carnegie-Mellon University
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Columbia University
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