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Econometrica, Vol. 60, No. 6 (November, 1992), 1387-1406

STOCHASTIC MONOTONICITY AND STATIONARY
DISTRIBUTIONS FOR DYNAMIC ECONOMIES

By HuGgo A. HopENHAYN AND EDWARD C. PRESCOTT !

The existence and stability of invariant distributions for stochastically monotone
processes is studied. The Knaster-Tarski fixed point theorem is applied to establish
existence of fixed points of mappings on compact sets of measures that are increasing with
respect to a stochastic ordering. Global convergence of a monotone Markov process to its
unique invariant distribution is established under an easily verified assumption. Topkis’
theory of supermodular functions is applied to stochastic dynamic optimization, providing
conditions under which optimal stationary decisions are monotone functions of the state
and induce a monotone Markov process. Applications of these results to investment
theory, stochastic growth, and industry equilibrium dynamics are given.

Keyworbps: Stationary distributions, fixed points, monotone functions, stochastic dy-
namic programming, stochastic growth theory, investment theory.

1. INTRODUCTION

A PROBLEM THAT is arising with increasing frequency in dynamic economic
analyses is the study of time invariant distributions. These arise in at least two
classes of problems. The first is when the object of the research is an equilib-
rium distribution of agents indexed by some economic characteristics such as
income, asset holdings, information or beliefs, employment status, or the capital
stocks of firms.? The second is when the object of the research is the long run
behavior of a stationary stochastic process, as occurs in capital theory for the
process induced by the optimal accumulation policy. Invariant distributions for
such processes provide information on their long run behavior. In particular, the
problem of uniqueness of an invariant distribution is closely related to the
independence of this behavior from the initial data.

Existence arguments based on continuity conditions have been well studied.®
Recently, interesting economic models have been developed where nonconvexi-
ties or switching costs give rise to discontinuous stochastic behavior,* for which
those arguments are not applicable. In some of these cases, however, the
existence of stationary equilibria can still be established using different methods
based on stochastic monotonicity conditions. We systematically develop this

'"We acknowledge valuable discussions and comments of Rodolfo Manuelli, Ramon Marimon,
Nancy L. Stokey, and the comments of anonymous referees. We thank the Federal Reserve Bank of
Minneapolis and the National Science Foundation for financial support.

2Some examples of this category are Lucas and Prescott (1974), Lucas (1978), Jovanovic (1982),
Marimon (1989), and Manuelli (1985).

*For a general formulation see Duffie, Genakoplos, Mas Colell, and McLennan (1989). Green
and Majumdar (1975) indicated the possibility of looking at an invariant distribution as an
equilibrium. Futia (1982) provides an early comprehensive analysis of stationary equilibria for
stochastic processes using fixed point theory in the economic literature.

Examples of these are growth models with nonconvex production functions, as in Majumdar,
Mitra, and Nyarko (1989) and models with switching costs, such as in Dixit (1989). Discontinuities
can also arise in optimal contracts from the nonconvexity of incentive constraints.
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1388 H. A. HOPENHAYN AND E. C. PRESCOTT

fixed point theory based on some recent results in probability. Equilibrium
existence arguments based on monotonicity have been developed in other areas
of economics (see Vives (1990)). The emphasis of this paper is on stochastic
dynamics.

Stochastic monotonicity arises in economic models from the monotonicity of
decision rules or equilibrium mappings that result from the optimizing behavior
of agents. The question of when does optimization lead to monotone rules
becomes thus relevant. Topkis (1978) developed the necessary mathematical
structure. His work has recently seen much applicability in economic problems.’
We apply this structure to dynamic stochastic theory and provide general
conditions under which optimal stationary policies for dynamic stochastic prob-
lems will be monotone.

Beyond the issue of existence of stationary distributions is the question of
whether the sequence of predictive probability distributions of future states has
a limit and whether this limit is independent of the initial data. This has been
the motivation of turnpike theory in stochastic growth models. The methods
currently used have not proven easy, often requiring considerable investment in
specialized mathematics or considerable ingenuity in verifying conditions of the
available theorems. We provide a simple and easily verified condition for the
global stability of monotone stochastic processes.®

Section 2 develops the basic framework and presents the existence theorem.
This argument applies more generally to the existence of fixed points for
monotone mappings of a compact set of measures into itself. The mapping need
not be linear and norm preserving as is the case for the Markov process. Section
3 specializes these results to the case of a Markov process. Section 4 provides
conditions to obtain monotonic decision rules in dynamic stochastic problems.
Section 5 presents the uniqueness (and global stability) condition for monotone
Markov processes. Finally, in Section 6 we discuss several economic applications
of the theorems.

2. A FIXED POINT RESULT

In this section we present a fixed point result and some useful corollaries.
Loosely speaking, we will show that monotone maps defined on compact sets of
measures have fixed points. The following definitions will allow us to make the
above statement precise.

Preliminaries. Let (S, >) be a compact metric space ordered with a reflexive,
transitive, antisymmetric and closed relation > . (The order > is closed if the
graph of > is a closed subset of S X S.) An upper (lower) bound for M C S is
an element s €S with s’ <s (s>s") for all s’ € M. The supremum of M, if it
exists, is an upper bound for M which is a lower bound for the set of all upper

SFor an extensive list of applications, see Milgrom and Shannon (1991). Vives (1990) presents an
interesting application to Bayesian games.

A result very close to ours appeared in Battacharya and Lee (1988), which extends a result of
Dubins and Freedman (1966) to R”.
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bounds of M. A chain C on S is a subset of S for which all pairs of elements
are comparable; i.e., for all sand s’ in C, s>s" or s' >s.

For A C S, let d(A) be the set of all elements in S that are smaller than some
element in A4, i.e. d(A)={s' €S: s’ <s for s € A} and let i(A4) denote the set of
all elements of S that are larger than some element in 4. We will say that A is
a decreasing lincreasing] set if A=d(A) [A=i(A)]. The set A is said to be
monotone if it is either decreasing or increasing. A mapping f from an ordered
space (S, >) to an ordered space (T, =) is said to be an increasing function if
for any two elements s,s" in S, s >’ implies f(s) = f(s’).

The measure space considered in this paper will be (S, ), where . is the
Borel o-algebra of subsets of S. Let .#(S) be the space of finite measures on
(S, ) endowed with the weak * topology.

Stochastic order. For any pair of elements u and g’ in .#(S), we will say that
w=p if [fulds) > [fi/(ds) for every increasing, measurable, and bounded
function f: (S, »)—» R,. Whenever p =y we will say that u stochastically
dominates or is stochastically greater than .

Note that when u and u' are probability measures the order considered
coincides with the familiar notion of stochastic dominance used in economics
and finance. In particular, when S is a subset of the real line it is simple to show
that w = if and only if F(s) < G(s) for every s € S, where F and G are the
distribution functions of u and u, respectively. (If S is a subset of R” where
n > 1, however, G(s) < F(s) does not imply u = u'. Only the converse is true.)

Kamae, Krengel, and O’Brien (1977, 1978) establish that when S is a Polish
(complete, separable, and metric) space, = is a closed order on .Z(S) and that
w =v if and only if u(A)>w»(A) for every increasing A cS. Whitt (1980)
established that if in addition (S, >) is normally ordered (see Nachbin (1965)
for definitions) the functions used to test for stochastic ordering can be re-
stricted to be continuous.® Since compact metric ordered spaces are normally
ordered, we will make use of these results. Denote by M the set of nonnegative,
increasing, and continuous real valued functions on S.

For the fixed point theorems we will restrict the set of measures to a compact
subset of .Z(S) which we will denote by A. Some examples of compact subsets
of .#(S) encountered in economic problems are the following:

(a) The space of uniformly bounded measures, i.e. {u €.#(S) such that
w(S) <m} where m is an upper bound fixed for all w.’

(b) Any closed subset of the above, e.g. the space of probability measures.

"This ordering does not give .#(S) a lattice structure. For an example see Kamae, Krengel, and
O’Brien (1977).

8Torres (1988) extends these results to a preordered space and also develops a condition for
compactness of ordered intervals of measures.

°If S is compact, by the Riesz representations theorem (see Dunford and Schwartz (1958, IV.6.3)
the dual space of the set of continuous and bounded functions on S, C(S), can be identified with the
space of measures on (S, ). The space of all measures uniformly bounded by m is closed in the
weak* topology and bounded in the strong topology. By the Banach-Alaoglu theoem (see Corollary
V.43 in Dunford and Schwartz) this set is compact.
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(c) Intervals of measures in the stochastic order; i.e., given two measures
Mg = My, the set [u,, ] ={n € 4(8): n, = un > p,}, so it is a closed subset of a
uniformly bounded set of measures.

(d) Given a continuous function p: § — R and two real numbers a and b, the
set of measures that satisfy a < [p(s)u(ds) <b is closed. Furthermore, if p(s) >
&> 0 then u(S) <m =b/e, and the above set is compact.

Our main theorem establishes the existence of a fixed point for an increasing
mapping from a compact subset of .Z(S) into itself. The proof is based on the
following fixed point theorem (see Dugundji and Granas (1982)).

TueoreM (Knaster-Tarski): Let (P, =) be an ordered space and F: P — P an
increasing function. Assume there exists a point b € P such that b < F(b) and
every chain in i({b}) has a supremum. Then the set of fixed points of F is not

empty.

To apply this theorem, we just need to establish that every chain in a compact
subset of .#(S) has a supremum. A slightly stronger result, also used in Section
5, is now proved.

PROPOSITION 1: Any chain C in a compact subset A of .#(S) has a supremum.
Furthermore, the chain converges to the supremum.

Proor: Since A is compact and C is a net in A directed by itself, there exists
a subnet C’ of C that converges to some element u* in A. We will now show
that u* is the supremum of C. To show that y* is an upper bound for C, for
any veClet C"={u e C’: u=v}. C" is a subnet of C’ so it also converges to
w¥. Since = is a closed order we can conclude that u* > ». We will now show
that u* is the least upper bound. Suppose to the contrary that »* is another
upper bound and that there exists some f& M with [fr*(ds) < [fu*(ds). Since
C’ converges to u*, there exists some measure u € C' with [fv*(ds) < [fu(ds).
This contradicts »* being an upper bound for C. Finally, note that this

argument implies that any subnet of C converges to u*, so u* is the limit of C.
Q.E.D.

We now present the main result of this section.

THEOREM 1: Let A be a compact subset of #(S) and T: A — A an increasing
map. Then T has a fixed point if and only if there exists a measure ., in A such
that T, = w,.

Proor: Since = is reflexive, necessity is immediate. Sufficiency follows from
Proposition 1 and by applying the Theorem of Knaster-Tarski. Q.E.D.

ExampLE: The following example illustrates that no assumption is redun-
dant.



STOCHASTIC MONOTONICITY 1391

Fix A €(0,1). Let g:[0,1] - [0, 1] be given by

Ax+(1-2) ifx<1,
s =
8(s) {0 it x=1.
For a measure u on [0, 1] define the mapping T by

Tu(A) =u(g™'(A)).

It is simple to check that T has no invariant distribution. What assumptions
of the theorem are violated?

(a) If we consider the natural order on [0, 1], all assumptions are satisfied
except monotonicity of T.

(b) If we consider the reflexive order in [0,1], i.e. x >y iff x =y, then all
assumptions are satisfied except that no measure is increased.

(c) If we consider the natural order with the only exception that {1} is only
related to itself, then the only hypothesis that fails is continuity of the order.

(d) If we consider the natural order and let 0 > 1, then either the order is not
asymmetric or it is not transitive.

A natural question that arises is what happens if T” (the composition of T
n times with itself) rather than T, satisfies the hypotheses of Theorem 1. This
occurs, for instance, if T is decreasing and thus T2 increasing. By Theorem 1,
T" has a fixed point. If in addition T is linear, it will also have a fixed point.

CoroLLARY 1: If T: A—> A is a linear mapping, T" is increasing, and
T"w, > pn, for some measure u, in A, then T has a fixed point.

Proor: Since T” satisfies the assumptions of Theorem 1, it has a fixed point,
say pmo. Let w,=T*u, then Tu,=p,,, for k=0,1,...n—1. Let u=
(A/mXZidps. Then Tu =1/ T, = A /n)Xh -y, = (1 /n)EEZiw, since
M, = o Thus T = u and the proof is complete. Q.E.D.

Let Z(S) be the set of probability measures on S. This will be the space of
measures considered in the applications to Markov processes considered in the
next section. The following Corollary will prove very useful.

CoroLLARY 2: If T: P(S) - H(S) is increasing in S and has a minimum
element (i.e. there exists an a € S such that s > a for all s € S), then T has a fixed
point.

Proor: Let 8, be the measure that assigns probability one to the point
set {a}. Then for all u € P(S), u =4, Hence for any increasing mapping
T: P(S) —» F(S) it is the case that T§, = §,. Thus in this case any increasing
map has a fixed point. Q.E.D.

It is of interest in many economic applications to analyze how changes in
some underlying parameters of the economy result in changes in the set of
invariant distributions corresponding to these economies. For this purpose,
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Corollary 3 provides a useful result which, loosely speaking, establishes that if
the mappings T and T’ on A are ordered, the set of invariant measures
corresponding to them will also be ordered. To make this statement precise, we
will say that 7’ dominates T if for all u €A, T'u = Tpu.

CorOLLARY 3: If T' and T are two mappings on A that satisfy all the
assumptions of Theorem 1 and T' dominates T, then for every fixed point w of T
(W of T') there exists a fixed point i of T' (u of T) such that i = u.

ProoF: Let u be a fixed point for T. Let A ={y €A: > u}. This is a
closed subset of A and hence it is compact. For any i/ € A, T'w/ = T'w > p and
hence T’: A —» A'. By Theorem 1, T’ has a fixed point in A’. For any fixed point
W of T’ the existence of a fixed point u of T with u < ¢ can be established in
the same way. Q.E.D.

This result is particularly useful when the fixed points of T and T’ are
unique.

3. APPLICATIONS TO MARKOYV PROCESSES

In many economic applications, it is of interest to know if the variables that
describe the state of the economy at each point in time (state vector) have an
invariant distribution, when the state vector follows a stationary Markov pro-
cess.

In the next corollary we present conditions on the transition function for the
Markov process that guarantee the existence of a stationary distribution. Before
that we need to define the mapping T: Z(S) - £(S) induced by the Markov
process.

Let P: S X #—[0,1] be a transition function describing the Markov process.
We will say that P is increasing if P is increasing in its first argument in the
stochastic order sense, i.e. for s and s’ in S, s >’ implies P(s, )= P(s, ).
The transition function P induces a mapping T: H(S) —» H(S) defined by

Tu(A) = [P(s, A)u(ds).

CoROLLARY 4: If S is a compact metric space with a minimum element and
P: S X #—[0,1] is an increasing transition function, then the Markov process
corresponding to P has a stationary distribution; i.e., there exists a fixed point for
the mapping T induced by the process.

Proor: By Corollary 2, it suffices to show that T is increasing. For this
purpose, let u and ' be in Z(S) and suppose i = u. Let f be any increasing,
nonnegative, bounded, and measurable function. Since increasing indicator
functions are dense in the increasing functions of L'(Tw) and LY(Tw'), we may
assume without loss of generality that f is the indicator function of an
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increasing set A. For s’ >s, since P is increasing P(s’, A) > P(s, A). Hence
P(-, A) is an increasing, nonnegative, bounded, and measurable function too. So
if W =u,

J1TH (ds) = Tu/(A) = [P(s, A) i (ds)

> [P(s, A)u(ds) = Tu(A) = [fTu(ds).
Hence Tw' = T so T is increasing and the proof is complete. Q.E.D.

In many economic applications the Markov process that the state vector
follows is generated in the following manner:

Given a state space X and a random variable z defined on a measure space
(Z, 2) with transition function Q the evolution of the state is described by a
mapping g: X X Z — X with the following interpretation: If at time ¢ the state
vector is x, and the realization of z is z,, then x,,; =g(x,,2z,). Let S=XXZ
and let o be the product o-algebra. This structure induces a mapping
P: S X .- [0,1] defined by

if g(x,z) €A,

) _]Q(z,B)
M P(x.z; A% B) {0 otherwise.

If g is measurable, P will be a well defined transition function for a Markov
process (see Stokey, Lucas, and Prescott (1989, Theorem 9.13)). The following
Corollary can be easily proved.

COROLLARY 5: Suppose the function g in (1) is jointly measurable and increas-
ing, Q is increasing, and X and Z are compact metric spaces endowed with closed
orders and with minimum elements. Then the Markov process defined in (1) has a
stationary distribution.

4. MONOTONE POLICY FUNCTIONS

The structure presented at the end of Section 3 often arises from the
stationary solution to an optimal stochastic control problem. Following Stokey,
Lucas, and Prescott (1989) the control problem can be formulated in the
following way:

(X, 2") and (Z, Q) are measurable spaces, where X is the set of possible
values of the endogenous state variable and Z is the set of possible values for a
Markov process with transition function Q. Each period the decision maker
chooses the value of the endogenous variable x’ for the following period from
the set I'(x, z), where I': X X Z — X is a correspondence representing the set
of feasible choices. Let A CX XX X Z be the graph of I' and F: A — R the
one-period return function, which is assumed to be bounded. Returns are
discounted at a constant rate 8 €(0,1). Under fairly standard conditions the
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principle of optimality holds and there exists an optimal stationary policy g:
X X Z - X such that g is measurable on (S, /) = (X, 2) X(Z,2), g(x,z) €
I'(x, z) as. and maximizes the expected discounted returns of the control
problem. Let v: S — R be the unique value function associated to this problem.
The function g is a measurable selection from

v(x,z) = {yEF(x,z): v(x,z)=F(x,y,2) +va(y,z’)Q(z,dz’)}.

Under what conditions will g satisfy the assumptions of Corollary 5? What
structure on the control problem will lead to the existence of monotone and
measurable selections? The basis for this analysis is Topkis’ (1978) theory of
supermodularity, which provides sufficient conditions for optimizing behavior to
be monotone in decision parameters.'”

The following definitions—most from Topkis (1978)—will be used. Let S be
a lattice and T a partially ordered set. The function f: § X T — R is (strictly )su-
permodular in S if for each t €T, f(x Vy,t)—f(x,t) > (>)f(y,t) —f(x Ay, t)
for every x and y in S. This function is said to have (strictly) increasing
differences if f(x,t)— f(y,t) is strictly increasing in ¢ whenever x >y for all x
and y in S. A function f that is supermodular and has increasing differences is
said to satisfy the cardinal complementarity conditions; for short we will say this
function is of class cc. A correspondence I': X — 2Y from a partially ordered set
S to a lattice Y is said to be ascending if for any x; and x, in X such that
X,>x,, y,€I(x,)and y, €I'(x,) implies y, Vy,€I'(x,) and y, Ay, €I'(x)).
When the domain of the correspondence is a product space X X Z, we will say
that I' has strict complementarity if for any two elements x; and x, in X such
that x, >x, and any two elements z, and z, in Z with z,>z;, s€I'(x, z,)
and t € I'(x,, z,) imply that s At €I'(x,z,) and s V t €I'(x,, z,). Note that if
the graph of a correspondence is a sublattice (in the product order), it will be
ascending and have strict complementarity.

The following results from Topkis (1978) will be used:

(a) If f is supermodular on a lattice S, then the set S* of points at which f
attains its maximum on S is a sublattice of S. (Theorem 4.1).

() If S is a lattice, T a partially ordered set, I': T —2° an ascending
correspondence, f(x,t) supermodular in x on S for each t €T, and f(x,t) has
increasing differences in (x,t) on S X T, then the correspondence y(t) giving the
maximizers of f at t, is ascending (Theorem 6.1).

For the selection arguments a measurability condition will be required on v,
which is immediately satisfied when vy is upper hemicontinuous. The correspon-
dence y: X — 2Y will be said to be upper measurable if for any closed set F CY,
the set {x €X: y(x) NF # ¢} is measurable. If Y is a separable metric space

1OMilgrom and Shannon (1991) extend this analysis by developing ordinal conditions which are
necessary and sufficient for monotonicity. Lovejoy (1987) develops some comparison theorems for
dynamic programming problems.
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and y compact valued (as below), this is equivalent to measurability of y as a
function from X to the set of closed subsets of Y endowed with the Hausdorft
topology (Debreu (1967)).

Suppose X is a lattice and Z a partially ordered set. Note that the space
S=XXX is also a lattice with the induced componentwise ordering. The
following proposition gives conditions so that there exists a measurable selection
g that is monotone increasing.

PROPOSITION 2: Assume F is supermodular as a function of (x,x') for each
z € Z and has increasing differences, that Q is an increasing transition function, I’
has strict complementarity, and for all z € Z the graph of I'(+; z) is a sublattice.
Then v is supermodular in x and has increasing differences and y(x,z) is a
sublattice of X for all x € X and z € Z. If in addition I is ascending, y will be
ascending too. Furthermore, if vy is nonempty, compact valued, and upper
measurable, and X is a complete separable metric space with a continuous lattice
structure,"! the functions g(x, z) = sup y(x, z) and g(x,z) =infy(x, z) will be
monotone increasing and Borel measurable. N

Proor: We first establish that the functional equation defined by

Tv(x,z)= max F(x,x',z)+ fv(x’, 2')Y0(z,dz")
x'el(x,z)
maps the class of cc functions into itself. Since the class of cc functions is closed
under pointwise convergence, the solution to the Bellman equation will be in
this class. Assume v is cc and let H(x, x',z) = F(x,x’, z) + [v(x', 2))Q(z, dz').
Since supermodular functions are closed under addition and preserved by
integration, it follows immediately that H is supermodular. For x| and x} in
I'(x, z), x, > x; implies that v(x’, z') — v(x}, z') is increasing in z’ and bounded.
Since Q is an increasing transition, it follows immediately that

Jo(x5,2)0(2,d2') = [0(x},2)Q(z, dz')

:f(y(x’z,z’) —v(x},2'))0(z,dz")

is increasing in z. As a sum of functions with increasing differences H will also
have increasing differences and hence will be cc. By Lemma 1 in the Appendix
Tv is supermodular in x and has increasing differences.

Since I'(x, z) is a sublattice for all x € X and z € Z and H is supermodular
in x’ for fixed (x, z), Theorem 4.1 in Topkis (1978)—stated above—implies that
vy(x,z) is a sublattice of X. If I' is ascending, Theorem 6.1 in Topkis

""The space S has a continuous lattice structure if the functions from §X S — S taking
(s,t) > sVt and (s,t) = s At are continuous.
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(1978)—also stated above—implies y is ascending. The last results follows
immediately from Lemma 2 in the Appendix. Q.E.D.

COROLLARY 6: Under the assumptions of Proposition 2 and if the sets X and Z
are compact, their respective orders closed and have minimum elements, there
exists a stationary distribution for the induced Markov process.

A natural question that arises in this context is how the optimal policy
functions are affected by changes in the exogenous process for z. The following
corollary provides a useful result.

CoroLLARY 7: Let Q, and Q, be two transition functions on Z such that for
all z€ Z,Q,(z,-) = Q,(z, ). Let g, and g, be optimal policy functions for the
control problems with transitions Q, and Q,, respectively. Then g,>g, and
g, <8, where the functions g and g denote the two selections indicated in
Proposition 2. N

PrOOF: Let Z = Z X {a, b} and define a transition O on Z by letting O(z,a,")
be the product measure Q (z, -) X 8, and O(z, b, - ) the product Q,(z, -) X §,,
where & is the dirac measure on {s}. The set {a, b} is a lattice with the order
{b>a,a>a,b>b}and Z a lattice with the product order. It is easy to verify
that with these orderings F, O, X, Z satisfying the assumptions of Proposition 2.
Since g,(x,z)=supI(x,z,b) and I is ascending, g,(x,z)V gx,z) €
I'(x, z,b), proving that g,(x,z)>g,(x,z). The second part of the Corollary
follows from a similar argument. Q.E.D.

RemMark: If there is a unique measurable selection, then letting 7, and T,
be the Markov operators associated to g, and g,, respectively, it follows that 7,
dominates 7, so by Corollary 3 the invariant distributions for these processes
are likewise ordered.

Proposition 2 gives conditions under which there exists a monotone measur-
able selection. A natural question is whether by strengthening some of the
conditions one can establish that all measurable selections will be monotone.
This is done in the following Proposition.!?

PROPOSITION 3: Assume F is strictly supermodular as a function of (x, x') for
each z € Z and has strictly increasing differences, that Q is an increasing transition
function, I has strict complementarity, and for all z € Z the graph of T'("; z)isa
sublattice. Then any measurable selection g: (x, z) — x' is nondecreasing in (x, z).

2The proof follows analogous arguments to that of Proposition 1 and is thus omitted.



STOCHASTIC MONOTONICITY 1397

5. CONVERGENCE TO THE UNIQUE INVARIANT DISTRIBUTION

The last two sections provided conditions for the existence of invariant
distributions for Markov processes. This section considers the question of
uniqueness and convergence. We provide a simple easily verified condition
under which the invariant distribution for the process is unique and globally
stable. An algorithm for successively approximating the invariant distribution is
also provided.'? This result is used in the application presented in Section 6; for
the sake of completeness we develop it in this section. Furthermore, our proof is
a remarkably simple one and it extends easily to the non-time-homogeneous
Markov case and also suggests conditions for the uniqueness and global stability
of nonlinear mappings.

THEOREM 2: Suppose P is increasing, S contains a lower bound (which we will
denote by a) and an upper bound (which we will denote by b), and the following
condition is satisfied:

Monotone Mixing Condition (MMC): There exists a point s* € S and an integer
m such that P™(b,[a, s*1) >0 and P™(a,[s*, b]) > 0.

Then there is a unique stationary distribution X* for process P and for any initial
measure w, T"w = [P"(s, - )u(ds) converges to X*.

Note: The intuition behind this result is as follows: The MMC condition
implies that though the monotonicity of T and its iterates preserve the ordering
of two distributions, after finite iterations some of the mass in these distribu-
tions reverses ordering. This process taken indefinitely implies a complete
reversal of ordering but by monotonicity of T and antisymmetry of > this can
only occur if in the limit both distributions coincide.

ProoF oF THEOREM 2: Choose ¢ > 0 and m such that P™(b,[a, s*]) > ¢ and
P™(a,[s*,b]) > &. Let §, indicate the probability measure that concentrates all
the mass on the point set {s}. We will prove that the following inequality holds:

(2) (1-€)8,+e8x<T"8,<T"8,<(1—¢)5,+&d.
For this purpose, let f denote an arbitrary element of M. Then:
[F)T"0,(ds) > f(a) [ T5,(ds) +f(s™) [ T"8,(ds)
>f(a)(1-¢) +f(s*)e /
= [f(){(1 = 2)3, +£8,}(ds)

where the second inequality follows from f(a) <f(s*) and [g_ «T™8,(ds) > &.
This establishes the left hand side inequality; the right hand side can be proved
in the same way. Since T is increasing, by induction T*, i.e. the composition of

13Battacharya and Lee (1988) prove a similar result for processes in R”, but do not require
compactness. Our work was independently done.
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T with itself k times is also increasing so T™8, < T™5,, which establishes (2).
By monotonicity and linearity of T*:

3) (1-£)T*8, + eT 8+ < T**"5, < T**"5, < (1 — &) T*8), + eT*5x.

By Proposition 1 the monotone sequences {Tkﬁa} and {T"B,,} converge. Let
these limits be A, and A,. If necessary along a subsequence, T*8 .+ converges to
a limit A*. By the closed graph property of the stochastic order:

(I—e)A, +eX <A, <A, < (1—g)A, +ex*.

This inequality implies that A, > A* > A,, which by asymmetry and transitivity
imply that A, = A* = A,. It is easy to see that A* is a fixed point for T. Using the
monotonicity of T and the definition of A, and A,, T*u — X* for any measure
uonS. Q.E.D.

Remarks: (i) Since the Markov structure was used in the proof only to
obtain linearity of T, the conclusions of the theorem are also valid for any
non-time-homogeneous Markov process {P,} such that P, is increasing for all ¢
and there exists s*€S, £>0, and m such that P"(b,[a,s*])>¢ and
P/"(a,[s*,b]) > ¢ uniformly in ¢.'* (ii) Since linearity of 7 was only used in
proving (3), the results will also hold for any monotone map T that satisfies (2)
and for which

(1—¢)T*s, +eT*8+ < T*((1—¢)8, +&6x) and
TE((1—€)8, +e8,x) < (1 —&)T*8, +eT*5 .

The following corollary is useful in some economic applications.

COROLLARY 8: Let {s,} be a monotone Markov process on space (S, >), where
(S, =) satisfies the assumptions of the previous theorem. Let a and b be,
respectively, the lower and upper bounds in S and assume they have recurrent
neighborhood systems; i.e., for any € >0 and s € S, the probability of eventually
reaching an e-neighborhood of a (resp. b) is equal to one. Then s, has a unique,
asymptotically stable distribution.

There is a sense in which the invariant distribution can be successively
approximated. From equation (2) and given that §, = §,, for any nondecreasing,
nonnegative, bounded, and measurable function g the following holds:

0< [ax*(ds) - [sT*"5,(ds) < (1-)"[g(b) ~g(a)].

Thus if ¢ and m were known, for any given increasing function we could obtain

1“.HerekP,'" denotes the transition from period ¢ to period ¢t + m, i.e., P" =P,y _1Pyyp_2 " " P,
Letting 7;° be the linear operator associated to Pj", equation (3) must be replaced by (1 — s)"b‘a

+AK)S + < Té""ﬁa < AT({""B,) < (1 — )8, + A(k)8x, where A(k) is the linear operator
eXk_(1-e) T ), and A(k)S .« has mass 1 — (1 — €)*. Along a converging subsequence for
A(k)é+ the same conclusion follows.
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an approximation as close as desired to the expectation of the function with
respect to the invariant distribution. Moreover, Battacharya and Lee (1988)
show that for any initial distribution u, T*u converges to A* exponentially fast
in a metric that defines a topology stronger than the weak™® topology.

6. APPLICATIONS

In this section we illustrate the applications of our results to three areas: the
theory of investment, stochastic growth, and industry equilibrium.

A. Investment Theory

Consider the following optimal capital accumulation problem for a firm faced
with stochastic demand:

max E Y. B'[R(4,.2,) — C(d,.k,) —8(K,.k,1)]  subject to

a,,k, t=0
q,€I'(k,), ki €I5(k,),  and (k,z,) given.

R is a revenue function which depends on the output of the firm g, and a
demand shock z, that follows a Markov process with transition function Q.
Output is constrained by the capital stock k, of the firm through the correspon-
dence I', and production cost is given by C(q,, k,). Capital accumulation is
constrained by the correspondence I', and the adjustment cost g(k,, k,, ). Net
flows are discounted at a constant rate 8 € (0, 1).

Assume g€ X and ze€Z, where X and Z are compact metric spaces
endowed with a closed order and Z has minimum element z. I';: K — 2% and
K is a compact metric space with continuous lattice structure and with mini-
mum element k. Assume R is continuous in g, bounded, supermodular in g
and with strictly increasing differences in z; C and g are continuous and strictly
submodular;"® I'; and I, are continuous, compact valued, ascending, and satisfy
strict complementarity; Q is increasing.

We now show that Proposition 3 applies to this optimal accumulation prob-
lem, and thus there exists a stationary distribution for the capital stock of the
firm.

Let II(k, z) = max,c ) R(q, 2) — C(q, k) and let F(k,z, k') =1I(k,z)—
g(k,k’). By Lemma 1 IT is strictly supermodular in k and has strictly increasing
first differences. F and I', define a stochastic control problem which satisfies
the assumptions of Proposition 3. It is also easy to check that F is continuous
and bounded, and the optimal choice correspondence is upper hemicontinuous
(and thus upper measurable). By Proposition 3 all measurable selections from it
are nondecreasing. Any such policy function together with transition Q imply a
Markov process for (z,k) on the compact set Z X K with an increasing

1A function 4 is (strictly) submodular if —# is (strictly) supermodular.
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transition and minimum point (z,k). By Corollary 5 this process has an
invariant distribution.

The assumptions provided are satisfied in many commonly used setups. If
X =R, and R is C?, R will automatically be supermodular in g and it will have
increasing differences if and only if marginal revenue is increasing in z. For a
competitive firm this holds if output price is increasing in z. Likewise, for C
twice continuously differentiable, submodularity is equivalent to the statement
that marginal cost is decreasing in k. Submodularity of g is satisfied for many of
the adjustment cost functions used in the investment literature. The following
examples, when K is a subset of the real line, are easily verified: (i) g(k, k') =
h(k'/k) where h is increasing and convex; (ii) g(k,k’)=kh(k'/k) with h
increasing and convex; (iii) g(k, k') a convex function of ak’ — Bk, where a and
B are positive constants. This includes the standard quadratic case and many
types of one sided adjustment costs. Also for the case when K and X are
subsets of R the restrictions needed on I', and I', are satisfies if I'(k) and
I')(k) are decreasing sets and ordered by inclusion, i.e. if d(I'(k))=I(k) and
k' >k implies I'(k) cI'(k’) for i=1,2. If I', is the graph of an increasing
production function, it will automatically satisfy these conditions. With free
disposal of capital and cumulative investment these hypotheses will also be
satisfied for I',. Note that the often imposed restriction of irreversible invest-
ment can be accommodated by specifying a one sided adjustment cost function,
e.g. glk,k')=c -max(k’'— (1 —-8)k),0), where & is a depreciation factor. Fi-
nally if K is a compact subset of R” with the canonical order, it will satisfy the
above assumptions.

It is worth indicating that the general assumptions given do not guarantee
that there exists a continuous selection and thus standard continuity arguments
may not apply. In particular, if k takes discrete values and z is a continuous
variable, for fixed k, the optimal capital k,,, will be discontinuous in z unless
it is constant. As an example, consider the following entry /exit problem studied
by Dixit (1989).

A firm is faced with an exogenously given stochastic process for the price of a
good. There are positive entry and exit costs to the industry. While the firm is in
the industry it produces a constant flow of one unit of output g,. Given the
conditional distribution for the price process each period the firm faces the
following decision problem: if it is out of the industry it must decide whether to
enter or not; if it is in the industry it decides whether to stay or leave.

In this case k, €{0,1}, where 0 denotes ‘out’ and 1 ‘in’. Denoting the entry
and exit costs by e and f, respectively, g(0,1)=¢, g(1,0)=f, and g(0,0) =
g(1,1)=0. It is easy to see that g is submodular. R(g, z)=p(z) which is
trivially supermodular. So assuming the transition function for the demand
shock is increasing, the optimal decision rule will be increasing. This means that
if the firm is in it needs a lower shock to leave the market than to stay and if it
-is out it needs a higher shock to enter than to remain outside. The optimal
decision rule is thus the standard two sided sS policy involving two trigger
prices p, <p, that correspond to the entry and exit barriers, respectively.
Assuming p, or p, satisfy the MMC, by Theorem 2 the Markov process for
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(p,, k,) has a unique stable distribution. This process does not have a continu-
ous transition so standard continuity arguments do not apply.

B. Stochastic Growth Theory

Consider the standard one sector growth model, with objective:
max E )" B'u(c,)  subject to
t=0

kt+l+ct<f(zt’kt)’ C1>0’ k,+|>(1—5)k,.

Throughout this analysis the following will be assumed: (i) there is a maxi-
mum capital stock k£ and 0 <& < 1; (ii) u is continuous, strictly increasing and
strictly concave; (iii) f is increasing in both arguments and continuous. With
these assumptions, the optimal policy is a selection from the solutions to:

max u( f(z,k) — k') +va(z’, k')YQ(dz'iz) subject to
(1-8)k<k'<f(z,k).
(i) 1.1.D. Shocks'®

In this case the conditional expectation in the right-hand side is independent
of z. So to establish monotonicity of investment in z it suffices to show that
F(z,k, k') =u(f(z,k)— k') is strictly supermodular in (z, k') for any k € [0, k].
This follows from the assumptions on u and f.!” Similarly, to establish that &’ is
increasing in k, it suffices to show that F is supermodular in (k, k') for fixed z,
which follows from the assumptions by using similar arguments. The best choice
correspondence is thus ascending and, by continuity and u and f, upper
hemicontinuous. The assumptions of Propositions 1 and 2 are satisfied, so there
exist measurable selections all of which are increasing. The assumptions of
Corollary 5 are easily verified, so there exists an invariant distribution for (z, k).
Since no restrictions other than continuity and monotonicity were placed on f,
the policy function need not be continuous, so standard fixed point arguments
are not applicable.

We now specialize this case to Brock and Mirman (1972) to illustrate how the
conditions in Theorem 2 can be verified and thus uniqueness and global stability
of the invariant disiribution obtained. In addition to the assumptions made
above, assume that u is strictly concave and continuously differentiable with
u'(0) = ; f(z,k)=2zf(k), where f is strictly concave and continuously differen-
tiable; z, €[1, Z] are i.i.d. with probability distribution ¢; there is a maximal
sustainable capital stock k and Bf'(0) > 1.

For this case the policy function is unique, increasing in both arguments and
continuous, the consumption function c(k, z) is increasing in both arguments
and continuous, and the value function is differentiable.

16 This problem is studied in Majumdar, Mitra, and Nyarko (1989), using different techniques.
If u is twice continuously differentiable and f continuously differentiable, this follows from the
fact that F;, = —u"f'>0. -
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Let s*=(k*,z*), where z*= [zy(dz) and k™ is the solution of 1=
Bz*f'(k*). We now show that s* satisfies the MMC of Theorem 2.

Let {k,} be the sequence obtained from the optimal policy rule gk,
starting at k, =k, i.e. the sequence of capital stocks starting at the maximal
sustainable capital stock and provided thereafter the productivity shock is at its
minimum. By monotonicity of the optimal policy rule g, the sequence {k,} is
decreasing and since it is bounded k,—b €[k, k]. Further, continuity of g
implies b = g(b, 1). For any & > 0, ¢((1,1 + 8)) > 0, since {1} is in the support of
. This, together with the continuity of g imply that the probability of eventu-
ally being in any neighborhood of b is positive.

The first order condition in the optimization problem s = (b,1) is

v
wle(b, )] =B (b, 2)o(dz') = Bf'(b) [w[ec(b, 2)] 29 (dz')

as under the optimal plan b =g(b,1). But u/[c(b, )] <u'[c(b,1)] with strict
inequality if z’ > 1 given that u is strictly concave and c is strictly increasing in
z. Thus

w[e(b,1)] <Bf (byw[e(b, V)] [z'y(dz)
or

! <z*f'(b

5 <7 f'(b).

But since f was assumed to be strictly concave and (1/B) =z*f'(k*), b <k*.

Let k>0 satisfy g(k,1)=k.'"® Starting from any 0 <k <k, and applying
iteratively the decision rule g(k, Z), an argument analogous to the above implies
that the increasing sequence generated converges to a point b > k*. Thus, the
process generated from any k > 0 satisfies the MMC, and possesses a unique
globally stable distribution. Since g(k,1) > k for all k <k, this distribution will
have support in [, k1. In consequence, the limiting distribution is identical for
all initial £ > 0.

(ii) Correlated Shocks

Assume that Q is an increasing transition. Though under these assumptions
the policy function will be increasing in k, it may not be increasing in z: higher z
will lead to an increase in consumption in the present as well as in the future;
but since higher z also implies higher expected productivity of capital in the

8 That such k > 0 exists can be shown in the following way. For the deterministic case with s =1
(the lowest shock), Bf’(0)>1 implies there exists a unique strictly positive steady state k*.
Furthermore, k < k* implies g(k) > k, where g(k) is the optimal policy function for that determin-
istic case. For any k > 0, the value function for the stochastic problem analyzed t(k, 1) has a higher
value than the one that would correspond to the deterministic problem discussed. But in both cases
the value at k =0 is zero. Hence locally around 0 the value function for the stochastic problem
increases faster than the one for the deterministic problem. In consequence, there exists 0 < k < k*
where investment is higher in the stochastic case, so g(k,1) > k. This in turn implies there exists
some k > 0 with g(k,1) =k.
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future, less capital may be necessary to sustain the higher consumption. The
analysis that follows will assume that investment is interior and for simplicity
that u and f are twice continuously differentiable. So provided the constraints
on k' are not binding, the problem can be formulated as:

max u( f(z, k) k') +B/v(z’,k’)Q(dz’§z).

To use Theorems 2 and 3 we just need to establish that u is supermodular in
(k, k') for fixed z € Z and has increasing differences in z. The first condition
was already established above. Increasing differences can be evaluated sepa-
rately for (z, k) and (z, k'). The latter, which is equivalent to supermodularity in
(z,k'), was also established above. Finally, increasing differences in (z, k) is
equivalent to

Fi(z,k, k") =u"f,f, +u'fi,>0
or

u’ fi2
— <

S
u o fif,

where all arguments are implicit.'" The economic interpretation is that the
degree of complementarity between capital and shocks must be high relative to
the curvature in the utility function, for otherwise the productivity gain may be
more than offset by the decrease in marginal utility. If f is a CES function in
(z,k), the right side goes to infinity as the elasticity of substitution goes to zero.
As expected for the extreme case, namely when f(z, k) = min{e, z, a,k}, F will
have increasing differences in (z, k) so the policy function will be increasing in
z. Again, if the policy function is monotone assuming z is bounded, Corollary 5
applies and thus there exists a stationary distribution.

C. Industry Equilibrium

Lambson (1988) considers a model of entry and exit to an industry with the
following characteristics: There is a continuum of firms indexed by the positive
real line which, at any time period, can either be ‘active’ or ‘inactive’. In any
given period (¢) only active firms can produce, incurring a cost c(q, m,), where
m, is the realization of a stochastic process common to all firms in the industry.
Note that except for the active /inactive distinction, all firms are identical. Also
in any period inactive firms can become active, incurring an entry cost &(m,)
while active firms may exit and become inactive, obtaining a scrap value x(m,).
Let y, denote the mass of active firms in period ¢ and let g, denote their output
choice. Prices will then be given by p(y,q,, m,), where p(-,m,) is a nondecreas-
ing inverse demand function with lim, _, . p(x, m) = 0. An equilibrium is a joint
process for (y, g, p, m) adapted to the filtration induced by the process {m,}

Donaldson and Mehra (1983) arrived at a similar expression following a different analysis. In
contrast to their analysis, the approach followed here makes very few assumptions on the shape of
the production function.
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such that (i) given this process, output and the implied entry and exit decisions
maximize expected discounted profits, and (i) p = p(y,q,, m,).

Lambson shows that the equilibrium is unique and that it is characterized by
a pair of functions N(m,) and X(m,), where N(m,) <X(m,) such that when
condition m, occurs, (i) if y,_, €[N(m,), X(m,)] then y, ,=y,; (i) if y,_, <
N(m,), y,=N(m,); (i) if y,_, > X(m,), y,=X(m,).

Let the state of the industry s, = (y,, m,). Under what conditions does there
exist an invariant distribution to which the system converges? For this purpose,
Lambson assumes the process for m, is Markov over a countable state space
M =1,2,... recurrent and positive with transition p;; >0 for all pairs i, and
that sup; N, > inf; X.

An alternative route, suggested by our results, is to exploit the monotonicity
that the equilibrium law of motion for y, displays. For simplicity, we will
consider the case where market conditions only affect the market demand for
the product. In particular, suppose market conditions m € M, where M is a
compact metric space with a closed partial order with minimal and maximal
points m and m, respectively and that m' >m implies p(-,m') > p(-, m).
Assume {m,} follows a Markov process with an increasing transition P. Under
these assumptions m’ > m implies N(m') > N(m) and X(m') > X(m). Assume
there exist demand shocks m, and m, such that N(m,) < X(m,) <N(m,) <
X(m,) and (n,8>0) such that P"[m <mm]>8 and P"[m >m,m]>é.
Then choosing m* €[m,,m,] and y* €[X(m,), N(m,)], the point s*=
(m*, y*) satisfies MMC so Theorem 2 applies and a unique, asymptotically
stable distribution exists.?’ Note that though extra monotonicity assumptions
were needed to get this result, the requirements on the degree of communica-
tion between states are much weaker and the set of market conditions need not
be countable.
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U.S.A.
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University of Minnesota and Research Dept., Federal Reserve Bank of Min-
neapolis, 250 Marquette Ave., Minneapolis, MN 55401-0291, U.S.A.
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APPENDIX

LemMA 1: Let X and Y be lattices and Z a partially ordered set. Suppose f: SXYXZ - R is
supermodular in (s,y) €X XY for all z€Z, has increasing differences, and is bounded. Let I':

20A]ternatively suppose sup {N(m)im € M} > inf{X(m):m € M}, and the points m and 7 have a
recurrent neighborhood system, i.e. for any m and & > 0 the probability that an e-neighborhood of
m (resp. m) will eventually be reached is equal to one. Also assume p(-) is a continuous function.
Letting y =X(m) and y = N(m), the points [y,m] and [y,m] satisfy the assumptions of the
Corollary to Theorem 2, so there exists a unique, asymptotically stable distribution of s,.
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S X Z —2Y be a correspondence with strict complementarity and for each z € Z, the graph of T'(-;z)
is a sublattice. Then

g(x,z)= sup f(x,y,z) is supermodular on x and has increasing differences.
yel(x,z)

Proor: Supermodularity follows from Theorem 4.3 in Topkis (1978). To prove that g has
increasing differences, let x; and x, be two elements in X such that x, >x, and similarly let z,
and z, be two elements of Z with z,>z,. Let y;, €I'(x,z,) and y,, €I'(x,, z,). Then

8(xz, 22) +8(x1,2) 2 f(X2, Y12 Va1, 22) +f(X 1 Y12 AVars 21)

=f(x2,y2 VY2, 22) + f(x 1, ya Ayan 22) +f(x 1 Y2 Ayar, 2p)
—f(x1y12AY21,22)

>f(x15¥12,22) + (X2, Y21, 22) (X, Y12 A Y2, 2p)
—f(x1, Y12 A Y215 22)

=f(x1,¥12,22) + f(x2, ¥ar, 20) + (X2, Y215 22)
—f(x0 Y12 AY222) = (f(x2, Y21, 210) = f(x1, Y12 A Y21, 21)

2f(x1; Y12, 22) +f(X3, Y21, 21)

where the first inequality follows from strict complementarity, the second inequality from the
definition of supermodularity, and the third one by using the fact that f has increasing differences.
Taking the supremum of the right-hand expression, the result follows. Q.E.D.

LeEmMA 2: Let S be a partially ordered set and Y a separable metric space with a continuous lattice
structure. Let y: S — 2Y be a nonempty, compact valued, and upper measurable correspondence, and
assume that for each s €S, y(s) is a sublattice of Y. Then the functions g(s)=supy(s) and
g(s) = inf y(s) are borel measurable selections of y. Furthermore, if vy is ascending, these selections
are increasing.

ProoF: Since y is compact valued in a topology finer than the order topology, y(s) is a complete
sublattice for all s € S (see Birkoff (1967)). Hence g and g are well defined selections from y. We
now show that sup is a continuous function on the sef’ 2 of compact subsets of Y with the
Hausdorff topology. Let C€ % and s =supC. Let U be an open set containing s and for each
t€C let §,>0 and ¢, >0 be chosen so that for all y €B,(t) and x€B,(s), xVy€eU. Let
6= mm,ec{mm{B,,e}} Smce C is compact, 8>0. Pick any set C'e 2" from the open &
nelghborhood of C and let s’ =sup C’. By choice of C’, s’ eB,;(t) for some ¢t € C and B, (s) NC #
¢, so s'=s"Vx for some x €B, (s) and thus s’ € U. Since g is the compos:tlon of a continuous
function with a measurable functlon, it is measurable. Finally, that g is nondecreasing follows
immediately from the fact that vy is ascending. Q.E.D.
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