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Recursive Methods for
Computing Equilibria of
Business Cycle Models

Gary D. Hansen and Edward C. Prescott

1. Introduction

In this chapter, we describe soms computational method: for computing equilibria
of buginess cycle models. The class of economies for which these meathods can be
appliedis surprisingly large, as we illustrate with a number of examples. Generally,
this class consists of economies that fluctuate around a steady-state or balanced-
growth path and display local dynarmics thatare well approximated by a linear law
of motion. The methods we describe are designed to economize on the time spent
learning to use the technigues and to modify them for 2 particular application.
They are not designed to minimize computing costs, which, in any case, are only
a minuie or two of personal computer time for most business cycle applications.

The fact that it is not generally possible to compute equilibria of business cycle
models analytically led Kydland and Prescott (1982), ind subsequently others,
to consider a structure for which this is possible. Such a structure is one with
a quadratic objective, linear constraints, and exogenow: disturhances generated
by a first-order, linear, vector-autoregressive process. The particular quadratic
objective chosen is the second-order Taylor series expansion of the renun function
for the deterministic version of the model evaluated at its steady state,

An additional advantage of a linear-quadratic structure is that equilibria can
be easily computed even when the dimension of the sate variable is large. Ii
does, however, have the added consequence that the restlting equilibrium law of
motion is linear. This does not appear to be a serious limitation given that there
is little evidence of major nonlirearities in aggregate dati. In situations in which
the behavior being modeled displays important nonlinearties, methods other than
those reviewed here are needed. Some of these will be described in subsequent
chapters.

We divide the class of applications where these metheds have been used into
two subclasses. In the first, competitive equilibria are Pireto optimal and hence
solve a social planning problem. In Section 2, we examize the stochastic growth
model augmented to have a labor-leisure allocation decison and show how it can
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be mappec into a basic recussive social planning problem.! We als.o.(.onsider'a
number of extensions of this basic environment to illustrate the flexibility of th.l_S
mapping. These extensions include time to build, indivisi.bla labor, and zeometric
growth. In Section 3, we describe computational algontklxms for specifying the
linear-quadratic social planning problem and for computing the soluton to the
pr?lt"liznslecund subclass consists of economies for which distor:tiops du; to taxes
or externakties typically make it necessary to solve for an eqt:!ilﬂ?nuﬂl. directly. In
Section 4, ve deal withhomogeneous-agent recursive economies in vyhlc'h the com-
petitive equilibrivin need not be Pareto optimal. The first application ’mroduces
taxes into cur basic business cycle model. The secondintroduces a cash-m'-advance
constraint for the purchase of a subset of the consumpt.ion goods. In S.emon .5, we
describe algorithms similar to those described in Secn(?r} 3_for choosm; a linear-
quadratic ecursive economy and for computing the equilibrium stochasl(_: process
for that economy. Finally, in Section 6, we demonstrate how these recussive com-
putational methods can be extended to the study of heterggeneoug—agem recursive
economies. Examples applying these methods will be discussed in Chepter 4.

2. Social Planning Problems

In this section we describe some examples of economies for which c!.\mpetitive
equilibrium allocations are identical to the allecations chosen by a socil pla.n.ner
that acts te maximize the welfare of a represertative agent. F(?r'thtese exonomies,
the Second Welfare Theorem applies. Insuch situations the ?»qt.nhl:_mum dlocaufns
can be deermined by sclving a well-behaved concave opum_lzatmn problem.” In
addition, he marginal rates of substitution and u:ansfopnangn, evaluited at the
optimal alocation, can be used to find equilibrium relatwe’priccs. ‘

For each of our examples, the social-planning pmblerp involves solving a (l:ly-
namic pregramming problem of the following form (primes denote n:xt-period
values):

vz, s) = maxir(z, s, &) + BEW(E, . 51) )
st 7 =A@ +¢ ' (@)
' :‘B(z, 5, d). 3)

The elements of this program are as follows: z is a vector of exogenous s_tate
variables; € is a vector of random variables distributed independently over time
with mean zero and finite variance (ssme compopents of e may have‘: ?zrovaa"lance)g;‘
5 is a vector of endogenous state variables; andd is a vector ofdec:snon ‘Fa.l‘l?.blf:s.
Equation2) is the law of motion for z, where Aisalinear funcqon. The fealmatfon
of z is observed at the beginning of the period Equation (3) is the lawof motion
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for the endogenous state variables, where B is also lizear. Finally, r(z, s, d) is the
return function and #(z, 5) is the optimal value funcion for the problem,

An important feature of this problem is that 4 and B are linear functions, which
mezns that any nonlinear corstraints have been substiuted into the return function,
In Section 3, we describe a method for solving a lirear-quadratic approximation
of aproblem of this form.

The equilibrivm business cycle literature is full of applications where dynamic -
programming problems of this sort are formulated and solved’ The examples
considered in this section, which are drawn from this literature, include a basic
version of the stochastic growth model {the divisible l&bormodel of Hansen [1985])
and & few variants of that model. In particilar, we consider adding geometric
growth, time to build, and indivisible labor to the basic model,

The Basic Model

This model is an extension of the Brock and Mirman (1972) optimal stochastic
growth model upon which rauch of the equilibrium business cycle literature is
based. A representative agent maximizes the utility finction

EZ,&‘U(CH &), 0<p<l, @)

=0

whete U is concave, strictly increasing, and twice centinuously differentiabls in
both arguments. The variables ¢, and ¢, are consumption and leisure in period #,
respectively. The household is endowed with one urit of time, which is divided
between work, &, and leisure, so that &, + £, = 1.

The representative agent has access to a technology that produces output, v,,
from capital, &, and labor:

Ye = 2 Flk, hy). (5}

The production function, F, is concave, twice contnuously differentiable, in-
creasing in both arguments, and displays constant retims to scale. The variahle
z; 18 a technology shock, which is observed at the beginning of the period and
follows a first-order linear Mzarkov process:

Tl = Alz) + €4y, ()]
where the ¢’s are i.i.d. random variables with mean zew and finite variance and A

is a linear function, .
Total output can be freely allocated to cither investnent, i¢, or consumption:

Ye =6+, (7
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where investment this period becomes productive capi.ta.l nextperiod. In particular,
the capital stock evolves according to the law of motion: :

kot = (1 — &k +i, 0<d<L ®)

The problem solved by the social planner is to maximize (4)_ subjf»ct to (3)
through (8) with zg and ko given. We, howeve;, need to express this prmlenla az-; a
dypamic pogramming problemt that 1s a special case of (1) in order to app y the
solution method described in the next section. This is accqmphshecl. by combining
constraints (5) and (7) to eliminate y:, solving the resul_tmg equation f?r ¢, and
substituting it into the utility function. This yields a version of problem (1) where
s = k,d = {(h, i}, the retum function is

r(z, k b, i)y =UlzF(k, b —i, 1 — H],

’ i i )= (1 -8k +1i.
d the lav of motion for 5 is, Bz, k, b, i) = (} : . '
anWe nowconsider three additional examples that are simply elaborations of this

basic mod:.

Geometfic Growfh
As a secotd example, we add labor-augmenting technological growth te the hasic
model.5 We do this by replacing (5) with

y, = 7, Fk, A'hy),  where k> 1. 9)

In addiion, we require that the elasticity of substitution berween colsumption
and leisue equal one so that hours worked is constant on the balanced growth
path. An :xample of such a utility function is the following:

F(en &) = (€% /p, O<a<lp<l and p#0 (10

All oter aspects of the model are the same as for tl':\e basic model. The equ;
librizm alocation is obtained by maximizing ) sub]ecP o @9) and 6)—(8).
property 5 the solution to this problem is that consumption, pvesiment, output,
and capitd alt grow at the same rate: A — 1. lhorder to sqlve @s probdlem using
our methed, we transform the problem so that 'the solution is stationary over _ttme.
The following change of variables achieves this purpose:

§=yp /X, &=cfi, i=ik/A and F=k/M (1)
After tis transformation, the social planner’s problem is a special cise of (1) if
s=f;,d=(k,;:). _
r@ i D) = @F G B - Q=B /b,
and )
Bz, k., 1) = [(1 — 8)/A)k + (1/Mi.

Ry
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In addition, the discount factor after the transformation, call it 8, equals A% 8.
We assume that the parameters are such that g is lessthan one.

Time fo Build

Kydland and Prescott (1982) studied a version of the bisic model in which multiple
periods are required to build productive capital. This equires that the state vector
include stocks of capital goods j periods from completion, u;, in addition to
finished capital. Thus, if it takes J periods to build s>roductive capital, the state
and decision variablesare s = (k, 1y, ..., us_1) andd = (h, u,).

The laws of motion for these state variables are the following:

K o= (1 — 85k + uy,
and
u}:u,-“, forj:l,...,.i~l.

Letting ¢, for j = 1,..., J, be the fraction of resources allocated to the
investment project in the jth stage from the last, toul investment in the current
periodisi = 3}, ¢;u;. With investment defined in this way, the return function
for the version of problem (1] corresponding to this economy is given by

J"(Z. k, |25 (PP u_;_l) = U[zF(k, h) _i, 1 — k].

Indivisible Labor

‘We now consider an example drawn from Hansen (1945), where indivisible labor,
along with Rogerson’s (1988) employment lotteries, are introduced into the basic
model. For this example, ins-ead of a single representative agent, there is a con-
tinuum of ex ante identical agents. All quantities mustbe interpreted as per capita
values in this case. The technology is the same as in the basic model, but the utility
function is of the form u{c) + g{£), where u and g ae increasing, concave, and
twice continvously differentisble. Indivisible labor imslies that £ can take on only
two values, (1 — 5) and 1, corresponding to working full time or not at all. An
additional difference betweenthis and the basic model s that the competitive equi-
librium involves agents” trading emnployment lotteries hat specify a probability of
working, rather than hours of work directly.

Letting n equal the probability of working A4 hour, the expected utility of a

. Tepresentative household is

alu(e) + g1 — &)+ 11 = m)[u(c + g(1)]
= u(c) + ng(1 — h) + (1 —m)z(1).7

Since there is 2 continbum of households, the equilibrium value of # is also equal
10 the fraction of households that work. This implies that total hours worked, A, is
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given by nk. The utility of the stand-in agent, which enters the ot;jectve function
of the so:ial planner, is the following (ignoring a constant term):

Utc, h) = ulc) + oh,

where R
o = (gl — &) —g(D]/h.

Therefore, the version of problem (1) for this example is the same as, for tt}lle 1?asi_c
model except that the retum function is linear in hours worked: r kB, z)kTi
ZF(k,hy—i)+ ok Although individual hcuseholds d?not choose I;F)urs worke
uunfier tl,e competitive equilibriem interpretation of this F:conomy, e decision
variable;.for the soctal planner are the same as for r:h.e basic model el

It is glso possible to solve this problem if the vality flll}Cthll is n:tl gc):l Intw;1 ly

e i i i the form of equation{10). §

be in consumption and leisure and takes . :
:::E:I E:hc commodity traded is an employment lottery ]t-h:t SI)ﬁClﬁ;: zonsuﬁlp;ggz
, i i . Letting c; be consu

ation contingent on the employment status. L : tion

:ﬁeﬁ:mg and ¢, be consumption when not working, the apprepriate wtlity
function is

alfcr, 1 — ) + (1 — mU{ez, ).
The resource constraint, using the fact that b = nh, is
nep+(1—no+i= zF(k, ni).

In this case, the planning problem is mappedinto the notati-on efmpluycdin problem -
(1) by setting s = £ and d = {a, c2, i). Tha return function 13

[zF(k, ah) = (1 —n)ep — 1 =R+ (1 -nUlc, 1

?'(Zs k-.n! Cz,l') =hn n

3. Sciving a Social Planning Problem

In this section, we describe a mctl;{od for s.alt\l;m%i I;rﬂ(:z:ir:;so‘fv ?;;:;ﬂ; .;Eigi:el:::;
he reurn function is quadratic. However, the :

:?r;if:;ﬂy do not deliver quadratic refarn functmr_;s. Thereﬁ:n:ﬂtz;1 :wl: (jl;s:;rrl:gca 1;1'1:

cedure for approximating & general rclm t‘un’ct:lon by one s ossjiﬂe e

advanage of solving a linear-quadratic planning problem is L ha 1113n Es,ubstimted

solve ‘or an explicit linear policy function, g, = d{z: . 5), whic] \i s

into (3) yields a linear law of motion for tk..e state van:-ables, S:;l = tﬁe c,h n;el.mion
In this discussion, we cmploy the followmg conv'entlon toreferto dimension

of a particular vector: Jet n{x} equal the dimension of a c%nu_m?l veici:es th;t ud

7(x, 7} equal the dimension of the st_acked .vector. (x.¥). 1s Tu:}lg fes that the

vcctc;.' z of exogenous state variables is of dimension n{(z) x 1. I’
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of s (the endogenous state variables) and 4 (the decision variables) are defined
analogously. In addition, (e} is equal to n{z).

Another important convention we employ is to define ‘he first component of 2 10
be constant over time (equal to one, without loss of gererality). This assumption
will help to simplify accounting later.

forming the Quadralic Approximation

The quadratic approximation of r commesponds to the first three terms of a Taylor
series expansion of this functionat the steady state valuesfor (z, 5, 4), correspong-
ing to the certainty version of problem (1), denoted (Z, §, 4). The vector 3 is the
salution to the equation 7 = A(Z). Given Z, the following (s, 4) equations are
solved for the 5(s, d) unknowns, 5 and d:

raZ, 5, d) + Br(Z, 5, I — BB,(Z. 5, DI V34, 5, ) = 0,
§ = B(,5, d). (12)
In (12), 7, is the vector of partial derivatives with respect to the elements of
d and s of dimension 1 x np(d). Similarly, r, is of dimension 1 » n{s). Sincs
B(z, 5. d) is actually (s} linear =quations, B, ard B; areof dimension 7y < nis)

and 5(s) x 1{d), respectively. In practice, the first eguation in (12) can be mads
much simpler if one begins by substituting he laws of notion (3) into the return

- function, eliminating some elements of 4, The idea is t rewrite the problem so

that next-peried state variables, s/, are current period decision varables. In this
case, ali of the elements of B, are zero.

Lei y be the stacked vector (z, 5, 4) and a superscript 7 denote the transpose of
a vector. The Taylor series expansion of 7(y) at the steady-state ¥ is

F=rG+DrG O -9+ A/DG - HTPrGy -5, 13
where Dr(¥) is the n(y) x 1 veztor of first partial derivitives of r and D2r(¥) is
the 7(y) x #{y) matrix of second partiat derivatives of r, vhere n(y) = n(z, 5, d).
Both are evaluated at the steady state. The first element of Dr(5) and the elements
in the first row and column of D*r () are zero, since the first component of y 15 a
constant term and not a variable. )

Rather than computing Dr(3} and D?r(3) algebraicadly, we approximate the

-components of these matrices numerically. Let 4 be ar n(y} x 1 vector, all of

the components of which are zzro except for the ith component, hj which is
set equal to a small positive number, . The value of  should be chosen to be as
small aspossible, subject to avoicing computer accuracy problems.? The following
formmulas are used to obtain numerical approximations of the components of Dr ()
and D2r(¥) (recall that the first <omponent of y is constant over time):

Dir(3) = [rG + 1) — r(5 — kD1/20)
Dir(y=[r(G + k) +r( ~ F) = 2r GV (R
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and . - ) ,- ,-
Dir@) =[rG+F + k) —rG+H —h)
—r(§F - K+ b +rG ~ B = B4R
fori #j0, j=2,....00.

i b ange
Expbiting the fact that the first component of y is equal to one, we an rearrang

etlnalll]l ] 14 ] "latf y) =Y ¥, W !2 a 'C matrix Dfdimensl |
here 15 Smmem 0.
3 5 ( ) Q L] h ;

() X
i = Qa =Dir(3) - E(D?;r@)- YW2, fori=2....,n()
Qh = il =

Q; = Qu = W/2Dfr(), fori,j=2....70)

and -
a(y) 2 % ﬂz DLr3) - 5 - s
- LT . T 1 i B B
Qu =r( — Z; Dir(3) -3 + 1/ 2,2,

it is i - od that
For reasons that will be made clear’bclgfrvh:t :-:l au:m g)r boeu; xr::ttll; d that
‘ering of v, and hence the ordering e- : , ‘ s %
:h;;!;ieﬁcmﬁ Tl-f; following is the linear-quedratic dynamic programning pro
obtained from this approximation:

v(z, 5) = max{yT @y + BE[(Z, )Iz]} (19
subjec: to (2) and (3).1°

» - - . - s
Solving the Dynaric Program by Successive Approximction.

icc i i . Under
Problem (14) is a standard linear-quadratic cypalmc pglgsrtas.m:'r;:i Pl;:jb:eg;ncﬁma]
i iti optimal value function, v, . . :
suﬂbeb congli";;;dt::ﬁc? Given this, the associated pol}cy f!.mcuons ar:chxze:r.
equat}-m. ” we do not attempt to survey the extensive lltt.:ramre (s ,IVi.n_,
s Secgo;l, ent '[fc;rthconﬁng}) describing efficient tec_hmques f_or sl(;me rﬁ
o anblemm?nstead, we describe a sim>le algorithm that is easyto 11'nptmimS
e tand. A computer program designed to carry out. these ‘co-mpuf tious
%md U:ldf rswritc- and debug. One advantage of this is that it saves ut;uemc; e
- eas‘(h:r A second advantage is that it will.be_easy to m’odl.is;bl ;n method
:zszgﬁe f(;r equitibria that are not solutions to soc1a; Pla:meri;l ;;mam ciass o
i i for studying an .
ies with taxes or other dlstortm_ns, or ; : : class ¢
?e?:r?;zseomvagent economies, including those ?mth n-period-lived overlapping
O e funor described;;l lat'all-4s)eicst;32fl-tical save for 1 constant, for
i alue function for problem { . cal, fora t
v Ogi!ar:::::;mix of €. Asa result, the optimal policy function is independen
any cov:

proxisnation v". These four steps are repeated until the seq
has converged.

Construct a matrix R7™), which is of dimension
matrix O (with its elements in the order described
the matrix Bv” in the lower right corner. The
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of this covariance matrix.. G-ven this, we solve the programming problem for the

certzinty case, where the covariance thatrix has beep s¢t equal to zero. In other
words, we solve the version of {14} in which the exfectations operator has been
dropped and €’ in (2) has been replaced with its mear, zero,

The method of successive app
function, v, Following this method

vz, ) = max{(37 Qy + gy, M

st [Z,5) = Z Byy; fori=1,..., iz, ). {15)
I=niy)

The B;;’s in the above constraints are taken directy from equations (2) and
(3). To obtain v, we first substitute the constraint irto the right side of (15) in
order fo eliminate z’ and s from the problem. This yidds a quadratic expression
m (z,5,d). Next, the first order-conditions are used te solve for the vector 4
as a linear function of z and 5. Substituting these intc (15), we obtain the next
approximation, which is a quedratic function of (z,5. If the probiem is well
behaved, this procedure is tepeated until lo* ™ — 7| < & where £ is some small
positive real number,

We now describe these iteratons in greater detail:

Step 1. Choose some arbitrary negative semidefinite mitrix, v°, of size 72,8} %
7(z, 5). A possible candidate is a matrix with small regative numbers on the
diagonal and zeros for the off-diagonal elements, Once igain, the ordering of the
colamns of this matrix is VEry important: the first n{(z) columnns contain coefficients
corresponding to texms involving elements of z (thus the first column contains the

linear termss), and the last n(s) columns contain coefficiens corresponding to terms
involving elements of 5. :

Steps 2 through 5 describe hew to generate successiv:

approximations of the
optimal value function. In particular, we describe how to co

mpute v**! given an ap-
1ence of approximations

Step 2. Let x be the stacked vestor (v, 2’, ), which is squal o (z, 5, d, 7/, 5"

n{x) x 5(x), that contains the
above) i1 the top left comer and

Temaining elements of RGN e
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. . . T z, ;)
: <] i enables 18 1o write thE Cxp‘reSSlon v Qy + ,6'!.1 ¥ II()II
set equa to Zero. ThlS o .

(15) as z single quadratic form, x

3 i to compute vt 1{z, 5} by eliminaing the vari-

o }'ﬂ?ft th ;t;rop;nisg?:(’g?: using ﬂfe constraints in {15) and the first-order
ables' tens, a;lV begin by eliminating the last element of x, and thea proceed to
quld_ltlms- . e%ii-to-last element, and so on, until oply the elemerts of z and s
d]m@ae oo E?‘mfmtc a particular element of x, say, x;, We must be a_d:le to express
remn'iiz;hfﬂﬂ:im of the variables x;, where i is Jess than J";1 Th;s;leq:;:;en?;r::
il be i i in which we have ordered the
will be satisfied given the particular way in .
o E.achtime a linear expressionis used to el'minate a o(m:1p<n1e:m.tacz’f1 ; , ‘;hhi 51?111:1 ﬂ?i
the quadratic objective is altered. For examgll.ea;i\;rk:g ::g‘irsbt ex;i’r; e iy
o Conme'rg ?f ;;elz:xlrll?:;ra;;d;s&;ﬁgﬁ, with the entries changec!to reﬂecll;zthc
Whel‘t? R' In lSa.rticular the last row and column are now ﬁlled_ wih zeros.
o nake this TS ,cise suppose that after some substitutions, we are left

.TD nake this mof nf-;rexTR,U)x, where j > 7(z, s). The jth conponent t?fx
b tl;h: mtt:i :?ext- Using (2), (3), or afirst order condition males it possible
mustb:e . )

1o express x; in terms of z:, 1 < j,as follows:

_xj = Zy,-x,—. (16)

if

e ic objective,
tituti i uad: bjextive yields a new quadnitic objectiv
S e compo a'Fm:t(t:; Jﬁrst i — 1 rows and columns of RV
+7 RU-Dx, where the componsnts in the first J

are given by 1 an
BRI = RD + RDys + Ry + Ryin, forih=1....7 =
ih - i

femain i al to zerc.

ini ents of this 7(x) x n(z) array are equ i .

Thf[:-hcre is ;nrgn:;ﬁ: algebraic alternative to (17) that may be e'asw;to lmp:.ement
is usi tFix prograrmming linguage:

on the computer, especially if one is using a ma g g

. I
. (18)
-1 = TR, wherel =
RJ -_)FR }']---ty_f—l

I_,isaj — 1 dimensional identity matrix. Note tha_t this formula is wr)misn
B o ase fon that R is of dimension j x j, meaning mtﬂelmtn(y th,f
et asslumps of RY? (which are all zeros) have been ehmma‘tad. In all o el;
rmﬁﬁiﬁ ::g:;ter the R matrices are assumed to be padded with zeros so tha
p ’ ) .

' imersion 7(x) % f{x). _ '
theii:: (:'Z;;;‘:eeg appl?éaﬁon of this precedure, we.obtam th.e quadlratg:lef%::sxi
T RGeSy, The matrix v"*!, defined by the mappmg (15), is simply

RECURSIVE METHODS 49

Mz, s) rows and columns of R We now describe more precisely the
particular substitutions that are made in order to obtzin 1"+

Step 3. In this step, we substitute expressions fors’ and z’, given by the con-
straints in equation (15), into the objective. These wnstraints, which determine
the last 5(z, 5) elements of x, are the following:

X = 2 Bijx;,
isd
where

i=??(z,5',d)+1,...,q(x)
and

7= n(,s, d.

As explained above, we first eliminate x
equation 17 with the coefficients B
R(M9=1 Afier all components of
the quadratic form x7 RI?zedly

néry» the last element of s/, Using
nixy,j it place of the y’s, we obtain the marrix
5" and 7" have been sliminated, we are left with

Step 4. The next 5(d) variables, which are the comyponents of 4, are eliminated
by using the first-order conditions for the maximizaticn problem on the right side
of (15), beginning with x,(, ; 5 = dnay- The following is the first-order condition
with respeet to the jth component of x, assuming tha all coroponents of x with
index greater than j have aiready been eliminated:

i=1
== PR, j=n@ o+ G d).  (9)
=1

At this stage, it is important 1o examine whether the second-order conditions
are satisfied by checking whether Rg) is less than zero In cases where the return
function, r, is strictly concave, these condmions will be satisfied if no errors have
been made in implementing the algorithm. However, in other cases, say, where
the return function is not bouxded from @bove, a vioation of the second-order
conditions at some stage indicates that a maximum does not exist, and hence

indicates a failure of this method to find the optimal vaue fanction.
As before, (17) is used to compute RV~ where the 1's are given by the coefi-

cientsin (19). After all of the decision varjables have been eliminated, we are left
with the matrix Kl#@1

Step 5. Setv™+! equal to the matrix formed by the firstn(z, 5) rows and columys
of R, If all the elements of v**+! are sufficiently dose to the corresponding
elements of v (for example, if -he biggest difference is ess than .00001), stop the
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i inni j 2, nsing v in
iterations.'? If not; repeat these steps again beginning with Step z
place of v".
i inati d, the
Step 6. Once this sequence of successive approximations has cverge

( )! ‘I.'Sed (=)
qu - Equ‘auon llg ) can be ewriiien as 10110“5-
thc c llbllm‘n PO]JCB' fuﬂcnons

= ., nid),
dj—_-ZC,-jx,-, ]—l.-- JF()

i=K
where
R(KJ
—hKi
(K) °
Ryx

C,'j =

am:nflf fnt(';'i 531: ail'arcssion for d; is a function not only of the stae variables, z
s form,

ith indi j — licy
isi i th indices from 1 to j — 1. These po
of the decision variables wi _ :
gd Su(z:lst :la? be expressed in terms of the state variables alone as follows
nc
WzS)
d; = E Dyjxs,

i=]

(20)

where for each i,
. Dy = Ch,
Dy = Cip + Cygo+12D0,

and |
j = d
Dy =Cy + Z[Cn(z,s)+h,j£’m], J=3 ... 0

R}

impled by (20) is
it s wi hether the steady state imph / (20)
. Finally, it is wise to checkv?f s : A
thy Sst:il: asF 1r.l'xe s}t(eady state for the original Floplmear plefnner_s :;rgl;hie:tlo (l.lz1 N
e;in 1 by (12). The sifaplest way to do this is 1o substitute Z a 3 $ingo the Kk
d'ede ef (2)(;) an& then check whether the resulting vector of decisions eq
side o s

say, sic decimal places.

4. Recursive Competitive Equilibrium for
. Homogeneous-Agent Economies

icati i i in public finance and monetay economics,

cations, including many inpub . ) e,
!:qr i al;sr.,il!lgle to find equilibrium allocations by sol_vmg alpian:JEg Sp;{)vme;a
};1;3:; ftois necessary to solve for equilibrium allocadons directly by
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In this section, we describe two applications wiere the methods discussed in
the previous two sections cannot be applied directly. Our first exampie is &necon-
omy with distorting taxes, and the second is an eccnomty with money introduced
by imposing a cash-in-advance constraint. Methods for solving linear-quadratic
versions of these two examples are described in Section 5.

The problemfaced by households in our tax examyle, as well as in many other ap-
plications involving onmonetary distortions, is a dynamic programming preblem
of the following form:

vz, 8, 5) = mex{r(z, S, s, D, d) + I, §. Nz, o1
st. 2= A@)+ ¢ -
s =B(z,8,s, D, d) )
S'= B(z,S, S, D, D) .
D = D(z,5). os)

As in section 2, 7 is a vector of exogenous state viriables, possibly stochastic,
that evolves according to the first-order Markov Process (22), where A is a lHnear
function. The variable € is 2 mean zero random vertor with fipite variance. In
addition, 5 is a vector of endogenous household—speciﬁc state variables, and Sisa
vector containing their economywide (per capita) valtes, 4 Similarly, d is a vector
of household decision variables, and D is the vector of Per capita values of these
same variables. Equations (23) and (24) describe the svolution of s and §, where
B is a linear function. Note that (24) is obtained from (23} by aggregating over ail
houssholds. '

The function Din equation {25} expresses the relationship between the Percapita
values of the decision variables, I, and the state variables, z and S. This function

More specifically, we wish to find a recursive competitive equilibrium (RCE),
which consists of decision Tules for the households, d = 4 (z, S, 5); arule deter-
mining the per capita valyes of| these variables, D = D@, 8y andavalye function,
v(z, 8, 5), such that!?

1} given the aggregate decision rules, D, the value function, v, satisfies
equation (21) and o are the associated decision njles: and

Z) the function D satisfies the relationship Dz, §) = 4 (z, 5, 5).

The Basic Model with Taxes

©Our first example is a version of the basic model from Section 2 with taxes on

labor and capital income. The particular decentralized economy that we consider
- onngiake Af a Tarna nmbos A7 RS EREL R . .- .
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capital in period 0 andone unit of time in each period, which i; sperft Ziger wo:l;rt;gl
. . c
joyi i households receive income in each period Trem cap
or enjoying leisure. The : i P
ich 1 tion and investments
and labor, which is used to finance consump et o capital
umpti isure i hosen to maximize (4), subjec
sumption, leisure, and investment are ¢ bject to ¢
;cl,;i)mn' Eg) sequence of budget constraints (one for each 7 from zero to infinity):

o +i; = (1 — T )w:h: + (1- Tk + Tk + TR;. (26

i i the wage rate and rental rate,
i tion, the variables w, and 7 denote :
sIn ﬂ:x}ieiguzhe parameters and 7, are the tax rate on lebor .mcomekand thz
rt:xpr:cte on -capital income net of depreciation, (r; — 8§)k;. The cap1@ stoc] rc:::nieta
by a given household evolves according to (8). The l;stlgerm. T R;, is aper cap
the households.
rransfer from the government (o . :
llm-}:Fﬁsr‘r:Ixrlm'm this economy purchases laborand capital services frcim the ?ousil;ogi
! ding to the technology given )
to produce output, ¥; , according . )
am; ‘(32;55 (t'lll'flseesupgrscript f indicates quantities chosen by the ﬁr;l'f}.) 'Gl-ven that;
"y : i loss in generality is incurre
displays constant returns to scale, no 1 :
:?;:ﬁi;gzlat tfl)leri{a is only one firm. The first-order conditions for the firm’s
profit maxjmization problem are

w = 2kl R)

and p
ro=zFi k),

i the households. Mar-
where k,Jc is the amount of c}apnal that the ﬁr}n ien;; ;013.- e B auter
ket clearing requires that &; = KN and h; = HN, o N is the numoer
of households, K, is the per capita stock of capital, anfl.H, is p‘:i o ;I:l 2 hours

ked. Substituting this into the above first-order conditions, am gf he fadt
;Z: con-stant returns imply that the marginal products are homogeneous of degre

zero, we obtain the following equilibrium expressions:
’ 7
w, = wiz, Ko, B} = 2 F(K,, H), n

and

r =r(z, K H) = z.Fi(K, H,). (28)
Constant returns also imply that in equilibrium, payments to factors of production
fully exhaust revenues and, as a result, dividends are zero.

The role of the government in this economy is sim_pl.y 0 ?ollect tt';x revenue a;i
retum it t> the houscholds as 2 lump sum transfer. This implies that the governm

budget constraint is N
TR: = f};w;Ht + Tk(r; - 8)K}. ( )

The problem faced by a particular household can be exprcs:sed in- the form ;)f
21 bypmaking a series of substitutions. First, (29) is substituted into (26) by
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eliminating T R,. Next, (27) and (28) are substituted into (26), eliminating w, and
rt, respectively. Finally, (26) is solved for ¢, and the result is substituted into
the utility function (4). After these substitutions, the household’s optimization
problem can be written as tha following dynamic programming problem:

v(z, K. k) = max{r(z, K, k, I, H,i, h) + BE[v(Z', K', ¥)|z]}
st. 2 = A(R) + ¢
K=(1-8K+1
K=0-8k+i
I =Il{z, KYand H = H(z, K). 30)

The function r(z, K, k, I, H, i, k) isequal to U (c, 1 — ), where ¢ is given by.
w(z, K, M)A + w(H ~ k)] + r(z, K, H)[k + (K — )] + 2Ek—K)—i.

The functions I and H describe the relationship perceived by households be-
tween the aggregaie decision variables and the state of the economy. We are
interested in finding functioral forms for I and H that satisfy the definition of a
recursive competitive equilibrium applied to this example,

This problem can easily be mapped into the framework described at the begin-
ning of the section. The only exogencus state variable is the technology shock,
z, and the only endogenous state variable is the capital stock, X.'9 The decision
variables are d = (h, i), and the function B(z, X, k. 1, H,i, h) for this example

is (1 — 8)k + i. Finaily, the analog to the function D in (25} is the pair of functions
Tand H.

The Basic Mode! with Money

Leaving the preferences and technology of our basic model unchanged, fiat money
will not be vatued in equilibrium.'” This foliows from the fact that money would
be dominated in ratz of return by privately issued assets. The two most common
ways of overcoming this obstacle are to include money as an argument in the utility
function cr to assume that previously accumulated cash balances are required for
the purchase of some consumption goods (cash-in-advance).'$ In this section we
will describe an example that illustrates the second approacn.
Households choose consumption and leisure to maximize

=)
EY BUly.cxt), 0<f<l, 31)
1={}

where ) is consumption of the “cash good,” ¢, is consumption of the “credit good,”
and £ is leisure. The period utility function, U, is bounded, continuously differen-
tiable, strictly increasing, and strictly concave. In addifion, Inada conditions are

required to ensure that agents consume positive quantities of both consumption
goods.
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The period budget constraint is
TR
. LR m : 32
Clr'|"f—'2r+4"r‘|'"P_r‘.‘E10:"*."*"":"%'1'pt'f"_“l:’I (32)

This constraint reflects the assumption that ¢ and ¢,, in addition 0 inYesnna?nt,
are perfect substitutes in production, and hence sell at the same reia?twe{ price.
Households enter the period with nominal balances equal to m;, whlch‘ls aug-
mented with a lump sum transfer of newly printed money. TR,. Using our
actational convention, M, denotes begiming—of—Period (prelrapsfcr) per capita
money balances, and m, denotes the ;nor{e‘y goldltnﬁsbof a particular household.
= — M,. The price level is denoted by p:.
Thmf;es ogdt:; cash tgood, g,, must be financed wit%; nomjn.al cash h?ldings
at the beginning of the period (post-transfer). This requirement 18 formalized by
the cash-in-advance constraint,

picy < m+ TR.. ¢

The resource constraint is ¢1; + €2 + ir < Y1 where e i§ p_roduccd according
to the production function (4). This implies that the equilibrium wage rate and
rental rate eTe given in equations (27) and (28), respective!y.

The money supply, M;, evolves according to the following rule:

M.y = gM,. @4

The monetary growth factor, g, is constant over ﬁme, but, as in the case of the tax
rates in the previous example, natural extension is to model g as an exogenous
state variable or as depending on the economy—wi.de staFe. . .

In this example, as well as inmost applications involving cash-in-advance mod-
¢ls, we impose conditions on the money growth ratt? suc%'l that (33t) h'olds w1th
equality (that is, the Lagrange multiplier associated. with this constraintis positive
in equilibrium). The precise form that this resu'ic‘;uon t.akeS depends on the form
of the wtility function. In general, this restriction is feqmvalent to requiring that an
sppropriately defined nomjnal interest rate: be positive.

Our solution method requires thatall variables ﬂucfuate arcund a constant mean.
However, if g is greater than one, both M and p in this exampl.e will grow without
limit. This motivates introducing the following change of variables:

M, = m/M; and Pr = Do/ Mes1. (35)

With this change in variables, assuming that the cash—in-a.dvancs'e constraint is
binding, the dynamic programming problem solved by households is

oz, K, k) = max(U (1, ¢, 1 — b) + BEV(@ K/, K, )
st. £ =A@ +¢€
K =(1-8K+1
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F=0-8k+i

m
Cl+C2+i+? =w(z, K, H)h

fri K ik + e
(g-p)
o =te-D
(-5
I =I(z,K), H=HzK), p=P@K). (36)

An ?mportant feature of this problem, which is absent in (30), is the function
P, which expresses the relationship between the price level and the state of the
economy. Becauseof this feature, this problem cannot be mapped into the notation
of problem (21). In that problem, thers is no analog to relative morey holdings,
, o the price level, . However, the following modified version of problem (21)
Incorporates these features. This more general formulation would also apply to

othgr_ applications involving money in the utility function or cash-in-advance in
addltloq to the particular example described above.

v(z, S, s, m) = max{r(z. S,s,m. D, p,d,m') + BEv(z, &, &', m")) (37
st. 7 =A@ +¢€

(38)
Sl = B(Z, S; s, m, D$ d! P, m,) (39)
8 =B(:8,81,D D, p1) 40)

D =D 8, p=P(z 5.

In this problem, m and p are the household’s nominal money holdings and the
price level, both expressed relative to the per capita money supply. Thus, they
correspend to /# and p in the above example.

A recursive competitive equilibrium consists of a set of decision 1ules for the
household, 4 = d(z, §, 5, m); a decision Tule detenmining the amount of money
the household carries into the next period, m’ = m(z, S, 5, m); a set of aggregate
decision mules, D = D{(z, §): a function determining the aggregate price level,
p = P(z, 5); and a value function, v(z, S, s, m), such that

1) given the functions D and P, the value function, v, satisfies equation (37),
and 4 and m’ are the associated decision rules: and

2) given the pricing function, P, individual decisions are consistent with
aggregate outcomes:

Dz, 8) =4d(z,5,5 1) and 1=m(z, 8,5, 1)
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Note that in equilibrium, m’ must equal one since m’ is defined to be money

i i i iy.
holdings relative to the per capiia money Supp: ) .
0It isgstraightforward 10 express our cash-in-advance economy in terms of this

notation. As in the first example, d = (i, h), and the function B is simply
{1 — 8 +i. The remm function, 7, is given by

rz, K.k, 0, I, H, p, i, hoi’) = Uley, e, L = )

where
_rtg—-1)
T T Gp
and

“U>| 3_:

¢ = wiz, K, HDh +riz, K, H)k — i —

§. Solving for a Recursive Competitive Equilibrium

In this section, we describe a method for finding 2 function D (for arn ecor)lotxligt
without money) or a pair of fanctions D and_P (fora moncfary economyes o
satisfies the definition of a RCE. As in Section 3, we comsider eco:;_)lm;l s 1o
which the return function is quadratic. Since our exmnl?lcs do no.t generally cliver
quadratic cbjectives, we again make use of the quadratic approximation proc[l ”
described in Section 3. We first explain how to cor_npute a R(;E fc?r a ngnmo.bedtag
economy by using methods similar to the successive apprmt1mat1cmsbe r:scn]ied o
Section 3. Next, we show how essentizlly the same methods can be app
ec%smll)uees' v%glc?r?;?lzﬁng an economy where the problem solved by households
is (2f). fin in section 3, z in eqeation (2.2) is an n(z) x 1 vector of exog;;iu?esiz
variables, the first component of which is assumedto be constagt over . q "
to one, without loss of gem?rality). We continue touse the function 7(x) to deno
column vector, x. . .
the'lll?: g?ela(t)igra;:tate for the certainty version of tt.nis economy, z. 5,5, fi), (:'i ), wl;xci?sl
is required in computing the quadratic a;?prommauon of the return function, r,
the solution to the following set of equations:

Z=A@E);
rekz, 5,5, D, d) ] o
+ B, 5,5, D, DU — pB,;(Z 5.5, D. DB, 5.5, D.d) =0

d=D,5=3 “o
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Note that in (41) r,, r,, etc., have the same definition as (12).

Define y as the stacked vector, (z, S, s, D1, di, . . ., Dy, dyay), wWhere the
subscript denotes a particular component of D or 4. Given the steady state of v,
the quadratic approximation can be formed in precisely the manner described in
Section 3, From this, we obtain the following linear-quadratic formulation of the

household’s problem, where the functions I; are the unknown aggregate decision
ruies:

v(z, §, 5} = max{y” Qy + BE[(z, §, 5)Iz]}

st (2224
Dy =Di(z, 8, Dy, ..., DY), (42)
wherethe D)y, i = 1, ..., n(d), are linear functions.

finding o Recursive Compefifive Equilibrium by Successive
Approximations

Our computational procedure for finding the functions D; that satisfy the require-
ments of a RCE for a linear-quadratic economy makes heavy use of the methods
describedin Section3. As in the earlier section, we focus only on the certainty ver-
sion of the household’s problem (42), since the decision rules will be independent
of the variance of €. Successive approximations of the optimal value function, v,
are obtained by iterating on the following mapping:

v"(z, 8,5) = max{y" Qy + gv*(z, §'. &)}
st (22024
D, = D,f‘(z, S.Dy,...,Di_), fori= 1...., n{d). 43

The functions D are the linear aggregate decision rules associated with the nth

spproximation of v. The precise way in which these functions are computed is
described in Step 4 below.

Step 1. Choose a negative semidefinite matrix, v°, of size nfz, S.8)xn(z, 8, sh

Steps 2 through 7 describe how to obtain successive approximations of the valye
function, #. Given amatrix ", these steps explain how to compute "+,

Step 2. Define x 0 be the stacked vector (v, 2, S, s') = (z, S,s, Dy, dy, .. .,
Dyiays dpeay, 2, 8, 8). Construct a matrix R, which is of dimension 5(x) x
7(x), and which centajns the matrix Q in the top left corner and the matrix Buv"
in the lower right comer. All other elements are set equal to zero. The quadratic
expression on the right side of (43) can row be written x7 RP®)] 5
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limin i i f motion, (22)—(24).
iminate s’, ', and z’ by using the linsar laws o . (2 -
: i equation (17) from Section 3. After these substimtions, the
T RInM

Step 3.
This is done by using
quadratic expression becomes x

The next three steps are used to eliminate the aggregate and m(LWldual ;1:;151(3{;
variables, Dj and d;. Beginning with j = p(d), these steps m}lst. er;eprzaass gn "
fimes to eliminate each of the D; and d; in tum. The descnpnotr;] e assumes
‘hat the jth decision variable (D; and d;), whlct? cgnegponds. to tee I o
Jth elements of x, where J = 7n(z, §,5) + 2j,is being elum};a: ,;}mnated
variables with index greater than j aze assumed to have already been .

i i ition with respect
Step 4. To obtain the function D, consider the first order condition pec

o d_,‘:

S RDx =0, (41)
=7

At this point it is iraportant to examine if the

here J = niz, 5, 8) + 2j. . 1L tC
:’ecind-order conditions are satisfied by checking whether R is less than zero.

i i ( ) - S
Substlmte the agglegate COIlSlStenCy COIldllthI‘,lS mto 44‘ by Setllng 5 alld
A p
dl D ¥ fOI 1= 1' b J * ﬂle‘ Bb) eh“uﬂau“g s and ﬂle Ienlalnmg com onents

of d. Solving for D;, we obtain the aggregate decision rule D

J=2
xj1=D; = Z‘Sixis (45}
i=1
where
RJR fori =1,...,1(2)
R i = L} 1 S
R + R o)/R fori=1@+1, n(z, 8
0 g fori =7z, )+ 1,...,n@ S, 5)
%=1 Y + R /R fori = g(z, 8. 8) + 1,...,J =3
Bor B (increments of 2)
0 ' fori = 7z, S, s) +2, ..., d =2
(increments of 2)
L
and

5 )
R = —(RS)_ + RJD:
comporents of z in (45). The

The first set of 8°s are the coefficients on the of §,5, D, and d,

remaining four sets of &'s are coefficients on the components
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respectively. Since (45) is an aggregate decision rule, the coefficients on s and d
are equai to zero.

Step 5. Solve equation (44) for x; and use the resulting linear sxpression to
eliminate x; = d; from the right side of (43), using the substitution procedure
described in Section 3.

Step 6. Use equation (45) to eliminate x;_; = D i
Steps 4 through 6 are repeated until all decision variables have been eliminated.
After these substitutions, the right side of (43) becomes x7 R7@.5.)

Step 7. Define v"*! to be the matrix formed by the first n(z, S, s) rows and
columns of R™#55}, Compare the elements of v"+! with the elements of e,
ignoring the (1,1) element. I they are sufficiently close, stop the iterations, If not,
repeat the procedure beginning with Step 2, using v™*! in place of v".

Once the iterations have converged, the equilibrium aggregate decision rules can
be computed from the set of 5(d) equations (45) obtained in the last ireration. The .
procedure for obtaining these is analogous to the procedure described in Step 6 at
the end of Section 3. Finally, one should check whether the steady states obtained
from solving (41) are the same as the steady statesimplied by the linear equilibrivm
decision rules.

Solving for a Recursive Competitive Equilibrium in a Monefary
Economy :

We now explain how this method can be modified to solve for a RCE in amonetary
model, where money is introduced either through a cash-in-advance constraint, as
in the mode! described in Section 4, or by introducing money directly into the
utility function.

The problem solved by households in these models is stated in equation (37).
As usual, the first compenent of z is equal tc cne, The additional variables, m and
p. are defined as in the basic model with money in Section 4. Both of these are
one-dimensional variables.

The quadratic approximation of the return function, r, is formed in the
same way as above, where the vector vy is defined to he the stacked vector
(z, 8. 8,m, D1, d, ..., Dya, dyay, p.m'). The steady state is computed by
solving a set of equations analogous to (12) in Section 3 or (41), noting that
steady-state money holdings, 7, are equal to one. '

The steps involved in generating successive approximations are very similar to
those described above for solving a social plannirg problem. Successive approx-
imations are computed by iterating on the following mapping, which is similar to
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43): |
vz, S, s, m) = max{y’ @y + pv(Z, §', 5, m)}
st (38)(40)
Di = D?(Z, S: Dla R Di#l)ai = 11 ey n(d)s
4
p=P"(Z,S, Dl,,..,Dn(‘f)). 46)

The functions D? and P" are the aggregate decision rules and pricing function
; i » >
i ith the nth approximation of v. . . .
assgfe;il:ef—gncan be followed almost exactly as descnb.ed, excegio th;,; :h er:x;sc;( >
of dimension [7(z, S, 8) + 11 x [n(z, S;{S) +13 atfnd; x;ﬁd?nem’) Dehe stacke]
,m, Dy, dy, ..., Dyay, Gyay, P10, 2,5, 8, ). :
oon (izt; ti;: vznctor 1twice since it enters the value fuchon for .the nexts pberllcl)sdi as
alppifarssthe current return function. The second m' is elmurzated in St;[:e ﬁ,-:t m’ng
a : '
;: equAation X,y = Xy, thet is, by setting the second m equai ;looe g
Step 4 for this problem diifers from the non{none.tary case e the pricing
flmcti?)n P*(z, 8, D1, ..., D), must be obtamed'm acid}tlon to e %rifmgme
dccisicm,mles,’ dencted by D7, ..., D7y Tl}e func_:no[:h P rlS czn‘::: ——
first-order condition associated with m' by imposing elaggr 2
O o T mpres 'mr : "LP%’DEZ d.;‘ 7311)l .l,-l-)n(d"wi is used to eliminae
solving for p. The expression p = ., 8, Dy, :
described in Step 6. -
e isst zf the procedure is unchanged from the t-lc?mnonctary one exc;e}: et
The runﬁng is slightly different because of the addmona! compon:f;s ?m d-v"*l
gz:iasizz variables, d and D, are eliminated as explained tl:d Sutggls they,converge'
i i ssive approximations of v are compu
i e iﬁfgfmm de(glsjion rules and pricing function are computefl frqm thc;
1;11:131!% the1”’eqa.nd DFi=1 n{d), associated with the last appreximation 0.
Ctions L= L,

v.

6. Extensions to Heterogeneous-Agent Economies

e 1 . be
An advantage of the methods we have described in tlus] chap;er ﬁnti;:r:i Zr;ei); (-iva; e
i s of ec
i ightforward manner to an important class of € i
N n;zts:xmagnhte identical. In this final section, we_ describe h9w to comg;::e
agemsi?i?ﬁum for an extension of the basic modelin wt.uch agents differ acc:; aﬁ
?gsgel;erences and initial capital holdings. More c((lmlxph::iated %eg;ggez:g:m ﬁgo e
i i jodlived overlaj .
i inclading economies with #-period-live . e
cn“:::n;]t:f(;lifé 1\f:l'ith mefhods similar to the one used for th}:; ia(itam;_)tllf;.)L being he
e i f househelds, with A;
omy consists of N typeso .
fr Sll_pposfe tt;'l;et:tihieclon yN It follows that the total measure of households is
action 0 =1,...,N.

.y n(d]—and then )
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one. A household of type i solves the foilowing problem:

main,B'U,-[c,-,, ), 0<p<l 47
=0
st By 4+ £, =
Zerl = Az + €4 (48)
Cit + Xir = wehyy + 1k, @)
kirs1 = (1= 8k + x; 50)
W =z.FyK, H) {51)
=z Fy (K, H). (52)
The initial k;; is given as well as the stochastic process generating sequences
Ky, HJ2,.

The variables ¢, x;,, ki, £, and k; denote consumption, investment, hours
worked, leisuie, and capital stock of household i in time .20 Equations (51) and
(52) are the equilibrium wage and rental rates as derived for the basic model with
taxes in Section 4 under the assumption that there is 3 single constant-returns-to-
scale technology. As usual, X, = 2 XK and H, = Y A H;; are the Pper capita
capital stock and hours worked, respectively, where K. i and H;, are the per capita
capital stock and hours for households of type i. Equation {48) is the law of motion
for the technology shock, where A is a linear function and € is an ii.d. randem
variable with finite variance.

As can be seen from the budget constraint (49), agents are permitted to use
income from capital and labor to purchase units of current-period output (con-
sumption and investment goods) only. They are not permitted to purchase (or sell)
state-contingent claims to next-period units of output. This is not necessarily an in-

nocuous assumption, as it is in economizs where agents are identical. In addition,

allowing these trades does complicate the solution procedure somewhat. Rios-

Rull (1992a) describes how to compute a recursive competitive equilibrium of zn
overlapping-generations economy in which these sorts of trades are permiitted,

In our recursive formulation of this economy, we utilize the following notational
conventions: %; is the capital stock of a particular household of type i; K, for
I =1,..., N, are the per capita capital stocks of households of types j; and
K=&.,....K )T isavector describing the entire distribution of capital stocks.
These same conventions apply to the decision variables, hows, /4, and investment,
X.

If we suhstitute (51) and (52) into (49), solve 49) for ¢;; and substitute the
tesulting fanction into the utility function, household i ’s optimization problem
can be expressed as the following dynamic program:

vi(zv Ks kz) = max{rf(zs K! kiv X: H) Xis hl) + ﬁE[Ui(ZI: K’: k:)*z]} (53]
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st 7z = A(g) + €}

G4
K= —8k+x 55
S -OK:+X;, forjzl,...,N;

Hj =Hj(Z,K),Xj = Xj(Z, K)forj =1, L .. N
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the law of motion for the K;. Equation (56) states that the per

Equation (55) is ns of the state

p p p ctigy
£210 31 31l ( Ch }) g]. e
C ta hOuIS alld er capita 1nv estinent fOI cal are v le]l

q 5‘ Sion
CUrs [« p titive e thb f T IZhlS i’ nS1SiS
A recursive compe if1 rinent 10] econo CcOo 0[ aset (li decl
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value fanctions, v; (z, K, &;) for each i, such that

ita decision rules, the value function fer fype i, vi,

1) given the per cap ;o

i isi les;
atisfies equation (53}, and h; and ; are the associated decision mie
S

2) Hi(z, K) = hi(z, K, K;) and Xi(z, K) =x;{z, K, K;) foreach i.

an equilibrium, we approximate the return function of each type

S thed
nadratic function, using the guadratic fipprfmmano:]'; pro:liciurf:em cie;g: -~
FY g qtiou 3. To obtain successive appr?mmanons of .:, ;1 e o
e © we it;:ratc on the following mapping, where y;, 1s
type ¢

(Z, K, k,-,X, H, x,-,h,-): .
Wl (z, K, k) = max{y] Qiy: + Bvf (2 K, k)
st. 7 = A(z), (54, (55), .
X; =Xz, K)and H; = HJ’-’(z,K)forj =1,....N
F el
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. | given a quadratic function
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H by using the linear functions, X7 and HY, for each j. From this, we obtain a
quadratic function of z, K, and k;, which is used as the next approximation of vi,

v7*!. The procedure is repeated until the iterations have converged.

Notes

We are gratefu] to Mariano Cortes and Rajeev Dhawan for research assistance. This research
Wwas supported in part by NSF Grants SES-8921346 and SES-62(5417.
1. This repeats some of the materiai covered in Chapter 1, but this seemed 1o us to

. be useful for carrying out the Pputposes of the current chapter.

2. See Stokey and Lucas with Prescott (1989) for details on the dynamic general
equilibrium theory underlying the approach employed in this section. I is worth noting

See Becker (1985) for an exampk: where this approach is employed.

3. Distinguishing between z and s is not important in cases where a social-planning
problem is to be solved. However, it is important in cases where the Second Welfare
Theorem does not hold. We make this distinction here so that the notation will be consistent
throughout the chapter.

4. Although it is clear that (2) allows for the possibility that componens of 7 evgive
35 a continnous-state Markov process, it is not difficult to modify the solution method
described in this section to allow for components of z to follow a finite-state Markoy chain.
In this case; instead of solving for a singie value fanction, v(z, s), there is a separate value
function, v,(s), for each z in the state space.

5. Examples from this literature include Cho and Rogerson (1988), Christiano
(1988), Greenwood, Hercowitz, and Huffman (1988), Kydland (1984a), Kydland and
Prescott (1982, 1988}, Hansen (1985), Hansen and Sargent (1988), and King, Plosser,
and Rebelo (1988a). In each of these papers, numerical methods are used to sojve a
planning problent, such as (2.1). Long and Plosser (1983) consider an example where
the planning problem can be sqlved analytically so that numerical methods are not
required. ]

6. Inthis example we show how to add deterministic growth to the modsi. It is aiso
passible to introduce stochastic growth by assuming that the technology shock evolves as
arandom walk with drift. The details are given in Hansen (1989).

7. We have imposed the rescit that with utility separable in consumption and leisure,
optimal consumption is the same for those who work and for those who do not work,

8. Notice that akthough #, and not A, is a decision variale for an individual
household, the social planner does choose A.

9. In practice, we recommend choosing 7 so that the steady state computed from
the Hnear decision ruies are the same (up to, say, six decimal places) as the sieady state
for the nonlinear economy. In addition, if the steady states for the components of y differ
significantly in absolute valye, it may be desirable to set 4! proportional to the steady state,
k] = %, as long as 3, is differen from zero.
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10. Tn the rest of this section, unless we say otherwise, references to v are to the

optimal value function for this linear-quadratic problem, as opposzd to the optimal value -

function for problem (1).

11. The return function, 7, given that the utility function is strictly concave, is
bounded from above. See Stokey, Lucas, and Prescott (1989) for a discussion of discounted
dynamic programming with retums bounded from above.

12. In practice, one could just as well eliminate this last row and column., However,
we have chosen to il this last row and column with zeros to simplify notation.

13. Inpractice,one shouldignore the constant term of v**! and v” (the (1,1) element)
when doing this comparison. The reason is that this tenm takes relatively longer to converge
and has no =ffect on the policy functions.

14. Here, and in the rest of the paper, we use lower-case letters (eg., h and k)
to denole quantities associated with a particular household. Capital letters (H and K)

denote economy-wide (per capita) quantities that are determined in equilibrium but are not

influenced by the actions of any individual household.

15. The notion of a recursive competitive equilibrinm is developed in Prescott and
Mehra (1980). .

16. A natural extension ofthis exampie would be to model the tax rates as eXogenous
stochastic processes, or as depending on the endogenous state varizbles. See Braun (1990),
Chang (1950}, Greenwood and Huffman (1991}, and McGrattan (1989) for applications of
this sort to equilibrium business cycle theory.

17. See Sargent (1987) far a detailed discussion of this issue.

18. Both of these types of models are discussed in Sargent’s (1987) fextbook, and
standard references are provided. Papers that contain applications of these monetary models
to equilibrium business cycle theory includz Cooley and Hansen (1989), Huh (1993), and
Kydland (1989).

19. Rios-Rull(1992a) extends and applies thesemethods tothe study of models with
n—period Iived overlapping generations.

20. Notice that we have switched notation from previous sections. Previously, in-
vestment was denoted by i;, butthe letter ; isnow used to index type of household. Therefore,
we now use x, to denote investment.




